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Abstract. Beam models of piezoelectric laminates derived from three-dimensional theories by
assuming either the plain-stress or the plain-strain conditions in the beam axis-thickness plane
can introduce significant errors in the estimate of the beam constitutive coefficients. In this
paper a coupled Euler-Bernoulli-like model including 3D effects through a mixed variational
formulation is discussed. We report the results of numerical and experimental tests which val-
idate the approach and show the limit of standard modelling techniques.

1 INTRODUCTION

Many structural systems with actuating and sensing capabilities include slender beam-shaped
piezoelectric laminates. Piezoelectric sandwich and bimorph beams are very often used as part
of sensors and actuators and micro-resonators. Moreover, piezoelectric laminated beams are
encountered in applications to structural control. Actively or passively shunted surface-bonded
piezoelectric patches provide an efficient mean for vibration damping or health monitoring.
Common configurations exploit the bending-electric coupling obtained with sandwich and bi-
morph beams including layers of thickness-polarized piezoelectric ceramics (see Figure 1).

Computationally efficient one-dimensional models of this class of smart structures are very
useful in the design process and they are widely adopted in the engineering practice. The ac-
tuation effect obtained in elastic beams with surface bonded or embedded piezoelectric patches
was analyzed by Crawley and Anderson [1]. They adopted the induced-strain approach, where
piezoelectric strains are treated in analogy to thermal effects. Many applications demand fully
coupled models including explicitly both mechanical and electric degrees-of-freedom. Among
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others, electromechanical behavior of piezoelectric bimorph and sandwich beams was stud-
ied by [2, 3, 4, 5, 6, 7]. As underlined in [8] and [9], a careful electromechanical modelling is
required also for ensuring a correct estimate of purely mechanical properties. Euler-Bernoulli-
like models are the most commonly used, especially in control applications. But several refined
interesting approaches including higher order effects in sheareable and layerwise models are
proposed [10,11].

The overwhelming majority of works on beam modelling of piezoelectric laminates assume,
as first move, that the 3D model can be reduced to a 2D one by concentrating on the ana-
lysis in the axis-thickness plane. This is usually done by assuming a plane-stress condition,
which is motivated through reasoning inherited by elementary beam theory, as explicitly re-
ported in [4]1. Other authors eliminate the transversal (width) direction by accepting the plane
strain hypothesis (see e.g. [11]). Unfortunately the real stress-strain state of thickness-polarized
piezoelectric laminates is more complex. Neither the plane stress nor the plane strain conditions
are physically grounded. In thickness-polarized piezoelectric layers, the deformations induced
by an applied electric potential are isotropic in the e1 − e2 plane. On the contrary, in elastic
layers, an axial extension is usually associated to a transverse shrinking by the classical Pois-
son effect. When elastic and piezoelectric layers are bonded together, these different behaviors
must be reconciled. Hence, non-negligible transverse stresses T22 arise and non-trivial sectional
deformations appears.

The influence of 3D effects was underlined by Beckert and Pfundtner [12] in their ana-
lysis of the strain transfer from a piezoelectric patch to an elastic beam. Complex sectional
warping effects are included also in some advanced modelling techniques used for composite
beam-like structures as airplane-wing and helicopter-blades, where an accurate prediction of
the torsion-bending-extesion coupling is important. Chopra and co-workers [13, 14] underline
the influence of transverse bending considering skewed piezoelectric transducers in torsion-
bending-extension coupled actuation. They propose a Vlasov-like beam model for thin-walled
beams which includes the effect of cross-sectional warping. But the analysis was limited again
to the actuation function (uncoupled model) and does not include the influence of the induced
potential. Moreover, the model is more complex that the Euler-Bernoulli one since it introduces
several additional mechanical degrees of freedom. More accurate semi-analytical modelling
techniques [15,16] exploit a variational asymptotic approach to split up the 3D problem in a 2D
cross-sectional model and a 1D axial model. The cross-sectional problem is solved numerically
and its solution provides the constitutive behavior of the axial problem. They are applied to
piezoelectric composite by [17] and [18].

