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ENHANCED GAUSSIAN PROCESSES AND APPLICATIONS

We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai theorem.

Generalities

 Lyons developed a general theory of differential equations of the form (1.1)

.

 have constructed the Lévy area using the expansion of Brownian motion in the basis of Legendre polynoms.

Karhunen-Loeve expansion Theorem provide a natural way to approximate paths of a Gaussian process by a smooth process. This paper is devoted to study how its expansion allow to lift R d -valued Gaussian process x to a path x with values in some free nilpotent of step 2 group over R d (or in other words, how to construct the Lévy area of x, i.e. the second iterated integral of x). We also show that if the process x with some area process satisfies some quite natural conditions, then x will be the limit of the lift of the Karhunen-Loeve approximations of x.

The proof of the convergence of Karhunen-Loeve expansion Theorem or of some properties on Gaussian processes relies on the convex property of the vector spaces. The free nilpotent group of step 2 do not share this property. In the first part of this paper, we give a proof of a weak version the Karhunen-Loeve expansion Theorem using a discrete martingale. Some basic results on the free nilpotent group of step 2 are given. Then, in the second part, using again some martingales, we lift the process x to a path x with values in some free nilpotent of step 2 group over R d . A

characterisation and a result of uniqueness is also given. For the Brownian motion and the fractional Brownian motion, this definition coincides with the one obtained by dyadic linear approximation as in [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions Probab[END_REF]. In the third part the case of Volterra Gaussian processes is studied. We conclude with a Wong-Zakai Theorem.

1.1. Gaussian Processes. We define on the measure space Ω = C 0 [0, 1] , R d and its Borel σ-algebra denoted by F, the probability measure P corresponding to the law of a d-dimensional centered Gaussian process with covariance function C. We let (H, , ) the associated Cameron-Martin space associated to P. We assume that the process has continuous sample paths, then it is continuous in L 2 (Ω, F, P) and the covariance function is continuous. Following [START_REF] Fernique | Régularité des trajectoires des fonctions aléatoires gaussiennes, Ecole d'été de probabilités de saint-Flour 1974[END_REF] Theorem 2.8.2, the space (H, , ) is separable. Let e = (e i ) i∈N be an orthonormal basis on (H, <, >). One can always represents X under P with the formula (1.2)

X k = ∞ i=0 (N e i ) k e k i
where N e i = X, e i are independent standard d dimensional normal random variables. Here <, > is the duality bracket. We let F e n = σ (N e i , 0 ≤ i ≤ n) . We warm up with the following two propositions. Their results (and stronger results) are well known, see Theorem 2.4.2 of [START_REF] Fernique | Régularité des trajectoires des fonctions aléatoires gaussiennes, Ecole d'été de probabilités de saint-Flour 1974[END_REF] , but the proof given here allow us to generalize in the next section to the "natural lift" of X to a process with values in some free nilpotent group. Proof. It is just the observation that ∞ i=n+1 N e i e i is mean 0 and independent of F e n .

Proposition 2. For all q ≥ 1, and for all t ∈ [0, 1], X e n (t) converges to X (t) almost surely and in L q .

Proof. Since X has continuous sample paths, then almost surely X ∞ := sup t∈[0,1] X(t) < ∞. Note that X ∞ < ∞ a.s. implies that the r.v. X ∞ has a Gaussian tail (from Borell's inequality), and therefore is in L q for all 1 ≤ q < ∞. For all t ∈ [0, 1]

|X e n (t)| = |E (X(t) |F e n )| ≤ E ( X ∞ |F e n ) .
Taking the suppremum over all t, we obtain that X e n ∞ ≤ E ( X ∞ |F e n ). Therefore, by Doob's inequality, sup n X e n ∞ is in L q for all 1 ≤ q < ∞. By the martingale convergence theorem, X e n (t) → X(t) for all t, where the convergence is in L q and a.s.

1.2.

Free Nilpotent Group of Step 2.

1.2.1. Definitions. We define G 2 R d to be the space (x, y) ∈ R d ⊕ M d (R) , y i,j + y j,i = x i x j together with the product

(x 1 , y 1 ) ⊗ (x 2 , y 2 ) = x 1 + x 2 , y 1 + y 2 + x i 1 x j 2 i,j
.

