Filtrage vaste marge pour l'étiquetage séquentiel à noyaux de signaux - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

Filtrage vaste marge pour l'étiquetage séquentiel à noyaux de signaux

Abstract

We address in this paper the problem of multi-channel signal sequence labeling. In particular, we consider the problem where the signals are contaminated by noise or may present some dephasing with respect to their labels. For that, we propose to jointly learn a SVM sample classifier with a temporal filtering of the channels. This will lead to a large margin filtering that is adapted to the specificity of each channel (noise and time-lag). We derive algorithms to solve the optimization problem and we discuss different filter regularizations for automated scaling or selection of channels. Our approach is tested on a non-linear toy example and on a BCI dataset. Results show that the classification performance on these problems can be improved by learning a large margin filtering.
Fichier principal
Vignette du fichier
Cap2010.pdf (853.67 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00497296 , version 1 (03-07-2010)

Identifiers

Cite

Rémi Flamary, Benjamin Labbé, Alain Rakotomamonjy. Filtrage vaste marge pour l'étiquetage séquentiel à noyaux de signaux. Conférence Francophone sur l'Apprentissage Automatique, May 2010, Clermont Ferrand, France. 12p. ⟨hal-00497296⟩
79 View
41 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More