A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter

. We show the dependence of field evolution equations on the micro-structure parameter l and compare our model with the homogenized asymptotic ones. The consideration of the pore size 1 allows us to forecast the onset of micro-displacement waves as a consequence of a ground settling and to suggest a possible description of the genesis of certain microearthquakes [5] [6].

Introduction

In [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF] a new way is suggested to study the effect of the length scale parameter -characterizing the size of the pores -in the mechanical interaction of a fluid with a porous matrix.

The method used there (called in [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] macro-modelling procedure) is very powerful and relatively easy to apply. Here we want to use it to characterize the dynamical evolution of a system 5 P constituted by a porous solid visco-elastic matrix with non connected periodically distributed inclusions saturated by a viscous fluid. It is well known that the study of this system is very difficult from the mathematical point of view if it is modelled in a refined way: i.e. by means of two distinct 3-D Cauchy continua occupying, in every configuration, two disjoint but geometrically tightly nested regions of space.

Indeed the complex geometrical structure of the system leads to a coupled (by suitable boundary conditions) system of partial differential equations (PDE) for the displacement field of the solid matrix and for the velocity field of the included fluid. To overcome these difficulties different methods are available in the literature. Here we will mention three of them:

(i) In [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] an asymptotic analysis is proposed which leads to the introduction of homogenized continua as models for considered periodically inhomogeneous systems. These continua are characterized in terms of effective coefficients appearing in their constitutive equations. These effective coefficients are found by means of a complex mathematical procedure involving the solution of a boundary value problem for a prototype PDE in the periodicity cell. (ii) In [START_REF] Capriz | Continui con microstruttura. ETS Editrice Pisa. Continua with microstructures[END_REF] -instead -a direct approach is considered. The kinematics of the substantial point of the continuum is described in terms of some descriptors of the micro state of the system. In order to find the evolution equations for these micro-state descriptors some balance equations have to be postulated in every considered instance.

(iii) In [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF], [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF], [START_REF] Germain | Cours de m6canique des milieux continus (tome 1)[END_REF], [START_REF] Di Carlo | Continuum modelling of beam like latticed truss: Identification of the constitutive functions for the contact and inertial actions[END_REF], although using different mathematical tools, a kind of compromise between the first and second approach is suggested. Refraining from a detailed description of the displacement fields at the micro-level, the evolution equations for the micro-state descriptors are deduced by assuming that they determine with a certain approximation the micro-fields introduced in the refined 3-1) description. This deduction is possible by the following two steps: a) First, suitable micro shape functions are chosen (respecting the criteria found in [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF], [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF]). b) Second, an expression for the micro-fields in terms of micro shape functions, the micro-descriptors and the macro-displacements is used in the weak form of force balance.

As an important by-product macro constitutive equations in terms of micro shape functions and micro constitutive equations are determined.

The first two methods show some drawbacks:

(i) In the method mentioned in (i) the solution of the prototype PDE in most cases is very difficult to construct because of the geometry of the periodicity cell and is solved, in general, only by means of numerical methods. Finally, as homogenized asymptotic models are obtained with a limiting procedure for vanishing periodicity cell size, they can account for the effects neither of length scale parameters nor of any structural change at the micro-level induced by deformation. (ii) In the method mentioned in (ii) one needs to postulate suitable balance equations from which deducing the evolution equations for micro-descriptors. No general axiomatic format seems presently available to supply valid criteria to select the appropriate form for these balance equations. For a more detailed discussion of this point we refer to [START_REF] Williams | Review of Continua with microstructure by G. Capriz[END_REF], [START_REF] Di Carlo | A non standard format for continuum mechanics[END_REF]. (iii) On the other hand the procedure proposed in [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] supplies a standard method for simplifying the refined description for ~ by means of the introduction of a micro-structured continuum, modelling it at a macroscopic level. In particular the aforementioned procedure allows for an easy determination of both 9 the evolution equations for the macro displacement and the relevant micro descriptors introduced for describing the kinematics of the micro structured continuum characterizing the coarse behavior of ~, 9 and the constitutive equations for the micro structured continuum in terms of the geometry of ~ at the micro-level and the constitutive equations of its micro-component.

The method used here is based on the deduction of evolution equations for both macro displacements and micro descriptors from the classical theory of Cauchy continua, assumed to be valid in the refined description at the micro level. The micro-displacement field for these continua is found -in principle -by using force balance law, when the geometry of the solid matrix, its interaction modalities with the field phase, and the constitutive equations for both solid and fluid phases are known.

