N

N
N

HAL

open science

Reasoning with graph constraints

Fernando Orejas, Hartmut Ehrig, Ulrike Prange

» To cite this version:

Fernando Orejas, Hartmut Ehrig, Ulrike Prange. Reasoning with graph constraints. Formal Aspects

of Computing, 2009, 22 (3), pp.385-422. 10.1007/s00165-009-0116-9 . hal-00497320

HAL Id: hal-00497320
https://hal.science/hal-00497320
Submitted on 4 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00497320
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects oh®uiting

Reasoning with Graph Constraints

Fernando Orejds Hartmut Ehrig, and Ulrike Prange

1Dpto de L.S.1., Universitat Politécnica de Catalunya, @amNord, Mddul Omega, Jordi Girona 1-3, 08034 Barcelopajrs
2Fak. IV, Technische Universitat Berlin, Franklinstrag8#29, 10587 Berlin, Germany.

Abstract. Graph constraints were introduced in the area of graphfwemation, in connection with the notion of
(negative) application conditions, as a form to limit th@kgability of transformation rules. However, we beliebat
graph constraints may also play a significant role in the afedésual software modelling or in the specification and
verification of semi-structured documents or websitesTBML or XML sets of documents). In this sense, after some
discussion on these application areas, we concentrateqrablem of how to prove the consistency of specifications
based on this kind of constraints. In particular, we prepeoof rules for two classes of graph constraints and show
that our proof rules are sound and (refutationally) congolet each class. In addition we study clause subsumption in
this context as a form to speed up refutation.

Keywords: Graph constraints, Visual modelling, Graph transfornratio

1. Introduction

Graph constraints were introduced in the area of graphfoemation, together with the notion of (negative) appli-
cation conditions, as a form to limit the applicability ofrsformation rules [EhH86, HHT96, HeW95, EEHPO04,
HaPO05, HaP06]. More precisely, a graph constraint is thphical description of some kind of pattern that must be
present (or must not be present) in the graphs that we argforaming. In particular, a transformation would be ille-
gal if the resulting graph would violate any of the given doaisits. Graph constraints have been studied mainly in
connection with negative application conditions. Theseditions are constraints that are associated to the lefttha
side or the right-hand side of a graph transformation rukeeril one such rule would be applicable to a given graph
if the left-hand side application conditions are satisfigdte given graph (or rather by the rule matching) and the
right-hand side application conditions are satisfied byrdseilt of the transformation (or rather by its comatch). In
this context, most of the above-mentioned work is relatdtiéaextension of basic graph transformation concepts and
results to the use of application conditions and conssaartd to show how one can transform a set of constraints into
application conditions for the given transformation rul@gher work related to these notions has studied the detecti
of conflicts for graph transformation with application cdimhs [LEOOQ6], or the expressive power of some kinds of
graph constraints [Ren04].

We believe that graph constraints can go beyond their userinaxrtion to graph transformation. More precisely,

Correspondence and offprint requests kernando Orejas, Dpto de L.S.I., Universitat Politeanie Catalunya, Campus Nord, Modul Omega,
Jordi Girona 1-3, 08034 Barcelona, Spain e-mail: orejas@is.edu

there are two areas in which we think that graph constraiaig pfay an interesting role. The first one is the area of
visual software modelling. The second one is the specifinatnd verification of classes of semi-structured documents
including the specification and verification of websites.(HTML or XML sets of documents).

In the area of visual modelling, especially in the contexty&fL modelling, models are designed using different
kinds of diagrams. However, if we have to impose some speaxifistraints on the models, then we have to use a textual
notation as OCL. We consider that this situation is quitenvenient. Especially, when we want to express constraints
on the structure of the model, we think that using a graphicgtion which is close to the visual description of
the model is much more clear and intuitive than using someeiééexpression where one has to previously code or
represent that structure.

Some very recent work that is related to this kind of appitcabf graph constraints is the work by de Lara
and Guerra on the specification and synthesis of model wamstions [LaG08]. In that paper, they describe model
transformations using graph constraints over triple gsaphen, these constraints are transformed into (tripleptyr
grammar rules that can be used to implement the model tnanafmn specified by the constraints. As a first step for
the synthesis of the graph rules, some inference steps aseuding deduction rules which are similar to some of the
rules that are used in this paper.

Other work that, in a sense, is related to the use of graphreamss in visual modeling is the work by Parisi and
Koch on the specification and analysis of access contratieslisee, e.g. [KMPO5)). In particular, they specify asces
control policies using graph constraints to describe tHel \sates of a system, and graph transformation rules to
specify operations. Interestingly, they use some form diud&on on constraints to check the consistency of a policy.
Unfortunately, the kind of deduction used may be considgret ad-hoc and incomplete.

On the other hand, we know two kinds of approaches for theifsgaon and verification of semi-structured
documents. The first one [AIFO6, EEFNO3] is based on extenaiinagment of first-order logic allowing us to refer to
the components of the given class of documents (in particusing XPath notation). This approach, in our opinion,
poses two kinds of problems. On one hand, from a technicat pbview, the extension of first-order logic to represent
XML patterns has to make use of associative-commutativeadpes. This may make deduction difficult to implement
efficiently, since using unification in inference rules mayJery costly (in general, two arbitrary atoms may have a
doubly exponential amount of most general unifiers). As aequence, the approaches presented in [AIF06, EEFNO3]
present specification languages that allow us to specifysel of documents, and tools that allow us to check if
a given document (or a set of documents) follows a specificatiowever, they do not consider the problem of
defining deductive tools to analyze specifications, foranee for looking for inconsistencies. On the other hand,
from a pragmatic point of view, this kind of specificationsndae quite verbose and this may make the resulting
specifications unpleasant to read and to write.

The other approach that we know [Jel00], which we considee@ally interesting, has a more practical nature.
Schematron is a language and a tool that is part of an ISO atdr{®SDL: Document Schema Description Lan-
guages). The language allows us to specify constraints oh d&tuments by describing directly XML patterns (us-
ing XML) and expressing properties about these patternsn e tool allows us to check if a given XML document
satisfies these constraints. However, we consider that eirertwo problems with this approach. The most important
one is that this work lacks proper foundations. The otheristieat the kind of patterns that can be expressed in the
Schematron language could be a bit limited. On the other fasdh the approaches mentioned above, Schematron
provides no deductive capabilities.

In this paper we start the study of graph constraints as afggaion formalism. In particular, we study their under-
lying logic, providing inference rules that would allow wsgrove the consistency (or satisfiability) of specificasion
Actually, we show that these rules are sound and refutdtiooamplete for the class of constraints considered. It
must be noted that, as it is well-known, the fact that ourrierfiee rules are refutationally complete means that we have
a complete method to prove consequences of our specifisatioparticular, if we want to check if a given property
is a consequence of a specification then it is enough to ske given specification, together with the negation of the
property, is inconsistent.

Some very recent work that is very related to ours is [Peni@8hat paper, Pennemann proposes a proof system
for nested graph constraints, a generalization of the kincbastraints considered in our work. The proof system
is proven sound but not complete. In addition, Pennemancritles an implementation of his approach providing
interesting results.

It must also be noted that the results that we present are muate general than what they actually may seem.
Following recent work on algebraic graph transformatioee(se.g., cite [EEPTO06]), our results apply not only to
plain graphs, but generalize to a large class of structm@ading typed and attributed graphs (we discuss this issue
in more detail in the conclusion). In particular, insteadadbgic of graph constraints we could speak of a logic of
patternconstraints, since our results would also apply to reagpalout constraints based on other kinds of patterns,

2

like XML patterns. In this sense, we consider that the workt tive present in this paper provides the basis for
defining the logical foundations of Schematron, and formditeg it with more powerful constraints and with deduction
capabilities. In particular, the XML patterns that are useSichematron can be seen just as the textual representation
(or, rather, the XML representation) of a subclass of th@lgreonstraints that we consider. In particular, our work
could be used to provide deductive capabilities to analyeebnsistency of Schematron specifications.

The work that we present is not the first logic to reason abrapghs. With different aims, in a series of papers (for
a survey, see [Cou97]) Courcelle has studied in detail tfieiien and use of a graph logic (in the following called
CL, from Courcelle Logic). His approach can be seen as a godfigraphs and graph properties into first-order or
monadic second-order logic. In particular, the approabtlaged on the use of some predicates describing the existence
of nodes and edges which, together with some given axiorogide an axiomatization of the basic graph theory. Then,
one can express graph properties using standard first-oraronadic second-order formulas over these predicates.
Our constraints can be seen as a fragment of CL in the sertsa ¢jtaph constraint can be coded into a sentence in
that logic. Actually, nested constraints have been prowgidvalent to the first-order fragment of CL [HaP08]. As a
consequence, there are two main issues that one may cor@idene hand, whether graphs constraints, as advocated
in this paper, are useful as a modeling formalism. On therdthad, we can question whether it is really needed to
develop proof techniques for our constraints, since we cathid indirectly: by coding the constraints into CL and
using standard logic deduction. In particular, with resgedhe first issue, we could think of directly using CL to
write our specifications. However, we think that for modgland specification purposes, graph constraints provide
a much more friendly and intuitive formalism than CL. Wittspect to the second issue, we think that there are two
main reasons that justify our work in this direction. Firsttydying directly the constraints logic gives you insights
about the logic that we would not obtain using the coding. iRstance, our completeness proofs implicitly tell us
how we can design procedures to build models for a given sepmdtraints. This is interesting for applications like
the one presented in [LaGO08], where building a model is, iBrgss, equivalent to synthesizing the specified model
transformation. And, second, we believe that we can gainifeignt efficiency. Actually, this kind of discussion is
not new. For instance, the development of proof techniqaesirst-order logic with equality has sometimes been
guestioned, considering that one could use the standdrditpees for first-order logic without equality togetherhwit
an axiomatization of the equality predicate. However, ttuglyg of first-order logic with equality has allowed the
development of powerful techniques which are the basis of g#icient tools. In this sense, in [Pen08] Pennemann
compares his implementation for his proof system for nestetbtraints with an implementation based on coding the
constraints into CL and then using some standard provesswWMPIRE, DARWIN and PROVERS9. The result is
that his implementation outperforms the coding approadtud@ly, in most examples considered, the above provers
were unable to terminate in the given time (1 hour of cpu tinukjfortunately, these results can not be considered
technically valid, since the completeness of Pennemann@fsystem is not shown. In [BCKLO6] CL is extended
with temporal operators. In this case, the intention is &Bspnt a logic that can be used for the verification of graph
transformation systems.This logic goes far beyond our aims

This paper is organized as follows. In the next section weqarethe kind of graph constraints that we consider in
this paper and some basic notions concerning refutatiorepitres. Moreover, we present a small example to motivate
their use in connection with visual modeling. This exampiklve used as a running example in the rest of the paper.
The following two sections are the core of the paper. Theggmeinference rules for two classes of graph constraints
showing, in both cases, their soundness and completenass, i Section 5, we present some techniques that may
be used to speed up refutation procedures. In particulapresent a notion of subsumption, proving that subsumed
clauses can be eliminated without losing completenesallfjin the conclusion we discuss some issues concerning
the results that we present, in particular, their gengralid the possible implementation of a deductive tool.

This paper extends and generalizes the work presented iRJ8JEN several ways. In particular, in addition to
providing detailed proofs for all our results, the papersidars the general case where specifications are assumed to
consist of arbitrary clauses, while in [OEP08] the spedifices were assumed to be just sets of literals. In addition,
this paper includes a new section about subsumption andecklimination which was not present in [OEP08].

2. Graphs and Graph Constraints

In this section we present the basic notions that are usénsipaper. First we present some notation and terminology
needed. Then, in the second subsection we introduce theokigchph constraints that we consider. Finally, in the
third subsection, we introduce some standard basic cosmedyutut refutation procedures For simplicity, we present
our definitions in terms of plain directed graphs, althougtsome examples, for motivation, we deal with typed

3

attributed graphs. Anyhow, following the approach usedEBPTO06], it should not be difficult to show that our results
generalize to a large class of (graphical) structures. ti@e6 we discuss this issue in more detalil.

2.1. Graphs

As said above, all our notions and results will be presentddrims of plain directed graphs, i.e.:

Definition 1 (Graphs)A graphG = (GY, GF,s®,t®) consists of a set Gof nodes, a set Gof edges, a source function
€ : GF — GY, and a target function® : GF — GV.

It may be noted that we do not explicitly state that the setsaofes and edges of a graph are finite sets. That is,
according to our definition, unless it is explicitly statgdaphs may be infinite. This issue is discussed in some detail
in Sections 3 and 4.

All over the paper we will have to express that a certain gi@plis included into another grap®,. Obviously,
we could have done this through a subgraph relationship.adenG, may include several instances®f. For this
reason, in order to be precise when specifying the spec#taimte in which we may be interested, we will deal with
these inclusions using the notion of graph monomorphism:

Definition 2 (Graph morphisms)Given the graphs G- (GY,GF,s%,t®) and H= (HY,HE & t"), a graph mor-
phismf : G — H is a pair of mappings, ¥ : GY — HV, f& : GE — HE such that f commutes with the source and
target functions, i.e. the diagrams below are commutative.

GE—G>GV GE—G>HV
S t
HE—>HV HE#)G/V

A graph morphism f G — H is amonomorphisnif fV and f& are injective mappings.

In several results of the paper, given two gragh& ' we will need to overlap them in all possible ways. This will
be done using the constructi@x G '

Definition 3 (Jointly surjective morphismsYwo graph morphisms mH — G and mi: H’ — G arejointly surjective
if mY(HY)umY(HV) =G and nF(HE) UME(HE) = GE.

Given two graphs G and Gthe set of all pairs of jointly surjective monomorphisnesfrG and G is denoted by
G® G/, thatis:

GG ' ={m:G—H« G’':m | mand mare jointly surjective monomorphists

The definition ofG® G’ in terms of sets of pairs of monomorphisms may look a bit moregex than needed
but, as in the case of the inclusions, we often need to idethté specific instances & andG ' insideH. However,
from an intuitive point of view, it is enough to consider ti&® G’ is the set of all graphs that can be seen as the result
of overlappingG andG .

Note that ifG andG '’ are finite graphs theB ® G’ is also a finite set (up to isomorphism). This is needed be&caus
in several inference rules (see Sections 3 and 4) the rasaltiause involving a disjunction related to a set of this
kind. In particular, ifG® G’ is infinite so would be the corresponding disjunction. A mdp satisfied by graphs,
which we use in the proofs of most results, is pair factorizat

Proposition 1 (Pair factorization) Given two graph morphisms; hG; — G «— Gy : hy, with the same codomain G
there exists a graph H and morphisms.@51 — H « G2 : g2 and h: H — G such that g and @ are jointly surjective

4

and the diagram below commutes:
Gy

|

H——G

! A

G2
Moreover, if h and hp are monomorphisms so are gnd ¢.

Proof. We define the grapH as follows:
e HV={ve G |31 e GY hY(v1)=v}U{veGY |3 G} hy(v2) =V}
e HE={ecGE| HeleGE hE(e)) =e}U{ec GE |3, € G5 h§ (&) =€}
e Foreveryec HE, s (e) = s®(e) andt™ (e) =tC(e)

and we defingy; andg; as follows:

e Forevery; € GY, g1 (v1) = hY (v1) and for everye; € GE, gf(e1) = hf(e1)
e Forevery, € GY, g4 (v2) = hY (v2) and for evene, € G5, g5 (e2) = hE(e)

Now, by definition,g; andg, are jointly surjective andH is a subgraph o6. Let us callh the monomorphism
associated to this inclusion. Moreover, notice that by déimif h; andh, are monomorphisms so age andg,. We
only have to prove that the diagram above commutes. Butglgso a straightforward consequence of the definitions
ofH, g1, 02, andh. O

Extended pair factorization, which seems a generalizatigrair factorization, is also used in our proofs. However
we can see that extended pair factorization is really agdttiirward consequence of pair factorization:

Proposition 2 (Extended pair factorization)Given the commuting diagram below,

/\
\/

there exist a graph H and morphisms:g5; — H < Gz : g2, and h: H — G such that g and @ are jointly surjective
and the diagram below commutes:

Moreover, if h and hp are monomorphisms so are gnd @

Proof. Let us defineH, g1, g2, andh using pair factorization. Then we only need to prove it f1 = gz o fo.
Now, according to pair factorization we know that g; 0 f; = hy o f1 = hyo f = hogo fo. But we know thahis a
monomorphism, therefoi@ o fy = gpo . O

We may see thap is, in some sense, associative and commutative:

Proposition 3 Given three graphs G G, and G then:
{G]({f,G,0) € G1®(G2®G3)} ={G| (f,G,g) € (G2®G1) ® Gz} =
{G | there are jointly surjective monomorphisms®; — G,g: G, — G,h: G3 — G}

Proof. We start provingthatiGisin {G| (f,G,g) € G1® (G2® G3)} then there are jointly surjective monomorphisms
f1:G1— G, f2: Gy — G, f3: Gz — G. Suppos&sis in {G | (f,G,0) € G1 ® (G2 ® G3)}, this means that there is a
graphH and morphismg’ : G, — H «+ Gz : ¢’ andf : G; — G « H : g such thatf’ andg’ are jointly surjective and
so aref andg. But, then, it is routine to show thdit = f : G; — G, f, =go f’': G, — G, andfz3 =gog : Gz — Gare
jointly surjective.

