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ABSTRACT

Signal Sequence Labeling consists in predicting a sequenceof
labels given an observed sequence of samples. A naive way
is to filter the signal in order to reduce the noise and to apply
a classification algorithm on the filtered samples. We propose
in this paper to jointly learn the filter with the classifier lead-
ing to a large margin filtering for classification. This method
allows to learn the optimal cutoff frequency and phase of the
filter that may be different from zero. Two methods are pro-
posed and tested on a toy dataset and on a real life BCI dataset
from BCI Competition III.

Index Terms— Filtering, SVM ,BCI , Sequence Labeling

1. INTRODUCTION

The aim of signal sequence labeling is to assign a label to each
sample of a multichannel signal while taking into account the
sequentiality of the samples. This problem typically arises in
speech signal segmentation or in Brain Computer Interfaces
(BCI). Indeed, in real-time BCI applications, each sample of
an electro-encephalography signal has to be interpreted asa
specific command for a virtual keyboard or a robot hence the
need for sample labeling [1, 2].

Many methods and algorithms have already been pro-
posed for signal sequence labeling. For instance, Hidden
Markov Models (HMM) [3] are statistical models that are
able to learn a joint probability distribution of samples ina
sequence and their labels. In some cases, Conditional Ran-
dom Fields (CRF) [4] have been shown to outperform the
HMM approach as they do not suppose the observation are
independent. Structural Support Vector Machines (Struct-
SVM), which are SVMs that learn a mapping from structured
input to structured output, have also been considered for sig-
nal segmentation [5]. Signal sequence labeling can also be
viewed from a very different perspective by considering a
change detection method coupled with a supervised classifier.
For instance, a Kernel Change Detection algorithm [6] can be
used for detecting abrupt changes in a signal and afterwards
a classifier applied for labeling the segmented regions.
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In order to preprocess the signal, a filtering is often ap-
plied and the resulting filtered samples are used as training
examples for learning. Such an approach poses the issue of
the filter choice, which is oftenly based on prior knowledge
on the information brought by the signals. Moreover, mea-
sured signals and extracted features may not be in phase with
the labels and a time-lag due to the acquisition process ap-
pears in the signals. For example, in the problem of decoding
arm movements from brain signals, there exists a natural time
shift between these two entries, hence in their works, Pistohl
et al. [7] had to select by a validation method a delay in their
signal processing method.

In this work, we address the problem of automated tuning
of the filtering stage including its time-lag. Indeed, our objec-
tive is to adapt the preprocessing filter and all its properties by
including its setting into the learning process. Our hypothesis
is that by fitting properly the filter to the classification prob-
lem at hand, without relying on ad-hoc prior-knowledge, we
should be able to considerably improve the sequence labeling
performance. So we propose to take into account the temporal
neighborhood of the current sample directly into the decision
function and the learning process, leading to an automatic set-
ting of the signal filtering.

For this purpose, we first propose a naive approach based
on SVMs which consists in considering, instead of a given
time sample, a time-window around the sample. This method
named as Window-SVM, allows us to learn a spatio-temporal
classifier that will adapt itself to the signal time-lag. Then, we
introduce another approach denoted as Filter-SVM which dis-
sociates the filter and the classifier. This novel method jointly
learns a SVM classifier and FIR filters coefficients. By do-
ing so, we can interpret our filter as a large-margin filter for
the problem at hand. These two methods are tested on a toy
dataset and on a real life BCI signal sequence labeling prob-
lem fromBCI Competition III[1].

2. LARGE MARGIN FILTER

2.1. Problem definition

Our concern is a signal sequence labeling problem : we want
to obtain a sequence of labels from a multichannel time-
sample of a signal or from multi-channel features extracted



from that signal. We suppose that the training samples are
gathered in a matrixX ∈ R

N×d containingd channels and
N samples.Xi,j is the value of channelj for theith sample.
The vectory ∈ {−1, 1}N contains the class of each sample.

In order to reduce noise in the samples or variability in
the features, an usual approach is to filterX before the clas-
sifier learning stage. In literature, all channels are usually fil-
tered with the same filter (Savisky-Golay for instance in [7])
although there is no reason for a single filter to be optimal
for all channels. Let us define the filters applied toX by the
matrixF ∈ R

f×d. Each column ofF is a filter for the corre-
sponding channel inX andf is the size of the FIR filters.

We define the filtered data matrix̃X by:

X̃i,j =

f∑

m=1

Fm,j Xi+1−m+n0,j (1)

where the sum is a unidimensional convolution of each chan-
nel by the filter in the appropriate column ofF . n0 is the
delay of the filter, for instancen0 = 0 corresponds to a causal
filter andn0 = f/2 corresponds to a filter centered on the
current sample.

