
HAL Id: hal-00497320
https://hal.science/hal-00497320

Submitted on 4 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning with graph constraints
Fernando Orejas, Hartmut Ehrig, Ulrike Prange

To cite this version:
Fernando Orejas, Hartmut Ehrig, Ulrike Prange. Reasoning with graph constraints. Formal Aspects
of Computing, 2009, 22 (3), pp.385-422. �10.1007/s00165-009-0116-9�. �hal-00497320�

https://hal.science/hal-00497320
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

Reasoning with Graph Constraints
Fernando Orejas1, Hartmut Ehrig2, and Ulrike Prange2
1Dpto de L.S.I., Universitat Politècnica de Catalunya, Campus Nord, Mòdul Omega, Jordi Girona 1-3, 08034 Barcelona, Spain.
2Fak. IV, Technische Universität Berlin, Franklinstrasse28/29, 10587 Berlin, Germany.

Abstract. Graph constraints were introduced in the area of graph transformation, in connection with the notion of
(negative) application conditions, as a form to limit the applicability of transformation rules. However, we believe that
graph constraints may also play a significant role in the areaof visual software modelling or in the specification and
verification of semi-structured documents or websites (i.e. HTML or XML sets of documents). In this sense, after some
discussion on these application areas, we concentrate on the problem of how to prove the consistency of specifications
based on this kind of constraints. In particular, we presentproof rules for two classes of graph constraints and show
that our proof rules are sound and (refutationally) complete for each class. In addition we study clause subsumption in
this context as a form to speed up refutation.

Keywords: Graph constraints, Visual modelling, Graph transformation

1. Introduction

Graph constraints were introduced in the area of graph transformation, together with the notion of (negative) appli-
cation conditions, as a form to limit the applicability of transformation rules [EhH86, HHT96, HeW95, EEHP04,
HaP05, HaP06]. More precisely, a graph constraint is the graphical description of some kind of pattern that must be
present (or must not be present) in the graphs that we are transforming. In particular, a transformation would be ille-
gal if the resulting graph would violate any of the given constraints. Graph constraints have been studied mainly in
connection with negative application conditions. These conditions are constraints that are associated to the left-hand
side or the right-hand side of a graph transformation rule. Then, one such rule would be applicable to a given graph
if the left-hand side application conditions are satisfied by the given graph (or rather by the rule matching) and the
right-hand side application conditions are satisfied by theresult of the transformation (or rather by its comatch). In
this context, most of the above-mentioned work is related tothe extension of basic graph transformation concepts and
results to the use of application conditions and constraints, and to show how one can transform a set of constraints into
application conditions for the given transformation rules. Other work related to these notions has studied the detection
of conflicts for graph transformation with application conditions [LEO06], or the expressive power of some kinds of
graph constraints [Ren04].

We believe that graph constraints can go beyond their use in connection to graph transformation. More precisely,

Correspondence and offprint requests to: Fernando Orejas, Dpto de L.S.I., Universitat Politècnica de Catalunya, Campus Nord, Mòdul Omega,
Jordi Girona 1-3, 08034 Barcelona, Spain e-mail: orejas@lsi.upc.edu

there are two areas in which we think that graph constraints may play an interesting role. The first one is the area of
visual software modelling. The second one is the specification and verification of classes of semi-structured documents,
including the specification and verification of websites (i.e. HTML or XML sets of documents).

In the area of visual modelling, especially in the context ofUML modelling, models are designed using different
kinds of diagrams. However, if we have to impose some specificconstraints on the models, then we have to use a textual
notation as OCL. We consider that this situation is quite inconvenient. Especially, when we want to express constraints
on the structure of the model, we think that using a graphicalnotation which is close to the visual description of
the model is much more clear and intuitive than using some textual expression where one has to previously code or
represent that structure.

Some very recent work that is related to this kind of application of graph constraints is the work by de Lara
and Guerra on the specification and synthesis of model transformations [LaG08]. In that paper, they describe model
transformations using graph constraints over triple graphs. Then, these constraints are transformed into (triple) graph
grammar rules that can be used to implement the model transformation specified by the constraints. As a first step for
the synthesis of the graph rules, some inference steps are done using deduction rules which are similar to some of the
rules that are used in this paper.

Other work that, in a sense, is related to the use of graph constraints in visual modeling is the work by Parisi and
Koch on the specification and analysis of access control policies (see, e.g. [KMP05]). In particular, they specify access
control policies using graph constraints to describe the valid states of a system, and graph transformation rules to
specify operations. Interestingly, they use some form of deduction on constraints to check the consistency of a policy.
Unfortunately, the kind of deduction used may be consideredquite ad-hoc and incomplete.

On the other hand, we know two kinds of approaches for the specification and verification of semi-structured
documents. The first one [AlF06, EEFN03] is based on extending a fragment of first-order logic allowing us to refer to
the components of the given class of documents (in particular, using XPath notation). This approach, in our opinion,
poses two kinds of problems. On one hand, from a technical point of view, the extension of first-order logic to represent
XML patterns has to make use of associative-commutative operators. This may make deduction difficult to implement
efficiently, since using unification in inference rules may be very costly (in general, two arbitrary atoms may have a
doubly exponential amount of most general unifiers). As a consequence, the approaches presented in [AlF06, EEFN03]
present specification languages that allow us to specify classes of documents, and tools that allow us to check if
a given document (or a set of documents) follows a specification. However, they do not consider the problem of
defining deductive tools to analyze specifications, for instance for looking for inconsistencies. On the other hand,
from a pragmatic point of view, this kind of specifications can be quite verbose and this may make the resulting
specifications unpleasant to read and to write.

The other approach that we know [Jel00], which we consider especially interesting, has a more practical nature.
Schematron is a language and a tool that is part of an ISO standard (DSDL: Document Schema Description Lan-
guages). The language allows us to specify constraints on XML documents by describing directly XML patterns (us-
ing XML) and expressing properties about these patterns. Then, the tool allows us to check if a given XML document
satisfies these constraints. However, we consider that there are two problems with this approach. The most important
one is that this work lacks proper foundations. The other oneis that the kind of patterns that can be expressed in the
Schematron language could be a bit limited. On the other hand, as in the approaches mentioned above, Schematron
provides no deductive capabilities.

In this paper we start the study of graph constraints as a specification formalism. In particular, we study their under-
lying logic, providing inference rules that would allow us to prove the consistency (or satisfiability) of specifications.
Actually, we show that these rules are sound and refutationally complete for the class of constraints considered. It
must be noted that, as it is well-known, the fact that our inference rules are refutationally complete means that we have
a complete method to prove consequences of our specifications. In particular, if we want to check if a given property
is a consequence of a specification then it is enough to see if the given specification, together with the negation of the
property, is inconsistent.

Some very recent work that is very related to ours is [Pen08].In that paper, Pennemann proposes a proof system
for nested graph constraints, a generalization of the kind of constraints considered in our work. The proof system
is proven sound but not complete. In addition, Pennemann describes an implementation of his approach providing
interesting results.

It must also be noted that the results that we present are quite more general than what they actually may seem.
Following recent work on algebraic graph transformation (see, e.g., cite [EEPT06]), our results apply not only to
plain graphs, but generalize to a large class of structures including typed and attributed graphs (we discuss this issue
in more detail in the conclusion). In particular, instead ofa logic ofgraphconstraints we could speak of a logic of
patternconstraints, since our results would also apply to reasoning about constraints based on other kinds of patterns,

2

like XML patterns. In this sense, we consider that the work that we present in this paper provides the basis for
defining the logical foundations of Schematron, and for extending it with more powerful constraints and with deduction
capabilities. In particular, the XML patterns that are usedin Schematron can be seen just as the textual representation
(or, rather, the XML representation) of a subclass of the graph constraints that we consider. In particular, our work
could be used to provide deductive capabilities to analyze the consistency of Schematron specifications.

The work that we present is not the first logic to reason about graphs. With different aims, in a series of papers (for
a survey, see [Cou97]) Courcelle has studied in detail the definition and use of a graph logic (in the following called
CL, from Courcelle Logic). His approach can be seen as a coding of graphs and graph properties into first-order or
monadic second-order logic. In particular, the approach isbased on the use of some predicates describing the existence
of nodes and edges which, together with some given axioms, provide an axiomatization of the basic graph theory. Then,
one can express graph properties using standard first-orderor monadic second-order formulas over these predicates.
Our constraints can be seen as a fragment of CL in the sense that a graph constraint can be coded into a sentence in
that logic. Actually, nested constraints have been proved equivalent to the first-order fragment of CL [HaP08]. As a
consequence, there are two main issues that one may consider. On one hand, whether graphs constraints, as advocated
in this paper, are useful as a modeling formalism. On the other hand, we can question whether it is really needed to
develop proof techniques for our constraints, since we can do this indirectly: by coding the constraints into CL and
using standard logic deduction. In particular, with respect to the first issue, we could think of directly using CL to
write our specifications. However, we think that for modeling and specification purposes, graph constraints provide
a much more friendly and intuitive formalism than CL. With respect to the second issue, we think that there are two
main reasons that justify our work in this direction. First,studying directly the constraints logic gives you insights
about the logic that we would not obtain using the coding. Forinstance, our completeness proofs implicitly tell us
how we can design procedures to build models for a given set ofconstraints. This is interesting for applications like
the one presented in [LaG08], where building a model is, in a sense, equivalent to synthesizing the specified model
transformation. And, second, we believe that we can gain significant efficiency. Actually, this kind of discussion is
not new. For instance, the development of proof techniques for first-order logic with equality has sometimes been
questioned, considering that one could use the standard techniques for first-order logic without equality together with
an axiomatization of the equality predicate. However, the study of first-order logic with equality has allowed the
development of powerful techniques which are the basis of very efficient tools. In this sense, in [Pen08] Pennemann
compares his implementation for his proof system for nestedconstraints with an implementation based on coding the
constraints into CL and then using some standard provers like VAMPIRE, DARWIN and PROVER9. The result is
that his implementation outperforms the coding approach. Actually, in most examples considered, the above provers
were unable to terminate in the given time (1 hour of cpu time). Unfortunately, these results can not be considered
technically valid, since the completeness of Pennemann’s proof system is not shown. In [BCKL06] CL is extended
with temporal operators. In this case, the intention is to present a logic that can be used for the verification of graph
transformation systems.This logic goes far beyond our aims.

This paper is organized as follows. In the next section we present the kind of graph constraints that we consider in
this paper and some basic notions concerning refutation procedures. Moreover, we present a small example to motivate
their use in connection with visual modeling. This example will be used as a running example in the rest of the paper.
The following two sections are the core of the paper. They present inference rules for two classes of graph constraints
showing, in both cases, their soundness and completeness. Then, in Section 5, we present some techniques that may
be used to speed up refutation procedures. In particular, wepresent a notion of subsumption, proving that subsumed
clauses can be eliminated without losing completeness. Finally, in the conclusion we discuss some issues concerning
the results that we present, in particular, their generality and the possible implementation of a deductive tool.

This paper extends and generalizes the work presented in [OEP08] in several ways. In particular, in addition to
providing detailed proofs for all our results, the paper considers the general case where specifications are assumed to
consist of arbitrary clauses, while in [OEP08] the specifications were assumed to be just sets of literals. In addition,
this paper includes a new section about subsumption and clause elimination which was not present in [OEP08].

2. Graphs and Graph Constraints

In this section we present the basic notions that are used in this paper. First we present some notation and terminology
needed. Then, in the second subsection we introduce the kindof graph constraints that we consider. Finally, in the
third subsection, we introduce some standard basic concepts about refutation procedures For simplicity, we present
our definitions in terms of plain directed graphs, although in some examples, for motivation, we deal with typed

3

attributed graphs. Anyhow, following the approach used in [EEPT06], it should not be difficult to show that our results
generalize to a large class of (graphical) structures. In Section 6 we discuss this issue in more detail.

2.1. Graphs

As said above, all our notions and results will be presented in terms of plain directed graphs, i.e.:

Definition 1 (Graphs)A graphG= (GV ,GE,sG,tG) consists of a set GV of nodes, a set GE of edges, a source function
sG : GE→GV , and a target function tG : GE→GV .

It may be noted that we do not explicitly state that the sets ofnodes and edges of a graph are finite sets. That is,
according to our definition, unless it is explicitly stated,graphs may be infinite. This issue is discussed in some detail
in Sections 3 and 4.

All over the paper we will have to express that a certain graphG1 is included into another graphG2. Obviously,
we could have done this through a subgraph relationship. However,G2 may include several instances ofG1. For this
reason, in order to be precise when specifying the specific instance in which we may be interested, we will deal with
these inclusions using the notion of graph monomorphism:

Definition 2 (Graph morphisms)Given the graphs G= (GV ,GE,sG,tG) and H = (HV ,HE,sH ,tH), a graph mor-
phism f : G→ H is a pair of mappings, fV : GV → HV , f E : GE → HE such that f commutes with the source and
target functions, i.e. the diagrams below are commutative.

GE
sG

//

f E

��

GV

fV

��
HE

sH
// HV

GE
tG

//

f E

��

HV

fV

��
HE

tH
// G ′V

A graph morphism f: G→H is amonomorphismif f V and fE are injective mappings.

In several results of the paper, given two graphsG,G ′ we will need to overlap them in all possible ways. This will
be done using the constructionG⊗G ′:

Definition 3 (Jointly surjective morphisms)Two graph morphisms m: H→G and m′ : H ′→G arejointly surjective
if mV(HV)∪m′V(H ′V) = GV and mE(HE)∪m′E(H ′E) = GE.

Given two graphs G and G′, the set of all pairs of jointly surjective monomorphisms from G and G′ is denoted by
G⊗G ′, that is:

G⊗G ′ = {m : G→ H←G ′ : m′ | m and m′ are jointly surjective monomorphisms}.

The definition ofG⊗G ′ in terms of sets of pairs of monomorphisms may look a bit more complex than needed
but, as in the case of the inclusions, we often need to identify the specific instances ofG andG ′ insideH. However,
from an intuitive point of view, it is enough to consider thatG⊗G ′ is the set of all graphs that can be seen as the result
of overlappingG andG ′.

Note that ifG andG ′ are finite graphs thenG⊗G ′ is also a finite set (up to isomorphism). This is needed because
in several inference rules (see Sections 3 and 4) the result is a clause involving a disjunction related to a set of this
kind. In particular, ifG⊗G ′ is infinite so would be the corresponding disjunction. A property satisfied by graphs,
which we use in the proofs of most results, is pair factorization:

Proposition 1 (Pair factorization)Given two graph morphisms, h1 : G1→ G← G2 : h2, with the same codomain G
there exists a graph H and morphisms g1 : G1→H←G2 : g2 and h: H→G such that g1 and g2 are jointly surjective

4

and the diagram below commutes:

G1

g1

��

h1

 @
@@

@@
@@

@

H
h // G

G2

g2

OO

h2

>>~~~~~~~~

Moreover, if h1 and h2 are monomorphisms so are g1 and g2.

Proof. We define the graphH as follows:

• HV = {v∈GV | ∃v1 ∈GV
1 hV

1 (v1) = v}∪{v∈GV | ∃v2 ∈GV
2 hV

2 (v2) = v}

• HE = {e∈GE | ∃e1 ∈GE
1 hE

1 (e1) = e}∪{e∈GE | ∃e2 ∈GE
2 hE

2 (e2) = e}

• For everye∈ HE, sH(e) = sG(e) andtH(e) = tG(e)

and we defineg1 andg2 as follows:

• For everyv1 ∈GV
1 , gV

1 (v1) = hV
1 (v1) and for everye1 ∈GE

1 , gE
1 (e1) = hE

1 (e1)

• For everyv2 ∈GV
2 , gV

2 (v2) = hV
2 (v2) and for everye2 ∈GE

2 , gE
2 (e2) = hE

1 (e2)

Now, by definition,g1 andg2 are jointly surjective andH is a subgraph ofG. Let us callh the monomorphism
associated to this inclusion. Moreover, notice that by definition if h1 andh2 are monomorphisms so areg1 andg2. We
only have to prove that the diagram above commutes. But this is also a straightforward consequence of the definitions
of H, g1, g2, andh.

Extended pair factorization, which seems a generalizationof pair factorization, is also used in our proofs. However
we can see that extended pair factorization is really a straightforward consequence of pair factorization:

Proposition 2 (Extended pair factorization)Given the commuting diagram below,

G1

h1

��@
@@

@@
@@

@

G0

f2 A
AA

AA
AA

A

f1
>>}}}}}}}}

G

G2

h2

??~~~~~~~~

there exist a graph H and morphisms g1 : G1→H←G2 : g2, and h: H→G such that g1 and g2 are jointly surjective
and the diagram below commutes:

G1

g1

��

h1

��@
@@

@@
@@

@

G0

f2 A
AA

AA
AA

A

f1
>>}}}}}}}}
H

h // G

G2

g2

OO

h2

??~~~~~~~~

Moreover, if h1 and h2 are monomorphisms so are g1 and g2

5

Proof. Let us defineH, g1, g2, andh using pair factorization. Then we only need to prove thatg1 ◦ f1 = g2 ◦ f2.
Now, according to pair factorization we know thath◦g1◦ f1 = h1 ◦ f1 = h2◦ f2 = h◦g2◦ f2. But we know thath is a
monomorphism, thereforeg1◦ f1 = g2◦ f2.

We may see that⊗ is, in some sense, associative and commutative:

Proposition 3 Given three graphs G1, G2 and G3 then:
{G | 〈 f ,G,g〉 ∈G1⊗ (G2⊗G3)}= {G | 〈 f ,G,g〉 ∈ (G2⊗G1)⊗G3}=
{G | there are jointly surjective monomorphisms f: G1→G,g : G2→G,h : G3→G}

Proof. We start proving that ifG is in{G | 〈 f ,G,g〉 ∈G1⊗(G2⊗G3)} then there are jointly surjective monomorphisms
f1 : G1→ G, f2 : G2→ G, f3 : G3→ G. SupposeG is in {G | 〈 f ,G,g〉 ∈ G1⊗ (G2⊗G3)}, this means that there is a
graphH and morphismsf ′ : G2→ H←G3 : g′ and f : G1→G← H : g such thatf ′ andg′ are jointly surjective and
so aref andg. But, then, it is routine to show thatf1 = f : G1→G, f2 = g◦ f ′ : G2→G, and f3 = g◦g′ : G3→G are
jointly surjective.

Now, we prove the converse inclusion. Suppose that there arejointly surjective monomorphismsf1 : G1→G, f2 :
G2→G, f3 : G3→G. Using the pair factorization property there exist a graphH and monomorphismsg2,g3, andh:

G2

g2

��

f2

��@
@@

@@
@@

@

H
h // G G1f1

oo

G3

g3

OO

f3

??~~~~~~~~

such that the diagram above commutes andg2 andg3 are jointly surjective. But this means that〈g2,H,g3〉 ∈G2⊗G3.
On the other hand, it is routine to prove thatf1 andh are jointly surjective, which means that〈 f1,G,m〉 ∈G1⊗ (G2⊗
G3). The prove that{G | there are jointly surjective monomorphismsf : G1→ G,g : G2→ G,h : G3→ G} = {G |
〈 f ,G,g〉 ∈ (G2⊗G1)⊗G3} is similar.