The literature review of beam models of piezoelectric laminates shows that the effects of sec-
tional warping are not fully understood and that efficient and accurate coupled Euler-Bernoulli
models are not available. For this reason, beam-shaped piezoelectric laminates are often mod-
elled either by 3D finite elements or 2D plate models. In this paper, we develop and validate

1From [4]: "Stresses T33 and T22 can be considered of the order of any loading forces possibly imposed
in the x3− and x2−directions. Since in our structure we are not considering significant loading forces in
these directions, stresses T33 and T22 can be disregarded, T33 = T22 = 0"
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Figure 1. Cross-section of a sandwich piezoelectric beam. The two piezoelectric layers are polarized along the
same direction (p). Their electrodes are connected in parallel and in counter-phase to obtain a bending-electric
coupling. A bimorph bender is obtained when h2 = 0.

the results recently presented by the authors in [19] and [20], where a coupled Euler-Bernoulli
model including the effect of cross sectional deformation is developed. The model exploits a
mixed variational approach to account for the primary effects of cross-sectional in-plane warp-
ing and induced electric potential, without introducing additional degrees-of-freedom.

The paper is organized as follows. Section 2 recalls the basic hypotheses and the fundamental
equations of the proposed beam model, as presented in [20]. Section 3 presents numerical
comparisons with 3D finite element results and standard beam models for the case of a cantilever
bimorph beam. Section 4 reports comparisons with experimental results obtained for a beam
with a pair of surface-bonded piezoelectric transducer in sandwich configurations. Section 5 is
left for conclusions.

2 ENHANCED EULER-BERNOULLI MODEL

This section briefly presents the basic hypotheses and the governing equations of an Euler-
Bernoulli-like model of piezoelectric laminates including the effect of cross-sectional in-plane
warping and of the induced electric potential. The model is obtained from 3D piezoelectricity
by using a deductive approach based on an Hellinger-Reissner-like mixed variational formula-
tion. The interested reader can found further details in [19,20].

2.1 Geometry

Referring to the reference frame reported in Figure 1, where e1 is parallel to the beam axis,
the model concentrates only plane bending in the e1 − e2 plane of a straight-axis beam. The
axial (e1) and transverse (e3) deflections of the beam axis A are denoted by u(x) and w(x),
respectively, where x is a generic point on A. Assuming a fully linear theory, u0(x) and w00(x)
represent the axis extension and curvature. Each layer is supposed to be homogeneous and
transversely isotropic with respect to the thickness direction e3, which coincides with the polar-
ization axis of the piezoelectric ceramics. The layers’ thicknesses and widths are denoted by hi
and ai, respectively. The electrodes of different layers are connected in parallel, either in phase

3
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or in counter phase, and the whole beam is electrically accessible only through two external
electric terminals.

2.2 Mixed variational formulation

Let B be a piezoelectric body with boundary ∂B and loaded with volume force b on B, surface
forces f0 on ∂fB, surface charges q0 on ∂fB. Moreover, let be

F(T,D) = 1

2
sDT ·T− 1

2
βTD ·D+ gT ·D (1)

a piezoelectric energy density, where T and D are the symmetric Cauchy stress tensor and the
electric displacement vector;

¡
sD, βT ,g

¢
are the constitutive tensors of linear piezoelectric ma-

terials. Moreover, let be (u,S(u)) and (ϕ,E(ϕ)) pairs of compatible mechanical displacement
and strain fields, and compatible electric potential and electric fields, which respect the essential
boundary conditions prescribed on u and ϕ. A weak formulation of the electromechanical bal-
ance and constitutive equations of a piezoelectric body is obtained by looking for the stationary
point of the following mixed functional over the functional space of regular (u,ϕ,T,D) :

Θ[u, ϕ,T,D] =Z
B
(F(T,D)−T · S(u) +D ·E(ϕ) + b · u) dB +

Z
∂fB
f0 · udS +

Z
∂qB

q0ϕdS (2)

The mixed variational principle provides a weak formulation of the beam balance and con-
stitutive equations, where electromechanical balance equations are tested by the mechanical
displacements and the electric potential, the corresponding constitutive equations by the mech-
anical stresses and the electric displacement.