2.2. Windowed-SVM (W-SVM)

As highlighted by Equation (1), a filtering stage essentially
consists in taking into account for a given timei, instead of
the sampleXi,·, a linear combination of its temporal neigh-
borhood. However, instead of introducing a filterF , it is pos-
sible to consider for classification a temporal window around
the current sample. Such an approach would lead to this de-
cision function for theith sample ofX :

fW (i,X) =

f∑

m=1

d∑

j=1

Wm,jXi+1−m+n0,j + w0 (2)

whereW ∈ R
f×d andw0 ∈ R are the classification parame-

ters andf is the size of the time-window. Note thatW plays
the role of the filter and the weights of a linear classifier. Ina
large-margin framework,W andw0 may be learned by mini-
mizing this functional:

JWSV M (W ) =
1

2
||W ||2F +

C

2

N∑

i=1

H(y, X, fW , i)2 (3)

where||W ||2F =
∑

i,j W
2
i,j is the squared Frobenius norm of

W ,C is a regularization term to be tuned andH(y, X, f, i) =
max(0, 1−yif(i,X)) is the SVM hinge loss. By vectorizing
appropriatelyX andW , problem (3) may be transformed into
a linear SVM. Hence, we can take advantage of many linear
SVM solvers existing in the literature such as the one pro-
posed by Chapelle [8]. By using that solver, Window-SVM
complexity is aboutO(N.(f.d)2) which scales quadratically
with the filter dimension.

The matrixW weights the importance of each sample
valueXi,j into the decision function. Hence, channels may
have different weights and time-lag. Indeed,W will automat-
ically adapt to a phase difference between the sample labels
and the channel signals. However, in this method since space
and time are treated independently,W does not take into ac-
count the multi-channel structure and the sequentiality ofthe
samples. Since the samples of a given channel are known
to be time-dependent due to the underlying physical process,
it seems preferable to process them with a filter and to clas-
sify the filtered samples. So we propose in the sequel another
method that jointly learns the time-filtering and a linear clas-
sifier on the filtered sample defined by Eq. (1).

2.3. Large margin filtering (Filter-SVM)

We propose to find the filterF that maximizes the margin of
the linear classifier for the filtered samples. In this case, the
decision function is:

fF (i,X) =

f∑

m=1

d∑

j=1

wjFm,jXi+1−m+n0,j + w0 (4)

wherew andw0 are the parameters of the linear SVM classi-
fier corresponding to a weighting of the channels. By disso-
ciating the filter and the decision function weights, we expect
that some useless channels (non-informative or too noisy)
for the decision function get small weights. Indeed, due to
the double weightingwj andF.,j , and the specific channel
weighting role played bywj , this approach, as shown in the
experimental section is able to perform channel selection.

The decision function given in Equation (4) can be ob-
tained by minimizing:

JFSV M =
1

2
||w||2+

C

2

n∑

i=1

H(y, X, fF , i)
2+

λ

2
||F ||

2

F (5)

w.r.t. (F,w, w0) where||F ||F is the Frobenius norm, andλ
is a regularization term to be tuned. Note that without the
regularization term||F ||2F , the problem is ill-posed. Indeed,
in such a case, one can always decrease||w||2 while keeping
the empirical hinge loss constant by multiplyingw by α < 1
andF by 1

α
.

The cost defined in Equation (5) is differentiable and
provably non-convex when jointly optimized with respect to
all parameters. However,JFSV M is differentiable and convex
with respect tow andw0 whenF is fixed as it corresponds
to a linear SVM with squared hinge loss. Hence, for a given
value ofF , we can define

J(F ) = min
w,w0

1

2
||w||2 +

C

2

n∑

i=1

H(y, X, fF , i)
2

which according to Bonnans et al. [9] is differentiable. Then
if w∗ andw∗

0 are the optimal values for a givenF ∗, the gra-
dient of the second term ofJ(·) with respect toF at the point



F ∗ is:

∇Fm,j
J(F ∗) = −

N∑

i=1

yi(w
∗

jXi−m+1+n0,j)×H(y, X, fF∗ , i)

Now, sinceJ(F ) is differentiable and since its value can be
easily computed by a linear SVM, we choose for learning the
decision function to minimizeJ(F ) + λ

2
‖F‖2F with respects

to F instead of minimizing problem (5). Note that due to the
objective function non-convexity in problem (5), these two
minimization problems are not strictly equivalent, but ourap-
proach has the advantage of taking into account the intrinsic
large-margin structure of the problem.

Algorithm 1 Filter-SVM solver

SetFl,k = 1/f for k = 1 · · · d andl = 1 · · · f
repeat
DF ← gradient ofJFSV M with respect toF
(F,w∗, w∗

0)← Line-Search alongDF

until Stopping criterion is reached

For solving the optimization problem, we propose a gra-
dient descent algorithm alongF with a line search method
for finding the optimal step. The method is detailed in algo-
rithm 1. Note that at each computation ofJ(F ) in the line
search, the optimalw∗ andw∗

0 are found by solving a linear
SVM. The iterations in the algorithm may be stopped by two
stopping criteria: a threshold on the relative variation ofJ(F )
or a threshold on variations ofF norm.

Due to the non-convexity of the objective function, it is
difficult to provide an exact evaluation of the solution com-
plexity. However, we know that the gradient computation has
order ofO(N.f.d) and that whenJ(F ) is computed at each
step of the line search, aO(N.d2) linear SVM is solved and
aO(N.f.d) filtering is applied.

