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patients with intentional CPF poisoning. A wide concentration range of CPO and CPF was observed and the ratio of CPO/CPF varied considerably between individuals and over time.

The ratio increased during the course of poisoning from a mean of 0.005 in the first few hours after ingestion up to an apparent steady state mean of 0.03 between 30 and 72 hrs. There was a hundred fold variation in the ratio between samples and the interquartile range (between individuals) indicated over half the samples had a 5-fold or greater variation from the mean.

The ratio was independent of the CPF concentration and the pralidoxime regimen. CPO was present in sufficient quantities to explain any observed acetylcholinesterase inhibitory activity. The effectiveness of pralidoxime in reactivating the inhibited acetylcholinesterase is strongly dependent on the CPO concentration. Differences in clinical outcomes and the response to antidotes in patients with acute poisoning may occur due to inter-individual variability in metabolism.
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Introduction

Chlorpyrifos (CPF) is one of the most commonly used organophosphorus pesticides for domestic, agricultural and industrial purposes. It may be estimated that it causes tens of thousands of deaths per year worldwide [START_REF] Gunnell | The global distribution of fatal pesticide self-poisoning: systematic review[END_REF][START_REF] Eddleston | Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study[END_REF]. CPF is a pro-poison that requires metabolic activation to become a potent phosphorylating agent, namely chlorpyrifos oxon (CPO) [START_REF] Sams | Biotransformation of chlorpyrifos and diazinon by human liver microsomes and recombinant human cytochrome P450s (CYP)[END_REF]. At low concentrations, the desulfuration of CPF by human liver microsomes is due to the action of the polymorphically expressed CYP2B6 owing to its favorable V max /K m ratio [START_REF] Foxenberg | Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos[END_REF]. At high poison concentration, however, an increasing proportion of CPF desulfuration occurs due to the abundant CYP3A4 [START_REF] Buratti | CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes[END_REF]. CPO is also rapidly detoxified by human liver microsomes via CYP-dependent deethylation and dearylation, and by glutathione-S-transferase [START_REF] Fujioka | Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives[END_REF]. In addition, reactions with A-esterases such as paraoxonase 1 (PON 1; EC 3.1.8.1) or Besterases such as carboxylesterase (EC 3.1.1.1) and butyrylcholinesterase (BChE; EC 3.1. 1.8) in the liver may rapidly degrade or scavenge CPO [START_REF] Choi | Metabolism of chlorpyrifos and chlorpyrifos oxon by human hepatocytes[END_REF]. These polymorphisms in the activating and detoxifying enzymes [START_REF] Mutch | The relationship between PON1 phenotype and PON1-192 genotype in detoxification of three oxons by human liver[END_REF] are expected to lead to wide inter-individual variability in exposure to CPO for a given CPF load. However, further exploration of the importance of these factors has been limited by the absence of a reliable method of quantifying CPO in vivo.

Until recently [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF], CPO had never been detected in the blood of CPF-poisoned patients [START_REF] Drevenkar | Chlorpyrifos metabolites in serum and urine of poisoned persons[END_REF][START_REF] Timchalk | A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans[END_REF]]. Yet we repeatedly observed plasma of CPF-poisoned patients was able to inhibit red blood cell (RBC) acetylcholinesterase (AChE; EC 3.1.1.7) from healthy donors in vitro. It had been noted that BChE had extremely high reaction rates with CPO [START_REF] Amitai | Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon[END_REF] and an enzyme-based assay was developed using BChE (described in detail in [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF]). In the current study, we determined the ratio of CPO/CPF in patients with moderate to severe self-inflicted poisoning.

A c c e p t e d M a n u s c r i p t informed consent was taken from each patient, or their relatives, in their own language. Study details are reported elsewhere [START_REF] Eddleston | Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study[END_REF][START_REF] Jayawardane | The spectrum of intermediate syndrome following acute organophosphate poisoning: a prospective cohort study from Sri Lanka[END_REF][START_REF] Eddleston | Multiple-dose activated charcoal in acute self-poisoning: a randomised controlled trial[END_REF]. Treatment consisted of fluid resuscitation and atropine as described [START_REF] Eddleston | Management of acute organophosphorus pesticide poisoning[END_REF] and pralidoxime chloride 1g every 6 h for 48 h (RCT1 and Nuwara Eliya cohort), although there was no strict adherence to this regimen. Patients in RCT2 were randomised to receive pralidoxime (2g loading dose over 20 min, then 0.5g/h until a maximum of 7 days) or an equal volume of normal saline in addition to the supportive therapy mentioned above. The blood samples were collected between 25 May 2004 and 18

October 2006.