Finally, the last property that we need for our results, which is also satisfied by graphs, is the existence of infinite
colimits (satisfying an additional minimality property) for sequences of monomorphisms. Intuitively, these colimits
are the union of the graphs in the sequence. Actually, in the category of graphs we have colimits for arbitrary diagrams.
To be more precise:

Proposition 4 (Infinite colimits) Given a sequence of monomorphisms:

G1
f1 // G2

f2 // . . .
fi−1 // Gi

fi // . . .

there exists a colimit:

G1
f1 //

h1

++WWWWWWWWWWWWWWWWWWWWWWWWWWW G2
f2 //

h2

''NNNNNNNNNNNNN
. . .

fi−1 // Gi
fi //

hi

xxppppppppppppp
. . .

G

that satisfies that for every monomorphism g: G ′→G, such that G′ is a finite graph, there is a j and a monomorphism
g j : G ′→G j such that the diagram below commutes:

G ′
g j //

g
 @

@@
@@

@@
@

G j

h j��~~
~~

~~
~

G

Proof. We define the graphG as follows:

6

• GV = (
S

1≤i G
V
i)/≡V , where≡V is the least equivalence relation satisfying that for everyi and everyv∈GV

i v≡V
fi(v).

• GE = (
S

1≤i G
E
i)/≡E, where≡E is the least equivalence relation satisfying that for everyi and everye∈GE

i e≡E
fi(e).

• For everye∈GE
i , sG(|e|) = |sGi (e)| andtG(|e|) = |tGi (e)|.

Moreover, for everyi we define the morphismhi : Gi →G as follows:

• For everyv∈GV
i , hV

i (v) = |v|.

• For everye∈GE
i , hE

i (e) = |e|.

Now, it should be obvious that, by definition, the graphG and the morphismshi are a cocone for the above diagram.
We may see that it satisfies the universal property for colimits. Suppose that the diagram:

G1
f1 //

h′1

++VVVVVVVVVVVVVVVVVVVVVVVVVVV G2
f2 //

h′2

&&NNNNNNNNNNNNN
. . .

fi−1 // Gi
fi //

h′i

xxppppppppppppp
. . .

G′

is also a cocone. We define the following morphismh : G→G′:

• For everyv∈GV
i , hV(|v|) = h′Vi (v).

• For everye∈GE
i , hE(|e|) = h′Ei (e).

By definition, for everyi, h′i = h◦hi. Now, suppose thath′ : G→G′ also satisfies that for everyi, h′i = h′ ◦hi let us
see thath = h′:

• For everyv∈GV
i , hV(|v|) = h′Vi (v) = h′V(hV

i (v) = h′V(|v|).

• For everye∈GE
i , hE(|e|) = h′Ei (e) = h′E(hE

i (e) = h′E(|e|).

Therefore we have proved thatG together with the morphismshi are a colimit for the diagram above. Let us now
prove that this colimit satisfies that for every monomorphism g : G ′→ G, such thatG ′ is a finite graph, there is aj
and a monomorphismg j : G ′→G j such that the diagram below commutes:

G ′
g j //

g
 @

@@
@@

@@
@

G j

h j��~~
~~

~~
~

G

Let G′ be a finite graph and suppose thatg : G ′→G. For eachi, letG′i ⊆G be the image ofGi by hi . It should be noted
that, by definition, we have that, for eachi, G′i ⊆ G′i+1 and, moreover,Gi andG′i are isomorphic, since the morphisms
hi are injective. Letg′i : G′i →Gi be that isomorphism, for eachi. In addition, we also have:

• GV =
S

1≤i G
′V
i , and

• GE =
S

1≤i G
′E
i

Now, sinceG′ is finite, there must be aj such that for everyv ∈ G′V : gV(v) ∈ G′Vj and for everye∈ G′E:

gE(e) ∈G′Ej . Then, we can define the requiredg j as follows:

• For everyv∈G′V , gV
j (v) = g′Vj (gV(v).

• For everye∈G′E, gE
j (e) = g′Ej (gE(e).

Then, by definition,g j commutes the above diagram.

7

2.2. Graph Constraints

The underlying idea of a graph constraint is that it should specify that certain patterns must be present (or must not be
present) in a given graph. For instance, the simplest kind ofgraph constraint,∃C, specifies that a given graphG should
include (a copy of) C. For instance, the constraint:

∃
()

specifies that a graph should include at least one edge. Obviously,¬∃C specifies that a given graphG should not
include (a copy of) C. For instance, the constraint:

¬ ∃
()

specifies that a given graphG should not include two different edges between any two nodes. A slightly more complex
kind of graph constraints are atomic constraints of the form∀(c : X→C) wherec is a monomorphism (or, just, an
inclusion). This constraint specifies that whenever a graphG includes (a copy of) the graph X it should also include
(a copy of) its extension C. However, in order to enhance readability (the monomorphism arrow may be confused
with the edges of the graphs), in our examples we will displaythese kinds of constraints using anif - then notation,
where the two graphs involved have been labelled to implicitly represent the given monomorphism. For instance, the
constraint:

if a b c then a b c

specifies that a graph must be transitive, i.e. the constraint says that for every three nodesa,b,c if there is an edge from
a to b and an edge fromb to c then there should be an edge froma to c.

Obviously, graph constraints can be combined using the standard connectives∨ and¬ (as usual,∧ can be con-
sidered a derived operation). In addition, in [EEHP04, Ren04] a more complex kind of constraints, namely nested
constraints, is defined, but we do not consider them in this paper.

Definition 4 (Syntax of graph constraints)An atomic graph constraint∀(c : X → C) is a graph monomorphism
c : X→C, where X and C are finite graphs. An atomic graph constraint∀(c : X→C), where X= /0, is called a basic
atomic constraint (or just a basic constraint) and will be denoted∃C.

Graph constraintsare logic formulas defined inductively as usual:

• Every atomic graph constraint is a graph constraint.
• If α is a graph constraint then¬α is also a graph constraint.
• If α1 andα2 are graph constraints thenα1∨α2 is also a graph constraint.

Satisfaction of constraints is also defined inductively following the intuitions described above.

Definition 5 (Satisfaction of graph constraints)A graph G satisfies a constraintα, denoted G|= α if the following
holds:

• G |= ∀(c : X→C) if for every monomorphism h: X→G there is a monomorphism f: C→G such that h= f ◦ c.
• G |= ¬α if G does not satisfyα.
• G |= α1∨α2 if G |= α1 or G |= α2.

It may be noted that, according to these definitions, the constraint∃ /0, where/0 denotes the empty graph, is satisfied
by any graph, i.e.∃ /0 may be considered the trivialtrueconstraint.

We assume that our specifications consist of clauses of the form L1∨ ·· · ∨Ln, where eachliteral L i is either an
atomic constraint (apositive literal) or a negative atomic constraint (anegative literal). For technical reasons, we will
consider that the clause including only∃ /0 (i.e. the true clause) is included in any specification. We will say that a
clause isstrictly negativeif it only includes negative basic constraints.

It may be noticed that dealing with arbitrary clauses is equivalent to deal with arbitrary boolean fomulas over the
atomic constraints since these formulas can always be transformed into clausal form.

In the case of basic constraints the above definition specializes as expected:

8

Fact 1 (Satisfaction of basic constraints)G |= ∃C if there is a monomorphism f: C→G.

Remark 1 Atomic constraints can be generalized by allowing its definition in terms of arbitrary morphisms. That
is, we could have defined atomic graph constraints∀(c : X→C) where c is an arbitrary morphism. However, with
our notion of satisfaction, this generalization does not add any additional power to our logic, since it can be proved
[HaP05] that if c is not a monomorphism then the constraint∀(c : X→C) is logically equivalent to the constraint
¬∃X. For instance, the two constraints below are equivalent. In particular, both constraints specify that there can not
be two different edges between any two nodes.

(1) if 1 2
a
b

then 1 2ab (2) ¬∃
(

1 2
a
b

)

Analogously, we could have also generalized our notion of satisfaction by allowing h and f to be also arbitrary
morphisms and not just monomorphisms. This generalized form of satisfaction has been studied in [HaP06], where
it is calledA -satisfaction in contrast with the notion of satisfaction that we use, which is calledM -satisfaction in
that paper. In particular, in [HaP06], it is shown how to transform nested constraints such thatA -satisfiability for a
certain constraint is equivalent toM -satisfiability for the transformed constraint (and vice versa). Anyhow, we believe
thatM -satisfaction is more interesting thanA -satisfaction for specification purposes.

Remark 2 The above notions can be defined not only for the category of graphs but for any weak adhesive HLR-
category [LaS04, EEPT06] as can be seen in [EEHP04, EEPT06].In particular, in that case, it is assumed that the
morphisms involved in the notions of atomic constraints andsatisfaction are not arbitrary monomorphisms but belong
to a given class M of monomorphisms. In this context, the notions of constraints and satisfaction apply to many other
kinds of graphical categories, including typed graphs and attributed typed graphs, as the ones considered in our
running example.

Example 1 Let us suppose that we want to model an information system describing the lecturing organization of a
department. Then the type graph of (part of) our system couldbe the following one:

Sub ject
string Name

Lecturer
string Name

Room
int RoomNumber

int TimeSlot

This means that in our system we have three types of nodes: Rooms including two attributes, the room number
and a time slot, and Subjects and Lecturers, having their name as an attribute. We also have two types of edges. In
particular, an edge from a Subject S to a Lecturer L means, obviously, that L is the lecturer for S. An edge from a
Subject S to a Room means that the lecturing for S takes place on that room for the given time slot. Now for this system
we could include the following constraints, where the type of each node is denoted by the word at the top of the square:

(1) ∃
(

Sub ject
Name=CS1

)

(2) ∃
(

Sub ject
Name=CS2

)

meaning that the given system must include the compulsory subjects CS1 and CS2. Moreover we may have a constraint
saying that every subject included in the system must have some lecturer assignment and some room assignment:

(3) if
Sub ject
Name=N then

Sub ject
Name=N

Lecturer

Room

Then, we may also have constraints expressing some negativeconditions. For instance, that a room is not assigned
at the same time to two subjects or that two different rooms are assigned at the same time to the same subject:

9

(4) ¬∃
(

Room

Sub ject

Sub ject

)

(5) ¬∃
(

Sub ject

Room
TimeSlot=T

Room
TimeSlot=T

)

or, similarly, that a lecturer does not have to lecture on twodifferent subjects in two different rooms at the same time
slot:

(6) ¬∃
(

Lecturer

Sub ject

Sub ject

Room
TimeSlot=T

Room
TimeSlot=T

)

Finally, perhaps we may want to specify that not every lecturer has a teaching assignment, so that every semester
there may be someone on sabbatical:

(7) ¬ if Lecturer
Name=N then Lecturer

Name=N
Sub ject

It may be noticed that the system that we are describing with these graphical constraints may not be an information
system, but the set of web pages of a department, where an arrow from a node of type t1 to a node of type t2 may
mean that there is a link between two web pages (for instance from the web page of a subject to the web pages of a
lecturer), or it may mean that the information of type t2 is a subfield of the information of type t1 (for instance the
room assignment may be a field of the subject’s web pages). In this case, we could have displayed our constraints not
in terms of graphs, but as HTML or XML expressions.

2.3. Refutation procedures for checking satisfiability

As it is often done in the area of automatic reasoning, the refutation procedures that we present in this paper are defined
by means of some inference rules. More precisely, as usual, each rule tells us that if certain premises are satisfied then
a given consequence will also hold. In this context, a refutation procedure can be seen as a (possibly nonterminating)
nondeterministic computation where the current state is given by the set of formulas that have been inferred until the
given moment, and where a computation step means adding to the given state the result of applying an inference rule
to that state.

More precisely, in our case, we assume that in general the inference rules have the form:

Γ1 Γ2

Γ3

whereΓ1, Γ2 andΓ3 are clauses, and where clauses are seen as sets of literals. In particular, this means that if we
write that a clause has the formΓ∨L, this does not necessarily imply thatL is the rightmost literal of the given clause.
Similarly, we consider that the clauseΓ∨L is the same as the clauseΓ∨L∨L.

Then, arefutation procedurefor a set of constraintsC is a sequence of inferences:

C0⇒ C1⇒ ··· ⇒ C i ⇒ . . .

where the initial state is the original specification (i.e.,C0 = C) and where we writeC i ⇒ C i+1 if there is an inference
rule like the one above such thatΓ1,Γ2 ∈ C i , andC i+1 = C i ∪ {Γ3}. Moreover, we will assume thatC i ⊂ C i+1, i.e.
Γ3 /∈ C i , to avoid useless inferences.

10

In this framework, proving the unsatisfiability of a set of constraints means inferring thef alseclause (which is
represented by the empty clause, i.e. the empty disjunction, denoted�), provided that the procedure is sound and
complete. Since the procedures are nondeterministic, there is the possibility that we never apply some key inference.
To avoid this problem we will always assume that our procedures arefair, which means that, if at any momenti, there
is a possible inferenceC i⇒ C i ∪{Γ}, for some clauseΓ, then at some momentj we have thatΓ ∈ C j . This means that
inferences are not postponed forever, i.e. every inferencewill eventually be performed. If we care about completeness,
fairness must always be taken into account when implementing deduction. For instance, implementations based on
depth-first search with backtracking run the risk of not being fair: if the deduction process gets into an infinite branch
of the tree representing the deduction process, then it may fail to apply some alternative inferences. This is the well-
known problem of the incompleteness of Prolog’s implementation of SLD resolution [Llo87].

Then, a refutation procedure forC is soundif whenever the procedure infers the empty clause we have that C is
unsatisfiable. And a procedure iscompleteif, wheneverC is unsatisfiable, we have that the procedure infers�.

It may be noted that if a refutation procedure is sound and complete then we may know in a finite amount of time
if a given set of constraints is unsatisfiable. However, it may be impossible to know in a finite amount of time if the
set of constraints is satisfiable. For this reason, sometimes the above definition of completeness is called refutational
completeness, using the term completeness when both satisfiability and unsatisfiability are decidable.

As usual, for proving soundness of a refutation procedure itis enough to prove the soundness of the inference
rules. This means that for every rule as the one above and every graphG, if G |= Γ1 andG |= Γ2 thenG |= Γ3.

3. Basic Constraints and Positive Atomic Constraints

In this section we present an inference system consisting ofthe three rules (R1), (R2) and (R3) below that provides
sound and complete refutation procedures for checking satisfiability when clauses consist only of positive and negative
basic constraints and positive atomic constraints. This means that the given specifications are assumed to consist of
clauses including literals of the form∃C1, ¬∃C1, or∀(c : X→C2).

Our refutation procedures may not terminate, which means that the procedures are just refutationally complete.
However, as shown in [OEP08], if we restrict our logic to basic constraints then refutation procedures would terminate.
Moreover, our procedures check satisfiability with respectto the class of finite and infinite graphs. In fact, in the
following section, we show an example of a specification whose only models are infinite graphs. As a consequence,
we guess that satisfiability for this class of constraints isalready undecidable (but semi-decidable).

∃C1∨Γ1 ¬∃C2∨Γ2

Γ1∨Γ2
(R1)

if there exists a monomorphismm : C2→C1

∃C1∨Γ1 ∃C2∨Γ2

(
W

G∈G ∃G)∨Γ1∨Γ2
(R2)

whereG = {G | 〈 f1 :C1→G←C2 : f2〉 ∈ (C1⊗C2)} and(
W

G∈G ∃G) denotes the (finite) disjunction
∃G1∨·· ·∨∃Gn, if G = {G1, . . . ,Gn}.

∃C1∨Γ1 ∀(c : X→C2)∨Γ2

(
W

G∈G ∃G)∨Γ1∨Γ2
(R3)

if there is a monomorphismm : X → C1 and G = {G | 〈 f1 : C1 → G ← C2 : f2〉 ∈ (C1 ⊗
C2) such thatf1 ◦m= f2 ◦ c}.

The first rule is, in some sense, similar to resolution and is the rule that may allow us to infer the empty clause.
The reason is that it is the only rule that eliminates literals from clauses. The second one can be seen as a rule that,
given two constraints, builds a new constraint that subsumes them. More precisely, the graphs involved in the new
literals in the clause, i.e. the graphsG∈ G satisfy both constraints∃C1 and∃C2. This means that if we apply this rule

11

repeatedly, using all the positive constraints in the original setC , we would build graphs that satisfy all the positive
basic constraints inC . The third rule is similar to rule (R2) in the sense that givena positive basic constraint and
a positive atomic constraint it builds a disjunction of literals representing graphs that try to satisfy both constraints.
However, in this case the satisfaction of the constraint∀(c : X → C2) is not necessarily ensured for allG ∈ G . In
particular, the idea of the rule is that if we know thatX is included inC1 then we build all the possible extensions ofC1
which also includeC2 (eachG would be one of such extensions). But we cannot be sure thatG satisfies∀(c : X→C2),
becauseG may include an instance ofX which was not included inC1. For instance, suppose that we have the following
constraints:

(1) ∃
()

(2) if a then a b

where the first one specifies that the given graph must includea node and where the second one specifies that every
node must have an outgoing edge. Then applying rule (R3) to these constraints would yield a clause including the
literal:

∃
(

a b

)

Now, in this graph, the nodea has an outgoing edge, but the nodeb does not have it, so the graph still does not
satisfy the second constraint. If we would apply again the third rule, then we would infer a clause including a graph with
three nodes and two edges, and so on. This is the reason why, inthis case, a refutation procedure may not terminate.
Moreover, as we will also see, if the procedure does not refute the given set of constraints then the completeness proof
ensures that there will be a model that satisfies this set of constraints, but this model may be an infinite graph built by
an infinite colimit. One may wonder whether there will also exist a finite model of that specification. In the case of
this example such a finite graph exists. Actually, the resulting clause after applying for the second time the third rule
to the graph above, would also include the graph below that satisfies both constraints.

However, in general, we do not know if an arbitrary set of basic constraints and positive atomic constraints which
is satisfiable by an infinite graph, is also satisfied by some finite graph. Nevertheless, in the general case (when dealing
with positive and negative atomic constraints) there are sets of constraints whose only models are infinite graphs, as
we will see in the following section. For this reason we conjecture that in this case the answer to this question will also
be negative.