Although their determination can be very difficult, in many instances it is possible to guess some features of the micro-displacements in order to obtain a simplified system of PDE governing the motion. In [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] this guessing procedure finds a formally correct frame of reference by means of the introduction of so called '"micro-shape functions". Their properties are listed in the following Sections 2, 3 or in [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF], [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] to which we refer. The suitably chosen micro-shape functions allow for the representation of micro-displacement as the sum of a macro-displacement and a micro-disturbance whose evolution is controlled by the micro descriptors and whose form is fixed by micro-shape functions. In this way it is possible to account for those features of the deformation of the micro-structure relevant for the evolution of macro displacement. Indeed the weak form of the force balance equation -which we assume to hold at the micro-level -once the aforementioned representation for micro-displacement is accepted, allows for the deduction of the evolution equations for macro displacements and micro descriptors. This deduction -which makes possible the change from the refined to a coarse description of 5: -is based on 9 the determination of an accuracy parameter e and of the micro-periodicity cells; 9 the assumption that macro displacements and micro descriptors are slowly-varying fields.

More precisely macro displacements and micro descriptors are assumed to be e-macro functions, i.e. functions whose variation in every periodicity cell is e-negligible; 9 the possibility, in the macro description of 5 p, of neglecting -in the weak form of force balance -every quantity of order equal or greater than e.

While the equations for macro displacements are PDE, those obtained for micro descriptors are ODE. Therefore -in the sense used by [START_REF] Capriz | Continui con microstruttura. ETS Editrice Pisa. Continua with microstructures[END_REF] -the micro descriptors are internal state variables.

In [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] also a criterion is given to establish whether the chosen micro shape functions are reasonably guessed: for a discussion of the reliability of the micro shape functions we use in this paper we refer to [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF]- [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF].

In the present paper we:

9 formulate a new mathematical model for compacting fluid saturated grounds 9 obtain, in the framework of the aforementioned model, the description of the genesis of the microearthquakes related to the bradyseismic phenomena in the Phlegrean Fields in South Italy.

Geometrical structure of the solid matrix and fluid inclusions

The considered body ~ is assumed to be constructed -in a reference configuration -by translating a typical cell V. Let

,1,

We choose I as the micro-structure length scale parameter (cf. [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] and references there quoted).

In order to characterize the structure of a solid matrix with non connected fluid inclusions we consider the following partition of V: v=v~uv~, v~ c-, v~ = 0 where Vv_c V such that OVv~Vs=O.

We assume that V, Vs and VF are regular regions as defined by Truesdell [START_REF] Truesdell | A first course in rational continuum mechanics[END_REF]. Vs is occupied by a solid material while VF by a fluid one. For an arbitrary point x in the physical 3-space E we will use the following notation:

(i) V(x),= x + V, Vs(x) .'= x + Vs, Vv(x) ,= x + Vv.
Let f2 be the region occupied by the body ~ in the reference configuration. We assume that there exists a lattice A of places in E such that (where int A means the topological interior of A) A detailed (refined following [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF]) dynamical description of the body ~ at a micro-level is obtained by introducing displacement fields whose variations in every cell V(x) (whose diameter is l) can be relevant. Instead a coarse description, i.e., a description at a macro-level (in which only some overall "averaged" properties of the body are to be considered) will be obtained by introducing "macro descriptors" of displacement which are nearly constant inside every V(x). (v) For a generic functionf defined respectively in V(x), Vs(x) and Vv(x) we denote the mean value as follows [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF], [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF]:

(ii) (V(x> x2)e A x A) [xl # x2 ~ int V(xl)c~ int V(x2) = 0]; O=int U lY(x),
,.,1 f ]V~I f v 1 f,=~ (f),,:= ~ f dV, <f)xS== f dV, <f ),, f dV. V(x) Vs(x) VF(x) If f is a V-periodic function, then, Vx ~ E we obtain <f),, = <f), (f)xs = (f)s, (f)xu = (f)F
where <f), <f>s, <f)P are constants.

