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Purely electrical damping of vibrations in arbitrary PEM
plates: a mixed non-conforming FEM-Runge-Kutta time
evolution analysis

F. dell’Isola, E. Santini, D. Vigilante

Summary A new numerical code, based upon a mixed FEM-Runge-Kutta method, is used for
the analysis and design of plane 2-D smart structures. The code is applied to the study of
arbitrarily shaped PEM plates, based on a weak formulation of their governing equations, [17].
The optimal parameters needed to synthesize appropriate electric networks are computed, and
the overall performances of such plates are investigated. Two examples are studied: firstly, a
simple case is used to test the main features of the code; secondly, a more complex PEM plate is
designed and analyzed by means of the proposed numerical approach.

Keywords Piezoelectricity, Smart structure, PEM plate, FEM, Optimization, Vibration
damping, Runge-Kutta algorithm

1
Introduction
A growing interest towards the possibilities opened by the concept of smart structures in
industrial applications has arised recently, due to the innovations introduced by the
material engineering in control techniques. There is the possibility now to design integrated
systems, in which the control subsystem is no more based upon the paradigm of sensing-
evaluating-actuating, but would be embedded in the system. Self-controlled structures, like
piezo-electromechanical (PEM) beams and plates proposed in [14–17], seem to show very
interesting performances, as it is suggested by theoretical analysis. The design of this class
of smart structures is directed by the passive, purely electrical damping of mechanically
excited structural vibrations. The main feature of the considered structures is that their
evolution is governed by a system of PDEs where the unknown fields describe the electrical
and mechanical state. The electrical state is not driven by an active control system and,
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therefore, no external ‘‘intelligence’’ is required in order to operate the mechanical vibration
damping.

Obviously, the complexity of PEM structures does not allow for the determination of ana-
lytical or semi-analytical solutions of the governing PDEs in the general case. In order to supply
a designing tool for experimental and industrial applications, a powerful enough numerical
method for the analysis of such systems needs to be developed. There is an obvious difficulty in
applying the FEM here, which has to be considered in this context: the finite elements to be
introduced when modelling PEM plates must have at most a size comparable with the typical
size of piezoelectric patches used. Indeed, a more refined mesh is clearly useless, as the
homogenized equations which we derive are meaningful only for modes with wavelength
greater than the upper bound of patch sizes.

In this paper, a mixed space-FEM and time-Runge-Kutta (RK) numerical code devel-
oped by the authors is described. It is applied to the analysis of the vibrational behavior
of 2-D PEM plates. The mechanical part of these systems is described by the Kirchhoff–
Love plate theory, while the homogenized electric system is governed by membrane-like
equations.

As the electrical and mechanical states of considered PEM plates evolve, governed by a
second- and fourth-order in space-differential operators, respectively, the main difficulty in the
code development consisted in the determination of a set of shape-functions suitable to rep-
resent both the aforementioned states. This difficulty has been confronted following the ideas
described in [1] for the generic fourth-order PDE: the main trick is to build and use finite
elements starting from a non-conforming triangular element with three corner nodes. The
resulting FE approximation has the following properties:

i) as it passes the patch test, it converges monotonically in the energy norm (the convergence
which needs to be proven case-by-case for non-conforming elements);

ii) as it includes only three corner nodes, it is immediately adapted to represent approximate
solutions of second-order space PDEs.

The novelty of the proposed FEM code consists in the simultaneous solution of the studied
coupled PDEs by means of the same mesh of elements.

The subsequent time-integration presents great numerical difficulties: indeed, using the FE
projection, the governing system of PDEs is reduced to a system of time ODEs, the dimension
of which can be huge. Therefore, in order to make the calculation possible or to save some
computational time, attention must be paid to the implementation of the RK algorithm: in
order to reduce the dimension of the time ODEs system, its modal representation has been used
and truncated at a proper number of electric and mechanical modes.

The numerical code is then used to study the electromechanical behavior of a specific PEM
plate with complex geometry. In particular, the design of such plate is performed by means of
an optimal-parameters evaluation procedure, using the developed code as a subroutine.

More precisely, once the mechanical properties of the considered PEM plates are fixed,
the proposed code allows for the determination of net inductances and net resistances,
which optimizes electrical damping of the vibrational energy of a specific vibrational mode.
This is done by tuning the electrical network to the desired mechanical frequency, i.e.
choosing the net inductance, and subsequently minimizing the mechanical damping ratio,
i.e. choosing the net resistance. We explicitly remark that, in our model, the inertia and
stiffness of the introduced piezoelectric actuators can be accounted for by suitably modi-
fying the homogenized constitutive parameters of the PEM plate. In the numerical symu-
lations shown in the present paper, the influence of the added stiffness of piezoelectric
actuators has been considered when evaluating the PEM constitutive parameters, while the
added mass has been assumed as (and for the considered plate and actuators effectively is)
negligible.

As generally proven in [16], every structural member type of vibration (e.g. flexural, tor-
sional or in-plane) needs to be coupled via suitable piezoelectric actuators to a suitably tuned
electric circuit. In the present paper, we address the problem of controlling flexural vibrations
which, in view of the results shown in [16], is more difficult than the problem of controlling in-
plane vibrations. Indeed, in-plane vibrations are governed by second-order PDEs and can be
easily coupled to a standard transmission network (for more details see [17]).

It is finally shown that the specific designed device is able to damp mechanically induced
vibrations in a specific range of frequencies.
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2
Description of the system
The problem of controlling vibrations in beams and plates by distributing on them a set of
piezoelectric (PZT) actuators (suitably electrically interconnected) has been addressed in [14–17].
A new concept of 2-D electrical continuum was introduced, the evolution of which parallels that
one valid for the plate.