Example 2 If we consider the basic constraints and the positive atomicconstraints that are included in the Example
1 (i.e. the constraints (1), (2), (3), (4), (5), and (6)) thenit would first be possible to infer the constraint below using
the rule (R2) on constraints (1) and (2):1

(8) ∃
(

Sub ject
Name=CS1

Sub ject
Name=CS2

)

This new constraint obviously means that the graph representing the system must include at least two Subject nodes
(with attributes CS1 and CS2). Then, if we apply the third rule on constraints (8) and (3), and, again, on the resulting
clause and on constraint (3) then we would infer the following clause:

1 Actually, if the graphs in the example would be considered attributed graphs as presented in [EEPT06], then the clause inferred would include an
additional literal. In particular this literal would be a graph consisting of a single node of typeSub jectwith two Nameattributes. However, from
now on, in our examples we will assume that it is not possible that a node has twice the same attribute. This could be done, for instance, assuming
that our specifications implicitly include a graph constraint stating that this situation is not allowed.

12

(9) ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer

Room

)

∨ ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Room

)

∨

∨ ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer

)

∨ ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

)

This clause states that the graph should include two subjects (CS1 and CS2) and these subjects may be assigned to
two different rooms and to either two different lecturers, or to the same lecturer, or they may be assigned to the same
room, and to either different lecturers, or the same lecturer. Obviously, the last two constraints in this clause violate
constraint (4), which means that we can eliminate them usingtwice the rule (R1), yielding the following clause:

(10) ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer

Room

)

∨ ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Room

)

At this point, we could stop the inference process since the two graphs in (10) are already (minimal) models of
the given set of constraints, which means that it is satisfiable. Actually, the inferences that we can apply to the current
set of clauses are quite useless and we could have avoided them by defining more restrictive side conditions in the
inference rules. For instance, in (R2) we could have asked, in addition, that there should not exist any monomorphism
from C1 to C2 or vice versa since it could be proved that, if such monomorphism exists, the deduction rule is useless.
However, we have preferred to present this (inefficient) version of the deduction rules to simplify as much as possible
the completeness proof.

It is easy to prove that these three rules are sound:

Lemma 1 (Soundness of the inference rules)Rules (R1), (R2), and (R3) are sound.

Proof. (R1) Let G be a graph and suppose thatG |= ∃C1∨Γ1, G |= ¬∃C2∨Γ2, and there exists a monomorphism
m : C2→ C1. We know that it cannot happen thatG |= ∃C1 andG |= ¬∃C2, since if G |= ∃C1 then there exists a
monomorphismh : C1→G and this implies thath◦m: C2→G is a monomorphism, meaning thatG |= ∃C2. Therefore,
G |= Γ1∨Γ2.

(R2) Suppose thatG |= ∃C1∨Γ1 andG |= ∃C2∨Γ2. The case whereG |= Γ1 or G |= Γ2 is trivial. Suppose that
G |= ∃C1 andG |= ∃C2. This means that there are two monomorphismsh1 : C1→G andh2 : C2→G and this implies
by Prop. 1 that there is a factorization:

13

C1

f1
��

h1

 @
@@

@@
@@

@

G ′
m′ // G

C2

f2

OO

h2

>>~~~~~~~~

where f1 : C1→ G ′ and f2 : C2→ G ′ are jointly surjective, which means thatG ′ is in G , andm′ is injective. This
implies thatG |= (

W

G′∈G ∃G
′)

(R3) Suppose thatG |= ∃C1∨Γ1, G |= ∀(c : X→C2)∨Γ2, and there is a monomorphismm : X→C1. The case
whereG |= Γ1 or G |= Γ2 is trivial. Suppose thatG |= ∃C1 andG |= ∀(c : X→C2), this means, on one hand, that there
is a monomorphismh1 : C1→G. On the other hand, this also means that there is a monomorphismh2 : C2→G such
thath1◦m= h2◦ c, sinceG |= ∀(c : X→C2). As a consequence, by Prop. 2 there is a factorization:

C1

f1
��

h1

 @
@@

@@
@@

@

X

c
 @

@@
@@

@@
@

m
>>~~~~~~~~
G ′

m′ // G

C2

f2

OO

h2

>>~~~~~~~~

where f1 : C1→ G ′ and f2 : C2→ G ′ are jointly surjective, which means thatG ′ is in G , andm′ is injective. This
implies thatG |= (

W

G′∈G ∃G
′)

Proving completeness is more involved. The underlying ideaof the completeness proof is to consider a precedence
relation between the basic literals (or the associated graphs) occurring in clauses. Then, we will show that the colimit
of one of these sequences is the model of the given specification. More precisely, we will see that the sequences
considered represent a construction of possible models using the inference rules (R2) and (R3). But before proving
the completeness of our system, let us first present some auxiliary definitions and results. We start by defining a key
construction for proving completeness, related to inference rules (R2) and (R3). Given a basic constraint,∃G1, and a
positive literal,L, I(∃G1,L) is the set of all literals∃G (or rather of morphismsh : G1→G) that can be inferred from
∃G1 andL using the rules (R2) or (R3). In particular, in the case whereL = ∃G2, this means, essentially,G1⊗G2. In
the case where the second literal is∀(c : X→G2) we iterate the construction for each of the monomorphisms fromX
to G1.

We may notice that, in the proofs below, we do not make explicit use of the fairness requirement for the given
refutation procedures. However this requirement is implicitly used in a number of proofs. More precisely, given a
refutation procedureC ⇒ C1⇒ ··· ⇒ Ck . . . , whenever we are assuming that the result of a certain inference is in
S

k≥1Ck (assuming, obviously, that the premises are also in
S

k≥1Ck) we are implicitly assuming that the procedure is
fair.

Definition 6 Let ∃G1 be a basic literal and L a positive literal. We define the set ofmonomorphisms I(∃G1,L) by
cases:

• If L is a basic literal, L= ∃G2, then I(∃G1,L) = { f1 | 〈 f1 : G1→G←G2 : f2〉 ∈ (G1⊗G2)}.

• If L is a non-basic literal, L= ∀(c : X→C), and H is the set of all monomorphisms from X to G1 then I(∃G1,L) =
I∗(∃G1,H), where I∗(∃G1,H) is defined inductively:

– If H = /0 then I∗(∃G1,H) = {idG1}, where idG1 denotes the identity, idG1 : G1→G1

14

– If H = { f : X → G1}∪H ′ then I∗(∃G1,H) = {h′ ◦ h | h : G1→ G ∈ I∗(∃G1,H ′),〈h′ : G→ G′ ← C : f2〉 ∈
(G⊗C) such that f2 ◦ c = h′ ◦h◦ f}.

Notice that, by Prop. 3, the above definition is independent of the order in which we consider the monomorphisms
in H.

The definition ofI is extended to clauses and sets of clauses.I(∃G1,Γ) is the set of all literals∃G (morphisms
h : G1→G) that can be inferred from∃G1 and the positive literals inΓ using the rules (R2) or (R3). Then,I(∃G1,C) is
the set of all literals∃G (morphismsh : G1→G) that can be inferred from∃G1 after applying one inference with each
of the clauses (one after the other) inC . However, if a clauseΓ in C includes a negative literal,¬∃G and we have that
G1 |= ∃G then no inference would be applied when computingI , sinceG1 would already satisfyΓ. The same happens
if Γ includes a literal∀(c : X→G2) and there is no monomorphismh : X→G1. Notice that this implies, as we can see
in the definition below, that ifΓ is a strictly negative clause thenI(∃G1,Γ) is the empty set. Also, ifΓ ∈ C is strictly
negative and for every literal¬∃C in Γ we have that there is a monomorphism fromC into G1 thenI(∃G1,C) is again
the empty set. Otherwise, ifG1 satisfies all the strictly negative clauses inC thenI(∃G1,C) is not empty.

Definition 7 Let∃G1 be a basic literal andΓ be a clause. We define the set of monomorphisms I(∃G1,Γ):

I(∃G1,Γ) =
[

∃C∈Γ
I(∃G1,∃C) ∪

[

∀(c:X→C)∈Γ
I(∃G1,∀(c : X→C))

If ∃G1 is a basic literal andC is a set of clauses. We define the set of monomorphisms I(∃G1,C) inductively:

• If C is the empty set, then I(∃G1,C) = {idG1}.
• If C = {Γ}∪ C ′, andΓ includes a negative literal,¬∃G such that G1 |= ¬∃G, or Γ includes a positive atomic

literal, ∀(c : X→G2) such that there is no monomorphism h: X→G1 then I(∃G1,C) = I(∃G1,C ′).
• Otherwise, I(∃G1,{Γ}∪C ′) = {g◦h | g∈ I(∃G,Γ),(h : G1→G) ∈ I(∃G1,C ′)}.

Given a literalG1 and a set of clausesC , the relation between the setI(∃G1,C) and our inference rules is made
explicit by the following propositions. In particular, theaim of these two propositions is to show that if a literal∃G2 is
in I(∃G1,C) then, in every clauseΓ in C there should be a literalL such that∃G2 can be seen as one of the results of
an inference of∃G1 andL. First we consider the case whereC consists of a single clause.

Proposition 5 Let Γ be a clause consisting of basic constraints and positive atomic constraints and let h: G1→ G2
be a monomorphism such that h∈ I(∃G1,Γ), then there is a literal L inΓ such that:

• if L = ¬∃C, then there is no monomorphism m: C→G1.
• if L = ∃C, then there is a monomorphism m: C→G2.
• If L = ∀(c : X→C) then for every monomorphism f: X→G1 there is a monomorphism g: C→G2 with h◦ f =

g◦ c.

Proof. By definition, we know thatI(∃G1,Γ) =
S

∃C∈Γ I(∃G1,∃C)∪
S

∀(c:X→C)∈Γ I(∃G1,∀(c : X→C)). We consider
several cases:

• If Γ does not include any positive literal (i.e.Γ is the empty clause orΓ includes only negative literals), then the
proposition trivially holds, since by definitionI(∃G1,Γ) is empty.
• If Γ includes a negative literal,¬∃C such thatG1 |= ¬∃C then the proposition trivially holds, since it is enough to

takeL = ¬∃C.
• If Γ includes an atomic literal∀(c : X→C) and there is no monomorphismh from X to G1, then the proposition

trivially holds, since it is enough to takeL = ∀(c : X→C).
• If (h : G1 → G2) ∈

S

∃C∈Γ I(∃G1,∃C), then h ∈ I(∃G1,∃C) for some literal∃C in Γ. Then, by definition of
I(∃G1,∃C), (h : G1→G2)∈ { f1 | 〈 f1 : G1→G2←C : f2〉 ∈ (G1⊗C)}, which means that there is a monomorphism
f2 : C→G2.

• If (h : G1 → G2) ∈
S

∀(c:X→C)∈Γ I(∃G1,∀(c : X → C)), then h ∈ I(∃G1,L) for some literalL = ∀(c : X → C)

in Γ. Let H = { f1, . . . , fn} be the set of all monomorphisms fromX to G1. Then, by definition, we know that the
monomorphisms inI(∃G1,∀(c : X→C)) are defined as compositionshn◦· · ·◦h1, whereh1 : G1→C1 and, for each
i, hi+1 : Ci →Ci+1, hi ◦ · · · ◦h1 : G1→Ci ∈ I∗(∃G1,{ f1, . . . , fi} and there is a monomorphism(gi : C→Ci), such

15

thatgi ◦ c= hi ◦ · · · ◦h1◦ fi . Therefore, given a monomorphismf j : X→G1, we have thatg j ◦ c = h j ◦ · · · ◦h1◦ f j
and this means that if we defineg : C→G2 asg = hn◦ · · · ◦h j+1◦g j , theng◦c= hn◦ · · · ◦h j+1◦g j ◦c= hn◦ · · · ◦
h j+1◦h j ◦ · · · ◦h1◦ f j = h◦ f j .

Now, we extend the previous result to an arbitrary set of clausesC .

Proposition 6 Let C be a set of clauses consisting of basic constraints and positive atomic constraints and let h:
G1→G2 be a monomorphism such that h∈ I(∃G1,C), then for every clauseΓ in C there is a literal L inΓ such that:

• if L = ¬∃C, then there is no monomorphism m: C→G1.
• if L = ∃C, then there is a monomorphism m: C→G2.
• If L = ∀(c : X→C) then for every monomorphism m: X→G1 there is a monomorphism f: C→G2 with h◦m=

f ◦ c.

Proof. We prove the proposition by induction onC , following the definition ofI(∃G1,C):

• If C is the empty set, then the proposition trivially holds.
• Otherwise, ifC = {Γ}∪ C ′, by induction, we know that ifh′ : G1→ G′2 ∈ I(∃G1,C ′) everyΓ′ in C ′ satisfies the

proposition with respect toh′. Therefore, ifh = g◦h′ ∈ I(∃G1,C), with g : G′2→G2 ∈ I(∃G′2,Γ), on one hand we
have to prove that everyΓ′ in C ′ satisfies the proposition with respect tog◦h′ and, on the other, thatΓ also satisfies
the proposition with respect tog◦h′.
Given a clauseΓ′ in C ′, by induction, we know that there is a a literalL in Γ such that one of the following cases
holds:

– if L = ¬∃C, the case is trivial.
– if L = ∃C, then there is a monomorphismm : C→G2. But this means thatg◦m: C→G′2
– If L = ∀(c : X→C) then for every monomorphismm : X→ G1 there is a monomorphismf : C→ G′2 with

h′◦m= f ◦c. But this means that there is a monomorphismg◦ f :C→G2. Moreover,g◦ f ◦c= g◦h′◦m= h◦m

Let us now consider the clauseΓ. We have the following cases:

– If Γ includes a negative literal,¬∃G such thatG1 |=¬∃G then the proposition trivially holds, since it is enough
to takeL = ¬∃G.

– Γ includes a positive atomic literal,∀(c : X→G2) such that there is no monomorphismh : X→G1 then again
the proposition trivially holds, since it is enough to takeL = ∀(c : X→G2).

– Otherwise, by Prop. 5, we know that there is a literalL in Γ such that

· if L = ∃C, then there is a monomorphismm : C→G2.

· If L = ∀(c : X→C) then for every monomorphismm : X→G′2 there is a monomorphismf : C→G2 with
g◦m= f ◦ c. Suppose, in this case, that we have a monomorphismm′ : X→ G1, then this means that we
have a monomorphismh′ ◦m′ : X→ G′2, therefore there should exist a monomorphismf : C→ G2 with
f ◦ c= g◦h′ ◦m′ = h◦m′.

A direct consequence of the proposition above is that if the identity morphism is inI(∃G1,C) thenG1 is a model
of C .

Proposition 7 Let C be a set of clauses consisting of basic constraints and positive atomic constraints, if idG ∈
I(∃G,C), then G|= C .

Proof. If idG ∈ I(∃G,C) then, according to Prop. 6, for everyΓ in C there is a literalL in Γ such that:

• if L = ¬∃C, then there is no monomorphismm : C→G. But this means thatG |= L and, hence,G |= Γ.
• if L = ∃C, then there is a monomorphismm : C→G. ThereforeG |= L and, hence,G |= Γ.
• If L = ∀(c : X→C) then for every monomorphismm : X→G there is a monomorphismf : C→G with idG◦m=

m= f ◦ c. Again, this means thatG |= L and, hence,G |= Γ.

16

ThereforeG satisfies all the clauses inC .

The aim of the next two propositions is to show that if we have aliteral ∃G1 in a clauseΓ, then we can infer the
clause resulting from replacing that literal by a disjunction consisting of all the graphs inI(∃G1,C).

Proposition 8 LetC be a set of clauses consisting of basic constraints and positive atomic constraints, letC ⇒ C1⇒
···⇒ Ck . . . be a fair refutation procedure defined overC based on the rules (R1), (R2), and (R3) and let∃G1∨Γ1 and
Γ2 be two non-empty clauses in

S

k≥1Ck such that for every negative literal¬∃G2 ∈ Γ2 we have that G1 2 ¬∃G2 and
for every atomic literal∀(c : X→ G2) ∈ Γ2 there is a monomorphism h: X→G1. Then(

W

G∈G ∃G∨Γ1) ∈
S

k≥1Ck,
whereG = {G | h : G1→G∈ I(∃G1,Γ2)}.

Proof. We prove something slightly more general: that for all clausesΓ1 andΓ2, if ∃G1∨Γ1 is in
S

k≥1Ck and for
every literal¬∃G2 ∈ Γ2 we have thatG1 2 ¬∃G2 and for every literal∀(c : X→ G2) ∈ Γ2 there is a monomorphism
h : X→ G1, then for every clauseΓ3 such thatΓ2∨Γ3 is in

S

k≥1Ck we have that eitherΓ2 is empty or(
W

G∈G ∃G∨
Γ3∨Γ1) ∈

S

k≥1Ck, whereG = {G | h : G1→ G ∈ I(∃G1,Γ2)}. Note that to prove the proposition it is enough to
consider thatΓ3 is the empty clause. We prove this by induction onΓ2.

If Γ2 is the empty clause, then the proof is trivial. Otherwise, let us suppose thatΓ2 = L∨Γ′2, for a given literalL.
By induction, we may assume that for anyΓ3 if (Γ′2∨L∨Γ3) ∈

S

k≥1Ck then either (a)Γ′2 is empty or (b)(
W

G∈G ′ ∃G∨
L∨Γ3∨Γ1) ∈

S

k≥1Ck , whereG ′ = {G | h : G1→G∈ I(∃G1,Γ′2)}. Let us defineΓ′3 to be equal toΓ3 in case (a), and
equal to(

W

G∈G ′ ∃G∨Γ3∨Γ1) in case (b). We have three cases:

• If L = ¬∃G2 then we know that¬∃G2∨Γ′3 ∈
S

k≥1Ck. By assumption, we know thatG1 2 ¬∃G2, which means
that there is a morphism fromG2 to G1. Thus, we can apply rule (R1) to∃G1∨Γ1 and¬∃G2∨Γ′3 yielding the
clauseΓ′3∨Γ1 ∈

S

k≥1Ck. Therefore, in case (a) we know thatΓ3∨Γ1 ∈
S

k≥1Ck, and this completes the proof,
since in this case, by definition,{G | h : G1→ G∈ I(∃G1,Γ2)} = /0. On the other hand, in case (b) we know that
(
W

G∈G ′ ∃G∨Γ3∨Γ1)∨Γ1≡ (
W

G∈G ′ ∃G∨Γ3∨Γ1) ∈
S

k≥1Ck and this completes also the proof, since in this case,
by definition,{G | h : G1→G∈ I(∃G1,Γ2)}= {G | h : G1→G∈ I(∃G1,Γ′2)}.
• If L = ∃G2 then we know that∃G2∨Γ′3∈

S

k≥1Ck. Thus, we can apply rule (R2) to∃G1∨Γ1 and∃G2∨Γ′3 yielding
the clause(

W

G∈G ′′ ∃G∨Γ1∨Γ′3) ∈
S

k≥1Ck, whereG ′′ = {G | 〈 f1 : G1→G←G2 : f2〉 ∈ (G1⊗G2)}. Therefore,
in case (a) we know that(

W

G∈G ′′ ∃G∨Γ1∨Γ3) ∈
S

k≥1Ck, and this completes the proof, since in this case, by
definition,{G | h : G1→ G∈ I(∃G1,Γ2)} = {G | 〈 f1 : G1→ G← G2 : f2〉 ∈ (G1⊗G2)}. On the other hand, in
case (b) we know that(

W

G∈G ′′ ∃G∨Γ1∨
W

G∈G ′ ∃G∨Γ3∨Γ1)≡ (
W

G∈G ′′ ∃G∨
W

G∈G ′ ∃G∨Γ3∨Γ1) ∈
S

k≥1Ck and
this completes the proof, since in this case, by definition,{G | h : G1→G∈ I(∃G1,Γ2)} = G ′′∪G ′.
• If L = ∀(c : X→ G2) then we know that∀(c : X→ G2)∨Γ′3 ∈

S

k≥1Ck. Let H be the set of all monomorphisms
from X to G1, which by assumption is not empty. By definition,I(∃G1,∀(c : X→ G2)) = I∗(∃G1,H). So we will
prove by induction that, for any non-emptyH, (

W

G∈G ′′ ∃G∨Γ1∨Γ′3) is in
S

k≥1Ck, whereG ′′ = {G | f : G1→

G∈ I∗(∃G1,H)}.