Now, we prove the converse inclusion. Suppose that ther@iatty surjective monomorphismf : G; — G, > :
Gz — G, f3: G3 — G. Using the pair factorization property there exist a grejpaind monomorphismgp, g3, andh:

such that the diagram above commutes gnandgs are jointly surjective. But this means thap,H,g3) € G2 ® Gs.
On the other hand, it is routine to prove tHfatandh are jointly surjective, which means thfy, G, m) € G1 ® (G2 ®
G3). The prove thaf{ G | there are jointly surjective monomorphissG; — G,g9: G, — G,h: Gz — G} = {G |
(f,G,0) € (G2®G1) ® Ga} is similar. [

Finally, the last property that we need for our results, Wwh&calso satisfied by graphs, is the existence of infinite
colimits (satisfying an additional minimality propertygrfsequences of monomorphisms. Intuitively, these cadimit
are the union of the graphs in the sequence. Actually, indlegory of graphs we have colimits for arbitrary diagrams.
To be more precise:

Proposition 4 (Infinite colimits) Given a sequence of monomorphisms:

f, f, fia f
G1 Gz - I Gi :

there exists a colimit:

f f fi_
Gy 1 G, 2 i-1 G
G

that satisfies that for every monomorphisn@y — G, such that Gis a finite graph, there is a j and a monomorphism
gj : G’ — G; such that the diagram below commutes:

G’\—/> G

Proof. We define the grap8 as follows:

o GV = (Ui }’)/ =y, where=y is the least equivalence relation satisfying that for evenyd every € G}’ V=y
fi (V)

o GE= (U1<iG E)/ =g, where=¢ is the least equivalence relation satisfying that for evenyd everye € GF e=¢
e Foreveryec GF, °(|e|) = |s¥ (e)| andt®(|e]) = [t¢ (e)|.
Moreover, for every we define the morphisin : G; — G as follows:
e Foreverywe GY, hY(v) = |v.
e Foreveryee GE, hf(e) =g

Now, it should be obvious that, by definition, the gr&phand the morphismis are a cocone for the above diagram.
We may see that it satisfies the universal property for ctdinduppose that the diagram:

f, f, fia f
G1 Gz - I Gi :

Y, h, h

is also a cocone. We define the following morphisonG — G':
e Foreveryve GY, hV(|v]) = hY(v).
e Foreveryee GE, hE(je)) = hE(e).

By definition, for everyi, hi = ho h;. Now, suppose thdt : G — G’ also satisfies that for everyhi = h' o h; let us
see thah=N':

e Foreverye GY, hV(|v]) = hY(v) = WV (hY (v) = WV (V).
e Foreveryee GE, hE(|e)) = hE(e) = E(hE(e) = WE(|e]).

Therefore we have proved th@ttogether with the morphisnits are a colimit for the diagram above. Let us now
prove that this colimit satisfies that for every monomorphis: G’ — G, such thaiG '’ is a finite graph, there is p
and a monomorphism; : G’ — G; such that the diagram below commutes:

G/%GJ

RN

LetG' be a finite graph and suppose tgalG’ — G. For each, letG] C G be the image o6; by h;. It should be noted
that, by definition, we have that, for eaGIG; C G, ; and, moreovel(,3I andG are isomorphic, since the morphisms
h; are injective. Lety : G/ — G; be that isomorphism, for ea¢hin addition, we also have:

e GV =GV, and
o GF=U;GF

Now, sinceG' is finite, there must be 4 such that for every € GV: gY(v) € GY and for everye € G*:
gf(e) € G’jE. Then, we can define the requirgdas follows:

e Foreverywe GV, g (v) = g}/ (g" (v).
o Foreveryec GE, gF(e) = gF (gF(e).

Then, by definitiong; commutes the above diagram[]

2.2. Graph Constraints

The underlying idea of a graph constraint is that it shoukt#fy that certain patterns must be present (or must not be
present) in a given graph. For instance, the simplest kirptayfh constrain€C, specifies that a given grag@hshould
include (a copy of) C. For instance, the constraint:

H(O—0)

specifies that a graph should include at least one edge. Qdlyjo-3C specifies that a given grapgh should not
include (a copy of) C. For instance, the constraint:

-3(O—__30)

specifies that a given gragghshould not include two different edges between any two nodsfightly more complex
kind of graph constraints are atomic constraints of the fgfm: X — C) wherec is a monomorphism (or, just, an
inclusion). This constraint specifies that whenever a g@jmcludes (a copy of) the graph X it should also include
(a copy of) its extension C. However, in order to enhanceakidity (the monomorphism arrow may be confused
with the edges of the graphs), in our examples we will dispteage kinds of constraints using &n then notation,
where the two graphs involved have been labelled to implioipresent the given monomorphism. For instance, the
constraint:

it (@) w(b)—=(c) then @4@1-@

specifies that a graph must be transitive, i.e. the consgays that for every three noda®, c if there is an edge from
ato b and an edge frorh to ¢ then there should be an edge frarto c.

Obviously, graph constraints can be combined using thelatdnconnectivesy and— (as usualA can be con-
sidered a derived operation). In addition, in [EEHP04, RérifDmore complex kind of constraints, namely nested
constraints, is defined, but we do not consider them in thiepa

Definition 4 (Syntax of graph constraints)An atomic graph constraint(c : X — C) is a graph monomorphism
c: X — C, where X and C are finite graphs. An atomic graph constrdint X — C), where X= 0, is called a basic
atomic constraint (or just a basic constraint) and will bendéed3C.

Graph constraintare logic formulas defined inductively as usual:

e Every atomic graph constraint is a graph constraint.
e If ais a graph constraint thena is also a graph constraint.
e If a1 anday are graph constraints them; Vv a» is also a graph constraint.

Satisfaction of constraints is also defined inductivelydi@ing the intuitions described above.

Definition 5 (Satisfaction of graph constraintsp\ graph G satisfies a constraint, denoted G= a if the following
holds:

e GEV(c: X — C)if for every monomorphism:hX — G there is a monomorphism: € — G such thath= f oc.
e G E -0 if G does not satisfa.
e GEai1vozifGEajorGEas.

It may be noted that, according to these definitions, thetcains30, whered denotes the empty graph, is satisfied
by any graph, i.ed0 may be considered the triviaie constraint.

We assume that our specifications consist of clauses of thelfgV --- Vv L,, where eachiteral L; is either an
atomic constraint (positive litera) or a negative atomic constraintifagative litera). For technical reasons, we will
consider that the clause including o9 (i.e. the true clause) is included in any specification. Wk say that a
clause isstrictly negativef it only includes negative basic constraints.

It may be noticed that dealing with arbitrary clauses is egjent to deal with arbitrary boolean fomulas over the
atomic constraints since these formulas can always beftraned into clausal form.

In the case of basic constraints the above definition speesahs expected:

8

Fact 1 (Satisfaction of basic constraintgp = 3C if there is a monomorphism:iC — G.

Remark 1 Atomic constraints can be generalized by allowing its dédiniin terms of arbitrary morphisms. That
is, we could have defined atomic graph constraif{ts: X — C) where c is an arbitrary morphism. However, with
our notion of satisfaction, this generalization does nod athy additional power to our logic, since it can be proved
[HaPO05] that if ¢ is not a monomorphism then the constraift : X — C) is logically equivalent to the constraint
—3X. For instance, the two constraints below are equivalenparticular, both constraints specify that there can not
be two different edges between any two nodes.

@ if @ig:@ then @}ab»@ @) —3 (@133@)

Analogously, we could have also generalized our notion téfsation by allowing h and f to be also arbitrary
morphisms and not just monomorphisms. This generalized fdrsatisfaction has been studied in [HaP06], where
it is called 4 -satisfaction in contrast with the notion of satisfactidrat we use, which is callegr -satisfaction in
that paper. In particular, in [HaP06], it is shown how to traform nested constraints such thatsatisfiability for a
certain constraint is equivalent tor -satisfiability for the transformed constraint (and vicesa. Anyhow, we believe
that ¢ -satisfaction is more interesting than-satisfaction for specification purposes.

Remark 2 The above notions can be defined not only for the categoryayhgr but for any weak adhesive HLR-
category [LaS04, EEPTO06] as can be seen in [EEHP04, EEPTIOg)articular, in that case, it is assumed that the
morphisms involved in the notions of atomic constraintsgatdfaction are not arbitrary monomorphisms but belong
to a given class M of monomorphisms. In this context, thenstdf constraints and satisfaction apply to many other
kinds of graphical categories, including typed graphs atiilzuted typed graphs, as the ones considered in our
running example.

Example 1 Let us suppose that we want to model an information systenridieg the lecturing organization of a
department. Then the type graph of (part of) our system doailithe following one:

Lecturer | Subject _ RLmb
“stringName | “stringName - lint RoomNumber
string Name string Name int TimeSlot

This means that in our system we have three types of nodem$Riocluding two attributes, the room number
and a time slot, and Subjects and Lecturers, having theirenaman attribute. We also have two types of edges. In
particular, an edge from a Subject S to a Lecturer L meansionisly, that L is the lecturer for S. An edge from a
Subject S to a Room means that the lecturing for S takes piatteabroom for the given time slot. Now for this system
we could include the following constraints, where the typ@azh node is denoted by the word at the top of the square:

L 3(Subject) @) 3(Subject)

Name=CSL Name=-CX

meaning that the given system must include the compulsbjggs CS1 and CS2. Moreover we may have a constraint
saying that every subject included in the system must hame Exturer assignment and some room assignment:

Room

. Subject Subject
@) Iif Name-N then Name-N

Lecturer

Then, we may also have constraints expressing some negatidéions. For instance, that a room is not assigned
at the same time to two subjects or that two different rooresaasigned at the same time to the same subject:

9

Subject Room

TimeSlo:T
/ _
@) -3 (Room) G) -3 (Subject)
7 Subject ™ Room
TimeSloET

or, similarly, that a lecturer does not have to lecture on thfferent subjects in two different rooms at the same time
slot:

Subject » Room
TimeSlo&T
el
ecturer
© -3 (.-)
Subject »| Room
TimeSlo&T

Finally, perhaps we may want to specify that not every lexthas a teaching assignment, so that every semester
there may be someone on sabbatical:

. Lecturer Lecturer | Subject
(7) - if Name=N then Name=N |

It may be noticed that the system that we are describing Wéhe graphical constraints may not be an information
system, but the set of web pages of a department, where aw &om a node of type tto a node of typestmay
mean that there is a link between two web pages (for instanoe the web page of a subject to the web pages of a
lecturer), or it may mean that the information of typeg a subfield of the information of type ffor instance the
room assignment may be a field of the subject’'s web pagesjislodse, we could have displayed our constraints not
in terms of graphs, but as HTML or XML expressions.

2.3. Refutation procedures for checking satisfiability

As itis often done in the area of automatic reasoning, thea&ibn procedures that we presentin this paper are defined
by means of some inference rules. More precisely, as usae, rile tells us that if certain premises are satisfied then
a given consequence will also hold. In this context, a réfaigorocedure can be seen as a (possibly nonterminating)
nondeterministic computation where the current statevisrgby the set of formulas that have been inferred until the
given moment, and where a computation step means adding tpuwbn state the result of applying an inference rule
to that state.

More precisely, in our case, we assume that in general teean€e rules have the form:

M r
I3
wherel 1, ['; andl3 are clauses, and where clauses are seen as sets of literpltitular, this means that if we
write that a clause has the foidmy/ L, this does not necessarily imply tHats the rightmost literal of the given clause.

Similarly, we consider that the claufe/ L is the same as the clauBe/ L Vv L.
Then, arefutation procedurdor a set of constraints is a sequence of inferences:

Co=C1==Ci=...

where the initial state is the original specification (i@ = ¢) and where we write; = ¢i1 if there is an inference
rule like the one above such thif,l, € ¢, andciy1 = ¢ U {I'3}. Moreover, we will assume that C ¢i;1, i.e.
'3 ¢ ¢i, to avoid useless inferences.

10

In this framework, proving the unsatisfiability of a set ohstraints means inferring thiealse clause (which is
represented by the empty clause, i.e. the empty disjunatienoted), provided that the procedure is sound and
complete. Since the procedures are nondeterministice ikdhe possibility that we never apply some key inference.
To avoid this problem we will always assume that our procedlardair, which means that, if at any momenthere
is a possible inferencg = ¢jU{T}, for some claus€&, then at some momeftwe have thal € ¢j. This means that
inferences are not postponed forever, i.e. every inferaiiteventually be performed. If we care about completeness
fairness must always be taken into account when implemgulduction. For instance, implementations based on
depth-first search with backtracking run the risk of not gdair: if the deduction process gets into an infinite branch
of the tree representing the deduction process, then it mibtofapply some alternative inferences. This is the well-
known problem of the incompleteness of Prolog’s implemgoneof SLD resolution [LIo87].

Then, a refutation procedure foris soundif whenever the procedure infers the empty clause we havtectia
unsatisfiable. And a proceduredempletdf, wheneverc is unsatisfiable, we have that the procedure inférs

It may be noted that if a refutation procedure is sound andpteta then we may know in a finite amount of time
if a given set of constraints is unsatisfiable. However, iyha impossible to know in a finite amount of time if the
set of constraints is satisfiable. For this reason, somsttimeabove definition of completeness is called refutationa
completeness, using the term completeness when bothaaitisfiand unsatisfiability are decidable.

As usual, for proving soundness of a refutation procedui® énough to prove the soundness of the inference
rules. This means that for every rule as the one above any grephG, if G =1 andG =2 thenG =T3.

3. Basic Constraints and Positive Atomic Constraints

In this section we present an inference system consistitigeothree rules (R1), (R2) and (R3) below that provides
sound and complete refutation procedures for checkingfidility when clauses consist only of positive and negativ
basic constraints and positive atomic constraints. Thiamaghat the given specifications are assumed to consist of
clauses including literals of the forAC;, -3Cy, orV(c: X — Cy).

Our refutation procedures may not terminate, which meaaisttie procedures are just refutationally complete.
However, as shown in [OEPOQ8], if we restrict our logic to loaginstraints then refutation procedures would terminate.
Moreover, our procedures check satisfiability with resgedhe class of finite and infinite graphs. In fact, in the
following section, we show an example of a specification vehasly models are infinite graphs. As a consequence,
we guess that satisfiability for this class of constraintdisady undecidable (but semi-decidable).

dCivliy —3dCG v

R1
Mvris ()
if there exists a monomorphism: C, — C;
dCivIry 3G vl
1VIg 2VIa2 (R2)

(\/Geg HG) VI1VvIa
whereg = {G|(f1:C1 — G« Cy: fz) € (C1®C2)} and(Vgc4 IG) denotes the (finite) disjunctign

dCy v V(CZX —>C2)\/r2
(Veeg IG)vIivrs

if there is a monomorphistm: X - C; andg = {G | (f1:CL =G —Cy: fr) € (C1 ®
C,) such thatf; om= fyoc}.