(vi) Following [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF] we call micro-shape functions a system of sufficiently regular V-periodic linear-independent functions h~A('), A = 1, ..., N, representing a functional basis for a finite dimensional subspace of the space of continuous V-periodic functions such that htA(x) ~ 0(l),

Vhla(x) e O(1), <h,A) s = (h,a) v = O, X Z E, ( 2 
)
where the index I displays the dependence of the micro shape functions on the length scale parameter; O(1) represents a set of functions of I which are infinitesimal of equal or higher order than l, and O(1) is a set of functions of l whose maximum value remains finite when 1-0 0. (vii) For some e > 0, we call a real-valued function F defined on f2 an e-macro-function if

(Vx ~ ~2o)(Vzr V(x)) f(z) ~-f(x) where a ~ b means I[ a -b II --< e. ( 3 
)
For each F the parameter ~ will be considered as an error implied by the choice of giving up the microscopically accurate description of the variation in V(x) of F. Although in general different F have different e (i.e. e = ee), in the following we assume that one and the same e can be chosen for all macro-functions necessary to the description of the system.

Evolution equations for macro-displacements and macro-descriptors

We assume that ~ consists of 9 a linear elastic solid matrix 9 saturated inclusions of a Stokesian incompressible viscous fluid [START_REF] Truesdell | The mechanical foundations of elasticity and fluid dynamics[END_REF]. Therefore, at the micro-level we assume that the following constitutive equations hold: 

) 5 
where u is the micro-displacement vector field defined in ~?s for every substantial point belonging to the matrix; v is the micro-velocity field in the fluid inclusions. Since H Vu [I ~ 1 we may set = sym (grad (v)); C is the linear elasticity fourth order tensor; D is the Navier-Stokes linear viscosity tensor; p, ts, te, fir are the hydrostatic pressure field, the Cauchy tensor for the solid and the fluid media, the Stokes viscosity in the fluid inclusions, and I is the identity tensor, respectively. Let Qs, 0r represent mass density fields of the solid and fluid components, and let b be the external body force.

We assume the following weak-form of force balance equations (see for instance [START_REF] Capriz | Continui con microstruttura. ETS Editrice Pisa. Continua with microstructures[END_REF], [START_REF] Mason | Methods of functional analysis for application in solid mechanics[END_REF]): for every ~u continuous in fl and of class C 1 in intOsuintOr, and such that ~u[0a = 0, ~e = Sym (grad (~u)).

The dynamical problem for ~ is given by Eqs. ( 4), [START_REF] Corrado | Inflation and micro earthquake activity of Phlegraean Fields[END_REF], and [START_REF] Vesuviano | Rapporto di Sorveglianza Bradisismo Flegreo[END_REF]. It describes completely the micro-behavior of the considered continuum. No qualitative study of the resulting PDE has been performed. In particular up to now it has not been possible to describe the influence of the geometry of the fluid inclusions on the average displacement of the ceils constituting the solid matrix. Only numerical solutions could be determined for particular geometrical shapes of the solid matrix.

In this paper we try the aforementioned qualitative study by refraining from a detailed description of the micro-displacement field inside the typical cell V(x). Indeed, we guess a representation for the micro-displacement field in terms of a macro-displacement field and some disturbances obtained by means of some micro descriptors and some micro shape functions. The micro shape functions account for the geometry of the inclusions and for some aspects of the mechanical behavior of the solid matrix, while the micro-descriptors account for those aspects of the micro-displacements which are expected to influence the macro-displacements. Formally this can be done by introducing the following hypotheses (for more details we refer to [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF]- [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF], [START_REF] Wo~niak | Micro-macro dynamics of periodic materials structures[END_REF]):

(j) The micro-displacement field u is represented as (summation over A holds):

u(x, t) = U(x, t) + hff(x) QA(x, t), x ~ s t E (to, tfl,

where hff(-), (A = 1 ..... N) are the micro shape functions describing the kinematics of the system at the microscopic level. They are to be chosen a priori in order to account for those features of the solutions at the micro-level which are relevant at the macro-level in the considered phenomena. The more suitable the guess represented by the micro shape functions is the more accurate will be the qualitative analysis they allow. For instance, in [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF] it is shown that for empty inclusions the most appropriate micro shape functions differ from those which have to be chosen in the case of filled inclusions. More examples are available in [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF], [START_REF] Wo~niak | Micro-macro dynamics of periodic materials structures[END_REF], [START_REF] Wo~niak | Refined macro-dynamics of periodic structures[END_REF].