Blood samples were collected into tubes containing EDTA prior to pralidoxime, then at 1, 4, 12, and 24 h after administration, then once daily until discharge or death. A 0.2 mL blood sample was diluted at the bedside immediately after collection with 4 mL of ice-cold saline and frozen to -23°C until analysis of AChE activity. The remaining sample was promptly centrifuged and the aspirated plasma frozen at -23°C until analysis of BChE activity, inhibitory activity, and the concentration of CPF and CPO [START_REF] Eddleston | Management of acute organophosphorus pesticide poisoning[END_REF].

Analyses

Laboratory analyses were conducted in Munich, Germany. AChE activity was determined in native RBCs (AChE in vivo) and after reactivation with supra-therapeutic obidoxime (AChE in vitro) to estimate the reactivatable fraction. These assays were performed using a modified Ellman assay as described [START_REF] Worek | Improved determination of acetylcholinesterase activity in human whole blood[END_REF]. BChE activity [START_REF] Eddleston | Management of acute organophosphorus pesticide poisoning[END_REF] and inhibitory activity of plasma [START_REF] Thiermann | Cholinesterase status, pharmacokinetics and laboratory findings during obidoxime therapy in organophosphate poisoned patients[END_REF] were assessed as reported. In short, inhibitory activity of patient plasma was tested by A c c e p t e d M a n u s c r i p t CPO was determined by an enzyme-based assay as described recently [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF]. In short, CPO was extracted with n-pentane and the reconstituted residue titrated with purified horse BChE, allowing an LOQ of 0.5 nM. The data were corrected for 83% recovery of CPO from plasma [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF].

Horse BChE (Cat. No C-1057) and CPF Pestanal® were from Riedel-de Haen, Sigma, Taufkirchen, Germany; CPO was a generous gift from DowAgroSciences, Indianapolis, IN.

Both compounds had purities ≥ 99%. Fenitrothion (95.5% pure) was obtained from Dr.

Ehrenstorfer, Augsburg, Germany. All other reagents were from commercial sources at the purest grade available.

Pralidoxime was determined by HPLC on reversed phase material with an ion-pairing reagent. Specifically, 100 µL plasma was mixed with 30 µL trichloroacetic acid Typically, pralidoxime was eluted after 5.6 min. LOQ was 1 µM pralidoxime in plasma.

Free EDTA in plasma samples was titrated with a standard calcium chloride solution (50 mM) in the presence of the calcium indicator eriochrome black T (CAS 1787-61-7; 10 mg eriochrome black + 1 g sodium chloride triturated and dissolved in 2.5 mL water).

Specifically, 50 µL plasma was diluted with 450 µL distilled water, 5 µL sodium hydroxide (2 M) and 1 µL indicator solution added and titrated with calcium chloride until formation of a pink coloration.

Calculations

Data were included when CPF was ingested (on the basis of history and/or analytical data)

with no other organophosphorus compound being detected, BChE was mostly inhibited (typical for CPO) and AChE not significantly aged (typical for a diethylphosphorylated enzyme). Data were excluded when CPF and/or CPO were below the LOQs or when the time of ingestion or blood sampling was ambiguous. Data were also excluded when plasma pralidoxime was higher than 0.5 mM, indicating that blood was withdrawn proximally from the infusion site. In these cases significant post-sampling reactions had to be suspected.