(R3)

The first rule is, in some sense, similar to resolution antiésrtile that may allow us to infer the empty clause.
The reason is that it is the only rule that eliminates litefabm clauses. The second one can be seen as a rule that,
given two constraints, builds a new constraint that subsutinem. More precisely, the graphs involved in the new
literals in the clause, i.e. the grapBsc ¢ satisfy both constraintsC; and3C,. This means that if we apply this rule

11

repeatedly, using all the positive constraints in the oagisetc, we would build graphs that satisfy all the positive
basic constraints ir. The third rule is similar to rule (R2) in the sense that gigepositive basic constraint and
a positive atomic constraint it builds a disjunction of faks representing graphs that try to satisfy both congsain
However, in this case the satisfaction of the constréfiet: X — Cy) is not necessarily ensured for &le . In
particular, the idea of the rule is that if we know tbxais included inC; then we build all the possible extensions3af
which also includ€; (eachG would be one of such extensions). But we cannot be suré&katisfiesy/(c: X — Cy),
becaus& may include an instance &fwhich was not included i€;. For instance, suppose that we have the following
constraints:

1) H(Q) @ if (a) then (a)——=(b)

where the first one specifies that the given graph must indugede and where the second one specifies that every
node must have an outgoing edge. Then applying rule (R3)dsetlconstraints would yield a clause including the
literal:

@)

Now, in this graph, the noda has an outgoing edge, but the ndaldoes not have it, so the graph still does not
satisfy the second constraint. If we would apply again tivel tlule, then we would infer a clause including a graph with
three nodes and two edges, and so on. This is the reason vthis tase, a refutation procedure may not terminate.
Moreover, as we will also see, if the procedure does notedhe given set of constraints then the completeness proof
ensures that there will be a model that satisfies this setrdtcaints, but this model may be an infinite graph built by
an infinite colimit. One may wonder whether there will alsasex finite model of that specification. In the case of
this example such a finite graph exists. Actually, the r@sgitlause after applying for the second time the third rule
to the graph above, would also include the graph below thsfies both constraints.

o0

However, in general, we do not know if an arbitrary set of basinstraints and positive atomic constraints which
is satisfiable by an infinite graph, is also satisfied by soniefgraph. Nevertheless, in the general case (when dealing
with positive and negative atomic constraints) there atg geconstraints whose only models are infinite graphs, as
we will see in the following section. For this reason we cahjee that in this case the answer to this question will also
be negative.

Example 2 If we consider the basic constraints and the positive ataroitstraints that are included in the Example
1 (i.e. the constraints (1), (2), (3), (4), (5), and (6)) thewould first be possible to infer the constraint below using
the rule (R2) on constraints (1) and (3):

Subject Subject
8) El(Name-CSL Name-CS)

This new constraint obviously means that the graph reptasgthe system must include at least two Subject nodes
(with attributes CS1 and CS2). Then, if we apply the thiré mh constraints (8) and (3), and, again, on the resulting
clause and on constraint (3) then we would infer the follapétause:

1 Actually, if the graphs in the example would be considerégbaited graphs as presented in [EEPTO06], then the cladiseéd would include an
additional literal. In particular this literal would be aagrh consisting of a single node of tySeib jectwith two Nameattributes. However, from
now on, in our examples we will assume that it is not possidé & node has twice the same attribute. This could be donmstance, assuming
that our specifications implicitly include a graph consttaitating that this situation is not allowed.

12

Room Room Room Room
©) 3(Subject Subject) V 3(Subject Subject) V
Name=CSL Name-CS Name-CSL Name-C
Lecturer Lecturer Lecturer
Room Room
V= (Subject Subject) vV 3(Subject Subject
Name=CSL Name-C Name-CSL Name-CS
Lecturer Lecturer Lecturer

This clause states that the graph should include two subj&$1 and CS2) and these subjects may be assigned to
two different rooms and to either two different lecturenstmthe same lecturer, or they may be assigned to the same
room, and to either different lecturers, or the same leatu@bviously, the last two constraints in this clause vielat
constraint (4), which means that we can eliminate them usice the rule (R1), yielding the following clause:

Room Room Room Room
Subject Subject) Subject Subject)

(10) EI(Name=-CSL Name=-CX Vv EI(Name=CSL Name=-CS2
Lecturer Lecturer Lecturer

At this point, we could stop the inference process sincevtloegraphs in (10) are already (minimal) models of
the given set of constraints, which means that it is satikiakctually, the inferences that we can apply to the current
set of clauses are quite useless and we could have avoidedihealefining more restrictive side conditions in the
inference rules. For instance, in (R2) we could have askedddition, that there should not exist any monomorphism
from G to G or vice versa since it could be proved that, if such monomismlexists, the deduction rule is useless.
However, we have preferred to present this (inefficientieerof the deduction rules to simplify as much as possible
the completeness proof.

It is easy to prove that these three rules are sound:

Lemma 1 (Soundness of the inference rule®ules (R1), (R2), and (R3) are sound.

Proof. (R1) LetG be a graph and suppose tlat= 3C; v I1, G | —3C, V2, and there exists a monomorphism
m: C, — C;. We know that it cannot happen th@t= 3C; and G = —3C,, since if G = 3C; then there exists a
monomorphisnh: C; — G and this implies thatom: C; — G is a monomorphism, meaning that= 3C,. Therefore,
G ': Mivro.

(R2) Suppose thdb |=3C; VI, andG | 3C, V Iz, The case wher& =T1 or G =Tz is trivial. Suppose that
G = 3C; andG | 3C,. This means that there are two monomorphismsC; — G andh; : C; — G and this implies
by Prop. 1 that there is a factorization:

13

SN

G -G

| A

G

wheref; :C; — G’ and f, : C; — G/ are jointly surjective, which means th@t’ is in g, andnt is injective. This
implies thatG |= (Vgeg 3G)

(R3) Suppose thad =3C1 VI1, G E V(c: X — Cy) VI, and there is a monomorphism: X — C;. The case
whereG =1 or G |= Iz is trivial. Suppose thab = 3C; andG = V(c: X — Cyp), this means, on one hand, that there
is a monomorphisrh; : C; — G. On the other hand, this also means that there is a mononsonphi: C; — G such
thathy om=hpoc, sinceG = V(c: X — Cy). As a consequence, by Prop. 2 there is a factorization:

C

VA

X G'—=G

NP

G

wheref; :C; — G’ andf, : C; — G/ are jointly surjective, which means th@t’ is in g, andnt is injective. This
implies thatG |= (Vge; 3G) O

Proving completeness is more involved. The underlying @fehe completeness proof is to consider a precedence
relation between the basic literals (or the associatedgapccurring in clauses. Then, we will show that the colimit
of one of these sequences is the model of the given speaificdlore precisely, we will see that the sequences
considered represent a construction of possible modeatg tlse inference rules (R2) and (R3). But before proving
the completeness of our system, let us first present soméamyxdefinitions and results. We start by defining a key
construction for proving completeness, related to infeeemiles (R2) and (R3). Given a basic constrai@;, and a
positive literal,L, 1 (3G1,L) is the set of all literalsiG (or rather of morphismk : G; — G) that can be inferred from
3Gz andL using the rules (R2) or (R3). In particular, in the case wheredGy, this means, essentiallg; @ Gy. In
the case where the second litera¥/{g : X — Gz) we iterate the construction for each of the monomorphisom X
to G1.

We may natice that, in the proofs below, we do not make explise of the fairness requirement for the given
refutation procedures. However this requirement is inifficised in a number of proofs. More precisely, given a
refutation procedure = ¢1 = --- = Ck..., whenever we are assuming that the result of a certain imferes in
Uk>1 Ck (@assuming, obviously, that the premises are aldg,ity ck) we are implicitly assuming that the procedure is
fair.

Definition 6 Let 3G; be a basic literal and L a positive literal. We define the setnaihomorphisms(BGy,L) by
cases:

e If Lis a basic literal, L= 3Gy, then [(3G1,L) = {f1 | (f1: G1 = G — G2: f2) € (G1® G2)}.

e IfLis anon-basicliteral, L=V(c: X — C), and H is the set of all monomorphisms from X tpten I(3G1,L) =
I*(3G1,H), where IF(3G1,H) is defined inductively:

— IfH =0then I(3Gy,H) = {idg, }, where i&, denotes the identity, ¢ : G1 — G1

14

—IfH = {f ZX—>G]_}UH/ then F(3G1,H) = {h/Oh | h:G—Ge |*(ﬂGl,H/),<h/ :G—=G «C: f2> S
(G®C)suchthat foc=hoho f}.

Notice that, by Prop. 3, the above definition is independétiterorder in which we consider the monomorphisms
inH.

The definition ofl is extended to clauses and sets of clausgis,,) is the set of all literalsIiG (morphisms
h: G1 — G) that can be inferred frordG; and the positive literals if using the rules (R2) or (R3). The(3G1,C) is
the set of all literalsiG (morphismd : G; — G) that can be inferred fromG; after applying one inference with each
of the clauses (one after the otherxinHowever, if a claus€ in ¢ includes a negative literah3G and we have that
G1 = 3G then no inference would be applied when computirginceG; would already satisfy. The same happens
if I includes a literat/(c: X — Gy) and there is no monomorphidm X — G;. Notice that this implies, as we can see
in the definition below, that if is a strictly negative clause thé(dG;,I) is the empty set. Also, if € ¢ is strictly
negative and for every literal3C in I we have that there is a monomorphism fré&mto G4 thenl (3Gy, ¢) is again
the empty set. Otherwise, @ satisfies all the strictly negative clausegiithenl (3G, ¢) is not empty.

Definition 7 Let3G; be a basic literal and™ be a clause. We define the set of monomorphi$aG;lI"):

1(3Gy,IN) = U [(3G1,3C) U U [(3G1,V(c: X — C))
ICelr V(c:X—C)el
If 3G, is a basic literal andc is a set of clauses. We define the set of monomorphisi@s,Ic) inductively:

e If ¢ is the empty set, thertdGy, ¢) = {idg, }.

e If c ={l'}uc’, andT includes a negative literat-3G such that G = —3G, or I includes a positive atomic
literal, V(c: X — Gy) such that there is no monomorphismX — G; then I(3G;, ¢) = 1 (3G, ¢’).

e Otherwise, (3G1,{l'}uc’)={goh|gel(3G,IN),(h: Gy — G) € 1(3Gy,c’)}.

Given a literalG; and a set of clauses, the relation between the sgBGs, ¢) and our inference rules is made
explicit by the following propositions. In particular, tlémn of these two propositions is to show that if a litefé, is
in 1(3G1, ¢) then, in every clausk in ¢ there should be a literél such thaBG; can be seen as one of the results of
an inference oiG; andL. First we consider the case whereonsists of a single clause.

Proposition 5 LetI™ be a clause consisting of basic constraints and positivenat@onstraints and let hG; — Gy
be a monomorphism such thath (3G,), then there is a literal L i such that:

e if L =—3C, then there is no monomorphism @ — Gj.
e if L = 3C, then there is a monomorphism @ — Go.

e IfL =V(c: X — C) then for every monomorphism K — G; there is a monomorphism:@c — G, with ho f =
gocC.

Proof. By definition, we know that(3Gi,T") = Uscer (361, 3C) UUyex—cjer | (3G1, V(¢ : X — C)). We consider
several cases:

o If I does not include any positive literal (i.e.is the empty clause dr includes only negative literals), then the
proposition trivially holds, since by definitid{3Gs,I") is empty.

e If I includes a negative literah3C such thatG; = —3C then the proposition trivially holds, since it is enough to
takeL = -3C.

e If I includes an atomic literaf(c : X — C) and there is no monomorphidmfrom X to G, then the proposition
trivially holds, since it is enough to take=V(c: X — C).

o If (h:G1 — G2) € Uscer 1 (3G1,3C), thenh € 1(3G1,3C) for some literal3C in I'. Then, by definition of
[(3G1,3C), (h:G1— Go) € {f1| (f1:G1 — G2« C: fz) € (G1®C)}, which means that there is a monomorphism
f2 C— Gz.

e If (h:G1— Gz) € Uyexocyer 1(IG1,V(c: X — C)), thenh € 1(3Gy,L) for some literall = V(c: X — C)
inl. LetH = {f4,..., fn} be the set of all monomorphisms frodto G1. Then, by definition, we know that the
monomorphismsih(3G4,V(c: X — C)) are defined as compositiohgo - - - o hy, whereh; : G; — C; and, for each
i,hi11:C —Ciy1, hio---ohy: Gy — G € 1*(3Gy, {f1,..., fi} and there is a monomorphisfg; : C — C;), such

15

thatgioc = hjo---ohyo fi. Therefore, given a monomorphisin: X — Gy, we have thagjoc=hjo---ohyo fj
and this means that if we defige C — Gy asg=hno---ohj 100j, thengoc=hno---ohjriogjoc=hyo---0
hjriohjo---ohyo fj =hofj.

O

Now, we extend the previous result to an arbitrary set ofsgag.

Proposition 6 Let ¢ be a set of clauses consisting of basic constraints andipesitomic constraints and let:h
G1 — Gy be a monomorphism such thath (3G4, ¢), then for every clausE in ¢ there is a literal L inl" such that:

e if L =—3C, then there is no monomorphism @ — Gj.
e if L = 3C, then there is a monomorphism @ — Go.

e IfL =V(c: X — C) then for every monomorphism:iX — G; there is a monomorphism:IC — G, with hom=
foc.

Proof. We prove the proposition by induction @n following the definition ofl (3G, ¢):

o If ¢ is the empty set, then the proposition trivially holds.

e Otherwise, ifc = {I'} U¢’, by induction, we know that iff : G1 — G, € (3G, ¢’) everyl" in ¢’ satisfies the
proposition with respect tb/. Therefore, ifhv=gol € | (3Gy,), withg: G, — G € I(3G,,T), on one hand we
have to prove that evely in ¢’ satisfies the proposition with respecgoh’ and, on the other, thaitalso satisfies
the proposition with respect tpo H.

Given a clausé’ in ¢’, by induction, we know that there is a a litetaln [such that one of the following cases
holds:

— if L =—3C, the case is trivial.
— if L=13C, then there is a monomorphism: C — G,. But this means thajom: C — G,
— If L=V(c: X — C) then for every monomorphism: X — G; there is @ monomorphisth: C — G, with
h om= f oc. But this means that there is a monomorphignf : C — G,. Moreovergo foc=goh'om=hom
Let us now consider the clau§e We have the following cases:

— If [includes a negative literab3G such thats; = —3G then the proposition trivially holds, since it is enough
to takeL = —3G.

— I includes a positive atomic literat{c : X — G;) such that there is no monomorphismX — G; then again
the proposition trivially holds, since it is enough to tdke- V(c: X — Gp).
— Otherwise, by Prop. 5, we know that there is a litdréh I such that

- if L =3C, then there is a monomorphism: C — G,.

- If L=V(c: X — C) then for every monomorphism: X — G, there is a monomorphisii: C — G, with
gom= f oc. Suppose, in this case, that we have a monomorphisnX — G;, then this means that we
have a monomorphisinl o ' : X — G, therefore there should exist a monomorphinC — G, with
foc=gohom =hon.

O
A direct consequence of the proposition above is that if de@iity morphism is in (3G, ¢) thenG; is a model
of c.
Proposition 7 Let ¢ be a set of clauses consisting of basic constraints and ipesittomic constraints, if igl €
(3G, c), then GE= c.
Proof. If idg € | (3G, ¢) then, according to Prop. 6, for evdryjin ¢ there is a literaL in ' such that:

e if L =—3C, then there is no monomorphigm: C — G. But this means thas = L and, henceG =T .
o if L =3C, then there is a monomorphism: C — G. ThereforeG = L and, henceG =T

e If L=V(c: X — C) then for every monomorphism: X — G there is a monomorphisii: C — G with idgom=
m= f oc. Again, this means th&@ = L and, henceG =T .

16

ThereforeG satisfies all the clausesin O

The aim of the next two propositions is to show that if we havigeaal 3G, in a clausd™, then we can infer the
clause resulting from replacing that literal by a disjuantconsisting of all the graphs 3Gy, ¢).

Proposition 8 Let ¢ be a set of clauses consisting of basic constraints andipesitomic constraints, let = ¢1 =
--- = (k... be afair refutation procedure defined ouebased on the rules (R1), (R2), and (R3) andi@i vV I'1 and
I"2 be two non-empty clauseslifi~1 Ck such that for every negative literal3G; < I'; we have that ¥ —-3G;, and
for every atomic literal/(c : X — Gp) € I'z there is @ monomorphism:iX — Gi. Then(Vge; IGVT1) € Ugs1 Cks

whereg = {G|h:G1 — G € 1(3G1,IM2)}.