The main goal of this concept is to synthesize an electric circuit (which is coupled with the
mechanical structure through piezo-actuators) and which would behave analogous to the
mechanical system. Exploiting this concept, it has been proposed to control plate-like
structures by means of an internal resonance phenomenon coupling mechanical and elec-
trical modes.

Actually, we use discrete components, which connect a finite number of piezoelectric
actuators which become Two Terminal Networks (TTN) belonging to a modular electric net-
work. According to the hypothesis of large wavelengths as compared with the dimensions of
components and modules (this is a plausible hypothesis, considering the mechanical wave-
lengths of lower modes), it is possible to study the electric network by means of a continuum
(homogeneized) model. Therefore, we consider a 2-D generalization of the transmission line.
Using the well-known synthesis techniques of discrete electric network, it is possible to sim-
ulate every differential equation (for a detailed discussion of this point see [20]).

In practice, in order to obtain the maximum coupling on every vibration mode, we want the
dispersive relations that relate group velocity and frequency to be the same in the electric and
mechanical subsystems, see [16]. To satisfy this requirement, the electric networks should
exhibit the same governing differential equations that rule the mechanical subsystem. We
choose the electric components in order to slow down the group velocity of the electric wave so
as to make it equal to the mechanical one. In this way, every electromechanical signal which
propagates through the structure has a substantial electric content, which can easily be man-
aged by the control system.

We remark explicitly that we aim to dissipate in a purely electrical way the mechanical
vibrational energy. This can be done by means of electrical resistors that in the chosen topology
(Fig. 1) can be in series to the inductances or in parallel to the PZT.

Obviously, the electric network must be adapted depending on the mechanical phenomena
we wish to control: for example, the longitudinal and torsional vibrations of a bar, governed by
second-order differential equations, or the flexural vibrations, governed by fourth-order dif-
ferential equations, are to be damped with dedicated electric networks.

Only some elementary structures (as plates or beams with simple shapes) have been
investigated untill now using semi-analytical methods and developing a suitable electric
network for interconnecting the actuators. In particular, for flexural waves, the synthesis of
an analogous circuit governed by fourth-order equations is not straightforward, s. [18], [20]
and [19].

Nevertheless, some very interesting results can be obtained by controlling the structure with
a second-order electric network. In this way, we can maximize the coupling of only one
vibration mode, but the circuit we have to realize is very simple. Anyway, this control technique

Fig. 1. Lumped approximation of an
electromechanical continuum
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has proven to have better performances and lower costs than other PZT-based control tech-
niques, [21, 22].

The PEM plates obtained by interconnecting the electric terminals of the PZT transducers
with a second-order electric network are governed by the following system of PDEs, [17]:

44wþ a€ww� c _ww ¼ 0;

4u� b€uuþ c4 _ww ¼ 0 ;
ð1Þ

to be completed by suitable boundary and initial conditions. Here, w is the mechanical dis-
placement, w is a time-integral of the electric tension and c is the coupling factor; 4 holds for
2-D laplacian operator, while _xx denotes the time derivative of x.

3
Weak formulation
In this section, we discuss the mathematical model for the systems under investigation. A weak
formulation of the Eqs. (1) is derived, and the parameters needed by the numerical code are
computed by means of a standard identification procedure. We determine the constitutive
relations for PEM plates at our macrolevel in terms of the mechanical and electrical parameters
characterizing the constituting mechanical and electrical elements at a microlevel. The iden-
tification in expended power simply generalizes the standard theory of Kirchhoff–Love plate,
comp. [17].

We remark that, in order to describe the main features of the behavior of the investi-
gated electromechanical system, a continuum model was introduced in [17]. Since the
physical realization of the electric part of PEM plates is obtained by lumped elements, this
model allows for an accurate description of vibrations only when the involved wavelengths
are not too small compared with the dimensions of the single element and the circuital
module. By formulating the balance of power for the considered PEM plate, we obtain a
weak formulation of the problem (1), which allows for a numerical analysis by means of the
FEM.

We deal with a plate body B occupying the region C ¼ S � I , where S is a plane surface and
I the real interval ½�h; h�. As usual, the thickness 2h is supposed to be small compared to the
diameter of S. The electric network is assumed to be 2-D. The following balance of power:

b; _uuth iCþ f ; _uuth ioC¼ r; _eeth iC ; ð2Þ

must hold for every compatible test field _uu; _eeð Þ. Here, the notation stands for

x; yh iS¼
Z

S

xTy dS ;

u is the vector of kinematical descriptors of the system, e the deformation field, b;B1, B2, s1, s2

and f are the generalized body resp. surface external or inertial forces, r is the internal stress
field. The index t indicates that we deal with a test field. We have

b ¼

b1

b2

bz

i

2
66664

3
77775; u ¼

u

v

w

w

2
66664

3
77775; f ¼

f1

f2

fz

i

2
66664

3
77775 ;

where ðb1; b2; bzÞ and ðf1; f2; fzÞ are the components of the mechanical external forces, i and i
are body and surface current densities from the ground, ðu; v;wÞ are the components of the
mechanical displacements vector and w is the time-integral of the electric tension between a
point on the surface and the reference terminal.