The relationship between measured and calculated (predicted) CPO concentration was determined using equations as deduced elsewhere [START_REF] Eyer | The role of oximes in the management of organophosphorus pesticide poisoning[END_REF]. This approach has been validated for paraoxon previously [START_REF] Worek | Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning[END_REF]. The basis for the calculation of free CPO is the equation given below: The constants for reactivation of human diethylphosphoryl-AChE by pralidoxime are known from in vitro experiments using human red blood cells [START_REF] Eyer | The role of oximes in the management of organophosphorus pesticide poisoning[END_REF][START_REF] Worek | Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning[END_REF], [E], [E+EPOx] and [Ox] were determined, hence [P] can be calculated. We used k r = 0.3 min -1 ; K D = 330 µM and k i = 6 x 10 6 M -1 min -1 [START_REF] Eyer | The role of oximes in the management of organophosphorus pesticide poisoning[END_REF].

[E] [EP  EPOx]  k r k i  [P]  1 K D [Ox]   E =
The fraction of active test AChE upon incubation with known amounts of CPO in plasma samples was calculated discretely in 1-min increments using the following equation: 

E = E 0 -k i *(E -

Results

Time course of CPO formation

Formation of CPO occurred quite early after CPF ingestion. In one patient we detected significant amounts of CPO 70 min after CPF ingestion with BChE and AChE depressed to less than 2% and 10% of normal, respectively. Figure 1 shows the time course of plasma CPF and CPO in a patient who was admitted some 5 h post ingestion and received no pralidoxime.

Here, maximal CPO concentration appeared after a delay of several hours. As expected, the ratio of CPO/CPF increased with time, starting with less than 0.005 in the period between 0 and 4 h after ingestion and approaching 0.03 on average in the period between 24 and 120 hours. Table 1 shows the median plasma concentrations along with the interquartile ranges of CPF and CPO in 72 eligible patients (with and without pralidoxime treatment, no significant difference), where sufficient data were available to determine the CPO/CPF ratio at various time intervals post-ingestion. Fig. 2 shows the time course of the ratio of CPO/CPF and a mono-exponential association curve that was fitted to the median values, without implying a specific mechanism.

The variation of the ratio CPO/CPF was large, and some individuals showed a ratio below 0.01, while others had >0.05 in the period between 24 and 120 h, when a steady state was reached (cf. Fig. 2). The ratio CPO/CPF showed no dependence on the CPF concentration.

When plotting the ratio CPO/CPF in a logarithmic scale vs. the CPF concentration (Fig. 3), the linear regression showed no significant deviation of the slope from zero (p > 0.4; not shown). These data were indicative that in this setting CPO formation and decomposition did not show a saturation (dose-limiting) phenomenon.

Dependence of AChE-inhibitory material in plasma on CPO concentration

A large scattering of data was observed in the ratio of AChE-inhibitory activity of patients' plasma and the CPO concentration, whether or not patients had received pralidoxime. As expected, the inhibitory activity was on average higher in the group who did not receive pralidoxime. Fig. 4 shows the scatter of data from patients who were not administered inhibition rate constant of 6 x 10 6 M -1 min -1 [START_REF] Eyer | The role of oximes in the management of organophosphorus pesticide poisoning[END_REF] allows a rough estimate of the inhibition progress, which was essentially complete after the 60 min incubation time. As shown in Fig. 4, in most cases AChE was inhibited to a lesser extent than predicted from the CPO concentration (dotted line). The ratio of inhibitory activity found/predicted in samples with and without PAM did not depend on the CPO concentration as shown in the semilogarithmic plot of Fig. 5. Linear regression analysis of the data indicated that the slopes were not significantly different from zero (p>0.2 and >0.5, respectively). These results pointed to competing side reactions of CPO during the incubation period.

Since BChE was essentially completely inhibited at even low concentrations of CPO we suspected that OP-hydrolases were degrading CPO in the inhibition assay. PON 1 is notorious for its high activity towards CPO [START_REF] Li | Catalytic efficiency determines the in-vivo efficacy of PON 1 for detoxifying organophosphorus compounds[END_REF]. This enzyme, however, requires free calcium ions, both for stability and activity [START_REF] Kuo | Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity[END_REF]. Hence, this enzyme should be inactivated in EDTA-based plasma samples. We measured the free concentration of EDTA and found in 487 out of 490 plasma samples that excess EDTA was higher than 0.5 mM (median 4 mM). This should be sufficient to completely inactivate PON 1 and this implies other mechanisms of CPO inactivation/sequestration may exist.