Proof. We prove something slightly more general: that for all céals; andly, if 3GV 1 is in Uy-1 ¢k and for
every literal-3G; € ', we have thaG; ¥ —-3G;, and for every literal/(c: X — G;) € I, there is a monomorphism
h: X — Gy, then for every clausEz such that > vV Iz is in Uy~ Ck we have that eithelf; is empty or(VGeg IGv
M3V Il1) € Ugs1Ck Whereg = {G | h: Gy — G € 1(3Gy,lM2)}. Note that to prove the proposition it is enough to
consider thaf 3 is the empty clause. We prove this by inductionfen

If ' is the empty clause, then the proof is trivial. Otherwiseufesuppose thdt, = L v I}, for a given literalL.
By induction, we may assume that for anyif (I, VLV I3) € U1 Ck then either (aJ5 is empty or (bXVgegrIGV
LVI3VIy) € Ugs1Ck,» Whereg’ = {G|h: Gy — G I(3Gy,I)}. Let us defind™; to be equal td s in case (a), and
equal to(Vgeg4r IG VI3V I) in case (b). We have three cases:

e If L =—3G; then we know that-3G, V I'; € Uy>1 Ck. By assumption, we know th& ¥ -3G,, which means
that there is a morphism fro®, to G;. Thus, we can apply rule (R1) @G; VI and—3G; V 5 yielding the
clausel'; V1 € Uys1 Ck- Therefore, in case (a) we know thag vV 1 € U1 Ck, and this completes the proof,
since in this case, by definitiofG | h: G — G € 1(3G4,IM2)} = 0. On the other hand, in case (b) we know that
(\/Geg, IGvIavlr)vri= (\/Geg, dGVI3VIy) € Uk=1 Ck and this completes also the proof, since in this case,
by definition,{G | h: Gy — G € |(3G1,I2)} = {G | h: Gy — G € |(3G1,T)}.

e If L =3G; then we know thaliG; VI'; € U1 Ck- Thus, we can apply rule (R2) &G; VI and3G, V5 yielding
the claus€\/ge ;7 3GV 1V I3) € Ui Gk, Whereg” = {G | (f1: G1 — G« Gy f2) € (G1® Gp)}. Therefore,
in case (a) we know thal\/gc;» 3GV 1V I3) € Uk=1 Ck, and this completes the proof, since in this case, by
definition, {G | h:G; — G € 1(3G1,M2)} = {G| (f1 : G1 = G« Gy : f2) € (G1 ® Gy)}. On the other hand, in
case (b) we know that/ e ;» IGVI1V Ve IGVI3VIL) = (Ve 3GV Vaeyr IGVIT3VIT1) € U1 Ck and
this completes the proof, since in this case, by definitf@| h: G; — G €1(3G1,T2)} =g"Ug’.

e If L=VY(c: X — Gy) then we know tha¥/(c: X — G2) VI € Uy-1 Ck- LetH be the set of all monomorphisms
from X to G1, which by assumption is not empty. By definitidiiiG1,V(c: X — Gz)) = 1*(3G1,H). So we will
prove by induction that, for any non-emgty, (Vgez 3GV 1V I3) is in Uk Ck, whereg” = {G | f : Gy —

G e 1*(3Gy,H)}.

- If H={g: X — Gz} then applying rule (R3) tdGy V1 and(¥(c: X — Gz) VI3) we infer (Vgegm IGV
riVvry), whereg” = {G| (f1:G1 — G« Gy : f2) € (G1® Gp) such thatf; o g = faoc}. But, in this case,
G"=¢g". Hence(Vgeyn IGVI1VIy)isin U1 Ck-

— If H={g: X — G1} UH' then, by induction, we may assume thfc ;» 3GV 1V I3) is in U1 Ck, where
" ={G|f:G1 — Gel*(3G1,H")}. Let us assume that(IG1,H') = {f1: G1 — Cy,...,fn: G1 — Cy},
ie.¢"” ={Cy,...,Cy} and (VGEGW AGVIivIg)=3C V.- vIC, VI VTG We know that for every we
have a monomorphisrfiog: X — Ci. Therefore, we can apply rule (R3) 8&; Vv ---V3Cy VI 1 VI5 and to
(V(c: X — Gp) vIy) inferring the clausé(Vgey, 3G) VIC2 V- VIC V1 VI VIS) = ((Vgeg, 3G) VIC2V
<-VIC, VI VI, wheregy = {G| (h1:C; — G+ Gy : hy) € (C1 ®Gy) such thah; o f1og=hyoc}. Now, if
we apply again rule (R3) to the previous clause an@/{e: X — G) vV I';) and we repeat this processimes,
applying the rule to each of the literdls, we would finally infer the clausg(Vgcg, 3G) V-V (Vgeg, 3G) V
r1vrj), wheregi ={G|(h1:C — G« Gy : hy) € (C1®Gy) such thah; o fiog = hyoc}. This means that
((Veegm IG) VI1VT3) € Uks1 Ck, Whereg” = {G| (h1:Ci — G+ Gz h) € (G ® Gp) such thatfi : Gy —
Gi) € 1*(3G1,H’) andhy o fiog=hyoc}. But, by definitiong” = {G| f : G1 — G € 1*(3G1,H)}. Therefore,
we have also proved in this case thglge;» IG VIV I3) is in Ugs1 Ck, Whereg” = {G | f:G1 — G e
1*(3Gy,H)}.

17

Hence, in case (a) we know th@fg.;» 3GV T1VI3) € Ui>1 Ck, @nd this completes the proof, since in this case,
by definition,{G |h: G1 — G e I((V(c: X — G2),[2)} ={G| f : G1 — G € I*(3G1,H)}. On the other hand,
in case (b) we know tha\Vge s 3G) V1V (Vgeyr IG) VIa V1) = ((Veegr IG(V(Vaeg 3G) VI V) €
U1 Ck and this completes the proof, since in this case, by defimifié | h: G1 — G e [((V(c: X — Gp),lM2)} =
gI/IJ g/_

0

The above proposition can be extended as follows:

Proposition 9 Let ¢ be a set of clauses consisting of basic constraints andipesitomic constraints, let = ¢1 =
.-+ = (k... be a fair refutation procedure defined overbased on the rules (R1), (R2), and (R3) andd@ v I'1 be
a clause inJi1 Ck, then for anyc’ C ¢, (Vgeg 3GV 1) € U1 Ck, Whereg = {G|h: Gy — G € 1(3Gy,)}

Proof. We proof the proposition by induction:

e If ¢’ is empty then the case is trivial Sint@Gy, ¢’) = {idg, } and, hence(Vge; IGVI1) =3G1 V.

e If ¢’ ={l}uc”, andl includes a negative litera;3G such thatG; = —3G or I includes a positive atomic
literal, V(c : X — Gp) such that there is no monomorphidm X — G4, then the case is also trivial, since by
definition I (3G, ¢’) = 1(3Gy,¢”) and, by induction, we may assume thigts., 3GV 1) € Ui=1 Ck, Where
G ={G|h:G1—Gel(3G1,c")}.

o If ¢’ ={T}uc’”, for every negative literah3G in I we have thaG; ¥ —3G (i.e. there is a monomorphishj :

G — Gy) and for every atomic literaf(c: X — Gp) in I there is a monomorphishy : X — Gy, then by definition
we know thatl (3G1,{T}Uc”) ={goh|ge(3G,T),(h: G1 — G) € I(3G1,¢”)}. This means that we have to
prove that(\/ge; IGVT1) € Uys1 Ck, Whereg = {G|goh: G1 — G,g € I(3G,I),(h: G1 — G) € 1(3Gy1,¢")}.
This is equivalent to prove thal/gc 5/ Veegy, 36) VIt € Uko1 Cio whereg’ ={G | h: G — G €1(3G1,c")}
andgg ={G|g: G — G,ge (3G ,IN)}.

By induction we know that\/gc,; 3G' V1) € Uk=1 Ck- We also know that for ever’ € g’ and for every
negative literal-3G in ' we have that there is a monomorphism fr@rto G/, since we know that there is a
monomorphism fronG to G; and also fronG; to G'. And, in addition, we know that for every atomic literal
V(c: X — Gp) in T there is a monomorphism froii to G, since we know that there is a monomorphism frgm
to G and also fronG; to G'. This means that every literalz’ € g’ andr satisfy the conditions of Proposition 8.
Therefore, we havé\/ g4 Veegt, 3G) V1 € U1 Ck-

O

Let us now define the precedence relation mentioned aboedntiition is quite simpledG; precedesG,; if G;
is embedded iAGy:

Definition 8 For every pair of literals3G, 3Gy, 3G; < 3G; if there is a monomorphisnd.g, : G1 — Go.

As said above, we use this precedence relation to build fordpmodels of the given specification. More precisely
we use (possibly infinite) ascending sequences of basidreams3G; < --- < 3G; < ... which aresaturated where
intuitively a sequence is saturated if either it leads to aleh@f the given set of clauses, or if we know that the
sequence cannot lead to a model (in this case we say thastitsléanent i<losed). Therefore, we define elosed
literal as a literal that cannot be used for building a modéhe given set of clauses.

Definition 9 Let ¢ be a set of clauses consisting of basic constraints and ipesittomic constraints, let =
C1= -+ = (k... be a fair refutation procedure defined overbased on the rules (R1), (R2), and (R3) and let
BasPosLitUx-1 Ck) be the set of all the basic positive literals occurring inuwdes inferred in the refutation proce-
dure. A literal3G in BasPosLifl .~ ck) is closedif there is a strictly negative claudein Jy-4 Ck such that G# T.

We also say thafG is openif it is not closed. B

Following the intuitions above, a saturated sequence isjacsee of basic literals that approximate a model or,
alternatively, that we have discovered that it is impossthht it leads to a model:

18

Definition 10 An ascending sequence in BasPofUjt.; k) 3G1 < --- < 3Gj < ... is saturatedf one of the following
cases applies:

e the sequence is finite and its last eleme@f satisfies that is a model forc, or
o the sequence is finite and its last element is closed, or
e the sequence is infinite and for every clalise -, Ck there is a literal L inl" such that:

(a) if L =—~3C, then for every j there is no monomorphism@— G;

(b) if L =3C, there is a j, such that there is a monomorphismGn- G;

(c) If L =V(c: X — C) then for every i and every monomorphism ¥ — G; there is a j, with i< j, and a
monomorphism hC — G;j with hg,<c; om=hoc.

The following lemma makes explicit in which sense an infigi¢durated sequence provides successive approxi-
mations to a model of a given set of constraints:

Lemma 2 Let3G; < --- < 3Gj < ... be an infinite saturated sequence in BasPdgljt.; cx) for a fair refutation
procedurec = 1= --- = Ck... and let G be the colimit of the sequence:

hGl<Gz hG2<G3 hGi—1<Gi hGi =<Gjt1

G1 Gz Gi
G

then G is a model for the given set of clauses, i.¢-@.

Proof. Let " be any clause ir. We have to prove tha = I'. Since the sequence is assumed to be saturated there
should be a literal in I such that the conditions (a), (b), or (c) in Def. 10 are satisf\WWe consider each case
separately:

(a) if L=—3C, then we know that for everjthere is no monomorphism: C — G;. But, according to Prop. 4, this
means that there is no monomorphisnC — G. ThereforeG = —-3C and as a consequenGe=T.

(b) if L =dC, we know that there is & such that there is a monomorphismC — G;. But this means that there is a
monomorphisnf; om: C — G. ThereforeG |= 3C and as a consequenGe=1T.

(c) If L=V(c: X — C) then we know that for everiyand every monomorphismy : X — G; there is aj, withi < j,
such that there is a monomorphi$mC — G;j with hg,<g; oMo = hoc. Suppose that there is a monomorphism
m: X — G. This means, according to Prop. 4, that there existssaph that there is a monomorphism; X — G;
such thatfi om’ = m. But this implies that there is p with i < j, such that there is a monomorphismC — G;
with hg, <g; o m = hoc. Hence,fjoh:C — G and moreovef;ochoc= fjo hg,<g; o m = fiom = m. Therefore,

G satisfiesyc: X — C and as a consequenGe=T.

O
The following two lemmas show that saturated sequences easobstructed using thieconstruction defined

above. In particular, the first one shows how we can consinfiofte sequences such that they are saturated if all its
elements are open.

Lemma 3 Let3Gy < --- < 3G;j < ... be an infinite ascending sequence in BasPdglt ; k) for a fair refutation
procedurec = C1 = --- = Ck... such that, for every jJG; is open and moreoverdj<g,,, € |(3Gj, ;). Then,
JG1 < --- < 3JG; < ... is a saturated sequence.

Proof. Let " be any clause i1 Ck. More precisely, let us assume tHat ¢n. We have to prove that there is a
literal L in I such that:

(a) if L=—3C, then for everyj there is no monomorphism: C — G;

(b) if L =3C, there is &j, such that there is a monomorphismC — G;

(c) If L=V(c: X — C) then for everyi and every monomorphism: X — G; there is aj, withi < j, and a monomor-
phismf : C — G;j with hGHGj om= foc.

19

Now, if there is arl in I that satisfies condition (a), then the proposition triyidblds. Otherwise, let us assume
that there is g such that for every negative literal= —3C in I, there is @ monomorphism: C — G;j. Letk =
maxn, j). By Proposition 6, we know that for eveky> k there should be a literélin I" such that:

e if L =3C, then there is a monomorphiam: C — Gy, ;.

e If L=V(c: X — C) then for every monomorphism: X — Gy there is a monomorphisth: C — Gy, 1 with
th/<ka+1 om= f oc. Therefore, we just have to consider just the case whenihanmonomorphismm: X — Gy,
with n < k: We know thathg, g, o m: X — Gx is @ monomorphism then, by Proposition 6, there should be
a monomorphisnf : C — Gy with hg,<g,., © hg,<g, cm= f oc. But hg,<g,,, © he,<c, = he,<q,.,- Hence,
hGn‘<Gk om= foc.

O

It may be noted that Lemma 3 (together with the rest of theltefelow), implicitly provides a procedure for
building models of a given set of clauses. In particulartstg by the set of literalg o consisting of the basic positive
literals occurring in the given clauses, we build sets...,zn,... where eachsi, 1 is the set of basic literals in
[(3G, ¢;) which are not closed, and whe#& € £;. We can stop this construction if we find a litee#b € £, where
Gis already a model of the given specification.

The following lemma shows the existence of saturated sespiéthe given set of clauses includes a basic positive
constraint.

Lemma 4 Given a fair refutation procedure = ¢1 = --- = Ck... if BasPosLi{Uy-; Ck) is not empty then there is
a saturated sequence in BasPo$UJ- Ck)-

Proof. Let us suppose that there is a litefé in BasPosLiflUy-; Ck). We define a sequenés; < --- < 3Gj < ...
in BasPosLitUy-1 Ck) as follows:

e G =G.
e If h: G; — G’ is a monomorphism such thlae | (3G;j, ¢;), then we defin&; 1 =G

Now, we have to prove that this sequence is saturated. Wédsorkree cases:

e The sequence is finite becau$8G;, ¢;) is the empty set. This means ti@ti " for some strictly negative clause
I" € ¢j. But this means thdt is closed and, as a consequence, the sequéBce: - -- < 3G; is saturated.

e The sequence is finite, becaudg; € | (3Gj, ¢). Then, according to Proposition 7, this means thats a model
for ¢j and, hence, for. As a consequence, the sequeB€g < --- < 3G; is saturated.

¢ Otherwise, the sequence is infinite and, for evgryG; is open. Then, by Lemma 3, the sequed@ < --- <
3Gj < ... is saturated.

O

The last result that we need, before proving completenesaifdnference rules, shows that if all saturated sequences
end in a closed literal and if the given set of constrainthides a clause consisting only of basic positive literagnth
we can infer a clause consisting only of closed literals.

Lemmab Letc = ¢1 = --- = (k... be a fair refutation procedure defined overbased on the rules (R1), (R2),
and (R3) such that includes a clausé& consisting only of basic positive literals. If every sata sequence in
BasPosLit -1 ck) is finite and its last element is a closed literal then thera @dausel™ in |y~ Ck consisting only
of closed literals. -

Proof. We define inductively the sequence of clauBgs. .., I, ...where:
el =T.
® 1= (Veeg,., 3G), wheregni1 = {G| thereis a literaBG’ € My with (h: G’ — G) € (3G, cn}

Now, we know that every set of clausegis finite and this implies that, for every literaC in 'y, 1 (3C, ¢k) is also
finite. As a consequence, if for everyhere is an open literal included Iy then this means that there should be
an infinite sequence of open literal&; < --- < 3G, < ... where eaclG, € 'y andhg, <g,,, € | (3Gn, Cn). But by
Lemma 3 this sequence would be saturated against our draggeamption. Therefore, there should exisi arhere

all the literals in; are closed. So it is enough to defife=T; [

20

Lemma 6 (Completenesslet ¢ be a set of clauses consisting of basic constraints andipesitomic constraints,
letc = c1=--- = Ck... be afair refutation procedure defined overbased on the rules (R1), (R2), and (R3)If
is unsatisfiable then there is a j such that the empty clauseds.