According to the Cauchy model and using Voigt representation we have the following stress
and deformation fields
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r ¼

r1

r2

rz

s12

s2z

sz1

I1

I2

2
66666666664

3
77777777775
; e ¼

e1

e2

ez

c12

c2z

cz1

D1

D2

2
66666666664

3
77777777775
¼

u;1
v;2
w;z

u;2 þ v;1
w;1 þ u;z
v;z þ w;2

w;1

w;2

2
66666666664

3
77777777775
;

where ðI1; I2Þ are the components of the surface current density and ðÞ;i stands for the space
derivative in the ith direction within the plane.

According to the geometry of the body, the position vector in the reference configuration is
decomposed as

x ¼ rþ ze ; ð3Þ

where r is the position vector in S, z 2 I and e is the unit vector perpendicular to S. To deduce
from the 3-D Cauchy model of B the behavior of a bending plate, we use the Kirchhoff–Love-
compatibile identification procedure based on the following kinematical reduction map for
mechanical displacements:

um r;fð Þ ¼
� owðrÞ

or1
z

� owðrÞ
or2

z

wðrÞ

2
64

3
75 :

Hence, the function w rð Þ models the transverse displacements of the points of the plate. As it
has been previously discussed, the electric system is assumed to be 2-D, and the voltage _ww
depends on r only. Therefore

u rð Þ ¼ umðrÞ
wðrÞ

� �
¼

� owðrÞ
or1

z

� owðrÞ
or2

z

wðrÞ
wðrÞ

2
66664

3
77775 : ð4Þ

Substituting in Eq. (2) the reduction map (4), we obtain

b̂b; ûu
D E

S
þ B1; ûu;1
� �

Sþ B2; ûu;2
� �

þ f̂f ; ûu
D E

oS
þ s1; ûu;1
� �

oSþ s2; ûu;2
� �

oS¼ r̂r; êeh iS ; ð5Þ

where

ûu ¼ w

w

� �
b̂b ¼ g

i

� �
; f̂f ¼ q

i

� �
;

B1 ¼
B1

0

� �
; B2 ¼

B2

0

� �
; s1 ¼

s1

0

� �
;

s2 ¼
s2

0

� �
; r̂r ¼

m1

m2

m12

I1

I2

2
666664

3
777775
; êe ¼

v1

v2

v12

w;1

w;2

2
666664

3
777775
;

are the dynamical action and the kinematical fields in the reduced plate model, and where the
following definitions have been introduced:
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g rð Þ ¼
Zh

�h

bz rð Þdz; q rð Þ ¼
Zh

�h

fz rð Þdz;

B1 rð Þ ¼
Zh

�h

b1 rð Þz dz; B2 rð Þ ¼
Zh

�h

b2 rð Þz dz;

s1 rð Þ ¼
Zh

�h

f1 rð Þz dz; s2 rð Þ ¼
Zh

�h

f2 rð Þz dz;

m1 rð Þ ¼
Zh

�h

r1 rð Þz dz; m2 rð Þ ¼
Zh

�h

r2 rð Þz dz;

m12 rð Þ ¼
Zh

�h

s12 rð Þz dz;

v1 ¼ �w;11; v2 ¼ �w;22; v12 ¼ �2w;12 :

ð6Þ

We can express the infinitesimal deformation field in the following way:

êe ¼

v1

v2

v12

w;1

w;2

2
66664

3
77775 ¼ H0ûuþH1ûu;1 þH2ûu;2 þH3ûu;11 þ H4ûu;22 þ H5ûu;12

To complete the model, we need to consider the constitutive relations. For the mechanical
part, assuming that the body B is linear and orthotropic, we get

r1

r2

� �
¼ E1 0

0 E2

� �
e1

e2

� �
;

where rT
1 ¼ fr1; r2; rzg and eT

1 ¼ fe1; e2; ezg. In the reduced model, we have

m ¼ Evv ;

where

Ev ¼
2h3

3
E1 :

Moreover, considering inertia forces, from 6ð Þ we get

g ¼ �2hq€wwþ g0 ;

B1 ¼ �
2h3

3
q€ww;1 þ B0

1; B2 ¼ �
2h3

3
q€ww;2 þ B0

2 :

Assuming the network to be linear and dissipative, the purely electric constitutive relations are

ie ¼ Kc
€wwþ GN

_wwþ i0;

� _ww;1 ¼ LN
oI1

ot
þRNI1;

� _ww;2 ¼ LN
oI2

ot
þRNI2 ;
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where Kc and GN are, respectively, the capacitance and conductance from the surface to the
ground, and LN and RN are, respectively, the net-inductance and net-resistance. We can invert
the last two relations, getting

I ¼ C0e�
RN
LN

t � 1

LN

Z t

t0

e�
RN
LN
ðt�sÞðgrad _wwÞds :

Now let’s assume the current on the net to be zero for t ¼ t0, so that C0 ¼ ;. We can now define
the following integral operator:

YLð:Þ ¼ �
1

LN

Z t

t0

e�
RN
LN
ðt�sÞð:Þds ;

and assuming that time and space operators commute note that

I ¼YLðgrad _wwÞ ¼ grad YLð _wwÞ :

In addition, we specify the constitutive relation of a single PZT actuator

m1

m2

m12
Q
d2

2
664

3
775 ¼

gmm1 0 0 �gme1

0 gmm2 0 �gme2

0 0 gmm12 �gme12

gme1 gme2 gme12 gee

2
664

3
775

v1

v2

v12
_ww

2
664

3
775 ;

which can be rearranged as follows:

m
Q
d2

� �
¼ E

p
v �ET

c

Ec gee

� �
v
_ww

� �

where m and v are the bending moments and curvatures, while Q=d2 and _ww are the charge per
unit area and voltage between the actuators plates.