Indeed, G 2 R d , ⊗ is the free nilpotent group of step 2 over R d .
We define for a R d -valued path x of finite q-variation for q < 2, the canonical lift of x to a G 2 R d -valued path:

S (x) t = x t , t 0 x i u dx j u , t ∈ [0, 1]. Observe that G 2 R d = S (x) 1 , x smooth R d -valued path .
That allows us to define a homogeneous norm on G 2 R d :

g = sup x smooth S(x) 1 =g 1 0 .
x u du, and from this homogeneous norm, a left invariant distance on G 2 R d :

d (g, h) = g -1 ⊗ h . If g = (x, y) ∈ G 2 R d , we define π i (g) to be the projection of x on the i th component of R d , and π j,k (g) the (j, k) th component of y on R d × R d . In particular, if x is a smooth R d -valued path then π i (S (x) 1 ) = x i 1 and π j,k (S (x) 1 ) = 1 0 x j u dx k u .
We have an equivalence of homogeneous norm result: there exists some constant c, C > 0 such that for all g ∈ G 2 (R d ),

(1.3) c g ≤ max i,j,k |π i (g)| , |π j,k (g)| ≤ C g . 1.2.2. Paths with Values in G 2 R d . When x is a path in C 0 [0, 1], G 2 (R d ) , the space of continuous functions from [0, 1] into G 2 R d starting at 0, we let as a notation x s,t = x -1 s ⊗ x t , (s, t) ∈ [0, 1] 2 . On C 0 [0, 1], G 2 (R d ) , we define the following distances: d ∞ (x, y) = sup 0≤t≤1 d (x t , y t ) , x ∞ = d ∞ (0, x) .
For a given control 1 ω and p ≥ 1, we define

d p,ω (x, y) = sup 0≤s<t≤1 d (x s,t , y s,t ) ω (s, t) 1/p , x p,ω = d p,ω (0, x) .
The applications . ∞ and . p,ω are not some pseudo norms since x, y

∈ C 0 [0, 1], G 2 (R d ) does not imply x ⊗ y ∈ C 0 [0, 1], G 2 (R d ) . 1 i.e. a continuous map from {s ≤ t, s, t ∈ [0, 1]} such that ω(t, s) + ω(s, u) ≤ ω(t, u), ∀ t ≤ s ≤ u, null on the diagonal 1.2.3.
Translation operator on Path Space. We will want to "add" two paths with values in G 2 R d . This can be done when between these two paths make sense. This addition or translation operation will be denoted T . The map T can be understood in the following way: for some smooth paths x and h, we define T h (S(x)) := S(x + h).

Then if (S(x n )) converges to X in the uniform topology associated to d ∞ and h n converges to h in bounded variation, then (T hn (S (x n ))) converges in the uniform topology to a continuous G 2 R d -valued path denoted T h (X) . One can check that T h (X) satisfies

π i (T h (X)) = h i + x i , π i,j (T h (X)) = π i,j (X) + . 0 h i u dh j u + . 0 x i u dh j u (1.4) +h i . x j . -h i 0 x j 0 - . 0 x j u dh i u .
2. Natural Lift of a Gaussian Process to a G 2 R d -valued process 2.1. Definition and First Property. We denote by BV the set of continuous paths of bounded variation.

Assumption 1.

(1) There exists an orthonormal basis e = (e i ) i≥0 of (H, <, >) which is in H ∩ BV ;

(2) the components of X are independent.

Example 1. Point (1) of Assumption 1 is fulfilled if C is continuous for the usual distance on [0, 1] 2 , and for all t ∈ [0, 1], C(t, .) ∈ BV. Indeed, the vector space generated by {C(t, .), t ∈ [0, 1]} is dense in (H, <, >) and Assumption 1 follows from an orthonormalisation procedure.

Example 2. In particular, Assumption 1 is satisfied for fractional Brownian motion, for any Hurst parameter h > 0.

All the orthonormal basis (e i ) i∈N of H that we will consider will be implicitly assumed to be in BV . Definition 1. We say that X : [0, 1] → G 2 R d defines a natural lift of the Gaussian process X, associated to the orthonormal basis e (to a G 2 R dvalued process) if

(1) S X e 0,n t converges in probability to X t for all t ∈ [0, 1], (2) X has a continuous sample paths.