Proof. Suppose that the empty clause is notinfor any j. We have to show the existence of a graplsuch that
G = ¢. We consider four cases:

1. There is no clausE in ¢ consisting only of basic positive literals. This means thagry clausd™ includes a
negative litera-3C or a non-basic litera¥(c: X — C), whereX is not empty. In this case, the empty graph would
satisfy all these atomic and negative literals and, as aszpreice, would be a model for

2. Otherwise, we have a clauBen ¢ consisting only of basic positive literals. Then, by Lemmavé know that
there exist at least one saturated sequengasPosLiflUy- Ck). By Def. 10, we have the following cases:

(a) Every saturated sequenceBasPosLifJ.~1 Ck) is finite and its last element is a closed literal. We may see
that this case is not possible. L8G v I be a minimal clause it~ Ck consisting only of closed literals
(according to Lemma 5 we know that such clause must existanudrding to our assumption, it must no be
empty). Since we are assuming tR& is closed then there should exist a clau&€; V - - - V =3Cq in U1 Ck
such that for everithere is a monomorphism : C; — G. Using rule (R1) we can infdrv =3C, Vv - - - V =3C,,.
Then, using again rule (R1) with this clause and the cla@e I, we can infed” VIV —-3CzV ... v -3C, =
v —=3CszV---Vv—3C,. Then, applying repeatedly rule (R1) in a similar way, we lddinally infer I', against
the assumption thaG v I was minimal.

(b) There s a finite saturated sequencBasPosLit -1 Ck) whose last element 8G. ThenG |= c.

(c) There is an infinite saturated sequed® < --- < 3Gj < ... in BasPosLitUy-1 Ck). Then, according to
Lemma 2, its colimit is a model for the given set of clauses.

0

As a consequence of Lemmas 1 and 6 , we have:

Theorem 1 (Soundness and Completenedsjt ¢ = ¢1 = --- = (k... be a fair refutation procedure defined over
a set of basic constraints and positive atomic constraintsased on the rules (R1), (R2), and (R3). Thens
unsatisfiable if and only if there is a j such that the emptyséis inc;.

Example 3 In our running example, the two models of the given set oftcaings ¢ (i.e. the two graphs in (10))
would be built in (3CSL, {(2), (3),(4),(5),(6)}), where3CSL is the only literal in constraint (1). More precisely,
(3CSL {(2),(3),(4),(5),(6)}) =1(3CSL,{(2),(3)}), since (4), (5) and (6) do not include any positive literaem,

[(3C4L, (2)) would consist of the inclusion from the graphId8 the graph in (8), let us call it CR2. And I(3CS12, (3))
would consist of the inclusions from the graphl2%o the graphs in (9). Now two of these four graphs do not satisf
clause (4), which means that they are closed. The other taphgy, as said above are models of the given set of
constraints.

4. Atomic Constraints

The approach used in the previous section and the resulimebtcannot be directly extended in an obvious way to
deal with the general case of specifications including aésgative atomic constraints. Let us see the problem. In the
previous section, the idea of the approach followed waswkatad two kinds of rules. Rules (R2) and (R3) were seen
as rules tduild models of the given positive constraints, while the rule)(Ras used taliscardmodels not satisfying
the negative constraints. This is the idea of the proof of lnen®. Now, suppose that our specification includes the
constraint-¥(g : X — C). This constraint, although it is a negative constraint,lsaronsidered similar to a positive
constraint in the sense that, if we have a gr&pthat does not satisfy it, we can build a new gr&phthat satisfies
the constraint by extending with some new nodes and edges so that it includes a copy(afithout including its
extensiorC). For instance, given the constraint;

. Lecturer Lecturer | Subject
0 it [SR then | SERMET | SR

21

If a graphG does not satisfy the constraint because all lecturer nagdmied to some subject node, then we can
add toG a new lecturer node and the resulting graph will now satisé/donstraint. This intuition suggests that the
rule below could be what is needed to deal with negative at@onstraints:

dC vy ﬁV(g:X—>C)\/I'2
(VGeg EG) VI1VvIa
whereg = {G| (f1:C1 — G« X: f2) € (C1 ®X) such that there is nm: C — G with f, =mog}.

(R4)

The above rule can be proven sound but, unfortunately, weeawmery easily that rules (R1) - (R4) are incomplete.
Itis enough to consider a specification consisting of thestraimtsv(g : X — C) and—V(g: X — C). The specification
is trivially unsatisfiable. However, we cannot derive thepgyrclause using rules (R1) - (R4). Let us see what would
fail in the completeness proof, if we try to do it along similiaes as the proof for Lemma 6.

Suppose that we have a graph that does not satisfy the negatistraint (for instance the empty graph) then,
using rule (R4), we could build a graph that satisfies it, is ttase the grapK. But this graph does not satisfy the
constraintv(g: X — C). Then, according to rule (R3), we can now build (among offtbesgrapiC that satisfies the
positive constraint. Unfortunatel§ now does not satisfy the constraift(g: X — C). That is, the main difference
between the current situation and the proof of Lemma 6 isithihie latter case if we have th@g < G, thenG; could
be seen closer (a better approximation) to a graph thafieatall the positive constraints. However, in the former
case Gy may be satisfying the constraint/(g : X — C) while none of its successors satisfies that constraint.

The idea of the proposed solution to avoid this problem ist,fio annotate the basic atoms in the clauses with
information about the negative constraints that have beed to infer that clause. And, then, to use this informat®n s
that, when doing a new inference, the basic atoms includ#tkinesulting clause still satisfy the negative constgint
included in the annotation. These annotations are cathetiexts and the annotated constraints are catledtextual
constraints More precisely, given a constraii€, a context for this constraint is a set of negative atomicstraimts
—¥(g: X — C1) such thatX is included inC. Actually, we assume tha has to satisfy this negative constraint.
However, as usual, we need to know not only thas a subgraph o, but also to identify the specific instanceXf
that cannot be extended@. For this reason we consider that a context is a finite set gdithg atomic constraints
together with monomorphisms binding the conditional p>ach constraint to the corresponding literal. Below, in
the completeness proof, we will see in more detail the uskeaxfd contexts.

Definition 11 (Contextual Constraints)A contextual constrairiC[Q] is a pair consisting of a basic constraifmC,
and a setQ consisting of pair§—v(g: X — C1),h: X — C) where—V¥(g: X — Cz) is a negative atomic constraint
and h is a monomorphism. A contextual constrai@fq | is consistent if for each paif—-v(g: X — C1),h: X — C)

in Q there is no monomorphism hC; — C such thath=h og.

A constraint3C without a context is considered to be annotated by the engmest. Now, we have to define
satisfaction for this kind of contextual constraints. THed is that a graph satisfies a contextual constegig | if it
satisfiesdC and all the constraints in its context:

Definition 12 (Satisfaction of Contextual Constraintsp graph G satisfies a contextual constrat#®[Q | via a
monomorphism f C — G, written G=¢ 3C[q], if for every pair(—V(g: X — C1),h: X — C) € @ there is no
monomorphism’h C; — G such that bh=h og. G satisfiesIC[q], written G= 3C[q |, if there is a monomorphism
f :C— G such that G=¢ 3C[qQ].

Inconsistent contextual constraints are not satisfied lgygaaph:

Fact 2 If 3C[q] is not consistent then for every graph GEGIC[Q].
Proof. Suppose thalC[qQ | is inconsistent, i.e. there is a p&itv/(g: X — Cy),h: X — C) in Q and there is a monomor-

phismh’ : C; — C such thah=HW og.
If there is a morphisnf : C — G then according to the diagram below:

22

we have thaf oh og= f oh, which meanstha®& ¥ 3C[q]. O

Finally, in some inference rules, given a contextual castaC[Q | and a monomorphism : C — G, we need
to be able to build a contextual constraint whose left-hadd s 3G and whose context includes the same negative
constraints agQ]. In order to do this we need to define the new bindin@tof the negative constraints @ |:

Definition 13 Given a contextual constraimC[Q | and a monomorphism fC — G, we define the contex{d) as

the set{(-V(g: X = C1),foh: X = G) | (-¥(g: X = C1),h: X —=C) € @ }.

In this case, satisfiability is based on five rules. The firg¢elrules are a reformulation (in terms of contextual
constraints) of the rules defined in the previous sectiohs.fourth rule is a similar reformulation of the rule stated
above. In addition , there is a new rule that states that grdéconstraints that are not consistent can be deleted fro

a clause. The five rules are:

E|C1[Q1] v, —3CG VI
IERVAR
if there exists a monomorphism: C, — C;

(R1)

3C1[Q1]VF1 E|C2[Q2 VI
(Veeg 3G[f1{Qa) U f2(Q2)]) VI VT2
whereg = {G | <f1 CL—->G—Cy: f2> S (C1®C2)}.

(R2)

EJC;L[Q] VI V(CZ X — Cz) VI
(Veeg 3G[fr(Q)) VIV T2

if there is @ monomorphistm: X — Cy andg = {G | (f1:CL - G« C: f) € (C1 ®
C,) such thatf; om= fyoc}.

(R3)

HC]_[QJ_] VI ﬁV(g X = Cz) VI,
(Vic,q)eq 3G[Q]) VIV
whereg = {(G, f1{Q) U{{(=V(g: X = Cy),f2)}) | (f1:C1 > G« X: f2) € (Ci®X)}.

(R4)

aclQ|vr
—r Y

if 3C[Q] is not consistent.

23

We may see that (R4’) is very similar to (R2'). The reason & ths discussed above, a negative atomic constraint
—V(c: X — Cyp) (partly) specifies that there must be a copyah the given graph, as it happens with the constraint
3X. The main difference to the rule (R2’) is that, in (R4’), thegative constraint is added to the context of the
new constraints introduced in the clause inferred by the. ¢ said above, the fifth rule just states that inconsistent
contextual constraints can be deleted from clauses, diegecannot be satisfied by any graph.

Example 4 Let us consider all the constraints and clauses from Exasnbknd 2. If we apply twice the rule (R4") on
clauses (10) and (7) then we would infer the following clause

Room Room Room Room
(11) 3(Subject Subject) V 3(Subject Subject
Name-CSL Name-CS NameSl Name-C
Lecturer Lecturer Lecturer Lecturer Lecturer

where the context associated to each literal (not displagleodve) would consist of constraint (7) together with a
monomorphism mapping the Lecturer node in the conditioh @7) to the Lecturer node which is disconnected in
each of the graphs. Again, no useful new inferences can bledppnd the two graphs occurring in clause (11) are
(minimal) models of the set of constraints.

Now, with this new formulation, again we are able to show stmass and completeness of our inference rules. In
particular, the proofs of soundness for rules (R1’)-(R38 a straightforward extension of the proofs for rules (R1)-
(R3). The only difference is that we have to take into accdbatcontexts. Anyhow, before showing the soundness
and completeness of the new calculus let us prove a proposibiout satisfaction of contextual constraints.

Proposition 10 Let3C[qQ] be a consistent contextual literal, let G be a graph such @Gats 3C[Q], and let g:C —
G’andd: G’ — G be monomorphisms such thatfg' o g. Then, G[g(Q)] is consistent and G=¢ 3G '[g(Q)].

Proof. Let (=V(h: X — C;),h : X — C) € @, on one hand we have to prove that there is no monomorgftisig; —
G’ such thah’ oh= goh'. However the existence bf would imply that we have the monomorphigfeh” :C; — G
satisfying thatyf oh” ch= g ogoh’ = f ol against the hypothesis that=¢ 3C[qQ |. ThereforeG '[g(Q)] is consistent.

’ f
/g \
/
9
/!
h

On the other hand, we have to prove that there is no mononmpii: C; — G such thatf’oh =g ogolY, but
this is straightforward sincé = g’ o g andG = 3C[Q]. ThereforeG =y 3G'[g(Q)]]. O

0

/

X G

®

—_—

O

1

Lemma 7 (Soundness of the rulesjhe rules (R1’), (R2'), (R3"), (R4’), and (R5) are sound.

Proof. The proofs for the rules (R1’-R3’) are similar to the proofs the rules (R1-R3). Below, in addition to the
proofs for the new rules (R4’) and (R5), we just present tleopfor the rule (R3’) to show the (small) difference to
the proof of the corresponding rule (R3).

(R3’) Suppose thab = 3C1[Q]VI1, G EV(c: X — Cy) VI, and there is a monomorphism X — C;. The case
whereG =T or G |= Iz is trivial. Suppose tha® =h, 3C1[Q], for some monomorphisim : C; — G. In addition,
we also have that that there is a monomorphiismC, — G such thahyom=hyoc, sinceG =V(c: X — Cy). As a

24

consequence, by Prop. 2 there is a factorization:

wheref; :C; — G’ and f, : C; — G/ are jointly surjective monomorphisms and f is injective eféfore,G ’ is
in the setg defined in the rule. Finally, according to Prop. 10, we hawa &= 3G '[f1(Q)] which means that
Gk (Voreg 3G R(Q)) VT

(R4’) Similarly, suppose thab |= 3C1[Q1] VI 1 andG = —V(c: X — Cp) VI2. The case wher@ =T10orG =T
is trivial. Suppose thaG =, 3C1[Q1], for some monomorphisrh, : C; — G, and that there is a monomorphism
hy : X — G such that there is no monomorphis¢it C, — G such thath, =h'oc, i.e.GE —V(c: X — Cy). As a
consequence, by Prop. 1 there is a factorization:

wheref; :C; — G’ and f, : X — G/ are jointly surjective monomorphisms and f is injective.t<hat there is
no monomorphisnh : C; — G’ such thatf, = hoc, since f o f, = h, and this would mean thdt, = fohoc
violating the above condition. Hence, we have tiat € {G" | (f1 : Ci — G" « Cy : f2) € (CL ® Cy)}. Finally,
on one hand, according to proposition 10, we have @gis 3G '[f1(Q1)] and, on the other hand, we can show that
Gkt G'[{{=V(g: X — Cy), f2)}]. The reason is that i : C; — G is a monomorphism such théto f, = h' oc,
we would have tha6 = —V(c: X — C;) would not hold, since we would have = f o f, = h' o ¢c. Altogether, this
means thaG = 3G'[Q]) for @ = fi{Qa) U{(=¥(9: X — C3), f2)}. As a consequenc = (Vg ,q)cq FG[Q)), for
G ={{G, fi{Q)U{{(-V(g: X = C2),f2)}) | (f1:C1 = G+ X: f3) € (C1®X)}.

(R5) Suppose thab = 3C[Q | VI. By Fact 2 we know thab 3C[Q]. ThereforeG=T. O

The proof of completeness in this case is very similar to ttevipus completeness proof. The main difference
is in the key role played by the contexts. The idea in the previproof was to consider sequences of constraints
3Cy < --- <3G < ..., where eveng; is included inCi 1, that could be seen as the construction of a modetfdr
the empty clause was never inferred. In particular, thegeesgces were associated to the given inferences. Moreover,
an important property in that proof is that it was assumed elhiary graph in these sequences would satisfy all the
strictly negative clauses ig),~q Ck. In particular, given a grap;, if a possible success@;;1 does not satisfy a
strictly negative clause3C; V- - - v =3C, then we know that a sequen@e< C; < --- < G < Ciy1 < ... would never
yield a model ofc. The reason is that any graph includi@gwill neither satisfy—3C.

In the current case, as discussed above, negative atonstraions are treated in a similar way to basic positive
constraints. If a grapfii does not satisfy the constraint/(g : X — C) then we may buildCi 1 including a copy of
X (but not of its extensio) applying the fourth rule. This means thgt ; now satisfies that constraint. However,
in this situation if we do not use contexts, it would be impblesto say if this sequence, in the limit (or, rather, in
the colimit) would yield a model of and, especially, if it would satisfy that constraint. Thagen is thaC;, > may
include a copy o€ as an extension of the instanceXofncluded inCi ;.