– If H = {g : X→ G1} then applying rule (R3) to∃G1∨Γ1 and(∀(c : X→ G2)∨Γ′3) we infer (
W

G∈G ′′′ ∃G∨
Γ1∨Γ′3), whereG ′′′ = {G | 〈 f1 : G1→ G← G2 : f2〉 ∈ (G1⊗G2) such thatf1 ◦g = f2 ◦ c}. But, in this case,
G ′′ = G ′′′. Hence,(

W

G∈G ′′ ∃G∨Γ1∨Γ′3) is in
S

k≥1Ck.

– If H = {g : X→G1}∪H ′ then, by induction, we may assume that(
W

G∈G ′′′ ∃G∨Γ1∨Γ′3) is in
S

k≥1Ck, where
G ′′′ = {G | f : G1→ G∈ I∗(∃G1,H ′)}. Let us assume thatI∗(∃G1,H ′) = { f1 : G1→C1, . . . , fn : G1→Cn},
i.e. G ′′′ = {C1, . . . ,Cn} and(

W

G∈G ′′′ ∃G∨Γ1∨Γ′3) ≡ ∃C1∨ ·· · ∨∃Cn∨Γ1∨Γ′3. We know that for everyi we
have a monomorphismfi ◦g : X→Ci . Therefore, we can apply rule (R3) to∃C1∨ ·· · ∨∃Cn∨Γ1∨Γ′3 and to
(∀(c : X→G2)∨Γ′3) inferring the clause((

W

G∈G1
∃G)∨∃C2∨·· ·∨∃Cn∨Γ1∨Γ′3∨Γ′3)≡ ((

W

G∈G1
∃G)∨∃C2∨

·· ·∨∃Cn∨Γ1∨Γ′3, whereG1 = {G | 〈h1 :C1→G←G2 : h2〉 ∈ (C1⊗G2) such thath1◦ f1◦g= h2◦c}. Now, if
we apply again rule (R3) to the previous clause and to(∀(c : X→G2)∨Γ′3) and we repeat this processn times,
applying the rule to each of the literalsCi , we would finally infer the clause((

W

G∈G1
∃G)∨·· ·∨(

W

G∈Gn
∃G)∨

Γ1∨Γ′3), whereG i = {G | 〈h1 : Ci →G←G2 : h2〉 ∈ (C1⊗G2) such thath1◦ fi ◦g = h2◦ c}. This means that
((

W

G∈G ′′′ ∃G)∨Γ1∨Γ′3)∈
S

k≥1Ck, whereG ′′′= {G | 〈h1 : Ci→G←G2 : h2〉 ∈ (Ci⊗G2) such that(fi : G1→

Ci) ∈ I∗(∃G1,H ′) andh1◦ fi ◦g= h2◦c}. But, by definition,G ′′′ = {G | f : G1→G∈ I∗(∃G1,H)}. Therefore,
we have also proved in this case that(

W

G∈G ′′ ∃G∨Γ1∨Γ′3) is in
S

k≥1Ck, whereG ′′ = {G | f : G1→ G ∈
I∗(∃G1,H)}.

17

Hence, in case (a) we know that(
W

G∈G ′′ ∃G∨Γ1∨Γ3) ∈
S

k≥1Ck, and this completes the proof, since in this case,
by definition,{G | h : G1→ G ∈ I((∀(c : X→ G2),Γ2)} = {G | f : G1→ G ∈ I∗(∃G1,H)}. On the other hand,
in case (b) we know that((

W

G∈G ′′ ∃G)∨Γ1∨ (
W

G∈G ′ ∃G)∨Γ3∨Γ1) ≡ ((
W

G∈G ′′ ∃G(∨(
W

G∈G ′ ∃G)∨Γ3∨Γ1) ∈
S

k≥1Ck and this completes the proof, since in this case, by definition,{G | h : G1→G∈ I((∀(c : X→G2),Γ2)}=
G ′′∪G ′.

The above proposition can be extended as follows:

Proposition 9 LetC be a set of clauses consisting of basic constraints and positive atomic constraints, letC ⇒ C1⇒
··· ⇒ Ck . . . be a fair refutation procedure defined overC based on the rules (R1), (R2), and (R3) and let∃G1∨Γ1 be
a clause in

S

k≥1Ck, then for anyC ′ ⊆ C , (
W

G∈G ∃G∨Γ1) ∈
S

k≥1Ck, whereG = {G | h : G1→G∈ I(∃G1,C ′)}.

Proof. We proof the proposition by induction:

• If C ′ is empty then the case is trivial sinceI(∃G1,C ′) = {idG1} and, hence,(
W

G∈G ∃G∨Γ1) = ∃G1∨Γ1.

• If C ′ = {Γ}∪ C ′′, andΓ includes a negative literal,¬∃G such thatG1 |= ¬∃G or Γ includes a positive atomic
literal, ∀(c : X → G2) such that there is no monomorphismh : X → G1, then the case is also trivial, since by
definition I(∃G1,C ′) = I(∃G1,C ′′) and, by induction, we may assume that(

W

G∈G ∃G∨ Γ1) ∈
S

k≥1Ck, where
G = {G | h : G1→G∈ I(∃G1,C ′′)}.
• If C ′ = {Γ}∪ C ′′, for every negative literal¬∃G in Γ we have thatG1 2 ¬∃G (i.e. there is a monomorphismh1 :

G→G1) and for every atomic literal∀(c : X→G2) in Γ there is a monomorphismh2 : X→G1, then by definition
we know thatI(∃G1,{Γ}∪C ′′) = {g◦h | g∈ I(∃G,Γ),(h : G1→ G) ∈ I(∃G1,C

′′)}. This means that we have to
prove that(

W

G∈G ∃G∨Γ1) ∈
S

k≥1Ck, whereG = {G | g◦h : G1→G,g∈ I(∃G,Γ),(h : G1→G) ∈ I(∃G1,C ′′)}.
This is equivalent to prove that(

W

G′∈G ′
W

G∈G ′G
∃G)∨Γ1 ∈

S

k≥1Ck, whereG ′ = {G′ | h : G1→G′ ∈ I(∃G1,C ′′)}

andGG′ = {G | g : G′→G,g∈ I(∃G′,Γ)}.
By induction we know that(

W

G′∈G ′ ∃G
′ ∨ Γ1) ∈

S

k≥1Ck. We also know that for everyG′ ∈ G ′ and for every
negative literal¬∃G in Γ we have that there is a monomorphism fromG to G′, since we know that there is a
monomorphism fromG to G1 and also fromG1 to G′. And, in addition, we know that for every atomic literal
∀(c : X→G2) in Γ there is a monomorphism fromX to G′, since we know that there is a monomorphism fromX
to G1 and also fromG1 to G′. This means that every literal∃G′ ∈ G ′ andΓ satisfy the conditions of Proposition 8.
Therefore, we have(

W

G′∈G ′
W

G∈G ′G
∃G)∨Γ1 ∈

S

k≥1Ck.

Let us now define the precedence relation mentioned above. The intuition is quite simple.∃G1 precedes∃G2 if G1
is embedded in∃G2:

Definition 8 For every pair of literals∃G1,∃G2, ∃G1≺ ∃G2 if there is a monomorphism hG1≺G2 : G1→G2.

As said above, we use this precedence relation to build (or tofind) models of the given specification. More precisely
we use (possibly infinite) ascending sequences of basic constraints∃G1≺ ·· · ≺ ∃Gi ≺ . . . which aresaturated, where
intuitively a sequence is saturated if either it leads to a model of the given set of clauses, or if we know that the
sequence cannot lead to a model (in this case we say that its last element isclosed). Therefore, we define aclosed
literal as a literal that cannot be used for building a model of the given set of clauses.

Definition 9 Let C be a set of clauses consisting of basic constraints and positive atomic constraints, letC ⇒
C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined overC based on the rules (R1), (R2), and (R3) and let
BasPosLit(

S

k≥1Ck) be the set of all the basic positive literals occurring in clauses inferred in the refutation proce-
dure. A literal∃G in BasPosLit(

S

k≥1Ck) is closedif there is a strictly negative clauseΓ in
S

k≥1Ck such that G2 Γ.
We also say that∃G is openif it is not closed.

Following the intuitions above, a saturated sequence is a sequence of basic literals that approximate a model or,
alternatively, that we have discovered that it is impossible that it leads to a model:

18

Definition 10 An ascending sequence in BasPosLit(
S

k≥1Ck) ∃G1≺ ·· · ≺ ∃Gi ≺ . . . is saturatedif one of the following
cases applies:

• the sequence is finite and its last element∃Gk satisfies that Gk is a model forC , or
• the sequence is finite and its last element is closed, or
• the sequence is infinite and for every clauseΓ in

S

k≥1Ck there is a literal L inΓ such that:

(a) if L = ¬∃C, then for every j there is no monomorphism m: C→G j

(b) if L = ∃C, there is a j, such that there is a monomorphism m: C→G j

(c) If L = ∀(c : X → C) then for every i and every monomorphism m: X → Gi there is a j, with i< j, and a
monomorphism h: C→G j with hCi≺Cj ◦m= h◦ c.

The following lemma makes explicit in which sense an infinitesaturated sequence provides successive approxi-
mations to a model of a given set of constraints:

Lemma 2 Let ∃G1 ≺ ·· · ≺ ∃Gi ≺ . . . be an infinite saturated sequence in BasPosLit(
S

k≥1Ck) for a fair refutation
procedureC ⇒ C1⇒ ··· ⇒ Ck . . . and let G be the colimit of the sequence:

G1

hG1≺G2 //

f1

++WWWWWWWWWWWWWWWWWWWWWWWWWWW G2

hG2≺G3 //

f2

''NNNNNNNNNNNNN
. . .

hGi−1≺Gi // Gi

hGi≺Gi+1 //

fi

xxppppppppppppp
. . .

G

then G is a model for the given set of clauses, i.e. G|= C .

Proof. Let Γ be any clause inC . We have to prove thatG |= Γ. Since the sequence is assumed to be saturated there
should be a literalL in Γ such that the conditions (a), (b), or (c) in Def. 10 are satisfied. We consider each case
separately:

(a) if L = ¬∃C, then we know that for everyj there is no monomorphismm : C→G j . But, according to Prop. 4, this
means that there is no monomorphismh : C→G. ThereforeG |= ¬∃C and as a consequenceG |= Γ.

(b) if L = ∃C, we know that there is aj, such that there is a monomorphismm : C→G j . But this means that there is a
monomorphismf j ◦m : C→G. ThereforeG |= ∃C and as a consequenceG |= Γ.

(c) If L = ∀(c : X→C) then we know that for everyi and every monomorphismm0 : X→Gi there is aj, with i < j,
such that there is a monomorphismh : C→ G j with hGi≺Gj ◦m0 = h◦ c. Suppose that there is a monomorphism
m : X→G. This means, according to Prop. 4, that there exists ani such that there is a monomorphismm′ : X→Gi
such thatfi ◦m′ = m. But this implies that there is aj, with i < j, such that there is a monomorphismh : C→ G j
with hGi≺Gj ◦m′ = h◦c. Hence,f j ◦h : C→G and moreoverf j ◦h◦c= f j ◦hGi≺Gj ◦m′ = fi ◦m′ = m. Therefore,
G satisfies∀c : X→C and as a consequenceG |= Γ.

The following two lemmas show that saturated sequences can be constructed using theI construction defined
above. In particular, the first one shows how we can constructinfinite sequences such that they are saturated if all its
elements are open.

Lemma 3 Let ∃G1 ≺ ·· · ≺ ∃Gi ≺ . . . be an infinite ascending sequence in BasPosLit(
S

k≥1Ck) for a fair refutation
procedureC ⇒ C1⇒ ··· ⇒ Ck . . . such that, for every j,∃G j is open and moreover hGj≺Gj+1 ∈ I(∃G j ,C j). Then,
∃G1≺ ·· · ≺ ∃Gi ≺ . . . is a saturated sequence.

Proof. Let Γ be any clause in
S

k≥1Ck. More precisely, let us assume thatΓ ∈ Cn. We have to prove that there is a
literal L in Γ such that:

(a) if L = ¬∃C, then for everyj there is no monomorphismm : C→G j

(b) if L = ∃C, there is aj, such that there is a monomorphismm : C→G j

(c) If L = ∀(c : X→C) then for everyi and every monomorphismm : X→Gi there is aj, with i < j, and a monomor-
phism f : C→G j with hGi≺Gj ◦m= f ◦ c.

19

Now, if there is anL in Γ that satisfies condition (a), then the proposition trivially holds. Otherwise, let us assume
that there is aj such that for every negative literalL = ¬∃C in Γ, there is a monomorphismm : C→ G j . Let k =
max(n, j). By Proposition 6, we know that for everyk′ ≥ k there should be a literalL in Γ such that:

• if L = ∃C, then there is a monomorphismm : C→Gk′+1.
• If L = ∀(c : X →C) then for every monomorphismm : X → Gk′ there is a monomorphismf : C→ Gk′+1 with

hGk′≺Gk′+1
◦m= f ◦c. Therefore, we just have to consider just the case when thereis a monomorphismm: X→Gn,

with n < k: We know thathGn≺Gk ◦m : X → Gk is a monomorphism then, by Proposition 6, there should be
a monomorphismf : C→ Gk with hGk≺Gk+1 ◦ hGn≺Gk ◦m = f ◦ c. But hGk≺Gk+1 ◦ hGn≺Gk = hGn≺Gk+1. Hence,
hGn≺Gk ◦m= f ◦ c.

It may be noted that Lemma 3 (together with the rest of the results below), implicitly provides a procedure for
building models of a given set of clauses. In particular, starting by the set of literalsL0 consisting of the basic positive
literals occurring in the given clauses, we build setsL1, . . . ,Ln, . . . where eachL i+1 is the set of basic literals in
I(∃G,C j) which are not closed, and where∃G∈ L i . We can stop this construction if we find a literal∃G∈ Ln where
G is already a model of the given specification.

The following lemma shows the existence of saturated sequence if the given set of clauses includes a basic positive
constraint.

Lemma 4 Given a fair refutation procedureC ⇒ C1⇒ ··· ⇒ Ck . . . if BasPosLit(
S

k≥1Ck) is not empty then there is
a saturated sequence in BasPosLit(

S

k≥1Ck).

Proof. Let us suppose that there is a literal∃G in BasPosLit(
S

k≥1Ck). We define a sequence∃G1 ≺ ·· · ≺ ∃Gi ≺ . . .
in BasPosLit(

S

k≥1Ck) as follows:

• G1 = G.
• If h : G j →G′ is a monomorphism such thath∈ I(∃G j ,C j), then we defineG j+1 = G′.

Now, we have to prove that this sequence is saturated. We consider three cases:

• The sequence is finite becauseI(∃G j ,C j) is the empty set. This means thatG j 2 Γ for some strictly negative clause
Γ ∈ C j . But this means thatΓ is closed and, as a consequence, the sequence∃G1≺ ·· · ≺ ∃G j is saturated.
• The sequence is finite, becauseidGj ∈ I(∃G j ,C). Then, according to Proposition 7, this means thatG j is a model

for C j and, hence, forC . As a consequence, the sequence∃G1 ≺ ·· · ≺ ∃G j is saturated.
• Otherwise, the sequence is infinite and, for everyj, ∃G j is open. Then, by Lemma 3, the sequence∃G1 ≺ ·· · ≺
∃G j ≺ . . . is saturated.

The last result that we need, before proving completeness for our inference rules, shows that if all saturated sequences
end in a closed literal and if the given set of constraints includes a clause consisting only of basic positive literals then
we can infer a clause consisting only of closed literals.

Lemma 5 Let C ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined overC based on the rules (R1), (R2),
and (R3) such thatC includes a clauseΓ consisting only of basic positive literals. If every saturated sequence in
BasPosLit(

S

k≥1Ck) is finite and its last element is a closed literal then there isa clauseΓ′ in
S

k≥1Ck consisting only
of closed literals.

Proof. We define inductively the sequence of clausesΓ1, . . . ,Γn, . . . where:

• Γ1 = Γ.
• Γn+1 = (

W

G∈Gn+1
∃G), whereGn+1 = {G | there is a literal∃G′ ∈ Γn with (h : G′→G) ∈ I(∃G′,Cn}

Now, we know that every set of clausesCk is finite and this implies that, for every literal∃C in Γk, I(∃C,Ck) is also
finite. As a consequence, if for everyi there is an open literal included inΓi then this means that there should be
an infinite sequence of open literals∃G1 ≺ ·· · ≺ ∃Gn ≺ . . . where eachGn ∈ Γn andhGn≺Gn+1 ∈ I(∃Gn,Cn). But by
Lemma 3 this sequence would be saturated against our original assumption. Therefore, there should exist ani where
all the literals inΓi are closed. So it is enough to defineΓ′ = Γi

20

Lemma 6 (Completeness)Let C be a set of clauses consisting of basic constraints and positive atomic constraints,
let C ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined overC based on the rules (R1), (R2), and (R3). IfC
is unsatisfiable then there is a j such that the empty clause isin C j .

Proof. Suppose that the empty clause is not inC j for any j. We have to show the existence of a graphG such that
G |= C . We consider four cases:

1. There is no clauseΓ in C consisting only of basic positive literals. This means thatevery clauseΓ includes a
negative literal¬∃C or a non-basic literal∀(c : X→C), whereX is not empty. In this case, the empty graph would
satisfy all these atomic and negative literals and, as a consequence, would be a model forC .