Therefore, the coupled constitutive relations for m and i read as follows:

m ¼ Ev þ Ep
v

� �
v� ET

c
_ww;

i ¼ ie þ
_QQ

d2
¼ Kc þ geeð Þ€wwþ GN

_wwþ Ec _vvþ i0 ¼ CN
€wwþ GN

_wwþ Ec _vvþ i0 :

We have now to face the problem of the time integral operator YL. In order to remove it, we
have to change the electric kinematical descriptor in the following way. Let’s define

YL
_ww

� �
:¼ a ;

hence

LN _aaþ RNa ¼ � _ww;

LN€aaþ RN _aa ¼ �€ww :
ð7Þ

Therefore the overall constitutive relations read as follows:
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m ¼ Evgvþ ET
c LN _aaþ RNað Þ;

i ¼ �CN LN€aaþ RN _aað Þ � GN LN _aaþ RNað Þ þ Ec _vv;

I ¼ grad a; g ¼ �2hq€wwþ g0;

B1 ¼ �
2h3

3
q€ww;1 þ B0

1; B2 ¼ �
2h3

3
q€ww;2 þ B0

2;

s ¼ s0; f̂f ¼ f̂f0 :

Finally we can provide the complete weak formulation in the following resume:

Problem Balance of power

b; _uuth iSþ B1; _uut
;1

D E
S
þ B2; _uut

;2

D E
þ f ; _uuth ioSþ s1; _uut

;1

D E
oS
þ s2; _uut

;2

D E
oS
¼ r; _eeth iS ;

must hold for any compatible test field ut; etð Þ:
Constitutive relations and external-inertia forces

b ¼ G€uuþ S _uuþ Tuþ V_eeþ b0;

B1 ¼ G1
B€uu;1þB0

1; B2 ¼ G2
B€uu;2þB0

2;

f ¼ f0;

s1 ¼ s0
1; s2 ¼ s0

2;

r ¼ Eeþ C _uuþ Ruþ r0 :

Kinematical compatibility

e ¼ H0uþH1u;1 þH2u;2 þ H3u;11 þ H4u;22 þ H5u;12;

et ¼ H0ut þ H1ut
;1 þ H2ut

;2 þ H3ut
;11 þH4ut

;22 þH5ut
;12 ;

where

G ¼
�2hq 0

0 �CNLN

" #
; S ¼

0 0

0 �CN RN � GNLN

" #
;

G1
B ¼

� 2h3

3 q 0

0 0

" #
; G2

B ¼
� 2h3

3 q 0

0 0

" #
;

T ¼
0 0

0 �GNRN

" #
; V ¼

gme1 gme2 gme12 0 0

0 0 0 0 0

" #
;

E ¼
Evg 0

0 1

" #
; R ¼

0 RN gme1

0 RN gme2

0 RN gme12

0 0

0 0

2
66666664

3
77777775

C ¼

0 LN gme1

0 LN gme2

0 LN gme12

0 0

0 0

2
66666664

3
77777775
:
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and

H0 ¼

0 0

0 0

0 0

0 0

0 0

2
6666664

3
7777775
; H1 ¼

0 0

0 0

0 0

0 1

0 0

2
6666664

3
7777775
;

H2 ¼

0 0

0 0

0 0

0 0

0 1

2
6666664

3
7777775
; H3 ¼

�1 0

0 0

0 0

0 0

0 0

2
6666664

3
7777775
;

H4 ¼

0 0

�1 0

0 0

0 0

0 0

2
6666664

3
7777775
; H5 ¼

0 0

0 0

�2 0

0 0

0 0

2
6666664

3
7777775
:

Let us observe that with the model proposed in the Problem, completed by adequate
boundary and initial conditions, we can describe with a weak formulation 2-D coupled elec-
trical and mechanical subsystems governed by second- and fourth-order differential equations,
respectively, and that we can analyze any number of them coupled in different ways.

The data needed by the program are simply all the matrices needed in this representation,
which, for the application under consideration, are those listed in this section.

Let us remark that the numerical procedure can be divided into two main parts: the space
analysis, performed by means of a nonconforming FEM calculation (Galerkin approach), and
the time-evolution analysis, numerically solved with a RK algorithm. For more details on this
part see Appendix.

4
Numerical results

4.1
Test case: simply supported square PEM plate
We start considering a simply supported square PEM plate in order to obtain a first test of the
performances of the developed code.

The case under consideration has been deeply investigated in [17], where semi-analitycal
solutions have been determined by means of modal analysis. The advantage of this problem is
that not only the uncoupled electric and mechanical systems are solved easily because of the
simple geometry, but also for the coupled system, formed by a second-order system (the
electric network) and a fourth-order one (the flexural mechanical vibrations), a simple series
representation of the solution can be provided. We will show how the numerical process
converges to the exact solution for both cases and how the coupled system is approximated as
well.

4.1.1
Uncoupled systems
The classical solutions for the simply supported square plate, as well as for the second-order
(membrane-like) equations of the electric network, are compared to the numerical results
obtained for a suitably refined mesh. The modal shapes and the eigenfrequencies approximate
accurately the exact solution, as it is shown in Figs. 2–4.

The first eight modes, for each system, are considered. The electric network has been
tuned by choosing a proper value of the net inductance, so that the first electric eigenfre-
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Fig. 2. Electric modal shapes

Fig. 3. Mechanical modal shapes

Fig. 4. Electric and mechanical
eigenfrequencies: comparisons with
the analytical results
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quency matches that of the mechanical system. In this simple case, the tuning procedure is
trivial since we have the analytical relations between the net inductance and the electric
eigenfrequencies.