Remark 1. The functions U and QA are sufficiently regular macro-functions which will be treated as new kinematical, independent variables. They will be called, respectively, the macro-displacement and the micro-descriptors of micro-displacement fields.

(jj) In modelling the macro-behavior of the system we dispence with the description of some of the aspects that can be considered micro. Consequently, we neglect all terms appearing in the equations that are of the same (or higher) order of the accuracy parameter e that characterizes the precision to which we can measure the macro-functions U(-, t), Qa(., t) and all their derivatives. In the sequel this kind of approximation will be denoted by ~. It is better to underline at this point that in this approach the micro-structure length scale parameter l is a known physical constant (independent of e) and will not be neglected. therefore the macro-motion of the matrix is the same as the macro-motion of the fluid inclusions. The hypotheses formulated for the micro shape functions are therefore suitable for describing the behavior of a solid matrix with non-connected fluid inclusions. This fact allows to use a Iagrangian description also for the fluid component of the considered system.

In this way we see that at micro-level the motion, described by u, can be regarded as a superimposition of "micro-disturbances" (hffQ a) over the "macro-motion" U. Thus the QA(., t) are those macro-quantities describing those disturbances at the micro-level which are relevant at the macro-level. Choosing different micro shape functions allows for the study of different aspects of the considered process, whose more detailed description can also be obtained by increasing the number N of micro shape functions. where 6U and 6Q A are e-macro-functions. Using (j), (jj), and (jjj) we obtain, by manipulating each term in Eq. ( 6), the weak form of the evolution equations for U and Qa. To this end observe that (for a detailed derivation of these expressions we refer to Eq. ( 61 Remark 3. The last two equations imply that both S and H A are macro-functions in f2. Moreover, we underline that the tensor S because of its definition accounts also for the dissipative component of the micro stress tensor in the fluid inclusions.

In the same way we find (see Eqs. ( 64) and (65) in the Appendix): 

6h" ~u dV+ ~ 66" 3u dV ~-~ ((6) U + (6hl A) QA). (~U dV f~F ~s + f ((6 h'A) (-J + (6 htAhlB) QB). ~QA dV

(6h ahte) Qe + (Ohza) ~ + H A + pa _ (6bhlA) = 0. ( 19 
)
Equations ( 18), [START_REF] Jong | Three dimensional consolidation[END_REF] together with ( 11), ( 12) and ( 16) represent the system of equations for the fields U and QA, provided that the terms in which the fluid pressure in an inclusions appears E delrIsola et al.

are known. In the following we will limit ourselves to consider incompressible fluids. This implies that

(div (u)} = 0 ~ (1} e div U + (Vh~A} F" QA = 0. ( 20 
)
Remark 4. The coefficients of the system ( 18), [START_REF] Jong | Three dimensional consolidation[END_REF] and [START_REF] Verruijt | Generation and dissipation of pore water pressure, finite elements in geomechanics[END_REF] are constant. This is a consequence of the hypothesis of V-periodicity we have made on the solid matrix. Note, also, that some of the aforementioned coefficients depend on l because of the terms ~ohiAht B) ~ 12 , (~ht A) ~ 1.

Remark 5. Equation ( 19) represents a set of ODE. Therefore there is no boundary condition to assign for the QA : in the sense of [START_REF] Capriz | Continui con microstruttura. ETS Editrice Pisa. Continua with microstructures[END_REF] they must be regarded as internal state variables. Remark 6. Simple inspection of Eqs. ( 12) and ( 19) shows that it is not possible to use them to express S -as given by ( 11) -as functions of the quantities E and E only. Indeed if the length scale parameter I is not negligible, [START_REF] Jong | Three dimensional consolidation[END_REF] (after substitution of ( 12)) becomes an ODE of the second order for the variables QA. If l is negligible Eq. ( 19) reduces to an ODE of the first order for the QA's. In both cases the possibility to represent S -by means of suitable Effective Moduli (as in the mogenized theories) -as a function of macro-strain and its time derivative is lost.

A compaction problem: the effect of fluid inclusions on vibrations induced by ground settling

Let us apply the model to the case in which the solid matrix undergoes a compaction process.