The use of contexts solves this problem. In particulat; i) | does not satisfy a constrain¥/(g: X — C) in its
contextQ then no larger graph would satisfy it. Then, in a similar mamas in the previous completeness proof, we

25

can define sequenc€s|0] < C1[Q1] < - < Ci[Q] < Ci+1[Qi+1] < -.., where eacl; satisfies all the strictly negative
clauses and all the negative constraintginThen, saturation of the sequences ensures that for evgingsee there
is ani such that; includes all the negative atomic constraintginThis ensures that a saturated sequence will yield
a model ofc, provided that the empty clause cannot be inferred fraom

As in the previous completeness proof, we have to provideessumiliary definitions and results. These definitions
and results are in most cases essentially equivalent tootinesponding ones in the previous section. In particufar, i
some cases the only difference would be that the given basisti@ints will have a context. In some other cases, we
will explicitly have to deal with the new kind of constrairdsnsidered (i.e. non-basic negative constraints). Fer thi
reason, we will omit the proof of these auxiliary results whigey are essentially identical to the corresponding proof
in Section 3, or we will just show the proof for the case of tegrtonstraints, when this is the only difference.

We start defining the constructidn In this case, the result d{3G1[Q1],L) is not the set of possible graphs
(actually monomorphisms fror®; to these graphs) that we can infer frai;[Q1] andL, but also the resulting
contexts:

Definition 14 Let3G;[Qi] be a contextual literal and L a positive literal or a negativen-basic constraint. We define
the set of monomorphism&G1[Q1],L) by cases:
o If L is a basic contextual literal, = 3G2[Qz], then I(3G1[Qa],L) = {(f1,Q) | {(f1:G1 = G — Gy :) € (G1®
Gz)}, whereQ = f1(Q1) U f2(Q2) -
e If L is a positive atomic literal, l=V(c: X — G3), and H is the set of all monomorphisms from X tpten,
I(3G1[Qa],L) =1"(3G1[Qa],H), where F(3G1[Qi],H) is defined inductively:
— IfH =0then F(3G1[Qa],H) = {(idg,, Q1) }
—IfH ={f: X — G} UH’ then IF(3G1]Qi],H) = {{(Woh,W{(Q)) | (h: G1 — G,Q) € 1*(3G1[Qa],H’), (N :
G—G «—Gy:fy) € (GoGy) suchthatoc=Hhoho f}.

e If L is a negative non-basic constraint, £ —V(c: X — Gp), then [(3G1][Qi],L) = {(f1,Q) | (f1:G1 — G «— X
f2> S (Gl®X)}, whereqQ = f1<Q;|_> U {<V(CZ X = Gp), f2>} .

The definition ofl is extended to clauses and sets of clauses as in the preeicicns

Definition 15 Let3G1[Qi] be a contextual literal anfl be a clause. We define the set of monomorphisa@[qQi],I")
inductively:
e If I" is the empty clause, the(dG1[Qa],I") = 0.
e If T =LV’ where L is a negative basic literal, the(dG1[Q1],T") = 1 (3G1[Qa],I").
e If T =L VI’ where L is a positive literal or a negative non-basic literdnen 1(3G1[Qa],") = 1 (3G1[Qa],L) U
| (3Ga[],).
If 3G1[Qa] is a contextual literal and" is a set of clauses, the set of monomorphist8&i[Qa], ¢) is defined
inductively:
o If ¢ is the empty set, theridG1[Q1], ¢) = {(idg,, Q1) }.
e If c ={T'}Uc’, andrl includes a negative basic literah3G such that G = —3G, orT includes a positive atomic
literal, V(c: X — G) such that there is no monomorphismX — G; then I(3G1[qQ1],¢) = 1(3G1[Qa], c’).
e Otherwise,

I(3Gi[a], {T}uc’) ={(goh,Q) | (g,Q) € 1(3G[Q'],T),(h:G1— G,Q") € I(3G1[d],c")}

The functionl is monotonic with respect to the context part:

Proposition 11

¢ If Lis not a basic negative literal anth, Q) € 1(3G1[Qa],L) thenhQ1) C @ .
e Forany clausd, if (h,Q) € (3G1[Qa],I) then Q1) C Q.
e Forany set of clauses, if (h,Q) € 1(3G1[Qa],¢) then K1) C Q.

Proof. Straighforward by the definition df [

26

The following proposition is almost identical to Prop. 5a@rhere the contexts do not play any role. The main
difference is that now we also consider the case of non-In&gjative constraints.

Proposition 12 Let[" be a clause and let hG; — G, be a monomorphism such thift Q) € 1(3G1[Qi],T"), for some
set of contextg then there is a literal L i” such that:

if L = —3C, then there is no monomorphism @ — Gj.
if L = 3C[q], then there is a monomorphism:i@ — Gp.

e IfL =V(c: X — C) then for every monomorphism X — G; there is a monomorphism:@ — G, with ho f =
goc.

o IfL=-V(c:X —C), then(—V(c: X — C),m) € Q for some monomorphismrnX — Gp.

Proof. If 'y is the subset of including all its positive literals and all its non-basicgagive constraints then, we
know thatl (3G1[Qa), {I'}) = Uier, ! (3G1[Qa],L]). Now, if I" does not include any positive literal nor a negative non
basic constraint (i.€ is the empty clause dr includes only negative basic literals), then the propositrivially
holds, since by definitioh(3G1[Q4],T") is empty. So let us assume thaincludes some literal which is not a negative
basic constraint and, moreover, let us assume(thatG, — G), Q) € 1(3G1][Qy],~V(c: X — C)) for some literal
—v(c: X — C)inT, since the other possible cases were proved in Prop. 5 araittent proof would be essentially
identical. But this case is quite straightforward sincedbfinition,| (3G1[Q1],—V(c: X = C)) = {(h,Q) | (h: G1 —
G—X:m)e (G1®X)}, whereq =h(Q1) U{(V(c: X — Gz),m)} .

O

The extension of the above proposition to a set of clausesigain almost identical to Prop. 6, except for the case
when the literal is a non-basic negative constraint.

Proposition 13 Let ¢ be a set of clauses consisting of basic constraints and ipesittomic constraints and let
h: G1 — G2 be a monomorphism such thdt Q) € 1(3G1[Qa], ¢), then for every clausk in ¢ there is a literal L in
I" such that:

e if L =—3C, then there is no monomorphism @ — Gj.

e if L =3CJ[q], then there is a monomorphism:i@ — Go.

e IfL =V(c: X — C) then for every monomorphism:iX — G; there is a monomorphism:IC — G, with hom=
foc.

o IfL=-V(c:X —C), then(—V(c: X — C),m) € Q for some monomorphismrX — Gp.
Proof. Let (h,Q) € 1(3G1[Qa],). By induction onc, following the definition ofl (3G1[Qi], C):

e If ¢ is the empty set, then the proposition trivially holds.

e Otherwise, by induction, we know that(iff : G1 — G,, Q') € 1(3G1[Qu], ¢’) everyl’ in ¢’ satisfies the proposition
with respect tdY. Therefore, ifh = go I, with (g: G, — Go, Q') € 1(3G}[Q],I"), on one hand we have to prove
thatevery in ¢’ satisfies the proposition with respectioh’ and, on the other, thaitalso satisfies the proposition
with respect tayo I
Given a clausé&’ in ¢’, by induction, we know that there is a a litetain ' such that one of the following cases
hold:

— if L= -3C, the case is trivial.

— if L=3C[Q"], then there is a monomorphism: C — GJ. But this means thggom: C — G,

— If L=V(c: X — C) then for every monomorphism: X — G; there is a monomorphisth: C — G, with
H om= f oc. But this means that there is a monomorphggnf : C — G,. Moreovergo foc=goh’'om=hom

— If L=-V(c: X — C) then(-V(c: X — C),m) € Q' but this means that-V(c: X — C),gom) € Q.
Now, in the case of the clausethe proofis just a direct consequence of Prop. 12.
O

The aim of the following two propositions, like in the caseRybpositions 8 and 9, is to show that if we have a
literal 3G1[Qi] in a clausd™, then we can infer the clause resulting from replacing titertal by a disjunction of the
literals that, in some sense can be considered includg@® [Q1], ¢). The proof of Proposition 14 is very similar to

27

the proof of Proposition 8. The main difference, in additionlealing with the contexts involved, is that in Propositio
14 we have to explicitly deal with the case of non basic caiirsts.

Proposition 14 Let ¢ be a set of clauses, let = ¢1 = --- = k... be a fair refutation procedure defined over
¢ based on the rules (R1’), (R2), (R3’), (R4’), and (R5), artdidG1[Qi1] V1 and ', be two non-empty clauses
in Uy>1 Ck such that for every negative literal3G, € > we have that @¥ —3G, and for every atomic literal
¥(c: X — Gp) € I'; there is a monomorphism :hX — Gi. Then (Vg qyeq IG[Q] V1) € Uks1 ks Whereg =

{(G,Q) | (h:G1—G,Q) €1(3G1[Q],T2)}.

Proof. As in the case of Proposition 8, we prove by induction thatabiclaused™; and Ty, if 3G1[Q1] V1 is in
Uk=1 Ck and for every literab3G; € IM'; we have thatG; # —-3G; and for every litera¥/(c: X — Gp) € Nz thereis a
monomorphisni : X — G, then for every clausEs such thaf , V'3 is in J,~1 Ck we have that eithef; is empty
or (V<G,Q>€g 3G[Q]VI3VTI1) € Uks1Ck Whereg = {(G,Q) | (h:G1 — G,Q) € 1(IG1[Qa],l2)}. This implies the
proposition wher 3 is the empty clause.

If T'> is the empty clause, then the proof is trivial. Otherwisé ue suppose thdt, = L v I}, for a given lit-
eral L. By induction, we may assume that for ahy if (I';, VLV I3) € Uy>1 Ck then either (a5 is empty or (b)
(Viea)eg' IG[QIVLVI3VI1) € Uks1Ck whereg’ = {(G,Q) | (h: G1 — G,Q) € 1(3G1[Qa],T})}. Let us define
I3 to be equal td"3 in case (a), and equal {0/ ¢)4 IG[Q] VI3V 1) in case (b). Below we just consider the
case wheré = —V(c: X — C), since the proofs for the remaining cases are essentiahtiichl to the proofs of the
corresponding cases in Proposition 8.

e If L==V(c:X — C) then we can apply the rule (R4’) t8G1[Qi] V1 and =V(c: X — C) v I} yielding
the clause(V (g q)cg7 3G[Q] V1V T3) € Uis1 Ck, Whereg” = {(G, f1(Q1) U {(=V(g: X — C2), f2)}) | (f1:
G1 — G« X f) € (G1®X)}. Therefore, in case (a) we know thaf g q)e 57 IG[Q] V1V I3) € Ugs1 Ci,
and this completes the proof, since in this case, by defmiti¢eG,Q) | (h: G1 — G,Q) € 1(3G1[Q],T2)} =
(G, (@) U{(=V(g: X — Cp),f2)}) | (f1 : G1 — G «— X : f3) € (Gy ® X)}. On the other hand, in case (b)
we know that(V<G’Q>egu HG[Q] \VARRY V<G,Q>€gl HG[Q] A Y rj_) = (V<G,Q>€(j" HG[Q] V v(G,Q)E(j’ HG[Q] \Y
M3V rI1) € U1 Ck and this completes the proof, since in this case, by defmifi¢G,Q) | (h: G1 — G,Q) €
|(3Gi[],T2)} =6"uUg".

0

The proof of the proposition below is essentially identimathe proof of Proposition 9. For this reason, we will
omit it.

Proposition 15 Let ¢ be a set of clauses, let = ¢1 = --- = Ck... be a fair refutation procedure defined over
based on the rules (R1’), (R2), (R3’), (R4’), and (R5), artldG[Q1] vV I'1 be a clause inJy-; Ck, then for any

' C ¢, (Vigaq)eg 36IQIVT1) € Uis1 ks Whereg = {g = {(G,Q) | (h:G1 — G,Q) € (3G1[a], ')}

The precedence relation that we use here is basically the samas the relation defined in the previous section.
There are two main differences. The first one is that now tlaioa is defined on contextual literals. The second one
is that now if3G1[Qi1] < 3G2[Q4] then the contex®yy, when translated throudis, <c,, should be included i@,

Definition 16 For every pair of contextual literal3G;[Q1],3G2[Qz2], 3G1[Q1] < IG2[Q2] if there is a monomorphism
he, <G, : G1 — Gz and hs, <G, (Q1) € Q2.

Given a contextual literalC;[Qa], this literal precedes the resultsIgfiCy[Qa], ¢) for any set of clauses:

Proposition 16 If (g: C; — C2,Q2) isin [(3C1[Q1], ¢) then3Cqi[Q1] < IC2[Q2]
Proof. It is enough to definbc, <c, = g, since we know that, by Prop 1d(Q1) € Q2. O

As said above, we use this precedence relation to build (6nd) models of the given specification, like in the
previous completeness proof. In particular, the notion ehturatedsequence is also a key concept. There are two
main differences of the notion of saturated sequence nelegledand the notion presented in the previous section.
The first one is that here we also have to take into accountfleeeinces with negative non-basic constraints. The
second difference concerns the notion of closed literalitimely, a closed literal is a literal that cannot lead he t

28

construction of a model of the given set of clauses. In theipus section, a literal was closed when it would not
satisfy a strictly negative clause. In the current contditeeal is considered also closed if it is inconsistent.

Definition 17 Let ¢ be a set of clauses, let = ¢c1 = --- = k... be a fair refutation procedure defined over
based on on the rules (R1"), (R2'), (R3’), (R4’), and (R5)] &t ContLit{ .~ Ck) be the set of all contextual literals
occurring in clauses inferred in the refutation procedutditeral 3G[Q] in ContLit({J,~1 Ck) is closedif either there
is a strictly negative clausg in |~ ¢k such that G# I or if 3G[Q] is inconsistent. We also say thaB[q] is open
if it is not closed. -

Then, the new definition of a saturated sequence, followiegrtuitions above is:

Definition 18 An ascending sequence in Con{l-1 ¢k) 3G1[Q1] < --- < IGi[Q] < ... is saturatedf one of the
following cases applies: -

e the sequence is finite and its last eleme®@t[Qk] satisfies that is a model forc, or
¢ the sequence is finite and its last element is closed, or

e the sequence is infinite, it consists only of open element$aarevery claus€ in Ji~1 Ck there is a literal L in[
such that: B

(a) if L =—3C, then for every j there is no monomorphism@— G;

(b) if L =3C[qQ], there is a j, such that there is a monomorphismn— G;

(c) If L =V(c: X — C) then for every i and every monomorphism ¥ — G; there is a j, with i< j, and a
monomorphism hC — G;j with hg,<c; om=hoc.

(d) ifL=-V¥(c:X —C), thenthereis a j, such thgt¥(c: X — C),h: X — G;j) is in Q; for some monomorphism
h.

The lemma that shows that the colimit of infinite saturategisaces is a model of the given set of constraints
is, again, very similar to the corresponding lemma in SecBoHowever, the proof of the lemma below is slightly
different to the prove of Lemma 8. In particular, here we hveonsider the additional case of negative non-basic
constraints. For this reason, below we include the prootifisrcase.

Lemma 8 Let3G1[Qi1] < --- < 3Gi[Q] < ... be an infinite saturated sequence in ContUj- k) for a fair refuta-
tion procedurer = ¢1 = --- = (k... and let G be the colimit of the sequence:

hG, <G, he,<cy he;_;<g; hG <641

Gy Gy ... Gi

f1 fo /

G
then G is a model for the given set of clauses, i.¢-@.

Proof. Let " be any clause iw. We have to prove tha® = I'. Since the sequence is assumed to be saturated there
should be a literdl in " such that the conditions (a), (b), (c) or (d) in Def. 18 arésfiat. The proof for the cases (a),
(b), (c) is essentially identical to the corresponding pind.emma 8. For this reason we only include case (d):

(d) if L= =V(c: X — C), we know that there is g, such that(-V(c: X — C),h: X — G;j) is in Q; for some
monomorphismh. As a consequenceé; o h is a monomorphism fronX to G. Now we will prove that if there is
a monomorphisni : C — G, such thatf; oh = f oc, then some contextual literalG,[Qx] would be inconsistent,
against the assumption that all the literals in the sequane®pen (and therefore consistent). Let us suppose
that such arf exists. Then, according to proposition 4 there must exisbaomorphismf’ : C — G; such that
f = fio f’. Therefore, we would havg oh= f oc = fjo f’oc. Now, we consider two cases.|l< i then, we have
that fj = fio th<Gi which means thaf; o th<Gi oh= fjo f’oc. But sincef; is a monomorphism we have that

floc= th<Gi o h. Now, according to the definition of the precedence relation
(=V(c: X = C),hg;<g oh: X — Gj) € Q.

and this implies thaG;[Q;] would be inconsistent. If < j thenf; = fjo hGHGj, which means thafjoh = fjo

29

f’oc= fjohg g, o f'ocand, again, sincéj is a monomorphism we have that= hg,<g, o f’ o ¢, implying that
G;[@;] would be inconsistent.

