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Statistical analysis of Single Nucleotide
Polymorphism microarrays in cancer
studies

Pierre Neuvial, Henrik Bengtsson and Terence P. Speed

Abstract In this chapter, we focus on statistical questions raised by the
identification of copy number alterations in tumor samples using genotyping
microarrays, also known as Single Nucleotide Polymorphism (SNP) arrays.
We define the copy number states formally, and show how they are assessed
by SNP arrays. We identify and discuss general and cancer-specific challenges
for SNP array data preprocessing, and how they are addressed by existing
methods. We review existing statistical methods for the detection of copy
number changes along the genome. We describe the influence of two biological
parameters — the proportion of normal cells in the sample, and the ploidy
of the tumor — on observed data. Finally, we discuss existing approaches
for the detection and calling of copy number aberrations in the particular
context of cancer studies, and identify statistical challenges that remain to
be addressed.

Pierre Neuvial
Department of Statistics, University of California, Berkeley, USA
e-mail: pierre@stat.berkeley.edu

Henrik Bengtsson
Department of Statistics, University of California, Berkeley, USA and
Department of Epidemiology & Biostatistics, University of California, San Francisco,
USA
e-mail: hb@stat.berkeley.edu

Terence P. Speed
Department of Statistics, University of California, Berkeley, USA and
Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville,
Australia
e-mail: terry@stat.berkeley.edu

1

pierre@stat.berkeley.edu
hb@stat.berkeley.edu
terry@stat.berkeley.edu




Contents

Statistical analysis of Single Nucleotide Polymorphism

microarrays in cancer studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pierre Neuvial, Henrik Bengtsson and Terence P. Speed

1 From biological questions to statistical challenges . . . . . . . . . . 4
2 Minor and major copy numbers in cancer studies . . . . . . . . . . 5

2.1 Information relevant to copy number studies in
cancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 What can be estimated from SNP array data . . . . . . 7
2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Making signals comparable across samples . . . . . . . . 10
3.2 Making signals comparable across probes . . . . . . . . . 12

4 Copy number change detection: from locus-level to
region-level estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Change-point models . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Purity and ploidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Pure tumor samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Contamination by normal cells . . . . . . . . . . . . . . . . . . . 22
5.3 Tumor ploidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Combined influence of purity and ploidy . . . . . . . . . . 24

6 Estimation of copy number states in cancer studies . . . . . . . . 26
6.1 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Joint detection provides more power to detect copy

number changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Comparison between existing joint methods . . . . . . . 28

7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



4 Contents

1 From biological questions to statistical challenges

Each normal human cell has 23 pairs of chromosomes. For each of them, one
chromosome has been inherited from each biological parent. Tumor cells har-
bor numerous structural alterations of their DNA including point mutations,
translocations, small insertion or deletion events, larger scale copy number
changes, amplifications, and loss of heterozygosity (LOH), which corresponds
to the loss of the contribution of one parent in a genomic region. These al-
terations can affect genes and regulatory transcripts, which may result in
cellular modifications including angiogenesis, immune evasion, metastasis,
and altered cell growth, death and metabolism [1]. They are thought to be
associated with diagnostic and prognostic factors [2].

An immediate goal of copy number studies in cancer research is to estimate
the underlying copy number state (to be defined more formally in the next
section) at each position along the genome of a tumor sample. Microarray-
based technologies have been used for more than a decade to quantify copy
numbers at a large number of genomic loci [2, 3, 4]. In particular, genotyping
microarrays (SNP arrays) are a technology of choice because they combine
a high-density of markers along the genome (in the order of millions for the
current generation) with the ability to assess both changes in total copy
number and loss of heterozygosity in a single assay. This is what make them
particularly relevant to cancer studies, where both pieces of information are
needed to understand the underlying copy number state of the tumor.

In this chapter, we review statistical challenges raised by the analysis of
SNP array data in cancer studies. We focus on the analysis of one tumor
sample. Identifying copy number states from a tumor sample requires detect-

ing changes in copy number signals, and calling regions, that is, assigning a
copy number state to each region detected. The main ingredient for the de-
tection part is the fact that DNA copy number is locally constant along the
genome: locus-level estimates can thus be combined in region-level estimates.
However, for this property of local constancy to be fully exploited, SNP array
data first have to be pre-processed so that locus-level estimates for a given
sample are comparable across loci. For the calling step to be performed sat-
isfactorily, biological factors that influence the estimated copy number levels
— tumor ploidy and normal contamination — have to be understood and
acknowledged for.

Outline

We begin by defining the copy number states of interest in cancer studies, and
showing how estimates can be obtained from preprocessed SNP array data for
each locus (Section 2). We then describe current methods for SNP array data
preprocessing, with a focus on specific challenges for copy number studies in
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cancers (Section 3). In Section 4 we review statistical methods that have
been proposed to combine locus-level copy number estimates (as obtained
after preprocessing) to detect copy number changes along the genome. In
Section 5 we describe the influence of tumor ploidy and normal contamination
on observed signals and their interpretation. In Section 6 we show how the
methods described in Section 4 have been applied to SNP array data in cancer
studies, by accounting for or taking advantage of the characteristics of the
data described in Section 5. We conclude by identifying ongoing challenges
for the statistical analysis of SNP array data in cancer studies (Section 7).

2 Minor and major copy numbers in cancer studies

We define the copy number state of a tumor at a given genomic locus j as a
pair of numbers (γj , γj), where γj ≥ 0 and γj ≥ 0 are respectively the smaller
and the larger of the two parental copy numbers at this locus. By definition
we have γj ≤ γj , and γj = γj + γj is the total copy number. The quantities
γj and γj are called minor and major copy numbers, respectively. Note that
γj , γj , and γj need not be whole numbers, especially because of the possible
presence of normal cells in the tumor sample. This point is explained in detail
in Section 5.

The two-dimensional vector (γj , γj) does not characterize parental copy
numbers at locus j in the tumor. Indeed, the information of which of minor
or major copy numbers corresponds to the maternal chromosome at locus
j, and which one corresponds to the paternal chromosome is missing from
(γj , γj), and it may change across loci. In short, because of the constraint
γj ≤ γj , minor and major copy numbers (CNs) are not phased in terms of
parental copy numbers.

The remainder of this section is organized as follows. In Section 2.1 we
focus on true copy number signals, that is, the actual copy numbers in the
biological samples. We demonstrate that knowing true minor and major copy
numbers is enough to characterize copy number events of interest in cancer
studies. In Section 2.1 we show that true copy numbers, including minor and
major copy numbers, can be estimated from SNP array data at the locus
level. Notation used in the chapter is summarized in Section 2.3.