Note from the definition of the canonical lift on smooth R d valued path and Proposition 2, that

π i (X) = X i , i ∈ {1, ..., d} (2.1) π i,i (X) = (X i ) 2 2 .
Lemma Proof. From equality (2.1) and Proposition 2, we only have to study the convergence of ((π i,j -π j,i ) (S(X e n ) t )). First observe that ((π i,j -π j,i ) (S(X e n ) t )) is F e nmartingale. Moreover, because its belongs to the second Wiener chaos, the convergence of ((π i,j -π j,i ) S(X e n ) t ) in probability is equivalent to the convergence in L 2 . By martingale convergence theorem, ((π i,j -π j,i ) S(X e n ) t ) converges in L 2 and almost surely if and only if

lim n→∞ E |(π i,j -π j,i ) S(X e n ) t | 2 < ∞. But E |(π i,j -π j,i ) (S(X e n ) t )| 2 = E    0≤l,k≤n N i l N j k t 0 e i l (s) ėj k (s) -e j k (s) ėi l (s) ds 2    = 0≤l,k≤n t 0 e i l (s) ėj k (s) -e j k (s) ėi l (s) ds 2 .
Observe that we have used the independence of the coordinates of the Gaussian process X.

A kind of 0 -1 law is also available.

Lemma 2. Let e be an orthonormal basis on

H, such that e n ∈ BV for n ∈ N. Let t ∈ [0, 1]. If P({ω, (S(X e n ) t (ω)) n∈N converges }) > 0, then P({ω, (S(X e n ) t (ω)) n∈N converges }) = 1.
Proof. Assume that P({ω, (S(X e n ) t (ω)) n∈N converges }) > 0, and denote for i, j ∈ {1, ..., d}

Γ i,j = {ω, (S(X e n ) i,j t (ω) -S(X e n ) t (ω) j,i ) n∈N converges }.
For i ∈ {1, .., d}, observe that S(X e n ) i t =

(X e n (t) i ) 2 2

. Theorem 1.1.1 of [START_REF] Fernique | Régularité des trajectoires des fonctions aléatoires gaussiennes, Ecole d'été de probabilités de saint-Flour 1974[END_REF] applied to the Gaussian vector (X e n (t) i ) n∈N yields P({(X e n (t) i ) n∈N and (X e n (t) i,i ) n∈N converge}) = 1.

For i = j, conditionally to σ(N i l , l ∈ N), (S(X e n ) i,j t -S(X e n ) t ) j,i
) n∈N is a Gaussian vector, and using the same arguments, almost surely

E(1 Γ i,j /σ(N i l , l ∈ N)) = 1 Γ i,j .
But the role of i and j in the conditioning are symmetric and the following equality holds

E(1 Γ i,j /σ(N i l , l ∈ N)) = 1 Γ i,j = E(1 Γ i,j /σ(N j l , l ∈ N)). (2.2) Since the σ fields σ(N j l , l ∈ N) and σ(N i l , l ∈ N) are independant, conditionning all terms of equality (2.2) by σ(N j l , l ∈ N) yields 1 Γi,j = P(Γ i,j ) > 0.
Then, 1 Γi,j = 1 almost surely. This achieves the proof, since

S(X e n ) i,j = 1 2 (X e n ) i (X e n ) j + S(X e n ) i,j -S(X e n ) j,i .

2.2.

A Characterization of a Natural Lift, and a Uniqueness Result. We will use the maps

φ i : C 0 [0, 1], R d → C 0 [0, 1], R d (x 1 , ..., x d ) → (x 1 , .., x i-1 , -x i , x i+1 , .., x d ) .
Observe that P • φ i = P for all i. (P is the probability measure introduced in the previous section).

Theorem 1. Assume that Assumption 1 is fulfilled.

The path X : [0, 1] → G 2 R d is a natural lift of X for some orthonormal basis e, if and only if there exists a measurable map

Ψ : C 0 [0, 1], R d → C 0 [0, 1], G 2 R d ∪ {δ}
( where δ is a cimentary point) such that Definition 2.

(1) X =Ψ (X) a.s.and

Ψ (X) = δ a.s. (2) The projection of Ψ (X) onto R d is equal to X a.s.. (Lifting property) (3) π j,k Ψ (φ i (X)) = -π j,k Ψ (X) if i ∈ {j, k} , π j,k Ψ (φ i (X)) = π j,k Ψ (X) if i / ∈ {j, k} . ( Symmetry property) 
(4) For all path h ∈ H ∩ BV , Ψ (h) = S (h) (Definition on "smooth" paths).

(5) For all path h ∈ H ∩ BV , Ψ (X + h) = T h Ψ (X) almost surely. (Stability of translations property). (6) The r.v. X s,t is in L 2 (Ω, F, P) for 0 ≤ s < t ≤ 1.(Integrability property)

Proof. If X is a natural lift (associated to an orthonormal basis f ), it is easy to check that it satisfies properties (1) to [START_REF] Coutin | Good rough path sequences and applications to anticipating calculus[END_REF].