In particular we wish to study the effect of the geometry of the microscopic fluid inclusions on the micro-displacement waves induced by ground settling. To our knowledge this problem cannot be handled with other methods. We assume that C and D act on E and l); as follows: We will distinguish two regimes, separate in time: the first (t e [0, to]) in which the solid compacts in the xl direction. Because of compression some micro-motions arise which are able to influence the behavior of the body at the macro level also. We study these effects in an interval following the compaction: t c [to, ts], (eventually (t z --+ oo)), analyzing the influence of the micro structure size on the macro-behavior and compare our results with those obtained with the homogenized asymptotic model. The initial conditions for t = to are determined as the final conditions of the compaction regime so that we must necessarily analyze the compaction process in some detail. In general in order to model these processes (see [START_REF] Biot | General theory of three dimensional consolidation[END_REF]- [START_REF] Verruijt | Generation and dissipation of pore water pressure, finite elements in geomechanics[END_REF]) PDE in three dimensional domains need to be solved. Here we use a semi-inverse method for solving the system of PDE (for MD) coupled with the ODE governing the evolution of micro-descriptors. We use the following micro-shape functions (see Fig. 1):

C'E=~ 0, if x~g2r (21 
fhl-2 hi } --xl, if 0 < xl < hi, hi(xl) = gl xl --gi hi + 2hi T ~-, if gi < xi < ll, Ii g~ i= 1, 2, 3. (22) 
This choice has been fully justified from the mathematical point of view in [START_REF] Dell'isola | Dynamics of solids with micro-periodic non-connected fluid inclusions[END_REF] - [START_REF] Woiniak | Microdynamics: continuum modelling the simple composite material[END_REF], [START_REF] Wo~niak | Micro-macro dynamics of periodic materials structures[END_REF]. Here we want to stress the physical meaning: it states that the unit V-cell and its fluid inclusion VF undergo deformations mapping them into parallelepipeds only. This assumption is well-grounded only ifa solid matrix is in contact with an incompressible or nearly incompressible fluid inclusion. For instance if we apply our modelling procedure to a solid with voids then we need as micro shape functions higher order polynomials in the x variables.

The initial phase: ground settling

We use the following boundary conditions (BC) for the macro displacement:

t UI(0 , x2, x3, t) = 0, UI(L1, x2, x3, t) = -qL1 ~o' t t UI(xl, O, x3, t) = -rlXl--to' Ul(xl, L2, x3, t) = -fix1 to (23) t t Ul(xl, x2, O, t) = -rlxl to' Uz(xl, x2, L3, t) = -rlx~ ~, U2= U3=0 on c~f2
where r/is a measure of the amount of the ground settling. Indeed the total variation of the ground level 3 at x3 = 0 is given by 3 = r/L1. To these boundary conditions we must add the following initial conditions (IC):

UI(X1, X2, X3, O) = O, D~I(X1, X2, X3, O) = --~0 Xj. to Ll' U2 (x1, x2, x3, 0) = 0, [)2(x1, x2, x3, 0) = 0, ~)2(xl, x2, x3, 0) = 0, ~23(xl, x2, x3, 0) = 0, (24) QiA(xl, x2, X3, 0) = 0, (A = 1, 2, 3; i = 1, 2, 3) 
, QiA(xI, X2, X3, 0) = 0, (A = 1, 2, 3; i = 1, 2, 3).

It is very easy to verify that

U1= -3o ~ t U2 = U3 = O, P = P(t) (25) L 1 t o ' is a solution of div S -(~o) [3 + VP = 0 (26) 
satisfying BC and IC.

In this way Eqs. ( 18), ( 19) and ( 20) simplify and can be written 

(~o(h~) 2) Qll + Hi ~ + P~ = 0, ( 27 
) (0(h2) 2) Q2 2 -}-H22 + P2 =-0, (28) 
(o(h3) 2) Q33 -I-H33 + P3 = 0, (29) 

The subsequent phase." micro-vibrations

We assume that in the interval [to, tl] the IC for the macro displacement and the microdescriptors are given by their corresponding final value in the settling phase. Therefore, when the

Towards an application to the genesis of micro-earthquake induced by compaction

We note that, because of the dependence of~o and/~o on I and g, we can prove that there are two ranges in the set of geometric and material constants. Bodies characterized by constants belonging to the first set are such that all initial strain deformations are damped in an exponentially decreasing way in a short "transient" time interval. On the other hand media with material constants belonging to the second class experience a longer period of damped displacement oscillations.