2. Otherwise, we have a clauseΓ in C consisting only of basic positive literals. Then, by Lemma 4, we know that
there exist at least one saturated sequence inBasPosLit(

S

k≥1Ck). By Def. 10, we have the following cases:

(a) Every saturated sequence inBasPosLit(
S

k≥1Ck) is finite and its last element is a closed literal. We may see
that this case is not possible. Let∃G∨Γ be a minimal clause in

S

k≥1Ck consisting only of closed literals
(according to Lemma 5 we know that such clause must exist and,according to our assumption, it must no be
empty). Since we are assuming that∃G is closed then there should exist a clause¬∃C1∨·· ·∨¬∃Cn in

S

k≥1Ck
such that for everyi there is a monomorphismmi : Ci→G. Using rule (R1) we can inferΓ∨¬∃C2∨·· ·∨¬∃Cn.
Then, using again rule (R1) with this clause and the clause∃G∨Γ, we can inferΓ∨Γ∨¬∃C3∨·· ·∨¬∃Cn =
Γ∨¬∃C3∨·· ·∨¬∃Cn. Then, applying repeatedly rule (R1) in a similar way, we would finally infer Γ, against
the assumption that∃G∨Γ was minimal.

(b) There is a finite saturated sequence inBasPosLit(
S

k≥1Ck) whose last element is∃G. ThenG |= C .
(c) There is an infinite saturated sequence∃G1 ≺ ·· · ≺ ∃Gi ≺ . . . in BasPosLit(

S

k≥1Ck). Then, according to
Lemma 2, its colimit is a model for the given set of clauses.

As a consequence of Lemmas 1 and 6 , we have:

Theorem 1 (Soundness and Completeness)Let C ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined over
a set of basic constraints and positive atomic constraintsC , based on the rules (R1), (R2), and (R3). Then,C is
unsatisfiable if and only if there is a j such that the empty clause is inC j .

Example 3 In our running example, the two models of the given set of constraints C (i.e. the two graphs in (10))
would be built in I(∃CS1,{(2),(3),(4),(5),(6)}), where∃CS1 is the only literal in constraint (1). More precisely,
I(∃CS1,{(2),(3),(4),(5),(6)}) = I(∃CS1,{(2),(3)}), since (4), (5) and (6) do not include any positive literal. Then,
I(∃CS1,(2)) would consist of the inclusion from the graphCS1 to the graph in (8), let us call it CS12. And I(∃CS12,(3))
would consist of the inclusions from the graph CS12 to the graphs in (9). Now two of these four graphs do not satisfy
clause (4), which means that they are closed. The other two graphs, as said above are models of the given set of
constraints.

4. Atomic Constraints

The approach used in the previous section and the results obtained cannot be directly extended in an obvious way to
deal with the general case of specifications including also negative atomic constraints. Let us see the problem. In the
previous section, the idea of the approach followed was thatwe had two kinds of rules. Rules (R2) and (R3) were seen
as rules tobuild models of the given positive constraints, while the rule (R1) was used todiscardmodels not satisfying
the negative constraints. This is the idea of the proof of Lemma 6. Now, suppose that our specification includes the
constraint¬∀(g : X→C). This constraint, although it is a negative constraint, canbe considered similar to a positive
constraint in the sense that, if we have a graphG that does not satisfy it, we can build a new graphG ′ that satisfies
the constraint by extendingG with some new nodes and edges so that it includes a copy ofX (without including its
extensionC). For instance, given the constraint:

(7) ¬ if Lecturer
Name=N then Lecturer

Name=N
Sub ject

21

If a graphG does not satisfy the constraint because all lecturer nodes are linked to some subject node, then we can
add toG a new lecturer node and the resulting graph will now satisfy the constraint. This intuition suggests that the
rule below could be what is needed to deal with negative atomic constraints:

∃C1∨Γ1 ¬∀(g : X→C)∨Γ2

(
W

G∈G ∃G)∨Γ1∨Γ2
(R4)

whereG = {G | 〈 f1 : C1→G←X : f2〉 ∈ (C1⊗X) such that there is nom: C→G with f2 = m◦g}.

The above rule can be proven sound but, unfortunately, we cansee very easily that rules (R1) - (R4) are incomplete.
It is enough to consider a specification consisting of the constraints∀(g : X→C) and¬∀(g : X→C). The specification
is trivially unsatisfiable. However, we cannot derive the empty clause using rules (R1) - (R4). Let us see what would
fail in the completeness proof, if we try to do it along similar lines as the proof for Lemma 6.

Suppose that we have a graph that does not satisfy the negative constraint (for instance the empty graph) then,
using rule (R4), we could build a graph that satisfies it, in this case the graphX. But this graph does not satisfy the
constraint∀(g : X→C). Then, according to rule (R3), we can now build (among others) the graphC that satisfies the
positive constraint. Unfortunately,C now does not satisfy the constraint¬∀(g : X→C). That is, the main difference
between the current situation and the proof of Lemma 6 is thatin the latter case if we have thatG1≺G2 thenG2 could
be seen closer (a better approximation) to a graph that satisfies all the positive constraints. However, in the former
case,G1 may be satisfying the constraint¬∀(g : X→C) while none of its successors satisfies that constraint.

The idea of the proposed solution to avoid this problem is, first, to annotate the basic atoms in the clauses with
information about the negative constraints that have been used to infer that clause. And, then, to use this information so
that, when doing a new inference, the basic atoms included inthe resulting clause still satisfy the negative constraints
included in the annotation. These annotations are calledcontexts, and the annotated constraints are calledcontextual
constraints. More precisely, given a constraint∃C, a context for this constraint is a set of negative atomic constraints
¬∀(g : X → C1) such thatX is included inC. Actually, we assume thatC has to satisfy this negative constraint.
However, as usual, we need to know not only thatX is a subgraph ofC, but also to identify the specific instance ofX
that cannot be extended toC1. For this reason we consider that a context is a finite set of negative atomic constraints
together with monomorphisms binding the conditional part of each constraint to the corresponding literal. Below, in
the completeness proof, we will see in more detail the use of these contexts.

Definition 11 (Contextual Constraints)A contextual constraint∃C[Q] is a pair consisting of a basic constraint,∃C,
and a setQ consisting of pairs〈¬∀(g : X→C1),h : X→C〉 where¬∀(g : X→C1) is a negative atomic constraint
and h is a monomorphism. A contextual constraint∃C[Q] is consistent if for each pair〈¬∀(g : X→C1),h : X→C〉
in Q there is no monomorphism h′ : C1→C such that h= h′ ◦g.

A constraint∃C without a context is considered to be annotated by the empty context. Now, we have to define
satisfaction for this kind of contextual constraints. The idea is that a graph satisfies a contextual constraint∃C[Q] if it
satisfies∃C and all the constraints in its context:

Definition 12 (Satisfaction of Contextual Constraints)A graph G satisfies a contextual constraint∃C[Q] via a
monomorphism f: C→ G, written G|= f ∃C[Q], if for every pair 〈¬∀(g : X → C1),h : X → C〉 ∈ Q there is no
monomorphism h′ : C1→G such that f◦h= h′ ◦g. G satisfies∃C[Q], written G|= ∃C[Q], if there is a monomorphism
f : C→G such that G|= f ∃C[Q].

Inconsistent contextual constraints are not satisfied by any graph:

Fact 2 If ∃C[Q] is not consistent then for every graph G, G2 ∃C[Q].

Proof. Suppose that∃C[Q] is inconsistent, i.e. there is a pair〈¬∀(g : X→C1),h : X→C〉 in Q and there is a monomor-
phismh′ : C1→C such thath = h′ ◦g.

If there is a morphismf : C→G then according to the diagram below:

22

C
f

 @
@@

@@
@@

@

X

g
��@

@@
@@

@@

h
>>~~~~~~~~

G

C1

h′

OO

f◦h′

??~~~~~~~

we have thatf ◦h′ ◦g = f ◦h, which means thatG 2 ∃C[Q].

Finally, in some inference rules, given a contextual constraint∃C[Q] and a monomorphismf : C→ G, we need
to be able to build a contextual constraint whose left-hand side is∃G and whose context includes the same negative
constraints as[Q]. In order to do this we need to define the new binding toG of the negative constraints in[Q]:

Definition 13 Given a contextual constraint∃C[Q] and a monomorphism f: C→ G, we define the context f〈Q 〉 as
the set{〈¬∀(g : X→C1), f ◦h : X→G〉 | 〈¬∀(g : X→C1),h : X→C〉 ∈ Q }.

In this case, satisfiability is based on five rules. The first three rules are a reformulation (in terms of contextual
constraints) of the rules defined in the previous sections. The fourth rule is a similar reformulation of the rule stated
above. In addition , there is a new rule that states that contextual constraints that are not consistent can be deleted from
a clause. The five rules are:

∃C1[Q1]∨Γ1 ¬∃C2∨Γ2

Γ1∨Γ2
(R1’)

if there exists a monomorphismm : C2→C1

∃C1[Q1]∨Γ1 ∃C2[Q2] ∨Γ2

(
W

G∈G ∃G[f1〈Q1〉∪ f2〈Q2〉])∨Γ1∨Γ2
(R2’)

whereG = {G | 〈 f1 : C1→G←C2 : f2〉 ∈ (C1⊗C2)}.

∃C1[Q]∨Γ1 ∀(c : X→C2)∨Γ2

(
W

G∈G ∃G[f1〈Q 〉])∨Γ1∨Γ2
(R3’)

if there is a monomorphismm : X → C1 and G = {G | 〈 f1 : C1 → G ← C2 : f2〉 ∈ (C1 ⊗
C2) such thatf1 ◦m= f2 ◦ c}.

∃C1[Q1]∨Γ1 ¬∀(g : X→C2)∨Γ2

(
W

〈G,Q 〉∈G ∃G[Q])∨Γ1∨Γ2
(R4’)

whereG = {〈G, f1〈Q1〉∪{〈¬∀(g : X→C2), f2〉}〉 | 〈 f1 : C1→G← X : f2〉 ∈ (C1⊗X)}.

∃C[Q]∨Γ
Γ

(R5)

if ∃C[Q] is not consistent.

23

We may see that (R4’) is very similar to (R2’). The reason is that, as discussed above, a negative atomic constraint
¬∀(c : X→C2) (partly) specifies that there must be a copy ofX in the given graph, as it happens with the constraint
∃X. The main difference to the rule (R2’) is that, in (R4’), the negative constraint is added to the context of the
new constraints introduced in the clause inferred by the rule. As said above, the fifth rule just states that inconsistent
contextual constraints can be deleted from clauses, since they cannot be satisfied by any graph.

Example 4 Let us consider all the constraints and clauses from Examples 1 and 2. If we apply twice the rule (R4’) on
clauses (10) and (7) then we would infer the following clause:

(11) ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer Lecturer

Room

)

∨ ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Room

Lecturer

)

where the context associated to each literal (not displayedabove) would consist of constraint (7) together with a
monomorphism mapping the Lecturer node in the condition part of (7) to the Lecturer node which is disconnected in
each of the graphs. Again, no useful new inferences can be applied, and the two graphs occurring in clause (11) are
(minimal) models of the set of constraints.

Now, with this new formulation, again we are able to show soundness and completeness of our inference rules. In
particular, the proofs of soundness for rules (R1’)-(R3’) are a straightforward extension of the proofs for rules (R1)-
(R3). The only difference is that we have to take into accountthe contexts. Anyhow, before showing the soundness
and completeness of the new calculus let us prove a proposition about satisfaction of contextual constraints.

Proposition 10 Let∃C[Q] be a consistent contextual literal, let G be a graph such thatG |= f ∃C[Q], and let g: C→
G ′ and g′ : G ′→G be monomorphisms such that f= g′ ◦g. Then, G′[g〈Q 〉] is consistent and G|=g′ ∃G

′[g〈Q 〉].

Proof. Let 〈¬∀(h : X→C1),h′ : X→C〉 ∈ Q , on one hand we have to prove that there is no monomorphismh′′ : C1→
G ′ such thath′′ ◦h= g◦h′. However the existence ofh′′ would imply that we have the monomorphismg′◦h′′ : C1→G
satisfying thatg′◦h′′◦h= g′◦g◦h′= f ◦h′ against the hypothesis thatG |= f ∃C[Q]. ThereforeG ′[g〈Q 〉] is consistent.

C

g

��

f

 A
AA

AA
AA

A

X

h′
>>}}}}}}}}

h @
@@

@@
@@

@ G ′
g′ // G

C1

h′′

OO

On the other hand, we have to prove that there is no monomorphism f ′ : C1→G such thatf ′ ◦h = g′ ◦g◦h′, but
this is straightforward sincef = g′ ◦g andG |= f ∃C[Q]. ThereforeG |=g′ ∃G

′[g〈Q 〉]].

Lemma 7 (Soundness of the rules)The rules (R1’), (R2’), (R3’), (R4’), and (R5) are sound.

Proof. The proofs for the rules (R1’-R3’) are similar to the proofs for the rules (R1-R3). Below, in addition to the
proofs for the new rules (R4’) and (R5), we just present the proof for the rule (R3’) to show the (small) difference to
the proof of the corresponding rule (R3).

(R3’) Suppose thatG |= ∃C1[Q]∨Γ1, G |= ∀(c : X→C2)∨Γ2, and there is a monomorphismm : X→C1. The case
whereG |= Γ1 or G |= Γ2 is trivial. Suppose thatG |=h1 ∃C1[Q], for some monomorphismh1 : C1→ G. In addition,
we also have that that there is a monomorphismh2 : C2→G such thath1◦m= h2◦ c, sinceG |= ∀(c : X→C2). As a

24

consequence, by Prop. 2 there is a factorization:

C1

f1
��

h1

 @
@@

@@
@@

@

X

c
 @

@@
@@

@@
@

m
>>~~~~~~~~
G ′

f // G

C2

f2

OO

h2

>>~~~~~~~~

where f1 : C1→ G ′ and f2 : C2→ G ′ are jointly surjective monomorphisms and f is injective. Therefore,G ′ is
in the setG defined in the rule. Finally, according to Prop. 10, we have that G |= f ∃G ′[f1〈Q 〉] which means that
G |= (

W

G ′∈G ∃G
′[f1〈Q 〉])∨Γ

(R4’) Similarly, suppose thatG |= ∃C1[Q1]∨Γ1 andG |= ¬∀(c : X→C2)∨Γ2. The case whereG |= Γ1 or G |= Γ2
is trivial. Suppose thatG |=h1 ∃C1[Q1], for some monomorphismh1 : C1→ G, and that there is a monomorphism
h2 : X→ G such that there is no monomorphismh′ : C2→ G such thath2 = h′ ◦ c, i.e. G |= ¬∀(c : X →C2). As a
consequence, by Prop. 1 there is a factorization:

C1

f1
��

h1

 @
@@

@@
@@

@

G ′
f // G

X

f2

OO

h2

>>}}}}}}}}

where f1 : C1→ G ′ and f2 : X → G ′ are jointly surjective monomorphisms and f is injective. Note that there is
no monomorphismh : C2 → G ′ such that f2 = h◦ c, since f ◦ f2 = h2 and this would mean thath2 = f ◦ h◦ c
violating the above condition. Hence, we have thatG ′ ∈ {G′′ | 〈 f1 : C1 → G′′ ← C2 : f2〉 ∈ (C1⊗C2)}. Finally,
on one hand, according to proposition 10, we have thatG |= f ∃G ′[f1〈Q1〉] and, on the other hand, we can show that
G |= f G ′[{〈¬∀(g : X → C2), f2〉}]. The reason is that ifh′ : C2→ G is a monomorphism such thatf ◦ f2 = h′ ◦ c,
we would have thatG |= ¬∀(c : X→C2) would not hold, since we would haveh2 = f ◦ f2 = h′ ◦ c. Altogether, this
means thatG |= ∃G′[Q]) for Q = f1〈Q1〉∪{〈¬∀(g : X→C2), f2〉}. As a consequence,G |= (

W

〈G ′,Q 〉∈G ∃G[Q]), for
G = {〈G′, f1〈Q1〉∪{〈¬∀(g : X→C2), f2〉}〉 | 〈 f1 : C1→G← X : f2〉 ∈ (C1⊗X)}.

(R5) Suppose thatG |= ∃C[Q]∨Γ. By Fact 2 we know thatG 2 ∃C[Q]. Therefore,G |= Γ.

The proof of completeness in this case is very similar to the previous completeness proof. The main difference
is in the key role played by the contexts. The idea in the previous proof was to consider sequences of constraints
∃C1 ≺ ·· · ≺ ∃Ci ≺ . . . , where everyCi is included inCi+1, that could be seen as the construction of a model forC if
the empty clause was never inferred. In particular, these sequences were associated to the given inferences. Moreover,
an important property in that proof is that it was assumed that every graph in these sequences would satisfy all the
strictly negative clauses in

S

k≥1Ck. In particular, given a graphCi , if a possible successorCi+1 does not satisfy a
strictly negative clause¬∃C1∨·· ·∨¬∃Cn then we know that a sequence/0 ≺C1≺ ·· · ≺Ci ≺Ci+1 ≺ . . . would never
yield a model ofC . The reason is that any graph includingCi will neither satisfy¬∃C.

In the current case, as discussed above, negative atomic constraints are treated in a similar way to basic positive
constraints. If a graphCi does not satisfy the constraint¬∀(g : X→C) then we may buildCi+1 including a copy of
X (but not of its extensionC) applying the fourth rule. This means thatCi+1 now satisfies that constraint. However,
in this situation if we do not use contexts, it would be impossible to say if this sequence, in the limit (or, rather, in
the colimit) would yield a model ofC and, especially, if it would satisfy that constraint. The reason is thatCi+2 may
include a copy ofC as an extension of the instance ofX included inCi+1.

The use of contexts solves this problem. In particular, ifCi [Q] does not satisfy a constraint¬∀(g : X→C) in its
contextQ then no larger graph would satisfy it. Then, in a similar manner as in the previous completeness proof, we

25

can define sequencesC0[/0]≺C1[Q1]≺ ·· · ≺Ci [Q i]≺Ci+1[Q i+1]≺ . . . , where eachCi satisfies all the strictly negative
clauses and all the negative constraints inQ i . Then, saturation of the sequences ensures that for every sequence there
is ani such thatQ i includes all the negative atomic constraints inC . This ensures that a saturated sequence will yield
a model ofC , provided that the empty clause cannot be inferred fromC .

As in the previous completeness proof, we have to provide some auxiliary definitions and results. These definitions
and results are in most cases essentially equivalent to the corresponding ones in the previous section. In particular, in
some cases the only difference would be that the given basic constraints will have a context. In some other cases, we
will explicitly have to deal with the new kind of constraintsconsidered (i.e. non-basic negative constraints). For this
reason, we will omit the proof of these auxiliary results when they are essentially identical to the corresponding proof
in Section 3, or we will just show the proof for the case of the new constraints, when this is the only difference.