Conversely, we want to check that if Ψ is a measurable map satisfying the above condition, then Ψ (X) is the natural lift associated to e. The proof will be complete once we prove that for all n, for all 0 ≤ s ≤ t ≤ 1,

(2.3) E log Ψ (X) s,t |F e n = log S (X e n ) s,t .
Indeed, the martingale log S X e 0,,n s,t converges to log X s,t , and the above equality plus the fact that log Ψ (X) s,t is F e 0,∞ -measurable would prove that X s,t = Ψ (X) s,t . Here, log is defined by its power serie.

The first level of equality (2.3) was proved in Proposition 1. We therefore only need to prove that for i = j, 0 ≤ s ≤ t ≤ 1, n ∈ N using (1.4),

E (π i,j -π j,i ) Ψ (X) s,t |F e n = (π i,j -π j,i ) S (X e n ) s,t .
From the stability of translations property, Ψ (X) = T X e n (Ψ (X -X e n )) . In particular, for all 0 ≤ s < t ≤ 1, and 1 ≤ i < j ≤ d,

(π i,j -π j,i ) Ψ (X) s,t = (π i,j -π j,i ) Ψ (X -X e n ) s,t + (π i,j -π i,j ) S (X e n ) s,t + t s (X -X e n ) i s,u d (X e n ) j u - t s (X -X e n ) j s,u d (X e n ) i u (2.4) - t s (X -X e n ) j s,u d (X e n ) i u + t s (X -X e n ) i s,u d (X e n ) j u + (X e n ) i s,t (X -X e n ) j s,t -(X e n ) j s,t (X -X e n ) i s,t .
It is easy to check that all the expressions in equality (2.4) 

are in L 2 (Ω, F, P). As (X -X e n ) is independent of F e n while N e k is F e n -measurable, E t s (X -X e n ) i s,u d (X e n ) j (u) |F e n = n k=0 N j k t s E (X -X e n ) i s,u |F e n de j k (u) = n k=0 N j k t s E (X -X e n ) i s,u de j k (u) = 0.
The same equality and argument applies to

t s (X -X e n ) j s,u d (X e n ) i u and to (X e n ) i s,t (X -X e n ) j s,t
and the reverse expressions. Therefore,

E (π i,j -π j,i ) Ψ (X) s,t |F e n = (π i,j -π j,i ) S (X e n ) s,t +E (π i,j -π j,i ) Ψ (X -X e n ) s,t |F e n .
From the symmetry assumption, (π i,j -

π j,i ) Ψ (X -X e n ) s,t = -(π i,j -π j,i ) Ψ • Φ i (X -X e n ) s,t .
Since X and φ i (X) has the same law, (π i,j -π j,i ) Ψ (X -X e n ) s,t is a centered random variable. Hence, as X -X e n is independent of F e n , we obtain,

E (π i,j -π j,i ) Ψ (X -X e n ) s,t |F e n = 0. Therefore, E (π i,j -π j,i ) Ψ (X) s,t |F e n = (π i,j -π j,i ) S (X e n ) s,t .
As a simple corollary of the previous result, we obtain the important result of uniqueness of the natural lift.

Corollary 1. Let X be a Gaussian process, and assume that there exists a natural lift X of X associated to some orthonormal basis e of H in BV . Then, for all orthonormal basis f of H in BV , there exists a natural lift X f associated to X. Moreover, almost surely, for all such orthonormal basis, X f = X e .

Other Constructions.

Theorem 2. Assume that there exists linear measurable maps

∆ n : C 0 [0, 1] , R d → H ∩ BV such that
(1) Almost surely, S • ∆ n (X) converges in uniform topology.

(2) ∆ n (h) converges pointwise to h and

sup n |∆ n (h)| BV < ∞ ∀h ∈ H ∩ BV ; (3) For all 1 ≤ i ≤ d, ∆ n • φ i = φ i • ∆ n .
Then, there exists a (unique up to indistingability) natural lift of X, and it is X := lim n→∞ S • ∆ n (X) .

Proof. We define Ψ(X) = lim n→∞ S • ∆ n (X). Condition 1 clearly implies that Ψ(X) has almost surely continuous paths. Hence, T h (Ψ(X)) exists for all h ∈ BV . Moreover,

S • ∆ n (X + h) = S (∆ n (X) + ∆ n (h)) = T ∆n(h) (S • ∆ n (X)) ,
and by property of the translation operator, we see that T ∆n(h) (S • ∆ n (X)) converges in uniform topology to variation topology to T h (Ψ(X)). Hence, Ψ(X + h) is well defined a.s. and equal a.s. to T h (Ψ(X)). The other conditions of theorem 1 are easily checked to be true.