0

The proof of the lemma that shows us a procedure to defineagatlinfinite sequences is also a small variation
of the proof of Lemma 3, where the only difference refers agaithe case where negative non-basic constraints are
considered.

Lemma 9 Let3Gy[Qi] < --- < IGj[Q] < ... be aninfinite ascending sequence in ConflUjt. , ck) for a fair refuta-
tion procedurer = ¢1=--- = Ck... such that, for every FG;[Q;] is open and moreoveid<g, , € 1(3Gj[Qj],¢j).
Then,3G1[Q1] < --- < 3Gj[Qi] < ... is a saturated sequence.

Proof. Let " be any clause ify-1 Ck. More precisely, let us assume thHat ¢n. We have to prove that there is a
literal L in I such that:

(a) if L=—3C, then for everyj there is no monomorphism: C — G;

(b) if L=3C[q], there is &}, such that there is a monomorphismC — G;

(c) If L=V(c:X — C) then for every and every monomorphism: X — G; there is aj, withi < j, and a monomor-
phismf : C — G; with hGHGj om= foc.

(d) if L=-V¥(c:X — C), then thereiis &, such tha{—V(c: X — C),h: X — G;) is in Q; for some monomorphisim

Now, if there is arL in " that satisfies condition (a), then the proposition triyiddblds. Otherwise, assume that
there is g such that for every negative litefal= =3C in I", there is a monomorphism: C — G;j. Letk =maxn, j).
By Proposition 13, we know that for eveky> k there should be a literalin I" such that:

e if L=3C[Q], then there is a monomorphism: C — Gy 1.
e If L=VY(c: X — C) then the proof is identical to the proof of the correspondiase in Lemma 3.
o if L=-V(c: X —C), then(-V(c: X = C),h: X — Gy 1) € Qu1.

O

The proof of the lemma for showing the existence of saturagggiences is also identical to the proof of Lemma
4,

Lemma 10 Given a fair refutation procedure = ¢1 = --- = Ck... if ContLit(Uy-; Ck) is not empty then there is a
saturated sequence in Cont{lify 1 Ck)-

The lemma that shows that if all saturated sequences are &iniét end in a closed element then we can derive a
clause consisting only of closed elements is now slightffigdént than Lemma 5.

Lemma ll Letc = ¢1 = --- = (k... be a fair refutation procedure defined overbased on the rules (R1), (R2),
and (R3) such that includes a claus€& consisting only of basic positive literals and negative hasic literals. If
every saturated sequence in ConfUj- k) is finite and its last element is a closed literal then thera @ausel™’

in Uy>1 Ck consisting only of closed literals.

Proof. First we will prove that if the clause includes only basic positive literals and negative nondbitgrals, then
there is a clausE’ in i~ Ck such thaf’ consists only of basic (contextual) literals.

Suppose thall =, VI, wherel'; consists only of negative non basic constraints Bpdonsists only of con-
textual literals. We will prove our claim by induction dn. More precisely, we will prove that if; consists only
of negative non basic constraints then for every cldussuch that™y VI is in U= Ck there exists a clausg]
consisting only of contextual literals such tfigtv 2 is in U1 Ck:

e If 1 is the empty clause then the case is trivial.

e If 1 ==V(c: X — C) VI3 then, by induction, we know that there is a claligeconsisting only of contextual
literals such that-V(c: X — C) VI5 VT2 is in Uk Ck. Since we assume that every set of clauses includes the
trivial true clause (i.e. the clause consisting only of tiieral 30, which is equivalent to the contextual literal
30[0]), then we can apply rule (R4’) to this trivial clause and-td(c: X — C) v I'5V I, inferring the clause:
IX{(=V(c: X — C),idx)}] V5V,

30

So we have shown that from every cladsécluding only contextual literals and negative non basérals we
can infer a claus€’ including only contextual literals. It remains to show thram " we can infer a clause including
only closed literals. However, this proof is essentiallgritical to the proof of Lemma 5. [

We can finally show the completeness of our calculus. Theffioiows, with small variations the proof of Lemma
6.

Lemma 12 (Completeness)et ¢ be a set of atomic constraints, let = ¢1 = --- = k... be a fair refutation
procedure defined over based on the rules (R1’), (R2'), (R3’), (R4’), and (R5)cIfs unsatisfiable then there is a j
such that the empty clause isdr.

Proof. Suppose that the empty clause is notinfor any j. We have to show the existence of a graplsuch that
G = ¢. We consider four cases:

1. All clauses inc include some negative basic constraifiC, or some positive non basic constraivifc : X — C)
(i.e., there is no clausk in ¢ consisting only of basic positive literals and negative #basic literals). In this
case, the empty graph would satisfy all these positive atditerals and all the negative basic literals and, as a
consequence, would be a model far

2. Otherwise, we have a clauBén ¢ consisting only of basic positive literals and negative-basic literals. Then,
by Lemma 10, we know that there exist at least one saturatpeesee irContLit({Jy~4 k). By Def. 18, we have
the following cases: a

(a) Every saturated sequencedontLit(Uy- Ck) is finite and its last element is a closed literal. Using theea
reasoning as in the proof of Lemma 6, we may see that this sas# possible.

(b) Thereis afinite saturated sequenc€antLit(Uy-; Ck) whose last element is a model for The case is trivial.

(c) Thereis an infinite saturated sequeAG[Q1] < --- < 3Gj[Q] < ... in ContLit(Uy1 Ck)- Then, according to
Lemma 8, its colimit is a model for the given set of clauses.

O
As a consequence of Lemmas 7 and 12, we have:

Theorem 2 (Soundness and Completenedsitc = ¢1 = --- = (k... be afair refutation procedure defined over a
set of atomic constraints, based on the rules (R1'), (R2'), (R3"), (R4’), and (R5). ihe is unsatisfiable if and only
if there is a j such that the empty clause isip

As discussed above, our completeness results show thatdd senstraints is satisfiable then a fair refutation
procedure will never infer an empty clause from the givero$ebnstraints. However, in the proof of completeness,
the model constructed to show the satisfiability of the a@iirsts may be an infinite graph. One could wonder whether
in this situation it would always be possible to find an aléire finite model for these constraints. The answer is no.
As we can see in the counter-example below, there are setsroicaconstraints which do not have finite models.

Theorem 3 (Finite satisfiability) There are satisfiable sets of atomic constraintsuch that there are no finite graphs
G with Gl= c.

Proof. The set of constraints below is not satisfied by any finite lyrapt only by infinite graphs:

@ 3(0) @) ﬁa(é>o) 3) ﬁ3(©<g)

4) if @ then @_,@ (6) —if @ then <:> ,@

Let n be the number of nodes of a finite graph satisfying the conssrande its number of edges. The first
constraint specifies that the graph must have at least a neda,> 1. The second and third constraints specify
that every node must have at most one incoming edge and ogeiogdge, i.en > e. The previous two constraints
together with the fifth constraint (not every node has anrnmiog edge) imply than > e. However, the fourth constraint

31

(every node has an outgoing edge) implies that e. Obviously no finite graph would satisfy these constraints.
However the graph below does satisfy them:

O

5. Clause subsumption and elimination

Using the kind of refutation procedures that we have desdtiproving the unsatisfiability of a set of claugesan be
very costly. A main (standard) problem is that proving uiséability implies doing an exhaustive search, considgrin
all possible inferences among all the clauses. To reducedsieof this search there are several possible approaches.
For instance, one approach that we do not consider in thisrpspo use some kind of ad-hoc heuristics or strategy to
guide the search. A more general kind of solution is basedemrlimination from the given specification of clauses
or literals that may be known to be unnecessary for findindw@agon. In this way, we obviously reduce the search
space. A technique that is often used for this purposaiissumptionintuitively, a clausd ; subsume$; if every
refutation using > can be replaced by a refutation usifhg In this casel’> may be considered useless and we can
delete it. The standard definition of clause subsumptiotiepplso here, i.d.; subsumes ; if every literal inl";
subsumes a literal in,. However, the notion of literal subsumption is quite difietfrom the standard notion of literal
subsumption in first-order logic. In that case, a litdralsubsumes., if there is a substitutiow that applied to the
variables ol yieldsL,. This means that, in a sendaq,is smaller thari,. Here, literal subsumption works exactly in
the opposite direction. A literalC; subsumesC; if C; includesC;:

Definition 19 (Literal and clause subsumptior(piven literals Lhand Ly, we say that L subsumes4, denoted k. <1 L,
if Ly = L, or one of the following cases applies:

e If L3 and Ly are contextual constraints,;l= 3C;[Q1] and L, = 3C;[Q2], f : C; — C; is a monomorphism, then
Ly < Lo if for every(—V(c: X — C), f2 : X — Cp) in Q2 there existg—V(c: X — C), f1 : X — C1) in Q1 such that
fi = f o fo. Moreover, I3 <1 L if there exists an fC, — C; such that L < Lo.

e If L1 and Ly are basic negative constraints; & —-3C; and L, = —3C,, then Ly < L, if there is @ monomorphism
h:Ci—GCs.

e if L1 and Ly are positive atomic constraints; k= V(¢ : X1 — Cy) and L, =V(c2 : X; — Cy), then Ly < Ly if there
are monomorphisms:gX; — Xz and h: C; — C; such thatg =hocyogq.

Given clause§; andlMp, 'y < I if for every literal Ly in "1 there is a literal Ly in '; such that ly <1 Lo.

It may be noticed that we have not provided any explicit dééiniof subsumption for negative non-basic literals.
This means that, implicitly, in this case subsumption cinies with equality. There are two reasons for this. On one
hand, the most obvious candidate for this definition, thereeariant version of subsumption for positive non-basic
literals does not work (i.e. Theorem 4 would not hold for thation of subsumption). On the other hand, one of the
main reasons for introducing subsumption, as explainealyés$ to have the possibility of eliminating (some of) the
premises of a deduction rule after applying that inferertmvever, in this case, subsumption of negative non-basic
literals plays no specific role for this elimination.

The following properties are a straightforward conseqgearfthe above definition.

Proposition 17 Subsumption satisfies the following properties:

1. If 1 <y andlM, is empty ther ; is also empty.

2. Iffri<lMyandly <Ly thenlM U {Ll} < |_2U{L2}.

3. lfry<alandrl} <M, thenf UM < MUY,

4. Given literals—V(c: X — C), 3C1[Qa], and3C;[Q2]. If 3C1[Q1] <if IC2[Q2] and there are monomorphisms: X —
C1, f2: X — Gy, suchthat f = f o fp, then3Cy[Q]] < ICo[Qy], whereQ] = QU {(=V(c: X —C),f1: X —Cy)}
andQy = QU{(-V(c: X —=C),f2: X = Cy)}

5. Given literals3C;[Qa], 3C2[Q2] and graphs ¢ and C,. If 3C1[Qa] <t 3C2[Q2] and there are monomorphisms
fi:C,—Cj, f2:C,—C),and f: C, — C| such that fo f = f’o f,, then3Cj[f1(Q1)] < IC5[f1(Qa)].

32

6. If 3C1[Qa] < 3C2[Q2], ICY[Q4] < FC5[Qg), T1 = (Vg,e4, IG1[F1(Q1)]), @andT2 = (Vg,e4, IG2[f2(Q2)]) Where
G1= {Gl | <f1 C1— G <—CI1 : fi> S (C1®C/l)} and gy = {Gz | <f2 G -G <—C/2 : fé> € (C2®C/2)}, then
M<ro.

Now we can prove the main result of this section. Namely thhsamed clauses are not needed in refutations:

Theorem 4 Letl'; andl; be clauses, suchth@y <M and letc = ¢1 = --- = ¢k... be afair refutation procedure
wherel 1, € ¢. There is a refutation \ {[2} = ¢{ = --- = ..., whereVi I'> ¢ ¢/, such that there is a k where
the empty clause is igk if and only if there is a j where the empty clause is;:{n

Proof. The if part is trivial sincec \ {I'2} is included inc, and this implies that any clause, including the empty
clause, that can be inferred fram\ {I'2} can also be inferred from. To prove the only-if part, we build inductively
the refutationc \ {I'2} = ¢; = --- = (... showing that for everk there is aj such that for every claugein ¢
there is a claus€ ’ in CJ-/ such thatr ’ < T'. This is enough to prove the theorem since, according to.Arppthe
only clause that subsumes the empty clause is the emptyeclabhich means that if the empty clause igjithen the
empty clause should also be in the

e The base case is trivial since the only clause that is imhich is not inc \ {I'2} is obviouslyl,, and we have
assumed thdi; <i'x andlh; € C.

e Letus assume that for every claugein ¢k thereis a cIausE’j in CJ-' such that"j <k andj < k. Now we consider
five cases depending on the inferemge= cx.1 = ckU{T'} in order to show that there is sorfi€ in CJ-’+1 such
thatl ' < T:

1. T is obtained applying rule (R1’) t8Cs[Qs] V'3 and—3C4 VI 4. This means that there exists a monomorphism
m: C4 — Cz andl' = '3V 4. By induction, we know that there should be claus€§[Q4] v I'; and—3C, Vv
I in ¢{ such thaiiCy[Qg] < 3C5(Qa), M3 < '3, =3C; < ~3C4 and ™y <1 4. But this means that there are
monomorphismé, : C; — C4 andhs : C3 — C5. As a consequend® o mo hy is a monomorphism fror@), to
C; which means that we can apply rule (R1’) to the two clausesriinfg the claus€? \/ I, which, according
to Proposition 17, subsum&s v I 4. Therefore, we can defingl, ; = ¢cjU{l5V I}

2. T is obtained applying rule (R2’) t8Cs[Qs] v I's and3Ca[Qa] V I4. Thenl = (Vg IG[fa(Qa) U fa{Qa)]) v
M3V Ia, whereg = {G| (f3:C3 — G« Cy: f4) € (C3®Cy)}. By induction, we know that there should be
clausesiCy[Qz] v 'z and3Cy[Q4] VI in ¢f, such thaBC;[Qz] <1 3Cs[Qal, M3 <1 T3, 3C4[Q,] < ICslQy], and
I} < T4. Then, we can apply the rule (R2’) inferring the clalise= (Vg ; 3G[f3(Qg) U fa(Q4)]) VI3V Iy,
whereg = {G | (f3:C3 — G« C}: fa) € (C3®Cy))}. Therefore, we can defingj, ; = cfU{l" '}, since
according to Proposition 17,” subsumes.

3. Iis obtained applying rule (R3’) t8C3[Q3] V'3 andV(c: X — Cy4) VI 4. This means that there is a monomor-
phismm: X — Cgandl = (Ve 3G[f3(Qa)]) VI3 VT4, whereg is the set consisting of all the grapBsuch
that there are two jointly surjective monomorphisifgs Cs — G and f; : C4 — G such thatfyoc = fzom.

By induction, we know that there should be clauseg[Qz] v 'z andv(c' : X' — C}) VI in ¢j, such that
3C5[Q4] < 3Cs[Qa], M <3, V(d : X' — C)) < V(c: X — Cs), andl" < 4. Moreover, this implies that there
are monomorphismé: C3 — C5, g: X’ — X andh : C4 — Cj such that’ = ho cog. But this means that there

is a monomorphism? = f omo g from X’ to C,. As a consequence, we can apply the rule (R3’) inferring the
clausel ' = (Vgeq IG[f3(Q3)]) VI3V Iy, whereg' is the set consisting of all the grapBsuch that there
are two jointly surjective monomorphisni§: C; — G’ and f : C, — G such thatfj o ¢’ = f;om'. Now, for
everyG' € g’ we have monomorphismfgo f : C3 — G’ andfjoh:Cs — G’ such thatf;o fom= fjohoc.
Then, by Prop. 2, there should beéGac ¢ and a monomorphisrff : G — G’ such that the diagram below
commutes.

33

X! C,

\\\\\\ f/ ;/////
Cé—>G’
g fT f’ h
C3—>G
/ fs \
X Cs

But, according to Proposition 17, this means that for evhye g’ there should be & € g such that
3G/[f5(Q4)] < IG[f3(Qa)]. Therefore]” ' subsumes.