Influence of CPO and pralidoxime concentrations on AChE activity

Figure 6 shows the effects of CPO and pralidoxime plasma concentrations on the percentage of active AChE in two selected patients with a similar time course of the CPF concentrations.

Patient A received pralidoxime by the continuous infusion regimen while patient B received the intermittent lower dose scheme. In both cases, AChE activity was largely inhibited before pralidoxime. In case A, AChE reactivation was sustained and approached some 90% when pralidoxime was given for 5 days. In contrast, intermittent doses of pralidoxime for less than 48 h resulted in gradual re-inhibition of reactivated AChE, particularly since CPO concentrations were much higher than in patient A. The mutual dependence of the RBC-AChE activity on the pralidoxime and the CPO concentration was analyzed according to the equation given in the Methods section. Forty four patients who received pralidoxime, were eligible for the analysis contrasting the CPO concentration predicted from the RBC-AChE activity with the measured CPO. We excluded all data where CPO was below 0.5 nM (LOQ), pralidoxime given less than 1 hour before sampling and where the pralidoxime concentration was below 13 µM. At this concentration the half-life for reactivation is approximately 1 hr [START_REF] Worek | Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning[END_REF] and steady-state conditions could not be expected at lower concentrations. The expected free CPO concentration could be calculated from the ratio of inhibited, but reactivatable enzyme and the active enzyme, i.e.

[EP +EPOx]/[E]. In doing so, we observed a large scattering of the ratio of CPO found/CPO predicted. Fig. 7 shows a plot of data (from 20 subjects with at least 3 samples that met the above criteria). The ratio of CPO found vs. CPO predicted is given in a logarithmic scale (median, IQR). The predicted CPO concentration is the free (active) fraction. Thus we expected a mean ratio of about 6 (dashed line), corresponding to 85% reversible albumin binding [START_REF] Choi | Metabolism of chlorpyrifos and chlorpyrifos oxon by human hepatocytes[END_REF] as CPO from plasma was extracted by an organic solvent determining both the bound and free fraction of CPO. 

Discussion

Since CPO reacts more than 2 orders of magnitude faster with BChE than with AChE [START_REF] Amitai | Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon[END_REF],

CPF-poisoned patients usually arrive at hospital with completely inhibited BChE while RBC-AChE is often less affected. These sequestering reactions along with the effective hydrolysis brought about by PON 1 were thought to keep the CPO steady-state concentration in blood too low for conventional determination (HPLC, GC-MS, LC-MS) [START_REF] Choi | Metabolism of chlorpyrifos and chlorpyrifos oxon by human hepatocytes[END_REF][START_REF] Timchalk | A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans[END_REF]. However, in previous studies in CPF-poisoned patients [START_REF] Eddleston | Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study[END_REF] we observed that the patient's plasma was able to inhibit AChE of added test erythrocytes. The consistent presence of "inhibitory activity" of plasma led us to develop the enzyme-based assay for CPO.

Using the standard assay for CPO determination [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF], reliable results were obtained in the concentration range of 2 to 20 nM CPO in plasma (accuracy ± 10%, reproducibility ± 4% (95% CI)). When it turned out that BChE was almost completely inhibited, plasma was diluted 1:10 or more with buffer to arrive at the useful range. Of course, the biological assay lacks specificity since all highly reactive inhibitors that are extracted with n-pentane may mimic CPO. With the exception of the nerve agents soman and cyclosarin no oxons are so reactive as CPO in inhibiting BChE [START_REF] Amitai | Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon[END_REF][START_REF] Schopfer | Reaction kinetics of biotinylated organophosphorus toxicant, FP-biotin, with human acetylcholinesterase and human butyrylcholinesterase[END_REF][START_REF] Aurbek | Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: A kinetic analysis[END_REF]. Of the insecticidal organophosphates diazoxon is next reactive, but still 20-times less than CPO [START_REF] Schopfer | Reaction kinetics of biotinylated organophosphorus toxicant, FP-biotin, with human acetylcholinesterase and human butyrylcholinesterase[END_REF]. We intentionally minimized the reaction time for BChE inhibition to largely exclude the effect of potential cross-reacting oxons. Significant CPF concentrations were verified in all patients included and the presence of the lipophilic organophosphates fenthion and quinalphos were excluded by HPLC analysis.