2.1 Information relevant to copy number studies in

cancers

Table 1 summarizes the copy number states relevant to cancer studies in terms
of minor and major copy numbers. They are described as the conjunction of
information regarding total copy numbers and (loss of) heterozygosity. For
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example, knowing the total copy number in a region of LOH (γ = 0) allows
us to distinguish between hemizygous deletions (γ, γ) = (0, 1), that is, single
copy deletions, from LOH when the total copy number is two (0, 2), so-called
copy-neutral LOH or acquired uniparental disomy. Conversely, among regions
of neutral copy number (γ = 2), regions of copy-neutral LOH (0, 2) can be
distinguished from normal regions (1, 1) based on the LOH status of the
region. This is distinction is important for data interpretation, as copy-neutral
LOH is a known mechanism through which a recessive tumor suppressor gene
can be expressed with no apparent change in total copy number [5].

Deletion Neutral Gain
Loss of Heterozygosity (0, 1) (0, 2) (0, γ) with γ ≥ 3

Heterozygosity (0, 0) (1, 1) (γ, γ) with 1 ≤ γ ≤ γ

Table 1 Minor and major copy number states of interest for cancer studies, pre-
sented as the conjunction of information regarding total copy number (columns) and
heterozygosity status (rows).

Regions of LOH are characterized by the absence of one of the two parental
chromosomes, that is, by a null minor copy number: γj = 0. However, (loss
of) heterozygosity is a binary concept which can be insufficient (even when
combined with total copy numbers) to fully characterize subtle copy number
events such as complex gains, as in the lower right cell of Table 1 which corre-
sponds to a copy number gain with retention of heterozygosity. For example,
(1, 3) and (2, 2) are two states that fall into this category, with the same total
copy number. However, the biological interpretation of these two states can
be quite different: (2, 2) is a balanced duplication of a chromosomal region,
while (1, 3) corresponds to an allele-specific amplification, which can typically
pinpoint regions containing oncogenes.

This example illustrates the need for a quantitative measure to characterize
allelic imbalance between parental copy numbers at a given locus, rather than
a binary variable (retention or loss of heterozygosity). Several closely related
measures have been proposed to quantify allelic imbalance in cancers [6, 7, 8].
These measures can be written in terms of minor and major copy numbers
and quantify the distance tho the heterozygous status. In this chapter, we
denote the allelic imbalance at locus j by δj ∈ [0, 1], and use the following
definition:

δj =
γj − γj

γj + γj
. (1)

In the above example, (γ, γ) = (2, 2) yields δ = 0 (allelic balance or heterozy-
gosity), while (1, 3) yields δ = 1/2 (partial loss of heterozygosity). Note how
a hemizygous deletion (0, 1) and a copy-neutral LOH (0, 2) both yield δ = 1.
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2.2 What can be estimated from SNP array data

Single Nucleotide Polymorphisms (SNPs) are genomic positions where the
DNA sequence varies at a substantial rate across individuals of some popu-
lation. For most SNPs only two (out of four) variants are observed. These
variants are called alleles and arbitrarily denoted by A and B. SNP arrays
are a microarray-based technology which targets both alleles of a large num-
ber of SNPs. Although they were originally developed for genotyping studies,
they have also been proved quite useful for copy number studies, especially
in cancers.

Current generations of SNP arrays (Affymetrix GenomeWideSNP 6 and
Illumina Human1M-Duo) interrogate approximately one million SNPs, that
is, of the order of 10% of the total number of known human SNPs. They also
incorporate copy number probes, which measure total copy numbers at non-
polymorphic loci for increased resolution of copy number studies. We refer
to [9] for a more comprehensive review on SNP array technologies. Specific
characteristics of SNP array assays that are relevant to the data analysis and
particularly to data preprocessing are explained in more detail in Section 3.

For the present section it is sufficient to note that SNP array data (af-
ter preprocessing as explained in Section 3) can be summarized by a two-
dimensional vector (cj , bj)j∈J of locus-level estimates, where J denotes the
set of J loci targeted by the microarray. When j is a SNP, cj is the sum of
the contribution of the two alleles at j called allele-specific copy numbers,
and bj is the corresponding fraction of signal coming from allele B at j. Fol-
lowing [10, 11, 6], bj will be called allele B fraction. The corresponding allele
A fraction is aj = 1 − bj . The corresponding allele-specific copy numbers A
and B can therefore be written as (ajcj , bjcj)j∈J . When j is a copy number
probe, cj is the total intensity signal at j, while bj and aj are not defined.

Figure 1 shows Affymetrix GenomeWideSNP 6 data 50Mb-long genomic
region on Chromosome 2 of an ovarian tumor sample from the Cancer
Genome Atlas (TCGA). TCGA is a collaborative initiative to provide a high-
throughput molecular characterization of a large number of tumors from dif-
ferent cancer types, with the goal to improve biological understanding and
clinical treatment of these cancers [12, 13]. These data have been prepro-
cessed using an allele-specific version of the CRMAv2 method [14], called
AS-CRMAv2, followed by the TumorBoost method [15] for normalization of
raw allele-specific copy numbers.

Previous copy number analyses led by TCGA have shown that this tu-
mor has two copy number transitions in this region. The first one occurs
at ∼124.2Mb, between a normal region: (γ, γ) = (1, 1) and a region of
single chromosome gain: (γ, γ) = (1, 2). The second transition occurs at
∼140.9Mb, between a region of single gain and a region of copy-neutral LOH:
(γ, γ) = (0, 2).
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Fig. 1 Locus-level estimates from Affymetrix GenomeWideSNP 6 data in three copy
number regions on chromosome 2 of a TCGA ovarian tumor sample: normal (1, 1),
gain (1, 2) and copy-neutral LOH (0, 2). Top panel, total copy numbers (cj) along
chromosome 2. Middle panel, allelic ratios (bj) along chromosome 2. Transitions be-
tween the three copy number states are indicated by dashed gray vertical lines in the
top and middle panels. Bottom panels, allele-specific copy numbers: (ajcj , bjcj) in
each of the three regions. Light blue: copy number probes; gray: SNPs called homozy-
gous in the paired normal sample; black: SNPs called heterozygous in a paired normal
sample (not shown). The data were preprocessed using AS-CRMAv2 [14] followed by
TumorBoost [15].

Obtaining locus-level estimates of minor and major copy

numbers, and allelic imbalances.

For any configuration of the paternal and maternal genotypes at SNP j, true
allelic ratios αj and βj satisfy

(αj , βj) ∈
{
0, γj/γj , γj/γj , 1

}
, (2)
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with the constraint αj + βj = 1. In particular, if SNP j is heterozygous in
the germline, then by definition the alleles inherited from the two parents
at this locus differ, and the minimum and maximum allelic ratios satisfy
min(αj , βj) = γj/γj and max(αj , βj) = γj/γj . Therefore, minor and major
copy numbers may be estimated as the locus level by

{
cj = cj · min(aj , bj)

cj = cj · max(aj , bj)
. (3)

The true allelic imbalance as defined in Equation (1) may then be written as
δj = 1 − 2 · min(αj , βj), and the corresponding locus-level estimate becomes

dj = 1 − 2 · min(aj , bj) . (4)

2.3 Notation

The notation used in this chapter for true copy number signals (Greek letters)
and the corresponding locus-level estimates (Roman letters) is gathered in
Table 2.