The quoted results open interesting possibilities towards the description of some among the phenomena described in [START_REF] Casertano | Hydrodynamics and geodynamics in the Phlegraean Fields area of Italy[END_REF], [START_REF] Corrado | Inflation and micro earthquake activity of Phlegraean Fields[END_REF] and [START_REF] Vesuviano | Rapporto di Sorveglianza Bradisismo Flegreo[END_REF]. These papers show how peculiar the seismic and volcanic activity is in the region of Phlegraean Fields in southern Italy. In particular in [START_REF] Corrado | Inflation and micro earthquake activity of Phlegraean Fields[END_REF] microearthquakes are decribed which are typical of that area.

On the other hand in [START_REF] Casertano | Hydrodynamics and geodynamics in the Phlegraean Fields area of Italy[END_REF] -in a very intuitive and somehow tentative way -some ideas are presented about the genesis of those earthquakes and the whole bradyseismi& phenomenon. The ideas are:

(i) the vertical movement of the crust in the Phlegraean Fields could be caused by the pore pressure variation in the porous fluid saturated media filling their volcanic basin. (ii) the micro-earthquakes accompanying both the positive (crustal uplift) and the negative (crustal settling) phases of the bradyseism could be a consequence of a sudden micro-strain release following by ground settling.

It seems to us that the results of the present paper allow us to perceive the formulation of a mathematical model suitable for the qualitative and quantitative substantiation of the idea mentioned in (ii). Indeed we are already able to prove that micro-displacement and macropressure damped waves can arise -under particular conditions -as a consequence of ground settling. On the other hand, some improvements of the present treatment need to be performed: in particular, a model capable to account for the phenomena occurring in solid matrices with micro-connected fluid inclusions need to be formulated. This generalization will be presented in a future paper.

We conclude by underlining that the ideas mentioned in (ii) can be found -in a more intuitive, but also more suggestive form -already in a very ancient tractate, by Lucretius:

Nunc age quae ratio terrai motibus exstet percipe, et in primis terram fac ut esse rearis subter item ut supera ventosis undique plenam speluncis multosque et rupis deruptaque saxa multaque sub tergo terrai flumina tecta volvere vi fluctus summersaque saxa putandumst, undique enim similem esse sui res postulat ipsa. his igitur rebus subiunctis suppositisque terra superne tremit magnis concussa ruinis, subter ubi ingentis speluncas subruit aetas ; quippe cadunt toti montes magnoque repente concussu late disserpunt inde tremores.

Lucretius, De Rerum Natura Liber VI, 535-547

We believe to be useful to the reader quoting here the English translation of this extract by Rouse and Ferguson Smith [START_REF] Lucretius | De rerum natura. With an english translation[END_REF]: Now attend and learn what is the reason for earthquakes. And in the first place, be sure to consider the earth below as above to be everywhere full of windy caverns, bearing many lakes and many pools in her bosom with rocks and steep cliffs; and we must suppose that many a hidden stream beneath A bradyseism is a slow quiet upward or downward movement of the earth's crust first observed in the Phlegraean Fields in southern Italy. the earth's back violently rolls its waves and submerged boulders; for the facts themselves demand that she be everywhere like herself. Since therefore she has these things attached beneath her and ranged beneath, the upper earth trembles under the shock of some great collapse when time undermines those huge caverns beneath; for whole mountains fall, and with the great shock the tremblings in an instant creep abroad from the place far and wide.

Appendix: Deduction of Eqs. ( 18) and (19) from Eq. ( 6)

We start from the weak-form of the force balance equations: 

., (ts(X, t) VX ~ f2s S(X, t) ,= ~t~ --pI VX E YaF.

(60)

We obtain, by substituting for each term the expressions derived in ( 7) and ( 8), and by neglecting all terms of order equal to or higher than z, 

H A = <C.VhlA> : E + <C : (Vht A @ VhlS)) .QB + <D.Vhla> : 1~ + <D : (ght a @ VhzB)> .QB, (63)

Vte(to, ty) and Vxe~2 ~ :S(x, t),= <s>, s, HA(x, t):= <sVhlA>~ s.