Next, the presence of major concentrations of dimethylphosphoryl compounds could be ruled out because erythrocyte AChE did not indicate the rapid ageing seen with these compounds [START_REF] Eddleston | Management of acute organophosphorus pesticide poisoning[END_REF]. Earlier studies in Sri Lanka have shown that the alleged poison was confirmed in more than 90% of the patients [START_REF] Eddleston | Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study[END_REF]. Hence, we are confident that our assay detected in fact CPO and no other BChE inhibitors.

The present study confirms that CPO is present in more than sufficient quantities to be responsible for all the "inhibitory activity" of the plasma of CPF poisoned patients. It also casts doubt on the accuracy of non-specific bioassays such as the ex-vivo "inhibitory activity" and suggests that they may significantly and variably under-estimate the true extent of in-vivo AChE inhibitory activity. As shown in Fig. 4 the correlation of CPO with inhibition of test AChE was not as strong as anticipated. Even if we assume that some 85% of CPO is bound to 12 albumin [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF], we would expect somewhat slower but finally complete inhibition of AChE if the molar concentration of CPO exceeded that of AChE (11.3nM). This expectation was usually not met (Figs. 4 and5), so it appears likely that CPO was subject to competing reactions ex vivo. Hydrolysis of CPO by PON 1 in the inhibition assay can be ruled out since EDTA in the plasma samples leads to complete inactivation of PON 1 [START_REF] Kiderlen | The phosphoryl oxime-destroying activity of human plasma[END_REF]. Albumin, however, not only binds CPO reversibly, but also hydrolyses CPO as demonstrated by the liberation of 3,5,6-trichloropyridinol in the absence of free calcium ions [START_REF] Sultatos | The interaction of the phosphorothioate insecticides chlorpyrifos and parathion and their oxygen analogues with bovine serum albumin[END_REF]. This reflects the covalent binding of CPO to tyrosine 411 in human albumin [START_REF] Li | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr 411[END_REF]. Based on the assumption of an albumin concentration in human plasma of about 4 g/100 mL, our inhibition assay contained 1% albumin. It is known that bovine serum albumin 'hydrolyses' CPO at V max of 0.9 nmol/min/mg protein with a K m value of 0.4 mM at pH 7.4 and 37°C [START_REF] Sultatos | The interaction of the phosphorothioate insecticides chlorpyrifos and parathion and their oxygen analogues with bovine serum albumin[END_REF]. Given that human serum albumin has similar kinetic constants, we can deduce that 20 nM CPO will be inactivated at a rate of 0.45 nM/min. This may be compared with the more rapid inhibition rate of 1.35 nM/min (11.3 nM AChE, 20 nM CPO, k i = 6 x 10 6 M -1 min -1 , see above). It is clear that the (initial) inhibition rate will be slowed down upon gradual inhibition of AChE, while covalent binding to albumin that has a large molar excess of about 150 µM still proceeds. This latter pseudo-first-order reaction explains the observation that the consumption of CPO was largely independent of the CPO concentration (Fig. 5). If other plasma proteins were also involved in CPO binding the effect of competing reactions might be even greater. In fact, data exist showing that mouse plasma contains at least 11 proteins capable of binding organophosphorus compounds under physiological conditions [START_REF] Peeples | Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry[END_REF].

The influence of pralidoxime on the inhibitory activity of the patent's plasma (Fig. 5 13 capacity, which in the rat was estimated to be 3 orders in magnitude higher than of BChE [START_REF] Timchalk | A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans[END_REF]. Circulating carboxylesterase is not found in human plasma [START_REF] Li | Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma[END_REF], but located in tissues.