True Locus-level estimate Locus type

Total copy number γj cj SNP and CN
Allele A fraction αj aj SNP
Allele B fraction βj = 1 − αj bj = 1 − aj

Minor copy number γj = γj · min(αj , βj) cj = cj · min(aj , bj) Heterozygous SNP
Major copy number γj = γj · max(αj , βj) cj = cj · max(aj , bj)

Allelic imbalance δj = (γj − γj)/γj dj = 1 − 2 · min(aj , bj)

Table 2 Notation: true copy numbers and corresponding locus-level estimates from
SNP arrays.

3 Preprocessing

The goal of this section is to explain how locus-level estimates for total copy
numbers (cj) and allelic ratios (aj and bj = 1 − aj), as defined in Section 2,
can be obtained from the observed signal intensities retrieved from SNP ar-
ray experiments. We focus on the two main SNP array platforms, which are
manufactured by Affymetrix [16, 17] and Illumina [18, 19, 20]. The first steps
that have to be carried out for low-level analysis of microarray data consist
in correcting data for sources of unwanted variation, in order to make ob-
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served signals comparable across samples for a given locus. These steps are
described in Section 3.1. We note that the methods described in this section
are generally technology-specific, but not specific to cancer studies — they
are relevant to any SNP array data analysis. In cancer studies however, the
observed signals also need to be comparable across loci for a given sample,
so that downstream analysis methods can take advantage of the local con-
stancy of the signal along the genome to combine locus-level estimates into
region-level estimates. This question is addressed in Section 3.2. Note that
because the methods developed in Section 3.2 rely on reference samples for
the estimation of copy numbers, their application requires making signal in-
tensities comparable across samples (as explained in Section 3.1) in the first
place. Section 3.2 is not technology-specific; however it is only relevant to
copy number studies in cancers.

3.1 Making signals comparable across samples

SNP arrays were originally developed and used for genotyping purposes in
genome-wide association studies (GWAS). Genotype calls are generally esti-
mated independently for each SNP, by comparing the distribution of allelic
signals across samples. Necessarily, preprocessing methods for SNP arrays
were initially focused on making signals comparable across samples. In this
section, we briefly review the design principles of existing methods address-
ing this point. As Affymetrix and Illumina assays are quite different, these
methods are mostly platform-specific.

3.1.1 Affymetrix

A variety of preprocessing methods have been suggested for Affymetrix SNP
arrays, e.g. (implicit or explicit) background correction, allelic-crosstalk cali-
bration, probe-sequence normalization, PCR fragment-length normalization,
several distribution-based normalization methods, and various methods sum-
marizing probe-level signals into locus-level estimates.

Correction of PCR and sequence related effects. Affymetrix geno-
typing assays involve a Polymerase Chain Reaction (PCR) amplification
step [16, 17]. In the assays where restriction enzymes are used to fragment
the target DNA, the locus-specific copy number estimates may be corre-
lated with the fragment length. Since the fragments are known from the
genome annotation it is straightforward to estimate and correct for such
effects [21, 22, 23, 24, 14]. Moreover, it has been reported that observed in-
tensities are also correlated to the GC content [21, 24], but also more complex
relationships such as the nucleotide sequences of the probes [23, 14].
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As these parameters may vary across assays and between hybridizations,
they need to be corrected for in order to make comparisons across samples
meaningful and more precise. Existing approaches typically involve non-linear
regression of signal intensities on PCR fragment length, GC content and
nucleotide position [21, 22, 23, 24, 14].

Generic probe-level normalization is a crucial step of microarray pre-
processing which aims at making probe signals comparable between samples.
For Affymetrix data, methods originally developed for the preprocessing of
expression microarray data — lowess normalization [25], invariant-set nor-
malization [26] or quantile normalization [27], have been successfully applied
to SNP array data. These approaches explicitly constrain probe-levels signals
to be comparable across arrays.

Correction for allelic crosstalk. However, It has been recently shown
that most of the non-biological differences between the distribution of probe-
level signals across samples could be attributed to allelic crosstalk (including
an offset correction), that is, cross-hybridization between probes targeting the
two alleles of a SNP [24, 28]. One advantage of allelic crosstalk calibration
is that it effectively makes probe-level signals comparable across samples
without imposing constraints on intensity distributions [14, 24]. It can also
be applied to each array separately.

Summarization of probe-level signals. Summarization combines nor-
malized probe-level signals into locus-level estimates by fitting a log-additive
or multiplicative model of the intensities. These models were first developed
for the analysis of oligonucleotide expression microarrays [26, 27] and later
adapted to SNP arrays [29, 30, 23]. Related multi-array models that explic-
itly models the allelic crosstalk at the summarization step have also been
suggested [31, 28].

A common feature of Affymetrix SNP arrays is that each SNP is associ-
ated with a set of 25 nucleotide-long probe sequences. Half of these probe sets

target allele A and the other half targeting allele B. However, the technology
has evolved substantially across generations of SNP arrays, as a result of an
effort from both the manufacturer and the scientific community [9]. With
the latest generation of SNP arrays (GenomeWideSNP 5 and 6), all probes
targeting a given allele-specific or total copy number locus are technical repli-
cates. With this simplified probe set design, using the median of replicated
probes within an array as a summary has been shown [14] to perform as good
as or better than previously proposed summarization models that required
several arrays to be used.

3.1.2 Illumina

Almost all studies performed using Illumina data use the preprocessing
method provided by Illumina’s BeadStudio software [32, 10], which is an
affine transformation of the original data that corrects for offset and signal
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compression (or allelic crosstalk), and scales the data based on control points.
The parameters for this affine transformation are estimated independently for
each sample, for each sub-bead pool. As the Infinium assay does not involve
PCR amplification, correction for sequence effects is not needed for Illumina
SNP arrays.

Recent works demonstrated that the signals after BeadStudio normaliza-
tion suffer from a dye bias [33]: the distribution of normalized signals differ
substantially between the two types of fluorescent dyes (Cy3 and Cy5) that
are used in the Infinium II assay [34]. The correction method proposed by [33]
consists in applying Quantile Normalization [27] to the normalize the two
dyes. Importantly, this is still done independently for each array.

3.2 Making signals comparable across probes

Signal intensities at a given locus j can be assumed to be proportional to
the corresponding true copy numbers, but the proportionality coefficient is
unfortunately locus specific and unknown [26, 27, 35]. These coefficients are
known as locus affinities. In copy number studies, true copy numbers are
expected to be locally constant along the genome. This property is exploited
by downstream segmentation methods to detect copy number changes along
the genome, as explained in Sections 4 and 6. It is therefore fundamental for
these downstream analyses that these locus affinities be canceled beforehand,
in order to make copy number signals comparable across neighboring loci.
This section describes how existing methods address this question for total
copy number and allelic signals.