Corollary 2. The level n dyadic piecewise linear approximation of a continuous path, i.e.

∆ n (x) t = x k 2 n + (2 n t -k) x k+1 2 n -x k 2 n for t ∈ k 2 n , k + 1 2 n .
Assume that S•∆ n (X) converges almost in uniform topology. Then, X := lim n→∞ S• ∆ n (X) is the unique natural lift associated to X.

The above corollary is obvious. It proves in particular that the lift of fractional Brownian motion constructed in [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions Probab[END_REF] is a natural one.

2.4. Convergence in d p,ω topology. Theorem 3. Assume that there exists a natural lift associated X to a Gaussian process X, and assume that for some control ω, such that X p,ω is in L q (Ω, F, R) for q ≥ 2. Let us fix a orthonormal basis e of H which in BV . Then,

sup n S(X e 0,n ) p,ω
is in L q . In particular, for all p > p, d p ,ω S(X e 0,n ), X converges to 0 almost surely and in L q . Proof. We define A = ((π i,j -π j,i )(X)) (i,j)∈{1,...,d} to be the area of X. For all

s < t ∈ [0, 1], S(X e 0,n ) s,t ≤ C |E (X s,t |F e n )| + C |E (A s,t |F e n )| ≤ 2C E X s,t 2 |F e n ≤ 2ω(s, t) 1/p E X 2 p,ω |F e n .
Hence, since q ≥ 2,

sup n S(X e 0,n ) p,ω ≤ C sup n E X q p,ω |F e 0,n 1/q 
, which in L q by Doob's inequality. By interpolation, we obtain the convergence of d p ,ω S(X e 0,n ), X to 0 both almost surely and in L q .

The Particular Case of a Volterra Gaussian process

This section is devoted to apply the previous results to Volterra Gaussian processes. There are a lot of work about integration with respect to these processes see [START_REF] Decreusefond | Stochastic Integration with respect to Volterra processes[END_REF], [START_REF] Cheridito | Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1 2 )[END_REF] or [START_REF] Coutin | An introduction to (stochastic) calculus with respect to fractional Brownian motion[END_REF] for more details and references therein. Since we are only interesting in the construction of enhanced Gaussian Volterra processes, we work in a more simpler framework. Let K be a mesurable kernel K : [0, 1] 2 → R such that for all t ∈ [0, 1], K(t, .) ∈ L 2 ([0, 1], R, dr), and for all 0 ≤ t ≤ s ≤ 1, K(t, s) = 0. Let B = (B 1 , ..., B d ) be a d dimensional Brownian motion, then the Gaussian Volterra process associated to B and K is the process (X(t), t ∈ [0, 1]) defined by :

X i (t) = t 0 K(t, s)dB i s , t ∈ [0, 1], i = 1, ..., d.
Its covariance function is

C(t, s) = c(t, s)I d R , (s, t) ∈ [0, 1] where I d
R is the identity matrix and

c(t, s) = 1 0 K(t, u)K(s, u)du.
In order to construct the natural lift we may assume the following

Assumption 2.

(1) There exists α > 0 such that the map Under point (1) of Assumption 2, X has a modification with β Hölder continuous sample path for any β < α. In the sequel, we only consider this modification. Indeed, the variance of the increments is

t → K(t, .) is α Hölder continuous from [0, 1] to L 2 ([0, 1], R, dr), (2) The function t → t 0 K(t,
d i=1 E(|X i (t) -X i (s)| 2 ) = d 1 0 [K(t, u) -K(s, u)] 2 du.
Therefore using (1) of Assumption 2 there exists a constant C α such that

d i=1 E(|X i t -X i s | 2 ) ≤ C α |t -s| 2α ,
and the existence of a continuous modification is a consequence of the Kolmogorov Theorem.

The Cameron-Martin space associated to X, is

H = {h, h(t) = t 0 K(t, s) ḣ(s)ds, t ∈ [0, 1], ḣ ∈ L 2 ([0, 1], R d , ds)},
endowed with the scalar product h, g = ḣ, ġ L 2 ([0,1],R d ,ds) . Let us recall the proof given in [START_REF] Decreusefond | Stochastic Analysis of the Fractional Brownian Motion[END_REF]. Indeed, in one hand, if