4. T is obtained applying rule (R4') t8Cs[Qs] VI 'z and—Vv(g: X — C) VI 4. This means thdt = (\/ g, 3G[Q]) V
M3V Iy, Whereg —{G| <f3 C—-G—X: f4> (C3®X)} andqQ = f3< >U{<ﬂV(g X—>C) f4>}
By induction, we know that there should be clause€§[Qg] Vv I'z and—v(g: X — C) VI in ¢j, such that
3C5[Q3] < 3C3[Qa], My <3, andlMy < M4. As a consequence we can apply the rule (R4) to these dause
inferring the clausd ¥ (Veeg EG[Q’]) VIV, whereg = {G| (f;:C, - G« X: f)) € (C0X)},
andQ’ = f3(Q'3) U{(=V(g: X — C), f3)}. Therefore, we can defing/,; = cjU{I '}, since according to
Proposition 17 ’ subsumes.

5. T is obtained applying rule (R5) t8C[Q | V. This means thalC[q] is inconsistent, i.e. there existsV(c; :
X —Cq),h: X — C) in Q such that there is a monomorphism: C; — C such thah = h; o ¢;. By induction,
we know that there should be a claus@[Q'] VI in ¢j, such thaBC'[Q'] < 3C[Q] andl" < T. But this
implies t/hat there is a monomorphisin C — C’ and there ig—V(cy : X — C;),h" : X — C') in Q' such that
foh="H,ie.

C

X?Cl f

thl
o

C/

but this means that there is a monomorphissrh; : C; — C'. Moreover, we have thét = foh= fohjoc;
and, hence]C'[Q '] is not consistent. Therefore, we can apply rule (R5) to thes#iC'[Q '] VI’ inferring I’
and we can defingj, ; = cjU{l" '}.

O

It may be noted that, according to our definition of subsuamtin our inference rules (R1’) - (R4) if one of the
claused 1 or 'z in the premises is empty then the result of the rule subsurpesmise. In the case of (R5) the result
of the rule always subsumes the premise. For instance, giNeiiR2’):

Gl vl 3G[Qo] VI
(Veeg 3G[fr(Q) U f2(Q2)]) VI VT2

if 1 is empty then the consequence of the rule subsuifiglys] V Ip. This means that after this inference, this
premise could be eliminated since according to our previoesrem it is useless to find a refutation of our specifica-

(R2)

34

tion. A similar thing happens with some of the inference suteat can be found below. If the correspondingor I'»
are empty then we can eliminate one of the premises.

Example 5 According to the previous theorem, we can delete all thegubs clauses in a specification without
losing completeness. In particular, in our running examplés means that the constraints (1) and (2) could be
eliminated, since they are subsumed by clause (8). Clagsma(Balso be eliminated since it is subsumed by clause
(10). Clause (1) also subsumes clause (9), so we could dmsate it. Finally, clause (10) can also be eliminated,
since it is subsumed by clause (11).

Another way of speeding up refutation procedures is to hafereénce rules, which perhaps are not needed for
completeness, that allow us to infer clauses that may heip fisding shorter refutations, perhaps with the help of
a heuristics or some proof-strategy. In this case, we mag tatt a positive (respectively, negative) literal which is
larger (respectivelysmalle) than another literal, has better chances to be deleted from clauses. In addition,
may subsume more literals thap (and it may also subsunie). This means that if we are able to replace a clause
includingL, by a clause including; we may have better chances of finding a refutation faster.

Below, we include several rules that may be used to find belieises in the above sense. In particular for each of
these clauses we prove its soundness. The first rule tellgtista certain situation we may amalgamate two positive
atomic constraints to create a new one that subsumes them.

V(Cl X1 — Cl) VI, V(Cz X — Cz) VI
V(Cg Xy — C3) \VARRAR
if there are monomorphisnts: X; — X2 andh : X; — C; such thatc; = hog and whereCs and
c3 = ¢j o ¢y are defined by the pushout diagram below.

G
2
X p.o. C

(R6)

2 3
g h
A
X1—1>C1

Proposition 18 (R6) is sound.

Proof. Suppose thab =V(cy: X3 — C1) VI1, GEV(c2: X2 — Cy) VT2, and there exist monomorphisigsX; — Xz
andh: Xz — C; such thaty = hog. The case wher@ =1 or G =Tz is trivial. Now, suppos& = V(cp : X1 — C1)
andG E V(cy : X — Cp) and suppose that there is a monomorphi$m X; — G) then we have to show that there
should exist a monomorphisffi : C3 — G) such thatf; = f o c3. Using thatG |= V(c; : X3 — C1) we have that there
is @ monomorphisrfg; : C; — G) with f; = g; o ¢;. But this means thag; o his a monomorphism from, to G using

G E V(¢ : X2 — C) we have that there is a monomorphiéga : C; — G) such thagioh=gz0cy:

0

e

X2 C3—f>G

h
C1
X1 ——C

But, by the universal property of pushouts and Prop. 2, tharst exist a monomorphisf(rf : C3 — G) making the
above diagram commute. But this means that gioc1 = focjoc; = focs. HenceGl=V(c3: X1 — Cz). O

35

The last three rules describe the interaction of a negatideaapositive constraint and, in this sense, they can
be seen as generalizations of the rule (R1’). In partictiferrrule (R7) describes the interaction of a negative basic
constraint with a positive atomic constraint:

V(C Xy — Cl) vy —3dC VI
—3IX1vI1vris
if there exists a monomorphism: C, — C;

(R7)

Proposition 19 (R7) is sound.

Proof. Suppose tha® = V(c: X3 — C1) VI1, G = —3C, VI, and there exists a monomorphism C, — C;. The
case wher& =T1 or G =Tz is trivial. Now, suppose thab = V(c: X; — C1) andG = —3C,, and suppose that there
exists a monomorphisth: X; — G this means that there should be a monomorplys®; — G with gocy = f. But
this means thaj o mis a monomorphism fror@; to G:

X —2-C <" G,
N
¢
G
Therefore such cannot exist, which means th@t= —-3X; O

Rule (R8) can be seen as a variation of rule (R1’). In pardiguds we have discussed above a negative atomic
constraint-V(c: X; — C;) can be seen as a variation of the basic constepin the sense that, in both cases we are
asking that the grapK; should be included in the given graph.

ﬂV(C X1 — Cl) vIip —3dCG VI
Mvris
if there exists a monomorphism: C, — X3

(R8)

Proposition 20 (R8) is sound.

Proof. It is enough to see that a grafthcannot satisfy simultaneousty/(c : X; — C;) and—3C;. The reason is that
if G —V(c: Xy — C1) VI this implies that there should exist a monomorphisnX; — G. But this would imply
the existence of the monomorphism mfromCyto G. [

Finally, rule (R9) can be seen as a variation of resolutioemttonsidering atomic constraints:

ﬁV(Cj_ X — Cj_) AN V(Cz X — Cz) VIs
Mvro
if there is a monomorphism : C; — C, such that; = moc;.

(R9)

Proposition 21 (R9) is sound.

Proof. It is enough to see that if there is a monomorphismC; — C, such thatt; = mo ¢z then a grapl cannot
satisfy simultaneouslyV(c; : X — Cp) andV(cz : X — Cyp). The reason is that & = —V/(c; : X — Cy) this implies

36

that there should exist a monomorphi$mX — G such that there is nio; : C; — Gwith hjoc; = f. ButG = V(cy :
X — Cy) implies the existence of a monomorphiemC, — G, such thatf = hocy:

C

G

But this would mean that we have the monomorphismfrom C; to G. Moreover, we know that =hocy =homoc;
in contradiction with the side condition abovel[]

6. Conclusion

In this paper we have shown how we can use graph constrairgsspecification formalism to define constraints
associated to visual modelling formalisms or to specifg®ts of semi-structured documents. In particular, we have
shown how we can reason about these specifications, provitference rules that are sound and complete. Moreover,
as can be seen in our examples, and as a consequence of Lenamd3,3he completeness proofs show that our
inference rules can also be used for the construction of ladolethe given sets of constraints.

Ourresults apply not only to plain graphs, but generalizelawge class of structures including typed and attributed
graphs. In this sense, in [EEHP04, EEPTO06] the constrdiatste consider have been defined for any adhesive HLR-
category [LaS04, EEPTO06]. However, to be precise, to gdéimeraur results, we would need that the underlying
category of structures satisfies the properties stateddtidde?.1, which are used in the main results in the paper,
and that are not considered in [EEHP04, EEPTO06]. First, waldvaeed thatG; ® Gy is finite, provided thats;
and G are finite. Second, we would need that our category satisfeepitoperty of pair factorization as stated in
proposition 1. Finally, we would need that the given catggatisfies the existence of infinite colimits as stated in
Prop. 4. Inthis sense, most set-based categories, inylartimost graph categories satisfy these conditions. Mexye
the category of attributed graphs presents some problamarticular, in general, 6, andG; are arbitrary attributed
graphs thers; ® G, may be infinite, even if the graph part 8§ andGs is finite. It is enough that the set of possible
values for the attributes is infinite. However, if the defonit of G ® G, is restricted to the case where the jointly
surjective morphisms are not only monomorphisms, but disoidentity on the attributes, th&B; ® G, would be
finite. These monomorphisms are called M-morphisms in [EEP&and are needed to prove that attributed graphs are
an adhesive HLR-category. Therefore, in this case it woel@éfiough to show that the factorization properties hold
for M-morphisms. Nevertheless, in [Ore08] we have studi@astraints on attributed graphs following a completely
different approach, which is inspired in the area of Comstitzogic Programming. The basic idea is to consider that an
attributed graph (and therefore an attributed graph caimjrcan be seen as a graph labelled with variables together
with a logical formula on this variables. This allowed us taka a neat separation between the graph part and the data
part of attributed graph constraints and to provide souicamplete inference rules which are quite close to the ones
presented in this paper, but that may ask, as a side conditiotine satisfiability of some formulas of the data.

Further work is concerned, on one hand, to the extensionsfékults to the case of arbitrary nested constraints,
and on the other, with the implementation of our technigtreparticular, we think that it will not be too difficult to
implement them on top of the AGG system [Tae04], given thabidisic construction that we use in our inference rules
(i.e. buildingG; ® Gp) is already implemented there.

AcknowledgementsThis work has been partially supported by the CICYT projg@RMALISM (ref. TIN2007-
66523) and by the AGAUR grant to the research group ALBCOM (@516). Part of the work was done during a
sabbatical leave of the first author at TU Berlin with finahsigpport from the Ministerio de Ciencia e Innovacion
(grant ref. PR2008-0185).

37

References

[Tae04]

[AIF08]

[BCKLOB]

[Cou97]
[EEPTO6]
[EEHPO4]
[EhH86]
[EEFNO3]

[HHT96]
[HaPO5]

[HaP06]

[HaP08]
[Hew95]
[Jel00]
[LaS04]
[LEOO6]
[LaGO08]
[Llo87]
[Ore08]

[OEPO8]

[KMPO5]
[Pen08]

[Ren04]

[R0z97]

Taentzer, G, AGG: A Graph Transformation Environtrfer Modeling and Validation of Software, in: J. Pfaltz, Magl and B.
Boehlen, editorsipplication of Graph Transformations with Industrial Red@ce (AGTIVEO3)LNCS 3062, Springer, 2004 pp. 446
456. URL: http//tfs.cs.tu-berlin.de/agg.
Alpuente M, Ballis D, and Falaschi M: Automated Mézation of Web Sites Using Partial Rewritin§oftware Tools for Technology
Transfer 8 (2006), 565-585.

Baldan P, Corradini A, Koenig B, Lluch-Lafuente A Temporal Graph Logic for Verification of Graph Transformoat Systems.
In Recent Trends in Algebraic Development Techniques, 1&nnktional Workshop, WADT 2006Springer Lecture Notes in
Computer Science 4409 (2007), 1-20

Courcelle B: The expression of Graph Properties@raph Transformations in Monadic Second-Order Logic, in4®&] (1997),
313-400.

Ehrig H, Ehrig K, Prange U, Taentzer Bundamentals of Algebraic Graph Transformati@pringer (2006).

Ehrig E, Ehrig K, Habel A, Pennemann KH: Constiahd Application Conditions: From Graphs to High-LeveluStures. In
Graph Transformations, Second International ConferemC&T 2004(Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce
Grzegorz Rozenberg, Eds.), Springer Lecture Notes in Céenfcience 3256 (2004), 287-303.

Ehrig H, Habel A: Graph Grammars with Applicationr@itions. InThe Book of L{(Grzegorz Rozenberg and Arto Salomaa, Eds.),
Springer (1986), 87-100.

Ellmer E, Emmerich W, Finkelstein A, and NentwichRIexible Consistency CheckindCM Transaction on Software Engineering
and Methodology12(1) (2003), 28—63.

Habel A, Heckel R, Taentzer G: Graph Grammars witlyatve Application Conditions. Fundam. Inform. 26(3/4872313 (1996).
Habel A, Pennemann KH: Nested Constraints and égigdin Conditions for High-Level Structures. Formal Methods in Software
and Systems Modeling, Essays Dedicated to Hartmut EhrigherOccasion of His 60th BirthdagHans-Joerg Kreowski, Ugo
Montanari, Fernando Orejas, Grzegorz Rozenberg, Gabredatzer, Eds.), Springer Lecture Notes in Computer Sei&393
(2005), 293-308.

Habel A, Pennemann KH: Satisfiability of High-Le@#inditions. InGraph Transformations, Third International Conference@T
2006 (Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ritw, Grzegorz Rozenberg, Eds.), Springer Lecture Notes in
Computer Science 4178 (2006), 430-444.

Habel A, Pennemann KH: Correctness of high-lewidformation systems relative to nested conditideth. Struct. in Comp. Sc.
(2008). Accepted for publication.

Heckel R and Wagner A: Ensuring Consistency of Comtl Graph Grammars - A Constructive Approach -. In Prdoegs
SEGRAGRA 1995Electr. Notes Theor. Comput. Séiblume 2 (1995), 118-126.

Jelliffe R: “Schematron”, Internet Document, Ma0®. (http://xml.ascc.net/resource/schematron/).

Lack S, Sobocinski P: Adhesive CategoriesFtundations of Software Science and Computation Strugtutth International
Conference, FOSSACS 200Qdor Walukiewicz, Ed.), Springer Lecture Notes in Comp8eience 2987 (2004), 273-288.
Lambers L, Ehrig H, Orejas F: Conflict Detection foraph Transformation with Negative Application ConditiofsGraph Trans-
formations, Third International Conference, ICGT 20Q&ndrea Corradini, Hartmut Ehrig, Ugo Montanari, LeilebRiro, Grzegorz
Rozenberg, Eds.), Springer Lecture Notes in Computer Eeidh78 (2006), 61-76.

De Lara J, Guerra E: Pattern-Based Model-to-Modah$formation. IrGraph Transformations, 4th International Conference, ICG
2008(Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, GabrlalentzerEds.), Springer Lecture Notes in Computer Seigdt4
(2008), 426-441

Lloyd JW: Foundations of Logic Programming (2nd editioipringer-Verlag 1987.

Orejas F: Attributed Graph ConstraintsGraph Transformations, 4th International Conference, ICZD08(Hartmut Ehrig, Reiko
Heckel, Grzegorz Rozenberg, Gabriele TaentzerEds.)n@griecture Notes in Computer Science 5214 (2008), 274—288
Fernando Orejas, Hartmut Ehrig, Ulrike Prange: gico@f Graph Constraints. IRundamental Approaches to Software Engineering,
11th International Conference, FASE 200®se Luiz Fiadeiro, Paola Inverardi (Eds.). Springer WwecNotes in Computer Science
4961 (2008) 179-198

Koch M, Mancini LV, Parisi-Presicce F: Graph-basgkcification of access control policidsComput. Syst. S&1(1): 1-33 (2005)
Pennemann KH: Resolution-like Theorem ProvindHigh-Level Conditions. IrGraph Transformations, 4th International Confer-
ence, ICGT 2008Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, GabriglentzerEds.), Springer Lecture Notes in Computer
Science 5214 (2008), 289-304.

Rensink A: Representing First-Order Logic Usingy®@rs. InGraph Transformations, Second International Conferehf€&T 2004
(Hartmut Ehrig, Gregor Engels, Francesco Parisi-Pres@ceegorz Rozenberg, Eds.), Springer Lecture Notes in QtenScience
3256 (2004), 319-335.

Rozenberg, G (edHandbook of Graph Grammars and Computing by Graph Transdition, Vol 1 FoundationswWorld Scientific,
1997.

38