3.2.1 Total copy numbers

As locus affinities are not sample-specific, they can be effectively canceled
from total signals by dividing the observed(summarized) signal intensity yj

at locus j by an observed reference signal intensity, y
(R)
j , at the same locus,

which is obtained from a sample or a pool of samples for which the true copy

number at locus j, γ
(R)
j , is known:

cj = γ
(R)
j

yj

y
(R)
j

. (5)

In general the reference is chosen to be copy-number neutral (“copy neu-

tral”), that is, so that γ
(R)
j = 2 for j ∈ J . There are several choices of total

reference signal y
(R)
j , depending on the study design [36, 37]. For instance, in

a paired tumor-normal study, the reference signal at a given locus may be the
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corresponding total signal from a matched normal tissue sample or normal
blood sample, whereas in a tumor study without matched normals, it may be
the corresponding robust average (e.g. a median) of all samples in the study.
If some of the samples in the study are normal samples, their robust average
may be used as a reference instead.

It is in general better to use a reference from the same lab as the test
sample, and possibly from the same batch of arrays. This is illustrated by
Figure 2, where three different sets of cytogenetically normal samples were
used as references for the same tumor SNP array. The tumor SNP array
is from a breast cancer cell line hybridized at the Lawrence Berkeley Na-
tional Laboratory (LBNL). All samples were hybridized on the Affymetrix
GenomeWideSNP 6 platform, normalized using CRMAv2 [14]. Copy num-
ber profiles were segmented using the Circular Binary Segmentation (CBS)
method [38]. The figures were generated using ChromosomeExplorer within
the aroma.affymetrix framework [39].

The signals in the three panels of Figure 2 are of similar amplitude: the
difference between copy number estimates (black segments) between two suc-
cessive copy number regions is comparable across panels. Therefore, signal to
noise ratios can be compared on the basis of the corresponding noise levels.
We quantified the noise level (along the whole genome) for each choice of a
reference using a robust first-order standard deviation estimator [40, 41]:

σ̂∆ =
1√
2
· Φ−1(3/4) · median

j

(∣∣∣∣zj − median
j′

(zj′)

∣∣∣∣

)
, (6)

where zj = cj+1 − cj for j = 1, . . . , J − 1. The scaling factors 1/
√

2 ≈ 0.7071
and Φ−1(3/4) ≈ 1.4826 make σ̂∆ a consistent estimator of the cj under the
assumption that cj , and hence zj , is Gaussian and i.i.d. Because this estimator
relies on the first order differences zj , it is robust against change points and
can therefore be used without knowing where the true change points are.

The noise level is high when samples from a different lab are used as
references (top panel: σ̂∆ = 0.60), even when the number of samples is large
(197). It is substantially smaller when references from the same lab (LBNL
in this particular example) are used (middle panel: σ̂∆ = 0.44), even in a
much smaller number (36). It is even lower when references from the same
batch of arrays (bottom panel: σ̂∆ = 0.37): in this example, the reference set
consisted of only 22 arrays hybridized on the same day as the tumor sample.

3.2.2 Allelic ratios

Allelic ratios for a given SNP j are usually estimated as the ratio of the
signal intensity of one allele relative to the total signal intensity. For B allele
fractions, this yields
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Fig. 2 Influence of the choice of a reference sample on the signal to noise ratio in
total copy number signals. Three different sets of normal references are used to esti-
mate total copy numbers for the same tumor SNP array hybridized at the Lawrence
Berkeley National Laboratory (LBNL): 197 samples from another lab (top panel), 36
arrays from LBNL (middle panel), and 22 arrays from LBNL, and the same batch as
the tumor sample (bottom panel). Green dots: locus-level estimates; black segments:
region-level estimates after segmentation by CBS [42].
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bj =
yjB

yj
, (7)

where yj = yjA +yjB , and yjA and yjB are the observed signal intensities for
allele A and B, respectively. Note that contrary to total signals, no external
reference is needed at this stage: allelic ratios can be estimated from a single
hybridization. However, these estimates have been reported to suffer from
systematic deviations from their corresponding true values [20, 10, 43, 15].
One possible explanation for this effect is that locus affinities are not only
locus-specific but allele-specific, so that they may not be adequately canceled
by the ratio in Equation (7). Several approaches have been developed to
normalize raw allelic ratios based on paired or unpaired normal reference
hybridizations, greatly improving the signal to noise ratio for downstream
analyses for Illumina data [20, 10], or both Affymetrix and Illumina data [15].
This is illustrated by Figure 3 for the TumorBoost method [15].

Fig. 3 Improved signal to noise ratio after normalization by the TumorBoost method
[15]. Top: raw allelic ratios as in Equation (7). Bottom: TumorBoost-normalized
allelic ratios, using allelic ratios from of a paired normal hybridization. Data is taken
from the same tumor sample and chromosome as in Figure 1.

4 Copy number change detection: from locus-level to

region-level estimates

Copy number profiles in tumors are consequences of genomic events at the
regional scale, such as small or large deletions or gains. Therefore, true copy
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number signals can safely be modeled as locally constant in tumor samples.
This assumption is one of the bases of all the algorithms that have been
proposed for detecting copy number changes from microarray data. The goal
of this section is to explain how locus-level copy number estimates (obtained
after preprocessing as described in Section 3) can be combined to detect copy

number changes along the genome.
The methods described in this section can be used to segment total, minor

and major copy numbers, or allelic imbalances: these applications are dis-
cussed in Section 6. For simplicity of notation and vocabulary, we will loosely
refer to copy numbers and use the notation c for locus-level estimates, and γ
for the corresponding true values.

Two main types of methods have been developed and are used in practice:
change-point models and Hidden Markov Models (HMM). In the context of
copy number analyses, they were initially applied to microarray technologies
that only assess total signals, in particular array Comparative Genomic Hy-
bridization (array-CGH) [3]. The practical performance of these methods has
been reviewed in [44, 45]. The present section provides an up to date sta-
tistical review of currently available methods for copy number segmentation
using change point or Hidden Markov Models.

For simplicity, we will only use genomic positions j = 1, 2, . . . , J corre-
sponding to the ordering of loci, rather than the physical location (in base-
pairs) of the loci, in the following discussion and equations. This is also the
most commonly used approach in existing methods. Incorporating physical
locations as well introduces another level of complexity to the notation and
the models that is unnecessary for the overview presented here.