h(t) = t 0 K(t, s) ḣ(s)ds, ḣ ∈ L 2 ([0, 1], R d , ds), t ∈ [0, 1], then for any n ∈ N * , α i ∈ R, t i ∈ [0, 1], i = 1, ..., n, n i=1 α i h(t i ) 2 = [0,1] n i=1 α i K(t i , s) ḣ(s)ds 2 ≤ ḣ 2 L 2 ([0,1],R d ,ds)   n i,j=1 α i α j c(t i , t j )   ,
that means that h belongs to H and |h| H ≤ ḣ L 2 ([0,1],R d ,ds) . 0n the other hand, let h, g ∈ H, there exists two Gaussian random vectors Φ h , Φ g , belonging to the Gaussian space associated to X such that for all t ∈ [0, 1], j = 1, ..., d, h j (t) = E(Φ j h X j (t)) and g j (t) = E(Φ j g X j (t)). Then, Φ h and Φ g belong to the Gaussian space associated to B and there exists ḣ and ġ in L 2 ([0, 1], R d , ds) such that Φ j h = 1 0 ḣj (s)dB j s and Φ j g = 1 0 ġj (s)dB j s for j = 1, ..., d. We derive that, for t ∈ [0, 1],

h(t) = 1 0 K(t, s) ḣ(s)ds, g(t) = t 0 ġ(s)K(t, s)ds and h, g = E( Φ h , Φ g R d ) = ḣ, ġ L 2 ([0,1],R d ,ds) . Let (h n ) n∈N be an orthonormal basis of L 2 ([0, 1], R, dr) belonging to C ∞ ([0, 1], R),
and set

e n (t) = t 0 K(t, s)h n (s)ds, t ∈ [0, 1]. (3.1)
Then under Assumption 2, (2) and ( 3), (e n ) is an orthonormal basis of (H, <, >)

which is H ∩ BV. Indeed, for n ∈ N, t ∈ [0, 1], e n (t) = 1 0 K(t, s)dsh n (t) + 1 0 K(t, s)(h n (s) -h n (t))ds
is the sum of a function in VB and a function absolutely continuous with respect to the Lebesgue measure with derivative given by

t 0 ∂K(t, s)(h n (s) -h n (t))ds - t 0 K(t, s)ds ḣn (t), t ∈ [0, 1].
Let us introduce some notation: for Π = (t i ) |Π| i=0 a subdivision of [0, 1], and t ∈ [0, 1],

K Π 2 (t, u, v) = ti∈Π, ti≤t (K(t i , u)[K(t i+1 , v) -K(t i , v)] -K(t i , v)[K(t i+1 , u) -K(t i , u)]) , (3.2) 
and

K 2 (t, u, v) = 2 t u K(r, u)∂K(r, v)dr -K(t, u)K(t, v) if u > v, = -2 t v K(r, v)∂K(r, u)dr + K(t, u)K(t, v) if v > u.
Lemma 3. Let K be a mesurable kernel fulfilling Assumption 2. The sequel (S t (X e n )) n∈N converges in probability if and only if K 2 (t, ., .) belongs to L 2 ([0, 1], dudv).

Proof. Let k, l ∈ N, since e k and e l have finite variation, the integral of e l with respect to e k is limit of the Riemann sums. Then using the integral representation given in (3.1), Fubini's lemma and the definition of K Π n 2 (t, ., .) given in (3.2), we have

t 0 (e l (s) ėk (s) -e k (s) ėl (s)) ds = lim n→∞ h l ⊗ h k , K Π n 2 (t, ., .) . (3.3) Note that (u, v) → K Π 2 (t, u, v
) is antisymmetric, so we deal only with u > v. Then using a change of variable, with In other words,

t it ≤ t < t it+1 , K Π 2 (t, u, v) = -K(t it+1 , u)K(t it+1 , v) + ti∈Π, ti≤t 2K(t i , u)[K(t i+1 , v) -K(t i , v)] + ti∈Π, ti≤t [K(t i+1 , u) -K(t i , u)] [K(t i+1 , v) -K(t i , v)] . Since (h n ) n∈N is an orthonormal basis of L 2 ([0, 1], R, du), then (h k ⊗ h l ) (l,k)∈N 2 is an orthonormal basis of L 2 ([0, 1] 2 ,
0≤k<l<∞ lim n→∞ h k ⊗ h l , K Π n 2 (t, ., .) 2 < ∞.
If under Assumption 2, (K Π n 2 (t, ., .)) n converges to K 2 (t, ., .) in L 1 ([0, 1] 2 , dudv) then using the fact that the function h k are bounded on [0, 1] for all k ∈ N, lim n→∞ h k ⊗ h l , K Π n 2 (t, ., .) = h k ⊗ h l , K 2 (t, ., .) for all l, k ∈ N; and (S (X e n ) t ) n converges almost surely if and only if K 2 (t, ., .) belongs to L 2 ([0, 1], dudv).