4.1.2
Energy exchange in the coupled system: the undamped case
When considering the coupled system, the results become more interesting. First of all, Fig. 5
shows that the coupling is not negligible only for corresponding modes. The entity of this
coupling is due to the spatial inner product of electric and modal shapes. Note that the
remarkable coupling shown in Fig. 5 is due to algebraic multiplicity of some eigenvalues.

Let us give a more detailed interpretation to the concept of coupling. Consider a purely
mechanical initial condition; for instance, let us assign initial displacements on the first
mechanical mode. As it is expected, due to the transducing effect of the PZT actuators, the
initial mechanical energy is converted in an electric form, then it returns to the mechanical
system, and so on. This effect involves all the energy initially provided to the system; therefore
we say that the coupling is at maximum. This is due to the fact that the considered mode has
been tuned, i.e. it has the same mechanical and electric eigenfrequencies. If we give the second
mechanical mode (which is untuned) initial conditions, the amount of energy interchanged is
much less than in the previously considered case. Figure 6 shows all these aspects.

Now let’s consider the time-evolution of the mechanical and electric displacements. Let’s
recall that the electric kinematical descriptor, which we call electric displacement, is a time

Fig. 5. Modal coupling table: back means maximum
coupling, white means vanishing coupling

Fig. 6. Energy time-evolution for initial
conditions on the a first mechanical mode;
b second mechanical mode
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integral of the voltage. Since the corresponding energy is oscillating, we will observe a mod-
ulation on the vibrational amplitudes of both systems, with a 90 degrees phase shift between
them. In the first considered case (initial conditions on the first mechanical mode), this
modulation is actually a complete beating effect. The mechanical vibration, starting from
maximum amplitude, decreases to a zero value and than grows up again; vice versa for the
electric vibration.

4.1.3
Tuned coupled system: damping mechanical vibrations by means of a dissipative network
This is probably the main practical application of this distributed control technique. The idea is
the following: if the mechanical energy is converted into the electric form, we could dissipate it
with suitable resistors, so that only a fraction of it would return into the mechanical form. After
some cycles of energy interchange, the electromechanical would vibrations damp out. Obvi-
ously, an optimum value of the network resistance can be found, so that the mechanical
damping ratio will be maximized. In other words, using the critical value for the resistance, one
can obtain that, once the mechanical energy has been converted into the electric form, the
damping is such that this energy will no more return to the mechanical system. According to
[17], the critical value for resistance depends on the vibrational mode we want to damp out.
Once decided which mode we want to control and damp, both values of network inductance
and network resistance are fixed.

Figure 7 shows the time-evolution of the energy of the system, tuned for the first eigen-
frequency, starting with the first-mode initial conditions, with the critical damping value
suggested in [17].

4.2
Second case: a complex geometry
Following the same steps as in the previous section, let us analyze numerically a more complex
case. Let us consider an electromechanical 2-D device with the geometry shown in Fig. 8, with
clamped/grounded edges.

We will tune the electric system on the first mechanical mode, that in most of the engi-
neering applications is the critical one. However, with the same procedure it should be possible
to tune the electric system on any desired mechanical frequency.

With this example, we will give an idea of the program features, even though much
more general cases could be considered. For instance, anisotropic inhomogeneous
electromechanical continua could be investigated, as well as any other system whose
mathematical model can be arranged in the proper weak formulation. Nevertheless, this
example will show how the program can be an useful tool for the design of electrome-
chanical devices.

Fig. 7. Evolution from purely mechanical initial conditions (first mode): damped case
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4.2.1
Uncoupled systems
As it has been described in the previous example, the analysis of the electric and mechanical
uncoupled systems is the first step of the process. Here we can verify the accuracy of the tuning
procedure, as well as we can check the physical plausibility of the modal shapes. Obviously, in
this case we have no analytical solutions to compare the results.

As we can see in Fig. 9, the tuning procedure was efficient, so that, for instance, the first (or
the fourth) eigenfrequency is almost the same for both systems. We remark explicitly that in a
similar way it is possible to tune any single pair of electric and mechanical frequencies, even if
other internal resonances may arise only by chance. It turns out evident that the mechanical
eigenfrequencies are now less spaced than in the previous example of the simply supported
square plate. This is due to the different geometry and boundary conditions (now the plate is
clamped on each edge). As a by-product, this fact has the consequence that also other eigen-
frequencies can happen to be almost tuned. Therefore we may expect better coupling perfor-
mances from this device.

Furthermore, the modal shapes of the electric and mechanical systems differ much more
because of the clamped edges: we cannot impose zero slopes on the boundaries for a second
order system as the electric one, viz. Figs. 10 and 11.

Hence the coupling will be probably more complicated; that is, we expect each electric mode
to be coupled with more than one mechanical mode, and viceversa.

In fact, as deduced from Fig. 12, we note that there is a distributed modal coupling: the
matrix of inner products between electric and mechanical eigenvectors is not anymore diag-
onal. This fact has important consequences in the dynamics of the whole system. In fact, if we
supply energy to a given mechanical mode, this will couple with a large number of electric
modes, so that, once the energy returns in the mechanical form, a multi-modal motion appears.
However, this effect is limited by the fact that only tuned modes have a complete coupling.

4.2.2
Tuned coupled system: coupling performances and the placement of a mechanical impulse
As we expected from the previous analysis, now there is a good coupling in the first few modes,
since the first eigenfrequencies are close enough. This fact will have some important conse-
quences in the performances of the system when used as a vibration damper.