We start defining the constructionI . In this case, the result ofI(∃G1[Q1],L) is not the set of possible graphs
(actually monomorphisms fromG1 to these graphs) that we can infer from∃G1[Q1] and L, but also the resulting
contexts:

Definition 14 Let∃G1[Q1] be a contextual literal and L a positive literal or a negativenon-basic constraint. We define
the set of monomorphisms I(∃G1[Q1],L) by cases:

• If L is a basic contextual literal, L= ∃G2[Q2], then I(∃G1[Q1],L) = {〈 f1,Q 〉 | 〈 f1 : G1→ G← G2 : f2〉 ∈ (G1⊗
G2)}, whereQ = f1〈Q1〉∪ f2〈Q2〉 .
• If L is a positive atomic literal, L= ∀(c : X→ G2), and H is the set of all monomorphisms from X to G1 then,

I(∃G1[Q1],L) = I∗(∃G1[Q1],H), where I∗(∃G1[Q1],H) is defined inductively:

– If H = /0 then I∗(∃G1[Q1],H) = {〈idG1,Q1〉}.
– If H = { f : X → G1}∪H ′ then I∗(∃G1[Q1],H) = {〈h′ ◦h,h′〈Q 〉〉 | 〈h : G1→ G,Q 〉 ∈ I∗(∃G1[Q1],H ′),〈h′ :

G→G′←G2 : f2〉 ∈ (G⊗G2) such that f2 ◦ c= h′ ◦h◦ f}.

• If L is a negative non-basic constraint, L= ¬∀(c : X→G2), then I(∃G1[Q1],L) = {〈 f1,Q 〉 | 〈 f1 : G1→G← X :
f2〉 ∈ (G1⊗X)}, whereQ = f1〈Q1〉∪{〈∀(c : X→G2), f2〉} .

The definition ofI is extended to clauses and sets of clauses as in the previous section:

Definition 15 Let∃G1[Q1] be a contextual literal andΓ be a clause. We define the set of monomorphisms I(∃G1[Q1],Γ)
inductively:

• If Γ is the empty clause, then I(∃G1[Q1],Γ) = /0.
• If Γ = L∨Γ′, where L is a negative basic literal, then I(∃G1[Q1],Γ) = I(∃G1[Q1],Γ′).
• If Γ = L∨Γ′, where L is a positive literal or a negative non-basic literal, then I(∃G1[Q1],Γ) = I(∃G1[Q1],L)∪

I(∃G1[Q1],Γ′).

If ∃G1[Q1] is a contextual literal andC is a set of clauses, the set of monomorphisms I(∃G1[Q1],C) is defined
inductively:

• If C is the empty set, then I(∃G1[Q1],C) = {〈idG1,Q1〉}.
• If C = {Γ}∪C ′, andΓ includes a negative basic literal,¬∃G such that G1 |= ¬∃G, orΓ includes a positive atomic

literal, ∀(c : X→G2) such that there is no monomorphism h: X→G1 then I(∃G1[Q1],C) = I(∃G1[Q1],C ′).
• Otherwise,

I(∃G1[Q1],{Γ}∪C ′) = {〈g◦h,Q 〉 | 〈g,Q 〉 ∈ I(∃G[Q ′],Γ),〈h : G1→G,Q ′〉 ∈ I(∃G1[Q1],C
′)}

The functionI is monotonic with respect to the context part:

Proposition 11

• If L is not a basic negative literal and〈h,Q 〉 ∈ I(∃G1[Q1],L) then h〈Q1〉 ⊆ Q .
• For any clauseΓ, if 〈h,Q 〉 ∈ I(∃G1[Q1],Γ) then h〈Q1〉 ⊆ Q .
• For any set of clausesC , if 〈h,Q 〉 ∈ I(∃G1[Q1],C) then h〈Q1〉 ⊆ Q .

Proof. Straighforward by the definition ofI .

26

The following proposition is almost identical to Prop. 5 since here the contexts do not play any role. The main
difference is that now we also consider the case of non-basicnegative constraints.

Proposition 12 LetΓ be a clause and let h: G1→G2 be a monomorphism such that〈h,Q 〉 ∈ I(∃G1[Q1],Γ), for some
set of contextsQ then there is a literal L inΓ such that:

• if L = ¬∃C, then there is no monomorphism m: C→G1.
• if L = ∃C[Q], then there is a monomorphism m: C→G2.
• If L = ∀(c : X→C) then for every monomorphism f: X→G1 there is a monomorphism g: C→G2 with h◦ f =

g◦ c.
• If L = ¬∀(c : X→C), then〈¬∀(c : X→C),m〉 ∈ Q for some monomorphism m: X→G2.

Proof. If Γ0 is the subset ofΓ including all its positive literals and all its non-basic negative constraints then, we
know thatI(∃G1[Q1],{Γ}) =

S

L∈Γ0
I(∃G1[Q1],L]). Now, if Γ does not include any positive literal nor a negative non

basic constraint (i.e.Γ is the empty clause orΓ includes only negative basic literals), then the proposition trivially
holds, since by definitionI(∃G1[Q1],Γ) is empty. So let us assume thatΓ includes some literal which is not a negative
basic constraint and, moreover, let us assume that〈(h : G1→ G2),Q 〉 ∈ I(∃G1[Q1],¬∀(c : X→C)) for some literal
¬∀(c : X→C) in Γ, since the other possible cases were proved in Prop. 5 and thecurrent proof would be essentially
identical. But this case is quite straightforward since, bydefinition,I(∃G1[Q1],¬∀(c : X→C)) = {〈h,Q 〉 | 〈h : G1→
G← X : m〉 ∈ (G1⊗X)}, whereQ = h〈Q1〉∪{〈∀(c : X→G2),m〉} .

The extension of the above proposition to a set of clausesC is again almost identical to Prop. 6, except for the case
when the literalL is a non-basic negative constraint.

Proposition 13 Let C be a set of clauses consisting of basic constraints and positive atomic constraints and let
h : G1→G2 be a monomorphism such that〈h,Q 〉 ∈ I(∃G1[Q1],C), then for every clauseΓ in C there is a literal L in
Γ such that:

• if L = ¬∃C, then there is no monomorphism m: C→G1.
• if L = ∃C[Q], then there is a monomorphism m: C→G2.
• If L = ∀(c : X→C) then for every monomorphism m: X→G1 there is a monomorphism f: C→G2 with h◦m=

f ◦ c.
• If L = ¬∀(c : X→C), then〈¬∀(c : X→C),m〉 ∈ Q for some monomorphism m: X→G2.

Proof. Let 〈h,Q 〉 ∈ I(∃G1[Q1],C). By induction onC , following the definition ofI(∃G1[Q1],C):

• If C is the empty set, then the proposition trivially holds.
• Otherwise, by induction, we know that if〈h′ : G1→G′2,Q

′〉 ∈ I(∃G1[Q1],C ′) everyΓ′ in C ′ satisfies the proposition
with respect toh′. Therefore, ifh = g◦h′, with 〈g : G′2→G2,Q ′〉 ∈ I(∃G′2[Q

′],Γ), on one hand we have to prove
that everyΓ′ in C ′ satisfies the proposition with respect tog◦h′ and, on the other, thatΓ also satisfies the proposition
with respect tog◦h′.
Given a clauseΓ′ in C ′, by induction, we know that there is a a literalL in Γ such that one of the following cases
hold:

– if L = ¬∃C, the case is trivial.
– if L = ∃C[Q ′′], then there is a monomorphismm : C→G′2. But this means thatg◦m: C→G′2
– If L = ∀(c : X→C) then for every monomorphismm : X→ G1 there is a monomorphismf : C→ G′2 with

h′◦m= f ◦c. But this means that there is a monomorphismg◦ f :C→G2. Moreover,g◦ f ◦c= g◦h′◦m= h◦m
– If L = ¬∀(c : X→C) then〈¬∀(c : X→C),m′〉 ∈ Q ′ but this means that〈¬∀(c : X→C),g◦m′〉 ∈ Q .

Now, in the case of the clauseΓ the proof is just a direct consequence of Prop. 12.

The aim of the following two propositions, like in the case ofPropositions 8 and 9, is to show that if we have a
literal ∃G1[Q1] in a clauseΓ, then we can infer the clause resulting from replacing that literal by a disjunction of the
literals that, in some sense can be considered included inI(∃G1[Q1],C). The proof of Proposition 14 is very similar to

27

the proof of Proposition 8. The main difference, in additionto dealing with the contexts involved, is that in Proposition
14 we have to explicitly deal with the case of non basic constraints.

Proposition 14 Let C be a set of clauses, letC ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined over
C based on the rules (R1’), (R2’), (R3’), (R4’), and (R5), and let ∃G1[Q1]∨Γ1 and Γ2 be two non-empty clauses
in

S

k≥1Ck such that for every negative literal¬∃G2 ∈ Γ2 we have that G1 2 ¬∃G2 and for every atomic literal
∀(c : X → G2) ∈ Γ2 there is a monomorphism h: X → G1. Then(

W

〈G,Q 〉∈G ∃G[Q]∨ Γ1) ∈
S

k≥1Ck, whereG =

{〈G,Q 〉 | 〈h : G1→G,Q 〉 ∈ I(∃G1[Q1],Γ2)}.

Proof. As in the case of Proposition 8, we prove by induction that forall clausesΓ1 andΓ2, if ∃G1[Q1]∨Γ1 is in
S

k≥1Ck and for every literal¬∃G2 ∈ Γ2 we have thatG1 2 ¬∃G2 and for every literal∀(c : X→ G2) ∈ Γ2 there is a
monomorphismh : X→G1, then for every clauseΓ3 such thatΓ2∨Γ3 is in

S

k≥1Ck we have that eitherΓ2 is empty
or (

W

〈G,Q 〉∈G ∃G[Q]∨Γ3∨Γ1) ∈
S

k≥1Ck, whereG = {〈G,Q 〉 | 〈h : G1→G,Q 〉 ∈ I(∃G1[Q1],Γ2)}. This implies the
proposition whenΓ3 is the empty clause.

If Γ2 is the empty clause, then the proof is trivial. Otherwise, let us suppose thatΓ2 = L∨Γ′2, for a given lit-
eral L. By induction, we may assume that for anyΓ3 if (Γ′2∨ L∨Γ3) ∈

S

k≥1Ck then either (a)Γ′2 is empty or (b)
(
W

〈G,Q 〉∈G ′ ∃G[Q]∨L∨Γ3∨Γ1) ∈
S

k≥1Ck , whereG ′ = {〈G,Q 〉 | 〈h : G1→G,Q 〉 ∈ I(∃G1[Q1],Γ′2)}. Let us define
Γ′3 to be equal toΓ3 in case (a), and equal to(

W

〈G,Q 〉∈G ′ ∃G[Q]∨Γ3∨Γ1) in case (b). Below we just consider the
case whereL = ¬∀(c : X→C), since the proofs for the remaining cases are essentially identical to the proofs of the
corresponding cases in Proposition 8.

• If L = ¬∀(c : X → C) then we can apply the rule (R4’) to∃G1[Q1] ∨ Γ1 and ¬∀(c : X → C) ∨ Γ′3 yielding
the clause(

W

〈G,Q 〉∈G ′′ ∃G[Q]∨ Γ1∨ Γ′3) ∈
S

k≥1Ck, whereG ′′ = {〈G, f1〈Q1〉 ∪ {〈¬∀(g : X → C2), f2〉}〉 | 〈 f1 :
G1→ G← X : f2〉 ∈ (G1⊗X)}. Therefore, in case (a) we know that(

W

〈G,Q 〉∈G ′′ ∃G[Q]∨Γ1∨Γ3) ∈
S

k≥1Ck,
and this completes the proof, since in this case, by definition, {〈G,Q 〉 | 〈h : G1→ G,Q 〉 ∈ I(∃G1[Q1],Γ2)} =
{〈G, f1〈Q1〉 ∪ {〈¬∀(g : X → C2), f2〉}〉 | 〈 f1 : G1→ G← X : f2〉 ∈ (G1⊗X)}. On the other hand, in case (b)
we know that(

W

〈G,Q 〉∈G ′′ ∃G[Q]∨ Γ1∨
W

〈G,Q 〉∈G ′ ∃G[Q]∨ Γ3∨Γ1) ≡ (
W

〈G,Q 〉∈G ′′ ∃G[Q]∨
W

〈G,Q 〉∈G ′ ∃G[Q]∨

Γ3∨Γ1) ∈
S

k≥1Ck and this completes the proof, since in this case, by definition, {〈G,Q 〉 | 〈h : G1→ G,Q 〉 ∈
I(∃G1[Q1],Γ2)} = G ′′∪G ′.

The proof of the proposition below is essentially identicalto the proof of Proposition 9. For this reason, we will
omit it.

Proposition 15 Let C be a set of clauses , letC ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined overC
based on the rules (R1’), (R2’), (R3’), (R4’), and (R5), and let ∃G1[Q1]∨Γ1 be a clause in

S

k≥1Ck, then for any
C ′ ⊆ C , (

W

〈G,Q 〉∈G ∃G[Q]∨Γ1) ∈
S

k≥1Ck, whereG = {G = {〈G,Q 〉 | 〈h : G1→G,Q 〉 ∈ I(∃G1[Q1],C ′)}.

The precedence relation that we use here is basically the same one as the relation defined in the previous section.
There are two main differences. The first one is that now the relation is defined on contextual literals. The second one
is that now if∃G1[Q1]≺ ∃G2[Q1] then the contextQ1, when translated throughhG1≺G2, should be included inQ2

Definition 16 For every pair of contextual literals∃G1[Q1],∃G2[Q2], ∃G1[Q1]≺ ∃G2[Q2] if there is a monomorphism
hG1≺G2 : G1→G2 and hG1≺G2〈Q1〉 ⊆ Q2.

Given a contextual literal∃C1[Q1], this literal precedes the results ofI(∃C1[Q1],C) for any set of clausesC :

Proposition 16 If 〈g : C1→C2,Q2〉 is in I(∃C1[Q1],C) then∃C1[Q1]≺ ∃C2[Q2]

Proof. It is enough to definehC1≺C2 = g, since we know that, by Prop 11,g〈Q1〉 ⊆ Q2.

As said above, we use this precedence relation to build (or tofind) models of the given specification, like in the
previous completeness proof. In particular, the notion of asaturatedsequence is also a key concept. There are two
main differences of the notion of saturated sequence neededhere and the notion presented in the previous section.
The first one is that here we also have to take into account the inferences with negative non-basic constraints. The
second difference concerns the notion of closed literal. Intuitively, a closed literal is a literal that cannot lead to the

28

construction of a model of the given set of clauses. In the previous section, a literal was closed when it would not
satisfy a strictly negative clause. In the current context aliteral is considered also closed if it is inconsistent.

Definition 17 Let C be a set of clauses, letC ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined overC
based on on the rules (R1’), (R2’), (R3’), (R4’), and (R5), and let ContLit(

S

k≥1Ck) be the set of all contextual literals
occurring in clauses inferred in the refutation procedure.A literal ∃G[Q] in ContLit(

S

k≥1Ck) is closedif either there
is a strictly negative clauseΓ in

S

k≥1Ck such that G2 Γ or if ∃G[Q] is inconsistent. We also say that∃G[Q] is open
if it is not closed.

Then, the new definition of a saturated sequence, following the intuitions above is:

Definition 18 An ascending sequence in ContLit(
S

k≥1Ck) ∃G1[Q1] ≺ ·· · ≺ ∃Gi [Q i] ≺ . . . is saturatedif one of the
following cases applies:

• the sequence is finite and its last element∃Gk[Q k] satisfies that Gk is a model forC , or
• the sequence is finite and its last element is closed, or
• the sequence is infinite, it consists only of open elements and for every clauseΓ in

S

k≥1Ck there is a literal L inΓ
such that:

(a) if L = ¬∃C, then for every j there is no monomorphism m: C→G j

(b) if L = ∃C[Q], there is a j, such that there is a monomorphism m: C→G j

(c) If L = ∀(c : X → C) then for every i and every monomorphism m: X → Gi there is a j, with i< j, and a
monomorphism h: C→G j with hCi≺Cj ◦m= h◦ c.

(d) if L =¬∀(c : X→C), then there is a j, such that〈¬∀(c : X→C),h : X→G j〉 is inQ j for some monomorphism
h.

The lemma that shows that the colimit of infinite saturated sequences is a model of the given set of constraints
is, again, very similar to the corresponding lemma in Section 3. However, the proof of the lemma below is slightly
different to the prove of Lemma 8. In particular, here we haveto consider the additional case of negative non-basic
constraints. For this reason, below we include the proof forthis case.

Lemma 8 Let∃G1[Q1]≺ ·· · ≺ ∃Gi [Q i]≺ . . . be an infinite saturated sequence in ContLit(
S

k≥1Ck) for a fair refuta-
tion procedureC ⇒ C1⇒ ··· ⇒ Ck . . . and let G be the colimit of the sequence:

G1

hG1≺G2 //

f1

++WWWWWWWWWWWWWWWWWWWWWWWWWWW G2

hG2≺G3 //

f2

''NNNNNNNNNNNNN
. . .

hGi−1≺Gi // Gi

hGi≺Gi+1 //

fi

xxppppppppppppp
. . .

G

then G is a model for the given set of clauses, i.e. G|= C .

Proof. Let Γ be any clause inC . We have to prove thatG |= Γ. Since the sequence is assumed to be saturated there
should be a literalL in Γ such that the conditions (a), (b), (c) or (d) in Def. 18 are satisfied. The proof for the cases (a),
(b), (c) is essentially identical to the corresponding proof in Lemma 8. For this reason we only include case (d):

(d) if L = ¬∀(c : X → C), we know that there is aj, such that〈¬∀(c : X → C),h : X → G j〉 is in Q j for some
monomorphismh. As a consequence,f j ◦h is a monomorphism fromX to G. Now we will prove that if there is
a monomorphismf : C→G, such thatf j ◦h = f ◦ c, then some contextual literal∃Gk[Q k] would be inconsistent,
against the assumption that all the literals in the sequenceare open (and therefore consistent). Let us suppose
that such anf exists. Then, according to proposition 4 there must exist a monomorphismf ′ : C→ Gi such that
f = fi ◦ f ′. Therefore, we would havef j ◦h= f ◦c= fi ◦ f ′ ◦c. Now, we consider two cases. Ifj ≤ i then, we have
that f j = fi ◦hGj≺Gi which means thatfi ◦hGj≺Gi ◦h = fi ◦ f ′ ◦ c. But sincefi is a monomorphism we have that
f ′ ◦ c= hGj≺Gi ◦h. Now, according to the definition of the precedence relation:

〈¬∀(c : X→C),hGj≺Gi ◦h : X→Gi〉 ∈ Q i .

and this implies thatGi [Q i] would be inconsistent. Ifi < j then fi = f j ◦ hGi≺Gj , which means thatf j ◦ h = fi ◦

29

f ′ ◦ c = f j ◦hGi≺Gj ◦ f ′ ◦ c and, again, sincef j is a monomorphism we have thath = hGi≺Gj ◦ f ′ ◦ c, implying that
G j [Q j] would be inconsistent.