Then, it remains to prove that (K Π n 2 (t, ., .)) n converge to K 2 (t, ., .) in L 1 ([0, 1] 2 , dudv).

We split K Π n 2 (t, ., .) -K 2 (t, ., .) = S Π n 1 (t, ., .) + 2S Π n 2 (t, ., .) + S Π n 3 (t, ., .), where for 0 ≤ v < u ≤ 1,

S Π n 1 (t, u, v) = K(t, v)K(t, u) -K(t it+1 , u)K(t it , v), S Π n 2 (t, u, v) = ti∈Π n , ti≤t K(t i , u) (K(t i+1 , v) -K(t i , v)) - t u K(r, u)∂K(r, v)dr, and 
S Π n 3 (t, ., .) = ti∈Π, ti≤t [K(t i+1 , u) -K(t i , u)] [K(t i+1 , v) -K(t i , v)] .
First, observe that for v < u

S Π n 1 (t, u, v) ≤ |K(t it+1 , u)| |K(t it , v) -K(t, v)| + |K(t, u) -K(t it+1 , u)| |K(t, v)
| and use Fubini's Theorem and Cauchy Scwhartz inequality to derive :

S Π n 1 (t, ., .) L 1 ([0,1] 2 ,R,dudv) ≤ 2 E((X 1 ti t +1 ) 2 )E( X 1 ti t -X 1 t 2 ) + E((X 1 t ) 2 )E( X 1 ti t +1 -X 1 t 2
) .

Since X is a Gaussian process with continuous sample path S Π n 1 (t, ., .) L 1 ([0,1] 2 ,R,dudv) converge to 0 when n goes to infinity. Second, we observe that for 0 ≤ v < u ≤ 1,

S Π n 2 (t, u, v)) = t ti u+1 (K(t ir , u) -K(r, u)) ∂K(r, v)dr (3.4) - ti u +1 u K(r, u)∂K(r, v)dr + K(t it , u) (K(t it+1 , v) -K(t, v)) .
The convergence of the last term of the right member of (3.4) to 0 in L 1 ([0, 1] 2 , dudv) follows the same lines as the convergence of S Π n 1 (t, ., .) L 1 ([0,1] 2 ,R,dudv) to 0. For the first term of the right member of (3.4) note that

0≤v≤u≤1 dudv t ti u +1 |K(t ir , u) -K(r, u)||∂K(r, v)|dr = t t1 dr ti r 0 dv|∂K(r, v)| ti r v |K(t ir , u) -K(r, u)|du.
Using Cauchy Schwarz inequality in the integral with respect to du and

E((X z -X y ) 2 ) = 1 0 [K(z, r) -K(y, r)] 2 dr we derive 0≤v≤u≤1 dudv t ti u +1 |K(t ir , u) -K(r, u)||∂K(r, v)|dr ≤ C α 1 0 dr ti r 0 |∂K(r, v)| t ir -v|r -t ir | α dv.
Then 0≤v≤u≤1 dudv t ti u +1 |K(t ir , u) -K(r, u))||∂K(r, v)|dr converges to 0 when n goes to ∞ since t r ≤ r. For the second term of the right member of (3.4), the same kind of computations yields

0≤v≤u≤1 dudv ti u +1 u |K(r, u)||∂K(r, v)|dr ≤ 1 0 dr r 0 |∂K(r, v)|dv r max(v,tr) |K(r, u)|du ≤ C α 1 0 dr r 0 |∂K(r, v)||r -max(v, t r )| 1/2 |r -v| α dv.
We conclude that S Π n 2 (t, ., .) L 1 ([0,1] 2 ,R,dudv) converge to 0 when n goes to infinity. Using the same arguments, S Π n 3 (t, ., .) L 1 ([0,1] 2 ,R,dudv) converge to 0 when n goes to infinity. Corollary 3. Let K be a mesurable kernel fulfilling Assumption 2. Assume that

• (K Π n 2 (t, ., .)) n∈N converges in L 2 ([0, 1] 2 , dudv) to K 2 (t, ., .), • t → K 2 (t, ., .) is β Hölder continous in L 2 ([0, 1] 2 , R, dudv), then X is natural lift of X.
Proof. We define A = ((π i,j -π j,i )(X)) (i,j)∈{1,..,d} 2 to be the area of X. For all s < t ∈ [0, 1],

In order to establish the continuity of the paths of X, according to the expression of π i,i (X) given in (2.1) it only remainds to prove that A has a continuous version. Just observe that for t, s ∈