Let us firstly consider the case of purely mechanical uni-modal initial conditions, Fig 13.
Again, as a by-product, we find that also the third eigenfrequency comes out to be almost
tuned, so that we have a very good energy interchange when exciting the third mechanical
mode. The second mode, for the same reason, presents an appreciable coupling yet, but starting
from the fourth mode the coupling performances decrease rapidly since the eigenfrequencies of
the electric and mechanical subsystems become very different.

Now let us consider a mechanical impulse localized in a point of the structure. Projecting on
the chosen base of uncoupled modes, we get a superposition of all the considered modes. The
coefficients of such superposition depend upon the point of application of the impulse.
Therefore, also the coupling performances are a function of the impulse placement.

Figure 14 shows this concept. In the first case, the impulse is localized in a central area of
the plate, so that we excite mostly the first mechanical mode, which is efficiently coupled.
Hence we get a good ratio of energy interchange. Instead, if the impulse is applied in a
peripheral area of the plate, as it is shown in the second column of Fig. 14, we excite higher

Fig. 8. Shape of the device
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modes which are not tuned and therefore not efficiently coupled. This fact implies that a
smaller part of mechanical energy is converted into the electric form. However, the perfor-
mances are still acceptable.

4.2.3
Coupled system: damping mechanical vibrations by means of a dissipative network
If we add some damping to the electric network, the whole system will not be conservative
anymore. Hence, this could be a way to dissipate the mechanical energy once converted into the
electric form. However, as we noticed in the square plate case, the damping ratio must be max-
imized by choosing the optimum value for the network resistance, otherwise the damping per-
formances of the system would be unacceptable. While the analytical studies in [17] provide that
optimum value for the simply supported square plate, in general cases we have to numerically
explore the system to get an approximate value for the optimal resistance. This is exactly what is
done here. For this analysis, we consider the case of tuning on the first mode, which seems to have

Fig. 9. Table of eigenfrequencies

Fig. 10. Mechanical modal shapes
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better performances. Performing numerical experiments, we can estimate in an iterative fashion
the maximum mechanical damping ratio, as it is shown in Fig. 15, where we present the cases of
sub-critical, critical and super-critical damping values. Let us note that, if the numerical value of
the resistance is too large, the coupling vanishes and, while the electric vibrations decrease
rapidly, the mechanical ones present a very low damping ratio.

Once the optimum value for the network resistance has been determined, we can analyze the
overall damping performances with the usual set of initial conditions: unimodal (first four
modes), Fig. 16, and impulsive (two different impulse placements), Fig. 17.

The numerical study of this device leads to some useful results from an engineering point of
view. We can summarize them in the following two main areas:

1. We have obtained the optimum network parameters, which are necessary in designing such
devices;

2. We have performed an accurate analysis of the system dynamics, which allows us to forecast
its behavior and its performances.

Fig. 11. Electric modal shapes

Fig. 12. Table of modal coupling, s. Fig. 5
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Fig. 13. Time-evolution from different uni-modal initial conditions

Fig. 14. Time-evolution from different impulsive initial conditions

41



5
Concluding remarks
A new FE code has been realized. Its wide range of applications is probably its best feature,
as it allows for the analysis of coupled systems of second- and fourth-order PDEs with
dissipative terms. The usage of the code is simple and user-oriented, with few control
parameters to be set to control the accuracy and its main aspects. As many procedures as
possible have been made completely automatic, so that changing some input parameter is
easy and fast. All those characteristics have a price, which is the CPU-time needed to perform
the computations. Obviously, a dedicated software, realized to solve only a class of particular
problems, can easily be optimized and it can reach a higher speed requiring less hardware
power. Nevertheless, systems involving two or more PDEs of different nature coupled in
various fashions require a very flexible computational method.

The program has been applied to the study of PEM plates, [17], in which vibration control is
obtained by means of piezoelectric actuation. A weak formulation of the evolution equation of
such systems has been derived and the data input needed by the code have been computed. A test
case, e.g. a simply supported square PEM plate, has been used to prove the algorithm correctness
and the results accuracy. Subsequently, a more general case has been investigated, and the overall
performances of the system have been shown. The code has proven to be useful in the design of
such electromechanical systems, since it allowed us to compute the electric parameters needed to
optimize the mechanical vibration control and damping.

The obtained results show that (i) piezoelectric actuators, interconnected by means of simple
passive electric networks, can control mechanical vibration in a fixed frequency range and (ii)
more sophisticated electronic circuits could be similarly efficient in a broader band of fre-
quencies.

Appendix: Some details on the numerical code

A.1
The Galerkin formulation
Some details are given on the numerical procedure to obtain an approximate solution of
Problem 1.

Fig. 15. Time-evolution from first mode initial conditions: three different damping ratios
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Fig. 16. Time-evolution from uni-modal initial conditions: damped case, first four modes

Fig. 17. Time-evolution from different impulsive initial conditions: damped case
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Substituting the constitutive relations in the virtual work principle we obtain

hG€uuþ S _uuþ Tuþ V_eeþ b0; _uutis þ hG1
B€uu;1 þ B0

1; _uu;t1 is þ hG2
B€uu;2 þ B0

2; _uut
;2i

þ hf0; _uutios þ hs0
1; _uut

;1ios þ hs0
2; _uut

;2ios � hEeþ C _uuþ Ruþ r0; _ee
tiS ¼ 0 : ðA1Þ

Following the steps of a standard FE procedure, subdivide the domain S into subdomains De:
D1 [ D2 [ � � � [ Dne ¼ S and Di \ Dj ¼ ; for i 6¼ j. Hence the integrals in (A1) can be ex-
pressed as summations of integrals computed on each element De,