When these B-esterases are saturated, free CPO may escape the major site of production, the liver. Concomitantly, CPO is prone to degradation by A-esterases (true hydrolysis) and by CYP450-mediated inactivation [START_REF] Timchalk | A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans[END_REF]. PON 1 has favorable kinetic properties towards CPO hydrolysis, but shows a polymorphism that affects differently the catalytic efficiency of organophosphates. Thus, PON 1 192R is superior in hydrolyzing CPO and provides better protection against CPO exposure in PON 1 null mice than PON 1 192Q [START_REF] Richter | Paraoxonase 1 (PON1) status and substrate hydrolysis[END_REF]. Interethnic variability of the genetic makeup is remarkable in that PON 1 RR was rarely found in Indians (3%) but often in Chinese (32%), the inverse relationship was found with the PON 1 QQ genotype [START_REF] Chia | Distribution of PON1 polymorphisms-PON1Q192R and PON1L55M among Chinese, Malay and Indian males in Singapore and possible susceptibility to organophosphate exposure[END_REF]. In addition, a large variation in enzyme levels are found among individuals even with the same genotype [START_REF] Li | Catalytic efficiency determines the in-vivo efficacy of PON 1 for detoxifying organophosphorus compounds[END_REF]. Hence, steady-state concentrations of CPO (at constant CPF) are expected to vary widely. We observed steady-state ratios of CPO/CPF after some 30 h post-ingestion with a spread of the interquartile range of about 5 (cf. µM, respectively, at comparable V max values. Since the former CYP is prone to polymorphism in protein expression [START_REF] Wang | CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme[END_REF][START_REF] Ramachandran | Association of high T allele frequency of CYP2B6 G516T polymorphism among ethnic south Indian HIV-infected patients with elevated plasma efavirenz and nevirapine[END_REF], large variability in oxon formation can be expected [START_REF] Foxenberg | Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos[END_REF]. In fact, a variability of CPO/CPF of more than 1 order in magnitude was observed (Fig. 5).

Pralidoxime was able to reactivate inhibited RBC-AChE in CPF-poisoned patients as shown in Fig. 6. Its effectiveness depended both on its plasma concentration and on the CPO concentration. The two examples shown indicate that the variability in CPO production and also that if pralidoxime is ceased while there is measureable CPO present then the RBC-AChE will not remain reactivated. Such considerations are likely to apply to all OP, particularly when highly lipophilic agents are involved [START_REF] Eddleston | Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study[END_REF][START_REF] Eddleston | Management of acute organophosphorus pesticide poisoning[END_REF]. As deduced recently [START_REF] Eyer | The role of oximes in the management of organophosphorus pesticide poisoning[END_REF], the theoretical plasma concentration of CPO should be able to be calculated from the ratio of inhibited vs. active AChE, the plasma concentration of the oxime and the kinetic constants of the reactions involved (see Methods section). However, we observed a very large variation in the found/predicted CPO concentration ratio. We expected a mean ratio of about 6 (dashed line), corresponding to 85% reversible albumin binding [START_REF] Heilmair | Enzyme-based assay for quantification of chlorpyrifos oxon in human plasma[END_REF] as CPO from plasma was extracted by an organic solvent determining both the bound and free fraction of CPO and the IQRs of 72 eligible patients from Table 1. For illustration a mono-exponential association function was fitted to the median values. 

  (1 M) and spun down. Eighty µL of supernatant was mixed with 40 µL of n-heptanesulfonate reagent (PIC B7 low UV, Millipore) and 30 µL of a sodium formate buffer (1 M, pH 3.5) to give a final pH ≥ 3.0. Fifty µL were applied to a Purosphere Star RP-18 column (55 x 4 mm, 3 µm, Merck) and eluted with a linear methanol gradient (0-15 % within 7.5 min) in 5 mM PIC-B7 A c c e p t e d M a n u s c r i p t 22.04.2009 6 low UV reagent in water at a flow rate of 1.4 mL/min (20-25°C) and detection at 293 nm.

  active enzyme EP = phosphorylated, but unaged enzyme EPOx = complex of oxime and phosphorylated, but unaged enzyme [EP + EPOx] is the reactivatable enzyme = AChE in vitro -AChE in vivo k r is the first-order reactivation rate constant K D is the dissociation constant of the complex EPOx k i is the second-order inhibition rate constant [P] is the oxon concentration [Ox] is the oxime concentration.
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 2 . The ratio was not dependent on the CPF concentration, indicating that the equilibrium of CPO formation and degradation did not show saturation phenomena. Desulfuration of CPF by human hepatic CYPs is mainly brought about by CYP2B6 and CYP3A4 with K m values of about 1 and 30

Fig. 1

 1 Fig. 1 Time course of CPF and CPO concentrations in a patient with CPF self-poisoning. The patient did not receive pralidoxime. X-axis shows the time post ingestion. Note the different concentration scales.