The proof of the lemma that shows us a procedure to define saturated infinite sequences is also a small variation
of the proof of Lemma 3, where the only difference refers again to the case where negative non-basic constraints are
considered.

Lemma 9 Let∃G1[Q1]≺ ·· · ≺ ∃Gi [Q i]≺ . . . be an infinite ascending sequence in ContLit(
S

k≥1Ck) for a fair refuta-
tion procedureC ⇒ C1⇒···⇒ Ck . . . such that, for every j,∃G j [Q j] is open and moreover hGj≺Gj+1 ∈ I(∃G j [Q j],C j).
Then,∃G1[Q1]≺ ·· · ≺ ∃Gi [Q i]≺ . . . is a saturated sequence.

Proof. Let Γ be any clause in
S

k≥1Ck. More precisely, let us assume thatΓ ∈ Cn. We have to prove that there is a
literal L in Γ such that:

(a) if L = ¬∃C, then for everyj there is no monomorphismm : C→G j

(b) if L = ∃C[Q], there is aj, such that there is a monomorphismm : C→G j

(c) If L = ∀(c : X→C) then for everyi and every monomorphismm : X→Gi there is aj, with i < j, and a monomor-
phism f : C→G j with hGi≺Gj ◦m= f ◦ c.

(d) if L = ¬∀(c : X→C), then there is aj, such that〈¬∀(c : X→C),h : X→G j〉 is in Q j for some monomorphismh.

Now, if there is anL in Γ that satisfies condition (a), then the proposition trivially holds. Otherwise, assume that
there is aj such that for every negative literalL = ¬∃C in Γ, there is a monomorphismm : C→G j . Let k = max(n, j).
By Proposition 13, we know that for everyk′ ≥ k there should be a literalL in Γ such that:

• if L = ∃C[Q], then there is a monomorphismm : C→Gk′+1.
• If L = ∀(c : X→C) then the proof is identical to the proof of the correspondingcase in Lemma 3.
• if L = ¬∀(c : X→C), then〈¬∀(c : X→C),h : X→Gk′+1〉 ∈ Q k′+1.

The proof of the lemma for showing the existence of saturatedsequences is also identical to the proof of Lemma
4.

Lemma 10 Given a fair refutation procedureC ⇒ C1⇒ ··· ⇒ Ck . . . if ContLit(
S

k≥1Ck) is not empty then there is a
saturated sequence in ContLit(

S

k≥1Ck).

The lemma that shows that if all saturated sequences are finite and end in a closed element then we can derive a
clause consisting only of closed elements is now slightly different than Lemma 5.

Lemma 11 Let C ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined overC based on the rules (R1), (R2),
and (R3) such thatC includes a clauseΓ consisting only of basic positive literals and negative nonbasic literals. If
every saturated sequence in ContLit(

S

k≥1Ck) is finite and its last element is a closed literal then there isa clauseΓ′
in

S

k≥1Ck consisting only of closed literals.

Proof. First we will prove that if the clauseΓ includes only basic positive literals and negative non basic literals, then
there is a clauseΓ′ in

S

k≥1Ck such thatΓ′ consists only of basic (contextual) literals.
Suppose thatΓ = Γ1∨Γ2 whereΓ1 consists only of negative non basic constraints andΓ2 consists only of con-

textual literals. We will prove our claim by induction onΓ1. More precisely, we will prove that ifΓ1 consists only
of negative non basic constraints then for every clauseΓ2 such thatΓ1∨Γ2 is in

S

k≥1Ck there exists a clauseΓ′1
consisting only of contextual literals such thatΓ′1∨Γ2 is in

S

k≥1Ck:

• If Γ1 is the empty clause then the case is trivial.
• If Γ1 = ¬∀(c : X→C)∨Γ3 then, by induction, we know that there is a clauseΓ′3 consisting only of contextual

literals such that¬∀(c : X→C)∨Γ′3∨Γ2 is in
S

k≥1Ck. Since we assume that every set of clauses includes the
trivial true clause (i.e. the clause consisting only of the literal ∃ /0, which is equivalent to the contextual literal
∃ /0[/0]), then we can apply rule (R4’) to this trivial clause and to¬∀(c : X → C)∨Γ′3∨Γ2 inferring the clause:
∃X[{〈¬∀(c : X→C), idX〉}]∨Γ′3∨Γ2.

30

So we have shown that from every clauseΓ including only contextual literals and negative non basic literals we
can infer a clauseΓ′ including only contextual literals. It remains to show thatfrom Γ′ we can infer a clause including
only closed literals. However, this proof is essentially identical to the proof of Lemma 5.

We can finally show the completeness of our calculus. The proof follows, with small variations the proof of Lemma
6.

Lemma 12 (Completeness)Let C be a set of atomic constraints, letC0⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation
procedure defined overC based on the rules (R1’), (R2’), (R3’), (R4’), and (R5). IfC is unsatisfiable then there is a j
such that the empty clause is inC j .

Proof. Suppose that the empty clause is not inC j for any j. We have to show the existence of a graphG such that
G |= C . We consider four cases:

1. All clauses inC include some negative basic constraint,¬∃C, or some positive non basic constraint,∀(c : X→C)
(i.e., there is no clauseΓ in C consisting only of basic positive literals and negative non-basic literals). In this
case, the empty graph would satisfy all these positive atomic literals and all the negative basic literals and, as a
consequence, would be a model forC .

2. Otherwise, we have a clauseΓ in C consisting only of basic positive literals and negative non-basic literals. Then,
by Lemma 10, we know that there exist at least one saturated sequence inContLit(

S

k≥1Ck). By Def. 18, we have
the following cases:

(a) Every saturated sequence inContLit(
S

k≥1Ck) is finite and its last element is a closed literal. Using the same
reasoning as in the proof of Lemma 6, we may see that this case is not possible.

(b) There is a finite saturated sequence inContLit(
S

k≥1Ck) whose last element is a model forC . The case is trivial.
(c) There is an infinite saturated sequence∃G1[Q1]≺ ·· · ≺ ∃Gi [Q i]≺ . . . in ContLit(

S

k≥1Ck). Then, according to
Lemma 8, its colimit is a model for the given set of clauses.

As a consequence of Lemmas 7 and 12, we have:

Theorem 2 (Soundness and Completeness)LetC ⇒ C1⇒ ··· ⇒ Ck . . . be a fair refutation procedure defined over a
set of atomic constraintsC , based on the rules (R1’), (R2’), (R3’), (R4’), and (R5). Then, C is unsatisfiable if and only
if there is a j such that the empty clause is inC j .

As discussed above, our completeness results show that a setof constraints is satisfiable then a fair refutation
procedure will never infer an empty clause from the given setof constraints. However, in the proof of completeness,
the model constructed to show the satisfiability of the constraints may be an infinite graph. One could wonder whether
in this situation it would always be possible to find an alternative finite model for these constraints. The answer is no.
As we can see in the counter-example below, there are sets of atomic constraints which do not have finite models.

Theorem 3 (Finite satisfiability)There are satisfiable sets of atomic constraintsC such that there are no finite graphs
G with G|= C .

Proof. The set of constraints below is not satisfied by any finite graph, but only by infinite graphs:

(1) ∃
()

(2) ¬∃
()

(3) ¬∃
()

(4) if a then a b (5) ¬ if a then b a

Let n be the number of nodes of a finite graph satisfying the constraints ande its number of edges. The first
constraint specifies that the graph must have at least a node,i.e. n ≥ 1. The second and third constraints specify
that every node must have at most one incoming edge and one outgoing edge, i.e.n≥ e. The previous two constraints
together with the fifth constraint (not every node has an incoming edge) imply thatn> e. However, the fourth constraint

31

(every node has an outgoing edge) implies thatn ≤ e. Obviously no finite graph would satisfy these constraints.
However the graph below does satisfy them:

.1 2 n

5. Clause subsumption and elimination

Using the kind of refutation procedures that we have described, proving the unsatisfiability of a set of clausesC can be
very costly. A main (standard) problem is that proving unsatisfiability implies doing an exhaustive search, considering
all possible inferences among all the clauses. To reduce thecost of this search there are several possible approaches.
For instance, one approach that we do not consider in this paper is to use some kind of ad-hoc heuristics or strategy to
guide the search. A more general kind of solution is based on the elimination from the given specification of clauses
or literals that may be known to be unnecessary for finding a refutation. In this way, we obviously reduce the search
space. A technique that is often used for this purpose issubsumption. Intuitively, a clauseΓ1 subsumesΓ2 if every
refutation usingΓ2 can be replaced by a refutation usingΓ1. In this case,Γ2 may be considered useless and we can
delete it. The standard definition of clause subsumption applies also here, i.e.Γ1 subsumesΓ2 if every literal in Γ1
subsumes a literal inΓ2. However, the notion of literal subsumption is quite different from the standard notion of literal
subsumption in first-order logic. In that case, a literalL1 subsumesL2 if there is a substitutionσ that applied to the
variables ofL1 yieldsL2. This means that, in a sense,L1 is smaller thanL2. Here, literal subsumption works exactly in
the opposite direction. A literal∃C1 subsumes∃C2 if C1 includesC2:

Definition 19 (Literal and clause subsumption)Given literals L1and L2, we say that L1 subsumes L2, denoted L1 ⊳ L2
if L1 = L2 or one of the following cases applies:

• If L1 and L2 are contextual constraints, L1 = ∃C1[Q1] and L2 = ∃C2[Q2], f : C2→C1 is a monomorphism, then
L1 ⊳ f L2 if for every〈¬∀(c : X→C), f2 : X→C2〉 in Q2 there exists〈¬∀(c : X→C), f1 : X→C1〉 in Q1 such that
f1 = f ◦ f2. Moreover, L1 ⊳ L2 if there exists an f: C2→C1 such that L1 ⊳ f L2.

• If L1 and L2 are basic negative constraints, L1 = ¬∃C1 and L2 = ¬∃C2, then L1 ⊳ L2 if there is a monomorphism
h : C1→C2 .
• if L1 and L2 are positive atomic constraints, L1 = ∀(c1 : X1→C1) and L2 = ∀(c2 : X2→C2), then L1 ⊳ L2 if there

are monomorphisms g: X1→ X2 and h: C2→C1 such that c1 = h◦ c2◦g.

Given clausesΓ1 andΓ2, Γ1 ⊳ Γ2 if for every literal L1 in Γ1 there is a literal L2 in Γ2 such that L1 ⊳ L2.

It may be noticed that we have not provided any explicit definition of subsumption for negative non-basic literals.
This means that, implicitly, in this case subsumption coincides with equality. There are two reasons for this. On one
hand, the most obvious candidate for this definition, the contravariant version of subsumption for positive non-basic
literals does not work (i.e. Theorem 4 would not hold for thatnotion of subsumption). On the other hand, one of the
main reasons for introducing subsumption, as explained below, is to have the possibility of eliminating (some of) the
premises of a deduction rule after applying that inference.However, in this case, subsumption of negative non-basic
literals plays no specific role for this elimination.

The following properties are a straightforward consequence of the above definition.

Proposition 17 Subsumption satisfies the following properties:

1. If Γ1 ⊳ Γ2 andΓ2 is empty thenΓ1 is also empty.
2. If Γ1 ⊳ Γ2 and L1 ⊳ L2 thenΓ1∪{L1}⊳ Γ2∪{L2}.
3. If Γ1 ⊳ Γ2 andΓ′1 ⊳ Γ′2 thenΓ1∪Γ′1 ⊳ Γ2∪Γ′2.
4. Given literals¬∀(c : X→C), ∃C1[Q1], and∃C2[Q2]. If ∃C1[Q1] ⊳ f ∃C2[Q2] and there are monomorphisms f1 : X→

C1, f2 : X→C2, such that f1 = f ◦ f2, then∃C1[Q ′1] ⊳ ∃C2[Q ′2], whereQ ′1 = Q1∪{〈¬∀(c : X→C), f1 : X→C1〉}
andQ ′2 = Q2∪{〈¬∀(c : X→C), f2 : X→C2〉}

5. Given literals∃C1[Q1], ∃C2[Q2] and graphs C′1 and C′2. If ∃C1[Q1] ⊳ f ∃C2[Q2] and there are monomorphisms
f1 : C1→C′1, f2 : C2→C′2, and f′ : C′2→C′1 such that f1 ◦ f = f ′ ◦ f2, then∃C′1[f1〈Q1〉] ⊳ f ′ ∃C

′
2[f1〈Q1〉].

32

6. If ∃C1[Q1] ⊳ ∃C2[Q2], ∃C′1[Q
′
1] ⊳ ∃C′2[Q

′
2], Γ1 = (

W

G1∈G1
∃G1[f1〈Q1〉]), andΓ2 = (

W

G2∈G2
∃G2[f2〈Q2〉]) where

G1 = {G1 | 〈 f1 : C1→ G1←C′1 : f ′1〉 ∈ (C1⊗C′1)} andG2 = {G2 | 〈 f2 : C2→ G2←C′2 : f ′2〉 ∈ (C2⊗C′2)}, then
Γ1 ⊳ Γ2.

Now we can prove the main result of this section. Namely that subsumed clauses are not needed in refutations:

Theorem 4 LetΓ1 andΓ2 be clauses, such thatΓ1 ⊳ Γ2 and letC ⇒ C1⇒ ···⇒ Ck . . . be a fair refutation procedure
whereΓ1,Γ2 ∈ C . There is a refutationC \ {Γ2} ⇒ C ′1⇒ ··· ⇒ C

′
k . . . , where∀i Γ2 /∈ C ′i , such that there is a k where

the empty clause is inCk if and only if there is a j where the empty clause is inC ′j

Proof. The if part is trivial sinceC \ {Γ2} is included inC , and this implies that any clause, including the empty
clause, that can be inferred fromC \ {Γ2} can also be inferred fromC . To prove the only-if part, we build inductively
the refutationC \ {Γ2} ⇒ C ′1⇒ ··· ⇒ C

′
k . . . showing that for everyk there is aj such that for every clauseΓ in Ck

there is a clauseΓ ′ in C ′j such thatΓ ′ ⊳ Γ. This is enough to prove the theorem since, according to Prop. 17, the
only clause that subsumes the empty clause is the empty clause, which means that if the empty clause is inCk then the
empty clause should also be in theC ′j .

• The base case is trivial since the only clause that is inC which is not inC \ {Γ2} is obviouslyΓ2, and we have
assumed thatΓ1 ⊳ Γ2 andΓ1 ∈ C .

• Let us assume that for every clauseΓk in Ck there is a clauseΓ′j in C ′j such thatΓ′j ⊳ Γk and j ≤ k. Now we consider
five cases depending on the inferenceCk⇒ Ck+1 = Ck∪{Γ} in order to show that there is someΓ ′ in C ′j+1 such
thatΓ ′ ⊳ Γ:

1. Γ is obtained applying rule (R1’) to∃C3[Q3]∨Γ3 and¬∃C4∨Γ4. This means that there exists a monomorphism
m : C4→C3 andΓ = Γ3∨Γ4. By induction, we know that there should be clauses∃C′3[Q

′
3]∨Γ′3 and¬∃C′4∨

Γ′4 in C ′j such that∃C′3[Q
′
3] ⊳ ∃C3[Q3], Γ′3 ⊳ Γ3, ¬∃C′4 ⊳ ¬∃C4 andΓ′4 ⊳ Γ4. But this means that there are

monomorphismsh4 : C′4→C4 andh3 : C3→C′3. As a consequenceh3◦m◦h4 is a monomorphism fromC′4 to
C′3 which means that we can apply rule (R1’) to the two clauses inferring the clauseΓ′3∨Γ′4 which, according
to Proposition 17, subsumesΓ3∨Γ4. Therefore, we can defineC ′j+1 = C ′j ∪{Γ′3∨Γ′4}.

2. Γ is obtained applying rule (R2’) to∃C3[Q3]∨Γ3 and∃C4[Q4]∨Γ4. ThenΓ = (
W

G∈G ∃G[f3〈Q3〉∪ f4〈Q4〉])∨

Γ3∨Γ4, whereG = {G | 〈 f3 : C3→ G←C4 : f4〉 ∈ (C3⊗C4)}. By induction, we know that there should be
clauses∃C′3[Q

′
3]∨Γ′3 and∃C′4[Q

′
4]∨Γ′4 in C ′j , such that∃C′3[Q

′
3] ⊳ ∃C3[Q3], Γ′3 ⊳ Γ3, ∃C′4[Q

′
4] ⊳ ∃C4[Q4], and

Γ′4 ⊳ Γ4. Then, we can apply the rule (R2’) inferring the clauseΓ ′ = (
W

G∈G ∃G[f3〈Q ′3〉∪ f4〈Q ′4〉])∨Γ′3∨Γ′4,
whereG = {G | 〈 f3 : C′3→ G← C′4 : f4〉 ∈ (C′3⊗C′4)}. Therefore, we can defineC ′j+1 = C ′j ∪ {Γ ′}, since
according to Proposition 17,Γ ′ subsumesΓ.

3. Γ is obtained applying rule (R3’) to∃C3[Q3]∨Γ3 and∀(c : X→C4)∨Γ4. This means that there is a monomor-
phismm: X→C3 andΓ = (

W

G∈G ∃G[f3〈Q3〉])∨Γ3∨Γ4, whereG is the set consisting of all the graphsG such
that there are two jointly surjective monomorphismsf3 : C3→ G and f4 : C4→ G such thatf4 ◦ c = f3 ◦m.
By induction, we know that there should be clauses∃C′3[Q

′
3]∨Γ′3 and∀(c′ : X′ → C′4)∨Γ′4 in C ′j , such that

∃C′3[Q
′
3] ⊳ ∃C3[Q3], Γ′3 ⊳ Γ3, ∀(c′ : X′→C′4) ⊳ ∀(c : X→C4), andΓ′4 ⊳ Γ4. Moreover, this implies that there

are monomorphismsf : C3→C′3, g : X′→ X andh : C4→C′4 such thatc′ = h◦c◦g. But this means that there
is a monomorphismm′ = f ◦m◦g from X′ to C′3. As a consequence, we can apply the rule (R3’) inferring the
clauseΓ ′ = (

W

G′∈G ′ ∃G
′[f ′3〈Q

′
3〉])∨Γ′3∨Γ′4, whereG ′ is the set consisting of all the graphsG′ such that there

are two jointly surjective monomorphismsf ′3 : C′3→ G′ and f ′4 : C′4→ G such thatf ′4 ◦ c′ = f ′3 ◦m′. Now, for
everyG′ ∈ G ′ we have monomorphismsf ′3 ◦ f : C3→G′ and f ′4 ◦h : C4→G′ such thatf ′3 ◦ f ◦m= f ′4 ◦h◦ c.
Then, by Prop. 2, there should be aG ∈ G and a monomorphismf ′ : G→ G′ such that the diagram below
commutes.