4.1 Change-point models

We assume that there exists a partition of the genome into K segments,
k = 1, 2, . . . ,K, such that true copy numbers are constant in each segment.
Specifically, there exists an index vector of K + 1 loci t(K) = (tk)0≤k≤K

called change points, such that 1 = t0 < t1 < · · · < tK−1 < tK = J , and an
associated vector of K region-level true copy numbers Γ = (Γk)1≤k≤K such
that true copy numbers γ = (γj)j∈J are constant equal to Γk in the interval
[tk−1, tk). That is,

γj = Γk ; ∀j ∈ [tk−1, tk),∀k ∈ {1, . . . ,K} . (8)

Letting k(j) be the largest index k such that tk ≤ j, the observation c =
(cj)j∈J may then be modeled as

cj = Γk(j) + εj , (9)
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where the errors (εj)j∈J are independent and identically distributed (i.i.d.),
and generally assumed to be Gaussian (N (0, σ2)). When the number K of
segments and the vector t(K) = (t0, . . . , tK) of change point locations are
known, the log-likelihood ℓ(K, t(K),Γ; c) of the model described by Equa-
tion (9) is additive in each segment:

ℓ(K, t(K),Γ; c) = J log(2πσ2) +
1

σ2

K∑

k=1

∑

j∈[tk−1,tk)

(
cj − Γk(j)

)2
. (10)

In this idealized situation, the maximum likelihood estimator of each Γk is
the empirical mean of the observed signals within the kth segment. In practice
though, both K and t(K) are unknown, which gives rise to a model selection
problem (choosing K), and a combinatorial problem: choosing t(K) for a
given K. Indeed, the number of possible configurations for t(K) is

(
K−1
J−1

)
,

that is, O(JK−1), which is prohibitively large in realistic situations where K
is in the dozens and J is currently of the order of 105 to 106.

Heuristics. The first approach taken to address these issues has been to
combine a Bayesian Information Criterion (BIC) penalization for the choice
of K with a genetic programming algorithm for the choice of t(K) [46]. Three
main directions have been explored to improve on this early attempt. The
most widely used method in practice, known as Circular Binary Segmen-
tation, implements a greedy approach which recursively looks for the best
partition of the data into two (or three) segments [38]. The depth of the
recursion is determined by the significance of the change points, which im-
plicitly determines K. This step has been made faster using permutation
techniques in a second version of the method [42], which has been used to
produce the segmentation obtained in Figure 4. A modified BIC criterion has
also been proposed to estimate K directly [47].

Exact solutions. Second, several methods have been proposed that solve
the original problem exactly. First, one can take advantage of the additivity
of the log-likelihood in the segments and use dynamic programming to reduce
the complexity of the exhaustive search for the best t(K) for a given K from
O(JK−1) to O(K·J2). This idea has been combined with an adaptive penal-
ization method [48] to build a quadratic (O(K·J2)) change point detection
algorithm [49]. Such a method cannot be used to segment DNA copy num-
ber profiles from the latest generations of microarrays, for which more than
106 loci can be interrogated. A pruned dynamic programming algorithm has
been proposed recently that recovers the optimal solution much faster [50].
Although its worst case complexity is still O(K·J2), in practical situations it
is almost linear in J , which makes it quite appealing for current copy number
segmentation problems.

Convex relaxations. A third direction uses convex relaxation, which is
a classical approach in statistical machine learning. It consists in replacing a
non-convex optimization problem by a slightly different, but convex, version
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of the problem, which can be solved efficiently. Two regression methods based
on Lasso-type penalties have been applied to the problem of detecting changes
in DNA copy number signals [51, 52].

The first method [51] is an adaptation of the Fused Lasso [53], which solves
the constrained optimization problem

min
(γj)1≤j≤J

J∑

j=1

(cj − γj)
2

s.t.

J−1∑

j=1

|γj+1 − γj | ≤ v and

J∑

j=1

|γj − 2| ≤ u.(11)

Formally, this method constrains the ℓ1 norm of the jumps in γ, which can
be seen as a convex relaxation of constraining the number of jumps (that
is, the ℓ0 norm of the jumps). In words, the mean amplitude of the changes
in estimated copy-number levels (|γj+1 − γj |) is not allowed to be too large.
Moreover, this model incorporates a sparsity constraint on |γj − 2| enforcing
that most loci correspond to the copy-neutral state, where 2 represents the
copy number of the copy-neutral state. For non-diploid copy-neutral state,
this copy-number level should be adjusted accordingly. The complexity of
the algorithm proposed in [51] is (at best) quadratic in the number of data
points, that is O(J2), which is too expensive for recent data sets.

The second method [52] is a relaxed version of Equation (11) where only
the amplitudes of the changes are constrained, resulting in the constrained
optimization problem

min
(γj)1≤j≤J

J∑

j=1

(cj − γj)
2

s.t.
J−1∑

j=1

|γj+1 − γj | ≤ v . (12)

This optimization problem can be written as a Lasso-type regression problem
and can therefore be solved in O(K3 +J ·K2) using a Least Angle Regression
(LARS) algorithm [54] to select the first K change points. The authors of
[52] suggest to prune the obtained set t(K) of candidate change points by
running the aforementioned dynamic programming algorithm on the set of
partitions consisting of subsets of K ′ < K points in t(K). Because this set is
much smaller than the original searching space, this pruning step has a low
complexity of O(K3). Finally, they define a heuristic for choosing K based
on the magnitude of the increments of the empirical risk when a change point
is added.

4.2 Hidden Markov Models

Hidden Markov Models (HMMs) assume that the observed copy numbers c =
(cj)j∈J are emitted by an underlying Markov chain according to H hidden
region-level true copy number states Γ = {Γ1, . . . ΓH}. A HMM of order 1
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is defined by a specific set Γ of hidden states, and transition probabilities
(p(u, v)) for (u, v) ∈ {1, . . . ,H}2, such that

P(γj+1 = Γv|γj = Γu) = p(u, v) ; ∀j ∈ {1, . . . , J} . (13)

HMM naturally incorporate and take advantage of the fact that different
regions can have the same true copy number, which is not the case of change-
point models as the one described by Equation (9). Several HMM-based meth-
ods have been proposed for estimating total copy numbers. These methods
mainly differ in the assumptions that are made for the dynamics of the un-
derlying Markov chain, and the approaches used for the estimation of the
hidden states.

The earliest approach assumes that the state sequence is a discrete Markov
chain [55]. The number of hidden states is estimated using model selection.
More recently, a Bayesian HMM approach with four (H = 4) hidden states
has been proposed [56]. Because it relies on Bayesian estimation procedures,
it provides not only a segmentation of the original observations but also con-
fidence intervals for (the index location of) each copy number change point.
However, because the posterior distribution is analytically intractable, pos-
terior inference in this model is performed using simulation-based methods.

The underlying copy number process can also be modeled as a continuous-
valued Markov jump process [57]. This type of model is appealing for applica-
tions to tumor samples as it does not require the number of of hidden states
(H) to be specified in advance. Moreover, contrary to [56], the posterior dis-
tribution of the hidden variables in [57] can be computed explicitly, which
implies that posterior estimates, including confidence assessment of a given
segmentation, are available without simulations.