Fig. 2

 2 Fig. 2 Ratio of CPO/CPF vs time post-ingestion of CPF. Data are median values with their

Fig. 3 Fig. 4

 34 Fig. 3 Ratio of CPO/CPF vs CPF concentration in patient samples 24 to 120 h post ingestion from the data set shown in Fig. 2. Linear regression analysis of the logarithmically transformed ratio versus CPF concentration gave a slope not significantly different from zero.

Fig. 5

 5 Fig. 5 Semilogarithmic plot of the ratio of found and expected inhibitory activity of plasma from CPF-poisoned patients versus the total CPO concentration. (Closed circles and full line from pralidoxime-free samples; Xes and broken line samples containing pralidoxime between 13 and 150 µM).

Fig. 6

 6 Fig. 6 Influence of CPO and pralidoxime concentrations on AChE activity. Two patients, A and B, with a similar time course of plasma CPF had very different CPO concentrations in their plasma. Patient A received the intensified pralidoxime regimen with continuous infusion for >4 days; patient B received the intermittent bolus doses for<2 days, resulting in the re-inhibition of reactivated AChE. (%AChE refers to the fraction of active enzyme from the pool of reactivatable AChE, thus ignoring the aged fraction.)
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  EP)*0.15*(CPO 0 -EP), with E 0 and CPO 0 being the AChE and total CPO concentration at t=0 (the factor 0.15 corrects for the fraction not bound reversibly to albumin).Calculations were done with Microsoft Excel 2004. Correlation analyses, Mann-Whitney U test and graphical presentations were performed with Prism4, GraphPad San Diego CA.
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  ) was only evident at low CPO concentrations, because the bioreactor AChE + pralidoxime has only a limited capacity to degrade CPO, due to the low molar AChE concentration present. The large scattering of the data at low-to-intermediate CPO concentrations (up to 100 nM CPO) in the presence of pralidoxime may be mainly caused by variations of its concentration in the plasma samples. Taken together in the absence of pralidoxime, roughly 2/3 of CPO in EDTA based plasma was capable of inhibiting AChE, the remainder had most probably reacted covalently with other proteins with albumin being the most favorite candidate.
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	Appearance of CPO in plasma lags behind CPF. This may be due to delayed formation or,
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Table 1

 1 Plasma concentrations of CPF and CPO after various time intervals post poisoning Patients were eligible (CPF and CPO >LOQ). The ratio CPO/CPF was calculated from the individual sample values. Data are median values along with the interquartile range in brackets.

	Time interval	CPF	CPO	CPO/CPF x 1000	n
	(h)	(µM)	(nM)		
	0-4	2.54 (1.6-4.7) 10.1 (4.5-22.2)	4.2 (1.9-9.5)	52
	4-8	1.65 (0.7-3.2) 11.9 (6.5-21.5)	6.8 (4.3-14.0)	67
	8-16	0.70 (0.4-1.2) 12.7 (5.5-22.5)	17.5 (9.2-31.6)	59
	16-24	0.44 (0.3-1.5) 9.6 (4.1-30.1)	14.2 (10.5-42.6)	30
	24-36	0.47 (0.3-1.1) 14.1 (4.7-34.5)	28.6 (11.3-44.4)	45
	36-60	0.66 (0.2-1.0) 16.7 (3.4-68.4)	29.2 (14.4-70.7)	41
	60-84	0.46 (0.2-0.8) 22.7 (2.2-59,9)	37.3 (12.7-65.3)	27
	84-120	0.39 (0.2-0.7) 7.1 (4.2-40.2)	25.0 (15.4-53.6)	28
	Plasma samples (n=357) of 72			
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In conclusion, this newly developed CPO assay gives reliable results that enable a better assessment of the mechanisms behind inter-individual variation in susceptibility in CPF poisoning. The study has shown that the steady-state ratios of CPO/CPF varies widely and probably mirrors the activating and detoxifying capabilities. Thus, a large variation in the susceptibility for CPF-and CPO-mediated toxicities has to be taken into account when debating safety margins of CPF.