In the same way we have (69)

~. oil. au dv+ [. o~" au dV

  f2s == int U Vs(x), x~A is a regular region. OF,= int U 9"v(X), f2 ~ ".= {x s O" V(x) c f2}, xEA will represent, respectively, the placement of solid matrix, of fluid inclusions and of what is called the macro interior of O. (iv) The smallest characteristic length dimension L of g2 satisfies 1 --41. Le

(

  we use the conventions C.v ..= Cijkzvt, C:w ,= Cimwkz with summation over doubly repeated indices) ts = C : e + D : ~; e = Sym (grad (u)); for the solid, (4) tr = pI + 2fir Sym (grad (v)) -~ div (v) for the fluid, (

Remark 2 .

 2 Because of the definition of micro shape functions given in Section 2 we obtain

(

  jjj) In what follows we will assume, coherently with (7+ Sym (V(hzAQA)) ~ E + Sym (Vhff | Qa) de ~ dE + Sym (Vht a @ 6Q a)

  ) in the Appendix) (to -pI): 6e dV+ ~ ts : 6e dV ~ -~ (S : 6E + H A. 6QA) dV (to, t f) and Vx ~ ~2 ~ we define the following system of macro-internal forces: S(x, t):= (ts)x s + (tr --pI)x r, HA(x, t):= (s.VhtA)x s. (10) Because of the last equation we obtain the following macro constitutive equations: S ~ (C) :E + (C.Vh~ A) .QA + (D) :1~ + (D.Vhz A) .QA (11) H A ~-(C.Vh~ A) : E + (C : (Vh~ A | Vh~B)) .Q8 + (D.VhzA) : E + (D : (Vhz A | Vh~B)) .QB. (12)
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H22 =f2 81U1 + g2 810a + C22Q22 + C2aQ~ a + C23Q33 + D220~2 z + D210a 1 -t-023033, (33) H33 =f3 8aUa + g3 01[-)1 -Jr-C33Q33 + C3aQa 1 + C32Q22 + 033~)33 + D31~)a 1 + 032{)22, (34) where (Q(hl) 2) = (hl)2/2 (i, j = 1, 2, 3; i r j).

To give an example of the possible application of our model we limit ourselves to the case in which 

(50)

where Oi A and Qi A are, respectively, the values ofQi A and ~)A at the time t = to as obtained in the previous Section. The solution of Eqs. ( 38), (40

where

Remark 1. Qt(t) is obtained by substituting Eq. ( 51) in Eq. ( 40).
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Remark 2. Observe that lim Qo(t) = -q # Qo(to). This means that, at the micro level, after the first phase of ground settling a second settling phase -charaterized by micro vibrations -occurs.

Remark 3. If eo 2 -4flo < 0 the solid matrix undergoes -in general -damped oscillations at the micro-level, along all three spatial directions. Therefore -in the framework o four model -we can prove that -under some particular geometrical and mechanical conditions, of the type represented by Eq. ( 47) with the reversed inequality sign -some damped displacement waves arise in the solid matrix -filled with a viscous fluid -as a consequence of a compaction process.

Remark 4. 7he pressure P(t) can be obtained by one of the two Eqs. ( 38), (39), once the expressions of Qo(t) and Ql(t) are obtained. P(t) undergoes damped oscillations if Qo(t) and Ql(t)

do.
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Homogenized asymptotic model

In this case the equations are readily obtained from ( 18) by letting l ~ 0 in [START_REF] Jong | Three dimensional consolidation[END_REF]. Equations ( 38), ( 39) and (40) then become

and with the same calculations as in the previous cases we obtain, in the phase of ground settling,

where go = ~o,/7o = rio, % = 7o, ~z = 71; therefore ~o t

)

with A3 =/7 /Joto ' On the other hand, in the subsequent phase, we have

Remark 5. Because of the dissipative terms appearing in the constitutive equations ( 4) and [START_REF] Corrado | Inflation and micro earthquake activity of Phlegraean Fields[END_REF] and consequently in Eq. ( 19) also in the case of the homogenized asymptotic model the possibility of introducing effective elasticity moduli is lost. Remark 6. Once the "pore-size" length scale parameter is neglected, i.e. once an homogenized asymptotic model is accepted, it is not possible to account for those cases in which damped oscillations arise after compaction.

6 Conclusions

Comparison with the homogenized asymptotic models

We start by comparing the results of our refined "length scale parameter" model with the asymptotic model. Calculating the limit when 1 -~ 0 we find from (42)-(45) that Thus, in this limit the solutions found in Section 4 turn into the asymptotic one found in Section 5. We observe that within the homogenized asymptotic model that part of the general solution depending on A1 cannot be obtained.