In contrast to change-point methods, HMM-based approaches rely on as-
sumptions on the distribution of the underlying copy number state sequence,
and the distribution of the size of copy number regions. Although such as-
sumptions may be unrealistic in the context of cancer studies, a number of
state of the art methods for estimating copy numbers from SNP array data
use HMMs, as will be explained in Section 6.

5 Purity and ploidy

Figure 4 displays the same data as in Figure 1 after segmentation of total
copy numbers by the Circular Binary Segmentation algorithm [38, 42], and
estimation of total, minor and major copy numbers as well as allelic ratios in
regions of constant total copy numbers.

As explained in Section 2, TCGA has shown that the copy number states
observed in the genomic region displayed in Figure 1 are a normal diploid
region (1, 1), a single gain (1, 2) and a copy-neutral LOH (0, 2).
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Fig. 4 Locus and region-level estimates. Input data is the same as in the top panels
of Figure 1. Two main change points in total copy numbers (top panel) have been
detected by the CBS algorithm [38, 42], and are reported in both panels as dashed
gray vertical lines. Top panel: locus-level total copy number estimates (gray dots),
and total (black), major (blue) and minor (green) region-level copy number estimates
after change point detection. Bottom panel: locus-level (gray dots) and region-level
allele B fractions estimates after change point detection (black lines) for heterozygous
SNPs. Regions of allelic imbalance (unequal parental copy numbers) are highlighted
in red.

However, it is not straightforward to infer these copy number states only by
looking at Figure 4: the observed region-level copy number estimates do not
reflect the true copy numbers in the tumor cells of the sample. First, the total
copy number is slightly greater than 2 in the normal diploid region. Then, the
difference between successive region-level total copy numbers is substantially
smaller than the true difference (one copy number unit). Even more strikingly,
allele B fractions in the region of copy-neutral LOH (rightmost region) are
far from the expected values of 0 or 1.

In this section we explain that these observations are not due to imper-
fections of the preprocessing method or the microarray assay itself, as they
reflect two biological features of the data: the ploidy of the tumor, and the
presence of normal cells (and possibility of several cytogenetically distinct
kinds of tumor cells) in what is usually called a tumor sample. For simplic-
ity we will assume that the reference used in the estimation of locus-specific
copy numbers (as explained in Section 3.2) is a cytogenetically normal sam-
ple (either normal tissue, or normal blood extract) from the same individual
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as the tumor. Methods that take these biological parameters into account in
the estimation of copy number states are discussed in Section 6.

5.1 Pure tumor samples

In Figure 5 we have represented the true copy numbers in a sample assumed
to contain only one kind of tumor cells and having the same copy number
states as those observed in Figure 4: a normal (1, 1) region, followed by a
region of gain of a single copy (1, 2), and by a region of copy-neutral LOH
(0, 2).

Normal (1,1) Gain (1,2) Copy-neutral LOH (0,2)
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Fig. 5 Assumed true total copy numbers and allelic rations in the tumor cells de-
picted in Figure 4. Top panel: total (black), major (blue) and minor (green) copy
numbers. Bottom panel: allele B fractions: homozygous SNPs (gray) and heterozy-
gous SNPs (black).

By Equation (2), true allele B fractions satisfy βj ∈
{
0, γj/γj , γj/γj , 1

}
,

and the pattern of allelic ratios observed in Figure 5 can be interpreted as
follows. In a region of allelic balance (left region), where the two parental copy
numbers are identical (and not zero), the two heterozygous states merge into
βj = 1/2 and there are three distinct states: βj ∈ {0, 1/2, 1}. In a region
of allelic imbalance with retention of heterozygosity (middle region) where
the two parental copy numbers are different and neither are zero, βj can
take four distinct values. In a region of LOH (right region), where the minor
copy number is 0, heterozygous states disappear and we observe two distinct
states: βj ∈ {0, 1}. The only type of scenario not represented in Figure 5 is
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the case of homozygous deletions, where both parental copy numbers are null
and true allele B fractions are not defined.

5.2 Contamination by normal cells

In practice however, “tumor samples” are generally a mixture of a tumor cells
and a normal cells. In this situation, Equation (2) still holds, but the observed
parental copy numbers need not be whole numbers anymore. They are a
mixture of the unknown parental copy numbers in the tumor, and the parental
copy numbers in normal cells, which are typically but not always (1, 1). The
exceptions are so-called copy number polymorphisms (CNPs) [58, 59, 60]. For
simplicity, we will in what follows only consider SNPs that are diploid in the
normal cells.

Assuming that normal cells are diploid, and denoting by κ ∈ [0, 1] the
proportion of normal cells in the sample, then the true minor and major
copy numbers in the sample are given by

{
γj = (1 − κ)γ⋆

j + κ

γj = (1 − κ)γ⋆
j + κ

(14)

where γ⋆
j and γ⋆

j are the true minor and major copy numbers of the tumor

cells from the sample at locus j, as if there were no normal cells. Note that
these true copy numbers neither need not be whole numbers as the tumor
cells of a DNA sample may themselves be a mixture of several tumoral pop-
ulations (or clones), each with distinct whole-number copy number profiles.
The corresponding total copy numbers and allelic imbalances (when j is a
heterozygous SNP) are given by

{
γj = (1 − κ)γ⋆

j + 2κ

δj =
γ⋆

j−γ⋆
j

γ⋆
j +2κ/(1−κ)

(15)

True allele B fractions satisfy βj ∈ {0, 1/2 − δj/2, 1/2 + δj/2, 1}. The influ-
ence of normal contamination on true total copy numbers and allelic ratios
is shown in Figure 6. Normal contamination moves the observed allelic ratios
towards those of the corresponding normal genotypes, and the observed total
copy numbers towards the copy number of normal cells. A major difference
with the case of no normal contamination is that one still observes heterozy-
gous states in regions of LOH in the tumor: indeed, in regions of LOH, the
minor copy number is 0 in tumor cells (γ⋆ = 0), and we have

β ∈
{

0;
κ

(1 − κ)γ⋆ + 2κ
;

(1 − κ)γ⋆ + κ

(1 − κ)γ⋆ + 2κ
; 1

}
, (16)
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Fig. 6 Influence of contamination by normal cells on true copy numbers: comparing
0% contamination (pure tumor as in Figure 5, dashed lines) with 54% contamina-
tion (solid lines). Top panel: true total (black), major (blue) and minor (green) copy
numbers. Bottom panel: true allele B fractions: homozygous SNPs (gray) and het-
erozygous SNPs (black).

which corresponds to four distinct modes for allelic ratios. This is illustrated
by Figure 6 (right) in the particular situation of copy-neutral LOH, where
γ⋆ = 2, leading to β ∈ {0;κ/2; 1 − κ/2; 1}.