33

X′

m′

��>
>>

>>
>>

>

c′ //

g

��

C′4
f ′4

����
��

��
��

C′3
f ′3 // G′

C3

f

OO

f3
// G

f ′

OO

X

m

>>~~~~~~~~
c

// C4

h

OO

f4

``@@@@@@@@

But, according to Proposition 17, this means that for everyG′ ∈ G ′ there should be aG ∈ G such that
∃G′[f ′3〈Q

′
3〉] ⊳ ∃G[f3〈Q3〉]. Therefore,Γ ′ subsumesΓ.

4. Γ is obtained applying rule (R4’) to∃C3[Q3]∨Γ3 and¬∀(g : X→C)∨Γ4. This means thatΓ =(
W

G∈G ∃G[Q])∨

Γ3∨ Γ4, whereG = {G | 〈 f3 : C3 → G← X : f4〉 ∈ (C3⊗X)}, andQ = f3〈Q3〉 ∪ {〈¬∀(g : X → C), f4〉}.
By induction, we know that there should be clauses∃C′3[Q

′
3]∨Γ′3 and¬∀(g : X →C)∨Γ′4 in C ′j , such that

∃C′3[Q
′
3] ⊳ ∃C3[Q3], Γ′3 ⊳ Γ3, andΓ′4 ⊳ Γ4. As a consequence, we can apply the rule (R4’) to these clauses

inferring the clauseΓ ′ = (
W

G∈G ∃G[Q ′])∨Γ′3∨Γ′4, whereG = {G | 〈 f ′3 : C′3→ G← X : f ′4〉 ∈ (C′3⊗X)},
andQ ′ = f ′3〈Q

′
3〉 ∪ {〈¬∀(g : X →C), f ′4〉}. Therefore, we can defineC ′j+1 = C ′j ∪{Γ ′}, since according to

Proposition 17,Γ ′ subsumesΓ.
5. Γ is obtained applying rule (R5) to∃C[Q]∨Γ. This means that∃C[Q] is inconsistent, i.e. there exists〈¬∀(c1 :

X→C1),h : X→C〉 in Q such that there is a monomorphismh1 : C1→C such thath = h1◦c1. By induction,
we know that there should be a clause∃C′[Q ′]∨Γ′ in C ′j , such that∃C′[Q ′] ⊳ ∃C[Q] andΓ′ ⊳ Γ. But this
implies that there is a monomorphismf : C→C′ and there is〈¬∀(c1 : X→C1),h′ : X→C′〉 in Q ′ such that
f ◦h = h′, i.e.:

C

f

��

X

c′1 ''OOOOOOOOOOOOOOO c1
//

h

77nnnnnnnnnnnnnnn
C1

h1

>>}}}}}}}}

f◦h1

 @
@@

@@
@@

C′

but this means that there is a monomorphismf ◦h1 : C1→C′. Moreover, we have thath′ = f ◦h = f ◦h1◦ c1
and, hence,∃C′[Q ′] is not consistent. Therefore, we can apply rule (R5) to the clause∃C′[Q ′]∨Γ′ inferringΓ′
and we can defineC ′j+1 = C ′j ∪{Γ ′}.

It may be noted that, according to our definition of subsumption, in our inference rules (R1’) - (R4’) if one of the
clausesΓ1 or Γ2 in the premises is empty then the result of the rule subsumes apremise. In the case of (R5) the result
of the rule always subsumes the premise. For instance, givenrule (R2’):

∃C1[Q1]∨Γ1 ∃C2[Q2] ∨Γ2

(
W

G∈G ∃G[f1〈Q1〉∪ f2〈Q2〉])∨Γ1∨Γ2
(R2’)

if Γ1 is empty then the consequence of the rule subsumes∃C2[Q2] ∨Γ2. This means that after this inference, this
premise could be eliminated since according to our previoustheorem it is useless to find a refutation of our specifica-

34

tion. A similar thing happens with some of the inference rules that can be found below. If the correspondingΓ1 or Γ2
are empty then we can eliminate one of the premises.

Example 5 According to the previous theorem, we can delete all the subsumed clauses in a specification without
losing completeness. In particular, in our running example, this means that the constraints (1) and (2) could be
eliminated, since they are subsumed by clause (8). Clause (8) can also be eliminated since it is subsumed by clause
(10). Clause (1) also subsumes clause (9), so we could also eliminate it. Finally, clause (10) can also be eliminated,
since it is subsumed by clause (11).

Another way of speeding up refutation procedures is to have inference rules, which perhaps are not needed for
completeness, that allow us to infer clauses that may help usin finding shorter refutations, perhaps with the help of
a heuristics or some proof-strategy. In this case, we may note that a positive (respectively, negative) literal which is
larger (respectively,smaller) than another literalL2 has better chances to be deleted from clauses. In addition,L1
may subsume more literals thanL2 (and it may also subsumeL2). This means that if we are able to replace a clause
includingL2 by a clause includingL1 we may have better chances of finding a refutation faster.

Below, we include several rules that may be used to find betterclauses in the above sense. In particular for each of
these clauses we prove its soundness. The first rule tells us that in a certain situation we may amalgamate two positive
atomic constraints to create a new one that subsumes them.

∀(c1 : X1→C1)∨Γ1 ∀(c2 : X2→C2)∨Γ2

∀(c3 : X1→C3)∨Γ1∨Γ2
(R6)

if there are monomorphismsg : X1→ X2 andh : X2→C1 such thatc1 = h◦g and whereC3 and
c3 = c′1◦ c1 are defined by the pushout diagram below.

C2

h′

!!C
CC

CC
CC

C

X2

c2

=={{{{{{{{

h

!!C
CC

CC
CC

C
p.o. C3

X1

g

OO

c1 // C1

c′1

=={{{{{{{{

Proposition 18 (R6) is sound.

Proof. Suppose thatG |= ∀(c1 : X1→C1)∨Γ1, G |= ∀(c2 : X2→C2)∨Γ2, and there exist monomorphismsg : X1→X2
andh : X2→C1 such thatc1 = h◦g. The case whereG |= Γ1 or G |= Γ2 is trivial. Now, supposeG |= ∀(c1 : X1→C1)
andG |= ∀(c2 : X2→C2) and suppose that there is a monomorphism(f1 : X1→ G) then we have to show that there
should exist a monomorphism(f : C3→G) such thatf1 = f ◦ c3. Using thatG |= ∀(c1 : X1→C1) we have that there
is a monomorphism(g1 : C1→G) with f1 = g1◦c1. But this means thatg1◦h is a monomorphism fromX2 to G using
G |= ∀(c2 : X2→C2) we have that there is a monomorphism(g2 : C2→G) such thatg1◦h = g2◦ c2:

C2

g2

��?
??

??
??

?

h′

��
X2

c2

>>~~~~~~~~

h

 @
@@

@@
@@

@
C3 f

// G

X1

g

OO

c1 // C1

g1

??��������
c′1

OO

But, by the universal property of pushouts and Prop. 2, theremust exist a monomorphism(f : C3→ G) making the
above diagram commute. But this means thatf1 = g1◦ c1 = f ◦ c′1◦ c1 = f ◦ c3. Hence,G |= ∀(c3 : X1→C3).

35

The last three rules describe the interaction of a negative and a positive constraint and, in this sense, they can
be seen as generalizations of the rule (R1’). In particular,the rule (R7) describes the interaction of a negative basic
constraint with a positive atomic constraint:

∀(c : X1→C1)∨Γ1 ¬∃C2∨Γ2

¬∃X1∨Γ1∨Γ2
(R7)

if there exists a monomorphismm : C2→C1

Proposition 19 (R7) is sound.

Proof. Suppose thatG |= ∀(c : X1→C1)∨Γ1, G |= ¬∃C2∨Γ2, and there exists a monomorphismm : C2→C1. The
case whereG |= Γ1 or G |= Γ2 is trivial. Now, suppose thatG |= ∀(c : X1→C1) andG |=¬∃C2, and suppose that there
exists a monomorphismf : X1→G this means that there should be a monomorphismg : C1→G with g◦c1 = f . But
this means thatg◦m is a monomorphism fromC2 to G:

X1
c1 //

f A
AA

AA
AA

A
C1

g

��

C2
moo

G

Therefore suchf cannot exist, which means thatG |= ¬∃X1

Rule (R8) can be seen as a variation of rule (R1’). In particular, as we have discussed above a negative atomic
constraint¬∀(c : X1→C1) can be seen as a variation of the basic constraint∃X1 in the sense that, in both cases we are
asking that the graphX1 should be included in the given graph.

¬∀(c : X1→C1)∨Γ1 ¬∃C2∨Γ2

Γ1∨Γ2
(R8)

if there exists a monomorphismm : C2→ X1

Proposition 20 (R8) is sound.

Proof. It is enough to see that a graphG cannot satisfy simultaneously¬∀(c : X1→C1) and¬∃C2. The reason is that
if G |= ¬∀(c : X1→C1)∨Γ1 this implies that there should exist a monomorphismf : X1→ G. But this would imply
the existence of the monomorphismf ◦m fromC2 to G.

Finally, rule (R9) can be seen as a variation of resolution when considering atomic constraints:

¬∀(c1 : X→C1)∨Γ1 ∀(c2 : X→C2)∨Γ2

Γ1∨Γ2
(R9)

if there is a monomorphismm : C1→C2 such thatc2 = m◦ c1.

Proposition 21 (R9) is sound.

Proof. It is enough to see that if there is a monomorphismm : C1→C2 such thatc2 = m◦ c1 then a graphG cannot
satisfy simultaneously¬∀(c1 : X→C1) and∀(c2 : X→C2). The reason is that ifG |= ¬∀(c1 : X→C1) this implies

36

that there should exist a monomorphismf : X→G such that there is noh1 : C1→G with h1◦c1 = f . But G |= ∀(c2 :
X→C2) implies the existence of a monomorphismh : C2→G, such thatf = h◦ c2:

C1

m

��

X
f

//

c1

77oooooooooooooo

c2
''OOOOOOOOOOOOOO G

C2

h
__@@@@@@@

But this would mean that we have the monomorphismh◦mfromC1 toG. Moreover, we know thatf = h◦c2 = h◦m◦c1
in contradiction with the side condition above.

6. Conclusion

In this paper we have shown how we can use graph constraints asa specification formalism to define constraints
associated to visual modelling formalisms or to specify classes of semi-structured documents. In particular, we have
shown how we can reason about these specifications, providing inference rules that are sound and complete. Moreover,
as can be seen in our examples, and as a consequence of Lemmas 3and3, the completeness proofs show that our
inference rules can also be used for the construction of models for the given sets of constraints.

Our results apply not only to plain graphs, but generalize toa large class of structures including typed and attributed
graphs. In this sense, in [EEHP04, EEPT06] the constraints that we consider have been defined for any adhesive HLR-
category [LaS04, EEPT06]. However, to be precise, to generalize our results, we would need that the underlying
category of structures satisfies the properties stated in Section 2.1, which are used in the main results in the paper,
and that are not considered in [EEHP04, EEPT06]. First, we would need thatG1⊗G2 is finite, provided thatG1
andG2 are finite. Second, we would need that our category satisfies the property of pair factorization as stated in
proposition 1. Finally, we would need that the given category satisfies the existence of infinite colimits as stated in
Prop. 4. In this sense, most set-based categories, in particular, most graph categories satisfy these conditions. However,
the category of attributed graphs presents some problems. In particular, in general, ifG1 andG2 are arbitrary attributed
graphs thenG1⊗G2 may be infinite, even if the graph part ofG1 andG2 is finite. It is enough that the set of possible
values for the attributes is infinite. However, if the definition of G1⊗G2 is restricted to the case where the jointly
surjective morphisms are not only monomorphisms, but also the identity on the attributes, thenG1⊗G2 would be
finite. These monomorphisms are called M-morphisms in [EEPT06] and are needed to prove that attributed graphs are
an adhesive HLR-category. Therefore, in this case it would be enough to show that the factorization properties hold
for M-morphisms. Nevertheless, in [Ore08] we have studied constraints on attributed graphs following a completely
different approach, which is inspired in the area of Constraint Logic Programming. The basic idea is to consider that an
attributed graph (and therefore an attributed graph constraint) can be seen as a graph labelled with variables together
with a logical formula on this variables. This allowed us to make a neat separation between the graph part and the data
part of attributed graph constraints and to provide sound and complete inference rules which are quite close to the ones
presented in this paper, but that may ask, as a side condition, for the satisfiability of some formulas of the data.

Further work is concerned, on one hand, to the extension of this results to the case of arbitrary nested constraints,
and on the other, with the implementation of our techniques.In particular, we think that it will not be too difficult to
implement them on top of the AGG system [Tae04], given that the basic construction that we use in our inference rules
(i.e. buildingG1⊗G2) is already implemented there.

AcknowledgementsThis work has been partially supported by the CICYT project FORMALISM (ref. TIN2007-
66523) and by the AGAUR grant to the research group ALBCOM (ref. 00516). Part of the work was done during a
sabbatical leave of the first author at TU Berlin with financial support from the Ministerio de Ciencia e Innovación
(grant ref. PR2008-0185).

37

References

[Tae04] Taentzer, G, AGG: A Graph Transformation Environment for Modeling and Validation of Software, in: J. Pfaltz, M.Nagl and B.
Boehlen, editors,Application of Graph Transformations with Industrial Relevance (AGTIVE03), LNCS 3062, Springer, 2004 pp. 446
456. URL: http//tfs.cs.tu-berlin.de/agg.

[AlF06] Alpuente M, Ballis D, and Falaschi M: Automated Verification of Web Sites Using Partial Rewriting.Software Tools for Technology
Transfer, 8 (2006), 565–585.

[BCKL06] Baldan P, Corradini A, Koenig B, Lluch-Lafuente A:A Temporal Graph Logic for Verification of Graph Transformation Systems.
In Recent Trends in Algebraic Development Techniques, 18th International Workshop, WADT 2006. Springer Lecture Notes in
Computer Science 4409 (2007), 1–20

[Cou97] Courcelle B: The expression of Graph Properties andGraph Transformations in Monadic Second-Order Logic, in [Roz97] (1997),
313–400.

[EEPT06] Ehrig H, Ehrig K, Prange U, Taentzer G:Fundamentals of Algebraic Graph Transformation, Springer (2006).
[EEHP04] Ehrig E, Ehrig K, Habel A, Pennemann KH: Constraints and Application Conditions: From Graphs to High-Level Structures. In

Graph Transformations, Second International Conference,ICGT 2004(Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce,
Grzegorz Rozenberg, Eds.), Springer Lecture Notes in Computer Science 3256 (2004), 287–303.

[EhH86] Ehrig H, Habel A: Graph Grammars with Application Conditions. InThe Book of L(Grzegorz Rozenberg and Arto Salomaa, Eds.),
Springer (1986), 87–100.

[EEFN03] Ellmer E, Emmerich W, Finkelstein A, and Nentwich C: Flexible Consistency Checking.ACM Transaction on Software Engineering
and Methodology, 12(1) (2003), 28–63.

[HHT96] Habel A, Heckel R, Taentzer G: Graph Grammars with Negative Application Conditions. Fundam. Inform. 26(3/4): 287–313 (1996).
[HaP05] Habel A, Pennemann KH: Nested Constraints and Application Conditions for High-Level Structures. InFormal Methods in Software

and Systems Modeling, Essays Dedicated to Hartmut Ehrig, onthe Occasion of His 60th Birthday(Hans-Joerg Kreowski, Ugo
Montanari, Fernando Orejas, Grzegorz Rozenberg, GabrieleTaentzer, Eds.), Springer Lecture Notes in Computer Science 3393
(2005), 293–308.

[HaP06] Habel A, Pennemann KH: Satisfiability of High-LevelConditions. InGraph Transformations, Third International Conference, ICGT
2006 (Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, Grzegorz Rozenberg, Eds.), Springer Lecture Notes in
Computer Science 4178 (2006), 430–444.

[HaP08] Habel A, Pennemann KH: Correctness of high-level transformation systems relative to nested conditions.Math. Struct. in Comp. Sc.
(2008). Accepted for publication.

[HeW95] Heckel R and Wagner A: Ensuring Consistency of Conditional Graph Grammars - A Constructive Approach -. In Proceedings
SEGRAGRA 1995,Electr. Notes Theor. Comput. Sci., Volume 2 (1995), 118–126.

[Jel00] Jelliffe R: “Schematron”, Internet Document, May 2000. (http://xml.ascc.net/resource/schematron/).
[LaS04] Lack S, Sobocinski P: Adhesive Categories. InFoundations of Software Science and Computation Structures, 7th International

Conference, FOSSACS 2004(Igor Walukiewicz, Ed.), Springer Lecture Notes in Computer Science 2987 (2004), 273–288.
[LEO06] Lambers L, Ehrig H, Orejas F: Conflict Detection for Graph Transformation with Negative Application Conditions. In Graph Trans-

formations, Third International Conference, ICGT 2006, (Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, Grzegorz
Rozenberg, Eds.), Springer Lecture Notes in Computer Science 4178 (2006), 61–76.

[LaG08] De Lara J, Guerra E: Pattern-Based Model-to-Model Transformation. InGraph Transformations, 4th International Conference, ICGT
2008(Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, Gabriele TaentzerEds.), Springer Lecture Notes in Computer Science 5214
(2008), 426–441

[Llo87] Lloyd JW: Foundations of Logic Programming (2nd edition). Springer-Verlag 1987.
[Ore08] Orejas F: Attributed Graph Constraints. InGraph Transformations, 4th International Conference, ICGT 2008(Hartmut Ehrig, Reiko

Heckel, Grzegorz Rozenberg, Gabriele TaentzerEds.), Springer Lecture Notes in Computer Science 5214 (2008), 274–288.
[OEP08] Fernando Orejas, Hartmut Ehrig, Ulrike Prange: A Logic of Graph Constraints. InFundamental Approaches to Software Engineering,

11th International Conference, FASE 2008, Jose Luiz Fiadeiro, Paola Inverardi (Eds.). Springer Lecture Notes in Computer Science
4961 (2008) 179-198

[KMP05] Koch M, Mancini LV, Parisi-Presicce F: Graph-basedspecification of access control policies.J. Comput. Syst. Sci.71(1): 1-33 (2005)
[Pen08] Pennemann KH: Resolution-like Theorem Proving forHigh-Level Conditions. InGraph Transformations, 4th International Confer-

ence, ICGT 2008(Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, Gabriele TaentzerEds.), Springer Lecture Notes in Computer
Science 5214 (2008), 289–304.

[Ren04] Rensink A: Representing First-Order Logic Using Graphs. InGraph Transformations, Second International Conference,ICGT 2004
(Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, Grzegorz Rozenberg, Eds.), Springer Lecture Notes in Computer Science
3256 (2004), 319–335.

[Roz97] Rozenberg, G (ed.):Handbook of Graph Grammars and Computing by Graph Transformation, Vol 1 Foundations, World Scientific,
1997.

38