3. RESULTS

3.1. Toy Example

We use a toy example that consists ofnbtot channels, only
nbrel of them being discriminative. Discriminative channels
have a switching mean{−1, 1} controlled by the label and
corrupted by a gaussian noise of deviationσ. The length of
the regions with constant label follows a uniform distribution
law between[30, 40] samples and different time-lags are ap-
plied to the channels. We selectedf = 21 andn0 = 11
corresponding to a good average filtering centered on the cur-
rent sample. Figure 1 shows how the samples are transformed
thanks to the filterF for a unidimensional signal. In this case,
the mean test error due to the noise is 16% for the unfiltered
signal, while only 2% for the optimally filtered signal.

Window-SVM and Filter-SVM are compared to SVM
without filtering, SVM with an average filter of sizef (Avg-
SVM) and HMM with a Viterbi decoding. The regularization
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Fig. 1. Histograms of both labels with and without filtering
(vertical axis are different) for a 1 channel signal withσ = 1
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Fig. 2. Test error for differentσ values (nbtot = 30,
nbrel = 3, on the left) and for different number of channels
nbtot (σ = 3, nbrel = 3, on the right)

parameters are selected by a validation method. The size
of the signals is of1000 samples for the learning and the
validation sets and of5000 samples for the test set. All the
processes are run ten times, the test error is the the average
over the runs.
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Fig. 3. Coefficients ofW (left) and coefficientsF weighted
byw (right) fornbrel = 3, nbtot = 30, σ = 3

The methods are compared for differentσ values with
(nbtot = 30, nbrel = 3). The test error is plotted on the
left of Figure 2. We can see that only Avg-SVM, Window-
SVM and Filter-SVM adapt to time-lags between the chan-
nels and the labels. Both Window-SVM and Filter-SVM out-
perform the other methods, even if for a heavy noise, the last
one seems to be slightly better. Then we test our methods for
a varying number of channels in order to see how dimension
is handled (nbrel = 3, σ = 3). Figure 2 (right) shows the in-
terest of Filter-SVM over Window-SVM in hight dimension
as we can see that the last one tends to lose his efficiency, and



Method Sub 1 Sub 2 Sub3 Avg
BCI Comp. 0.2040 0.2969 0.4398 0.3135
SVM 0.2877 0.4283 0.5209 0.4123
Filter-SVM
f = 8, n0 = 0 0.2337 0.3589 0.4937 0.3621
f = 20, n0 = 0 0.2021 0.2693 0.4381 0.3032
f = 50, n0 = 0 0.1321 0.2382 0.4395 0.2699
Avg-SVM
f = 100, n0 = 50 0.1544 0.2235 0.3870 0.2550
Filter-SVM
f = 100, n0 = 50 0.0537 0.1659 0.3859 0.2018

Table 1. Test Error for BCI Dataset

Fig. 4. F filters (subject 1) for label 1 against all (left) and
label 2 against all (right).

even to be similar to Avg-SVM. This comes from the fact that
Filter-SVM can more efficiently perform a channel selection
thanks to the weighting ofw. Figure 3 shows the filters re-
turned by both methods. We observe that only the coefficients
of the relevant signals are important and that the other signals
tend to be eliminated by small weights for Filter-SVM, ex-
plaining the better results in high dimension.

3.2. BCI Dataset

We test our method on the BCI Dataset fromBCI Competition
III [1]. The problem is to obtain a sequence of labels out of
brain activity signals for 3 human subjects. The data consists
in 96 channels containing PSD features (3 training sessions,
1 test session,N ≈ 3000 per session) and the problem has
3 labels (left arm, right arm or feet).

We use Filter-SVM that showed better result in hight di-
mension for the toy example. The multi-class aspect of the
problem is handled by using a One-Against-All strategy. The
regularization parameters are tuned using a grid search valida-
tion method on the third training set. We compare our method
to the best BCI competition results (using only 8 samples) and
to the SVM without filtering. Test error for different filter size
f and delayn0 may be seen on Table 1. Results show that
one can improve drastically the result by using longer filtering
with causal filters (n0 = 0). Note that Filter-SVM outperform
Avg-SVM with a centered filter.

Another advantage of this method is that one can visualize
a discriminative space-time map (channel selection, shapeof

the filter and delays). We show for instance in Figure 4 the
discriminative filtersF obtained for subject 1, and we can see
that the filtering is extremely different depending on the task.

The Matlab code corresponding to these results will be
provided on our website for reproducibility.

4. CONCLUSIONS

We have proposed two methods for automatically learning a
spatio-temporal filter used for multi-channel signal classifica-
tion. Both methods have been tested on a toy example and on
a real life dataset fromBCI Competition III.

Empirical results clearly show the benefits of adapting the
signal filter to the large-margin classification problem despite
the non-convexity of the criterion.

In future work, we plan to extend our approach to non-
linear case, we believe that a differentiable kernel can be used
instead of inner products at the cost of solving the SVM in
the dual space. Another perspective would be to adapt our
methods to the multi-task situation, where one wants to jointly
learn one matrixF and several classifiers (one per task).
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