From a modeling point of view, it is worth noting that normal cell contam-
ination is a particular case of contamination, because it may be estimated
and corrected for based on either diploid assumptions or explicit measure-
ments of a matched normal (germline) sample. Simply speaking, it is in many
cases possible to remove the normal component in the tumor-normal mixture.
This is rarely possible for other type of cell contaminations, as they are gener-
ally not directly measured. In particular, the problem of identifying different
tumor clones from one heterogeneous tumor sample is a harder one.

5.3 Tumor ploidy

As explained in Section 3.2, the total copy number at locus j is generally
estimated relative to a reference as in Equation (5), in order to cancel locus-
specific affinities. We can actually interpret c as an estimator of the true copy
number in the tumor sample if the same number of cells were hybridized to

the microarray in the tumor and in the normal assay.
This assumption does not necessarily hold, because of copy number al-

terations in the tumor. Indeed, the experimental protocol constrains the
amount of DNA, not the number of cells, to be the same for each sample
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assayed [36, 11]. For example, a purely tetraploid tumor with two copies of
the genome and no other chromosomal alteration could not be distinguished
from a cytogenetically normal (diploid) sample, as the genomic material hy-
bridized on the SNP array is the same in both situations. We refer to [35,
Section 4.4] for further discussion on this issue.

In this chapter we define the ploidy λ of a biological sample as the total
amount of genomic DNA in this sample relative to that of a normal sample.
Therefore, ploidy as defined here needs not be a whole number, because of
chromosomal gains and losses and as the tumor sample may be a mixture
of normal cells and tumor cells or one or more types of tumor cells with
different patterns of genomic alteration. Figure 7 illustrates the influence of
tumor ploidy on SNP array signals when using Equation (5) to estimate total
copy numbers, that is, when assuming that the average true copy number in
the normal is 2. Ploidy acts as a scaling factor for total, minor and major
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Fig. 7 Influence of tumor ploidy on true copy numbers in absence of normal contam-
ination: comparing ploidy 2 (as in Figure 5, dashed lines) to ploidy 2.5 (solid lines).
Top panel: true total (black), major (blue) and minor (green). Bottom panel: true
allele B fractions: homozygous SNPs (gray) and heterozygous SNPs (black).

copy numbers. Allelic signals as defined in Equation (7) are not affected.

5.4 Combined influence of purity and ploidy

As a result of the combined influence of purity and ploidy on the actual
composition of a biological sample, the true minor and major copy numbers
at a SNP j may be written as
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γj =
1

λ

[
(1 − κ)γ⋆

j + κ
]

(17)

γj =
1

λ

[
(1 − κ)γ⋆

j + κ
]

(18)

The corresponding true total copy numbers and allelic ratios are given by:

γj =
1

λ

[
(1 − κ)γ⋆

j + 2κ
]

(19)

δj =
γ⋆

j − γ⋆
j

γ⋆
j + 2κ/(1 − κ)

(20)

As explained above, we note that allelic imbalances (δj) are only affected
by normal contamination, not by ploidy. Figure 8 illustrates the combined
influence of purity and ploidy by comparing the true total copy numbers
and allelic ratios for a pure tumor without normal contamination (as in Fig-
ure 5) with a non-diploid tumor with normal contamination according to
Equations (19) and (20).
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Fig. 8 Combined influence of tumor ploidy and normal cell contamination on true
copy numbers: comparing ploidy 2 and no normal contamination (as in Figure 5,
dashed lines) with ploidy 1.8 and 54% normal contamination (solid lines). Top panel:
true total (black), major (blue) and minor (green). Bottom panel: true allele B frac-
tions: homozygous SNPs (gray) and heterozygous SNPs (black).

When accounting for both purity and ploidy, the copy number patterns
become quite similar to those observed with real data. This is illustrated by
the comparison between the true copy numbers in Figure 8 and locus- and
region-level copy number estimates in Figure 4.
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6 Estimation of copy number states in cancer studies

Copy number studies in cancer research aim at identifying the unknown copy
number state in a tumor sample, as defined in Section 2. As explained above,
the word identification actually covers two different statistical questions: de-

tecting changes in copy number signals, and calling regions, that is, assigning
a copy number state to each region detected. Because SNP arrays interrogate
allele-specific signals, they can be used for both detection and calling.

Segmentation can be performed regardless of purity and ploidy, although
these two biological parameters do influence the detection power of any given
segmentation method, through the distance between true region-level copy
number states. However, both purity and ploidy have to be acknowledged in
order to call copy number states in the tumor cells of a given sample.

6.1 Existing methods

A number of methods for analyzing SNP array data were developed in the
context of Copy Number Variation (CNV) studies in normal samples: Vanil-
laICE [61], PennCNV [62], QuantiSNP [63], and BirdSuite [64]. Most of them
are based on HMMs. Because these methods are dedicated to, and well-
designed for CNV studies, their model states do not adequately describe the
copy number states in Table 1. More specifically, either they do not consider
allele-specific amplifications [62, 63], or the distinction between normal and
copy-neutral LOH [61], or they are only designed to detect rare CN aberra-
tions [64]. Moreover, their states generally do not account for possible tumor
heterogeneity or contamination by normal cells.

Table 3 lists methods that actually combine total and allele-specific signals
in order to call copy number states (as defined in Table 1) in cancer studies.
They are described in terms of the type of information they take into account
and the type of method they use for detecting copy number changes, whether
their application requires the availability of a paired normal reference, and
whether they explicitly account for tumor purity and ploidy as discussed in
Section 5.

We have shown in Section 2 that SNP array signals were two-dimensional
by nature, and that both dimensions were needed to call copy number states
as defined in Table 1. All methods cited in Table 3 indeed make use of both
dimensions at the calling step, but not necessarily at the detection step. These
methods can be classified in terms of the type of input data they are using at
the detection step, as indicated by the horizontal lines in Table 3. We note
here that although raw allelic signals typically have several modes in a region
of constant copy number (as explained in Section 2), direct segmentation
methods can be used to detect changes in allelic signals from SNPs that are
heterozygous in the germline [6, 7, 67, 66].
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Name Settings Detection method Ploidy Purity
MCP [8] unpaired HMM on δ no no
Gardina [11] unpaired HMM on “genotypes” yes no
BAFsegmentation [6] paired or unpaired segmentation of δ no yes
SOMATICS [7] unpaired segmentation of δ no yes
AsCNAR/CNAG [36] unpaired HMM on δ no yes
OverUnder [65] unpaired 2× 1d smoothing yes no
psCBS [66] paired two-way segmentation no no
GAP [67] unpaired 2× 1d segmentation yes yes
Lamy [68] paired HMM on (γ, δ) no yes
PSCN [69] unpaired HMM on (γ, δ) no no
PICNIC [43] unpaired HMM on (γ, δ) yes no
genoCNA [70] unpaired HMM on (γ, δ) no yes

Table 3 Existing methods for copy number studies in cancers using SNP arrays. Set-
tings: has the method been developed for studies with available paired normal samples,
or not ? Last two columns: does the method explicitly account for ploidy, purity ?.