X
e

hG€uuþS _uuþTuþV_eeþb0; _uutiDe þ
X

e

hG1
B€uu;1þB0

1; _uut
;1iDe þ

X
e

hG2
B€uu;2þB0

2; _uut
;2i

þ
X

e

hf0; _uutioDe\osþ
X

e

hs0
1; _uut

;1ioDe\osþ
X

e

hs0
2; _uut

;2ioDe\os�
X

e

hEeþC _uuþRuþr0; _ee
tiDe ¼ 0 :

Consider a single element. The displacements vector can be locally expressed in terms of basis
function defined only in the element

ueðr; tÞ ¼ NeðrÞqeðtÞ ðA2Þ

where Ne(r) is the shape functions matrix, while q(t) is the vector of the nodal values of ue(r, t).
Let us define

ee ¼ Ne
eqe ; ðA3Þ

eet ¼ Net
e qet ; ðA4Þ

where Ne
e and Net

e are given by the following linear combination:

Ne
e ¼ H0Ne þ H1Ne

;1 þH2Ne
;2 þH3Ne

;11 þH4Ne
;22 þ H5Ne

;12 ; ðA5Þ

Net
e ¼ Ht

0Ne þHt
1Ne

;1 þ Ht
2Ne

;2 þ Ht
3Ne

;11 þ Ht
4Ne

;22 þHt
5Ne

;12 : ðA6Þ

The contribution of a single element to the integral formulation is

€qqeThGNe;NeiDe _qqet þ _qqeThSNe;NeiDe _qqet þ qeThTNe;NeiDe _qqet þ _qqeThVNe
e;NeiDe _qqet

þ hb0;NeiDe _qqet þ €qqeThG1
BNe

;1;Ne
;1iDe _qqet þ €qqeThG2

BNe
;2;Ne

;2iDe _qqet þ hB0
1;Ne

;1iDe _qqet

þ hB0
2;Ne

;2iDe _qqet þ hf0;NeioDe\os _qqet þ hs0
1;Ne

;1ioDe\os _qqet þ hs0
2;Ne

;2ioDe\os _qqet

� qeThENe
e;Net

e iDe _qqet � _qqeThCNe;Net
e iDe _qqet � _qqeThRNe;Net

e iDe _qqet � hr0;Net
e iDe _qqet

where T holds for transpose. Grouping the terms we get

€qqeTðhGNe;NeiDe þ hG1
BNe

;1;Ne
;1iDe þ hG2

BNe
;2;Ne

;2iDeÞ _qqet þ _qqeTðhSNe;NeiDe

þ hVNe
e;NeiDe � hCNe;Net

e iDeÞ _qqet þ qeTðhTNe;NeiDe � hENee;Net
e iDe

� hRNe;Net
� iDeÞ _qqet þ ðhb0;NeiDe þ hB0

1;Ne
;1iDe þ hB0

2;Ne
;2iDe

þ hf0;NeioDe\os þ hs0
1;Ne

;1ioDe\os þ hs0
2;Ne

;2ioDe\oS � hr0;Net
e iDeÞ _qqet

Hence we can define:

Local mass matrix Ke
2¼hGNe;NeiDe þhG1

B;N
e
;1;N

e
;1iDe þhG2

B;N
e
;2;N

e
;2iDe

Local dampling/coupling matrix Ke
1¼hSNe;NeiDe þhVNe

e;N
eiDe �hCNe;Net

e iDe

Local stiffness matrix Ke
0¼hTNe;NeiDe �hENe

e ;N
et
e iDe �hRNe;Net

e iDe

Local load vector
Fe¼�hb0;N

eiDe �hB0
1;N

e
;1iDe �hB0

2;N
e
;2iDe �hf0;N

eioDe\oS

�hs0
1;N

e
;1ioDe\oS �hs

0
2;N

e
;2ioDe\oS þhr0;N

et
e iDe

ðA7Þ
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The next step is to assemble the local matrices and vector to get the final system. Following
standard FE procedures, based upon the correspondence between local and global node
numbering, we finally obtain

K2€qqðtÞ þ K1 _qqðtÞ þ K0qðtÞ ¼ FðtÞ ðA8Þ

where K2;K1;K0 are respectively the global mass, damping/coupling and stiffness matrices, F is
the global load vector and q is the vector of nodal generalized displacements.

Note that the dimensions of this system of equations can be very large; a quiet refined mesh
of the domain can easily reach thousands of nodes, so that a numerical analysis such system
would be too heavy. Therefore, a different approach is applied. First we perform a modal
analysis of the system, assuming K1 to be small compared to K0 and K2; then we project all the
matrices involved over a base of a suitable number of eigenvectors. In this way we get a reduced
system of much smaller dimensions. Obviously, also the initial conditions have to be projected
on the chosen base, loosing something in terms of accuracy in reproducing Dirac-delta like
functions, but gaining much more in terms of computational time. This procedure can be
illustrated as follows. Let us define

qðtÞ ¼ aejwt ;

so that the homogeneous problem, neglecting K1, reads as follows:

�x2k2aþ K0a ¼ 0 ;

which, with some manipulation, becomes:

K�1
0 K2a ¼ 1

x2
a :

Hence the eigensystem of K�1
0 K2 will give us eigenvectors and eigenfrequency of the uncoupled/

undamped system. Let us define the i-th eigenvector ai, and let us choose a number n of them to
build up an orthonormal base. Now let us define:

T ¼

a11 a12 . . . a1m

a21 . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

an1 an2 . . . anm

2
6666664

3
7777775
;

where m is the dimension of the initial system of equation. Now let us consider the projection
of the nodal displacements vector q on this base:

z ¼ Tq;

q ¼ TTZ : ðA9Þ

Therefore, substituting this expansion in (A8) and multiplying on the left-hand side by T, we
get:

K2red€zzðtÞ þ K1red _zzðtÞ þ K0redzðtÞ ¼ FredðtÞ ðA10Þ

where

K2red ¼ TK2TT ; K1red ¼ TK1TT ; K0red ¼ TK0TT ; Fred ¼ TF :

The reduced system can be solved with the Runge–kutta algorithm, to obtain the time evolution
of z as an interpolating function of some discrete values at a number of instants. The values of
the displacements vector qðtÞ can be easily obtained from Eq. (A9).
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A.2
Element and shape functions
An important feature of the code is the automatic mesh generation. The simplest way to achieve
this goal is to make use of some triangulation algorithms (like the Delauney’s one), which easily
allows to generate a triangular mesh for a wide class of 2-D domains. This is the main reason to
consider the triangular elements as our first choice. There is a huge literature about triangular
FE suitable for our requirements. The most part of the triangular elements used in structural
mechanics are based upon the Reissner-Mindlin plate theory, see [2], [8–10], [12], [13] and for
this reason have not been considered for the problem proposed in this paper.

Since we deal with 2-D systems governed by second- and fourth-order PDEs, the continuity
requirement for the shape functions are different in each case: we need C0 shape functions for
second-order problems and C1 shape functions for fourth-order problems. The first case presents
no difficulties, since linear shape functions with three corner nodes, each one with one DOF,
satisfies it. The second case shows some obstacle because in order to satisfy the C1-continuity the
complexity of the element (i.e. the degree of polynomial expansion and the total number of DOFs)
increases enormously. This suggests the possibility of using non-conforming elements, i.e. ele-
ments which do not satisfy the C1-continuity requirement but have proved to converge.

In fact, even if for non-conforming elements we are not sure to get a monotonic conver-
gence, we can prove it by means of the Patch test. This is a means of assessing convergence for
problems in which the shape functions violate continuity requirements. The test is applicable to
all FEs and, if properly extended and interpreted, it can provide a necessary and sufficient
condition for convergence, and also an assessment of the convergence rate. Therefore we decide
to abandon conformity

The element that we found to be convenient for our work is a modification, proposed by
Specht, of one of the first non-conforming elements derived by Bazeley, Cheung, Irons and
Zienkiewicz, see [1]. To avoid asymmetry and gain a general formulation, let is introduce the
area-coordinates, which are indeed a natural choice for triangles, Fig. (18).

We use polynomial expansion terms given in area-coordinates, e.g.

a1L1 þ a2L2 þ a3L3 ;

gives the three terms of a complete linear polynomial and

a1L1L2 þ a2L2L3 þ a3L3L1 þ a4L2
1 þ a5L2

2 þ a6L2
3

gives all six terms of quadratic one and so on.
For a nine DOFs element (three corner nodes, each one with three DOFs: the displacement x

and the slopes hx and hy) any of the above terms can be used in suitable condition, remem-
bering, however, that only nine independent functions are needed. We ensure that all the six
quadratic terms are present. In addition, we select three fourth-order terms. The particular
form of these is so designed that the patch-test criterion is identically satisfied. We write

w ¼ ½L1; L2; L3; L1L2; L2L3; L3L1;

L2
1L2 þ

1

2
L1L2L3f3ð1� l3ÞL1 � ð1þ 3l3ÞL2 þ ð1þ 3l3ÞL3g;

L2
2L3 þ

1

2
L1L2L3f3ð1� l1ÞL2 � ð1þ 3l1ÞL3 þ ð1þ 3l1ÞL1g;

L2
3L1 þ

1

2
L1L2L3f3ð1� l2ÞL3 � ð1þ 3l2ÞL1 þ ð1þ 3l2ÞL2g�a

¼ Pa ;

Fig. 18. Triangular area-coordinates
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where

l1 ¼
l2
3 � l2

2

l2
1

; l2 ¼
l2
1 � l2

3

l2
2

; l3 ¼
l2
2 � l2

1

l2
3

;

and l1; l2; l3 are the lenghts of the triangle sides.
On identification of nodal values and inversion, the shape functions can be written explicitly in
terms of the component of the vectors P as

NT
i ¼

Pi � Piþ3 þ Pkþ3 þ 2ðPiþ6 � Pkþ6Þ
�bjðPkþ6 � Pkþ3Þ � bkPiþ6

�cjðPkþ6 � Pkþ3Þ � ckPiþ6

2
64

3
75 ;

where i; j; k are a cyclic permutation of 1, 2, 3 and

b1 ¼ y2 � y3;

c1 ¼ x3 � x2;

where fxi; yig are the coordinates of node i.
The element now derived passes all the patch tests and performs excellently for all fourth-

order problems, like the Krichhoff–Love plate theory.
If we deal with a certain number of coupled system, some of second-order and some of

fourth-order, we can easily build the global shape functions matrix by simply alternating, in a
proper way, those shape functions (for fourth-order problems) with linear shape functions (for
second-order problem). Obviously, on each corner node of the triangular elements there will be
defined three independent variables for each fourth-order function and one independent
variable for each second-order function. calling n4 and n2 the number of fourth-order and
second-order functions, respectively, we have that the total number of DOFs per element is

DOF ¼ 3ð3n4 þ n2Þ :
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