[0, 1] 2 E((A i,j t -A i,j s ) 2 ) = K 2 (t, ., .) -K 2 (s, ., .) 2 L 2 ([0,1],R,dudv) ≤ |t -s| 2β .
Then using the fact (see [START_REF] Borell | On polynomial chaos and integrability[END_REF]) that there exists a constant C p such that for all variable Y in the second Wiener chaos of X,

E(Y p ) ≤ C p E(Y 2 ) p/2
and the Kolmogorov Lemma we obtain the continuity of A i,j and then of X in

G 2 R d .
As it is pointed out in the pioneering paper of Decreusefond-Üstünel, [START_REF] Decreusefond | Stochastic Analysis of the Fractional Brownian Motion[END_REF], a now celebrate example of Volterra process which satisfies the previous assumptions is the fractional Brownian motion with Hurst parameter h ∈ (0, 1]. The associated kernel is ( [START_REF] Pipiras | Are classes of deterministic integrands for fractional Brownian motion on interval complete?[END_REF]) : for s < t,

K h (t, s) = c h s 1 2 -h t s (u -s) h-3 2 u h-1 2 du, for h > 1 2 , = c h (t -s) h-1 2 t h-1 2 h -1 2 - t s (u -s) h-1 2 u h-3 2 du s 1 2 -h , for h < 1 2 ,
= 1 [0,t] (s) for h = 1 2 where c h is a suitable constant such that the covariance function is c(t, s) = 1 2 s 2h + t 2h -|t -s| 2h .

Remark 1. As it pointed out in Proposition 32 of [START_REF] Coutin | Stochastic analysis, rough path analysis and fractional Brownian motions Probab[END_REF], fractional Brownian motion fulfills the existence condition of Corollary 3 if and only if is h > 1 4 .

Application: a Generalised Wong-Zakai theorem

For simplicity, we will work with the Gaussian process Brownian Motion B, together with its natural lift B t = B t , t 0 B u • dB u (it is a natural lift from theorem 2 for example). It is clear that we can extend the following result to more general Gaussian processes. We fix a orthonormal basis e of the Cameron-Martin space of B, i.e. Observe that if we take the Haar basis for the orthonormal basis e of L 2 ([0, 1] , du) , then we fall back on the classical Wong-Zakai theorem.

Direction of Further Research

It would be nice to extend our result to lift to the free nilpotent group of step 3, or to a general step n. Things there get harder, as the martingale arguments fails to work for integrals of the type B 1 u 2 dB 2 u . The condition to check whether we can have a lift is quite neat and easy to read on Volterra process.

Proposition 1 .

 1 For all t ∈ [0, 1], X e n (t) := E (X(t) |F e n ) = n i=0N e i e i (t).

3 2 <

 2 +∞.

.

  

eTheorem 4 .

 4 n n is a orthonormal basis of L 2 ([0, 1] , du) . Then, B t = ∞ i=0 N e i e i (t) , and define B e 0,n (t) = n i=0 N e i e i (t) . Then, from the continuity of the Ito map and the results in this paper, we obtain the following theorem: Assume that p ∈ [2, 3). Let V = (V i ) 1≤i≤d be some vector fields on R n which are C p+ε , ε > 0. Define Y 0,n to be the solution of the ODEdY 0,n (t) =V (Y 0,n (t))dB 0,n (t) Y 0 = y 0 .Almost surely, Y 0,n converges in p-variation topology to the solution of the Stratonovich SDE dY (t) =V (Y (t)) • dB (t) Y 0 = y 0 .

  [START_REF] Biane | Variation sur une formule de Paul Lévy[END_REF]. Let e be an orthonormal basis on H, such that e n ∈ BV for n ∈ N.

			t	
	max i,j	0≤l<k<∞	0	e i l (s) ėj k (s) -e j k (s) ėi l (s) ds
				Let
	t ∈ [0, 1], The random variable (S (X e n ) t ) converges almost surely if and only if

2

< +∞.

  s)ds is of bounded variation.

[START_REF] Caballero | Composition of skeletons and support theorems[END_REF] 

The function t → K(t, s) has a differential with respect to t on ]s, 1] denoted by ∂K(t, s), ∂K(t, .) belongs to L 1 loc (]0, t[, R, du) and sup 0≤s<t≤1 |∂K(t, s)|(t -s)

  R, dudv). According Lemma 1, the sequence of random variables (S (X e n ) t ) n converges almost surely if and only if

		t
		(e l (s) ėk (s) -e k (s) ėl (s)) ds
	0≤l<k<∞	0

2

< +∞.
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