Methods from the first group use only one piece of information for de-
tection [8, 71, 7, 36, 6]. As these methods are mostly interested in loss of
heterozygosity, they all allelic imbalances (or genotypes) and not total copy
numbers, as an input for the detection step. Methods from the second group
combine both pieces of information, either by independent smoothing [65] or
segmentation [67] of each piece of information, or by segmentation of total
signals followed by segmentation of allelic signals [66]. In particular, GAP [67]
is to our knowledge the only method that explicitly accounts for both purity
and ploidy. Finally, methods from the third group perform truly joint detec-
tion of copy number changes [68, 69, 43, 70]. In the next section, we show that
such joint approaches can be more powerful to detect copy number changes.

6.2 Joint detection provides more power to detect copy

number changes

In this section, we demonstrate that there is substantial statistical power to
gain by considering both pieces of information for the detection step. Figure 9
shows that total and allelic signals have comparable power to detect the two
change points studied throughout this chapter: a transition between a diploid
normal state (1, 1) and a gain (1, 2) (left panel), and a transition between a
gain (1, 2) and a region of copy-neutral LOH (0, 2) (right panel). For each type
of signal studied in Figure 9 is a ROC curve used to measure the separation
between two copy number states at a change point of known location based
on this signal. We refer to [15, 41, 14] for a comprehensive description of this
evaluation.

http://biosun1.harvard.edu/complab/dchip/snp.htm
http://baseplugins.thep.lu.se/wiki/se.lu.onk.BAFsegmentation
http://www.lerner.ccf.org/gmi/igac/published_data.php
http://www.genome.umin.jp/CNAGtop2.html
http://www.research.chop.edu/tools/cancerCN
http://r-forge.r-project.org/projects/abo
http://bioinfo-out.curie.fr/projects/snp_gap
http://r-forge.r-project.org/projects/pscn
http://www.sanger.ac.uk/genetics/CGP/Software/PICNIC
http://www.bios.unc.edu/~wsun/software/genoCN.htm
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Fig. 9 At a fixed resolution, total copy numbers and allelic signals have comparable
power to detect copy number changes. ROC curves for the two copy number change
points studied in Figure 1: left panel, between a normal region (1, 1) and a single
gain (1, 2); right panel, between a single gain (1, 2) and a region of copy-neutral
LOH (0, 2). Affymetrix GenomeWideSNP 6 data.

Allelic signals have a lower density than total signals as copy number
probes only measure total copy numbers, and because only SNPs that are
heterozygous in the germline are informative in terms of allelic imbalances.
However, these ROC curves can be compared across signals because the eval-
uation is performed at a fixed resolution for each change point. Each resolu-
tion corresponds to a different number of markers for allelic and total signals.
The change point between states (1, 1) and (1, 2) is detected slightly better
with total signals (dashed) than with allelic signals (solid), allelic imbalances
(black) or major copy numbers ( green). As expected, the change point is not
detected by minor copy numbers (red), as there is no change in true minor
copy numbers. The change point between (1, 2) and (0, 2) is detected with
similar or higher power using allelic signals than using total signals. Similar
patterns are observed for other types of change points, suggesting that there
is substantial detection power to gain in using both total and allelic signals
for the detection of copy number changes.

6.3 Comparison between existing joint methods

Four methods based on HMM perform truly joint TCN and AI analyses:
PICNIC [43], PSCN [69], genoCNA [70], and the method proposed in [68].
One advantage of HMM-based methods is that they can incorporate different
probe types (SNPs and copy number probes) naturally, although in practice
this seems to have been done only in PICNIC [43].



Contents 29

As discussed in Section 4, HMMs with discrete hidden state spaces per-
form the detection and calling steps at the same time, and are necessarily
limited in terms of number of copy number states, that is, they cannot adapt
to the intrinsic number of copy number states of a given problem. To our
knowledge, PSCN [69] is currently the only method for joint TCN and AI
analysis which is based on a continuous hidden state space. Conversely, one
drawback of this type of approach is that it does not give a hard segmenta-
tion of the data in copy number states. Instead, copy numbers are estimated
at each particular location and the method has to be combined with some
thresholding in order to actually provide a segmentation of the original data.
Moreover, downstream analyses are needed to estimate and/or call minor and
major copy numbers.

We advocate the development of a joint direct segmentation method, that
could take fully advantage of the two dimensions of SNP array data, as the
above HMM do, but without assuming a particular form for the distribution
of the copy number states sequence or the distribution of the size of copy
number regions. Such a method could rely on the same type of models as those
developed for joint direct segmentation of several copy number profiles [72,
73, 74].

7 Concluding remarks

In this chapter, we have underlined key aspects the analysis of SNP array
data, including the influence of purity and ploidy on the observed data, and
explained how they should be accounted for in the identification of copy
number states. Although existing methods adequately address several of
the challenges we focused on in this chapter, a few questions remain to be
solved besides the above-mentioned development of a joint direct segmen-
tation method. For the problem of detecting copy number changes, most
existing methods assume that the errors follow a Gaussian distribution, al-
though microarray data may be more heavy tailed. Current statistical models
can be extended to other types of error distribution, but the main difficulty
resides in developing efficient practical implementations.

For calling copy number states, although the effects of purity and ploidy
are now widely acknowledged, methods to account for them — and also for
tumor heterogeneity, that is, the possible presence of several tumoral clones
in the tumor sample — will probably have to be improved and adapted to
different types of cancers. A critical assessment of such methods is desirable,
and would require producing validation data where purity and ploidy are
known.

We have focused on the identification of copy number changes for one
sample from one SNP array platform. In conclusion, we indicate statistical
questions that arise in more general settings: when several samples are con-
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sidered at a time, when one sample has been assayed on several platforms,
and with newer copy number technologies.

Identifying recurrent allele-specific events. Even though some of the
preprocessing methods described in Section 3 require several microarrays, cur-
rently available methods for identifying copy number states from SNP arrays
analyze each tumor sample separately. However, the joint analysis of several
samples from the same tumor type should be more powerful if the same bio-
logical events can be shared by several samples, as already demonstrated for
total copy numbers for array-CGH data [72, 75, 73, 74]. Extensions of such
methods to allelic signals remain to be developed.

Combining allele-specific signals across platforms. When the same
sample is analyzed by two different platforms, combining signals across plat-
forms should lead to improved detection of copy number alterations. This
has been demonstrated for total copy numbers [41, 76] but still has to be
investigated for allelic signals.

High-throughput sequencing. Currently, high-throughput sequencing
technologies are more expensive than SNP arrays for whole genome allele-
specific copy number studies, because accurate estimation of allelic ratios
from read count data requires high sequencing coverage. The rapid evolution
of these technologies suggests that allele-specific copy number studies will be
cost-effective in the near future, leading to new statistical issues that will
need to be addressed.
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