The mixed variational formulation is particularly useful in structural modelling [21]. In
standard variational formulations one introduces hypotheses on the generalized kinematic fields
(u,ϕ), but the associated force-like fields (T,D) are automatically determined by the 3D con-
stitutive equations. The mixed setting presented above allows to specify also the distribution of
force-like fields by introducing all what is known a priori on the distribution of (T,D), inde-
pendently of the kinematical prescriptions. In particular, it allows to refine standard beam and
plate theories without introducing additional degrees-of-freedom.

2.3 Hypotheses

The beam model is derived by the mixed variational functional (2), by assuming the following
a priori hypotheses on the electromechanical field distribution:

(i) Mechanical displacement. Basic equivalent-single-layer Euler-Bernoulli kinematics:

u(x, y, z) = (u(x)− zw0(x)) e1 + w(x)e3, (3)

(ii) Electric potential. Layerwise linear distribution of the electric potential, which, when the
different layers are electrically interconnected in parallel (either in-phase, ωi = 1, or in
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counter-phase, ωi = −1), is given by the following expression

ϕ(x, y, z) =

µ
1

2
+ ωi

zi
hi

¶
V, (4)

where V is the electric potential difference across the two external electric terminals.
(iii) Mechanical stress. A stress tensor composed of axial and transverse normal stresses, hav-

ing constant (σα,i) and linear (ζα,i) contributions through the thickness of each layer,

T(x, y, z) = (σ1,i(x, y)− ziζ1,i(x, y)) (e1 ⊗ e1) + (σ2,i(x, y)− ziζ2,i(x, y)) (e2 ⊗ e2) ,
(5)

and respecting the following conditions on the through-the-thickness force (n2) and mo-
ment (m2) resultants of transverse (chordwise) stresses⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n2(x, y) =
X

i∈I(x,y)

R
Ti T(x, y, z)e2 · e2dz = 0

m2(x, y) =
X

i∈I(x,y)

R
Ti −zT(x, y, z)e2 · e2dz = 0

(6)

(iv) Electric displacement. Layerwise constant distribution along the thickness direction:

D(x, y, z) = Di(x, y)e3, (7)

where Di(x, y) is the function giving the e3 component of the electric displacement in the
i-th layer.

As results of the machinery of the adopted mixed variational formulation, the hypotheses
above lead to a model where:

• Each cross-section moves remaining plane and orthogonal to the beam axis (Euler-Bernoulli
hypothesis).

• Each cross-section deforms in its own plane (in-plane warping) with chordwise bending
and thickness distension, so as to respect conditions (5-6).

• Shear effects are neglected.
• In each piezoelectric layer the electric displacement is oriented along the thickness and its

module is constant in the thickness coordinate.
• In each piezoelectric layer the electric potential has a through-the-thickness quadratic dis-

tribution, including the induced electric potential. Only its linear part, determined by the
potential difference across the electrodes, appears explicitly in the beam equations. The
quadratic part is automatically determined as a function of the flexural strains, so as to
assure that condition (7), i.e. that the electric displacement is constant (see [8, 9]).

2.4 Beam Governing Equations

The beam balance equations, natural boundary conditions and constitutive equations are found
as Euler equations of the mixed functional (2) when the electromechanical fields are constrained
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to verify conditions (i-iv). In particular, the conditions (6) on the transverse stress are conveni-
ently introduced by the Lagrange multiplier method, as shown in [20]. The corresponding
Lagrange multipliers represent the generalized sectional deformations associated to chordwise
extension and bending.

The governing equations appear in the format of a standard Euler-Bernoulli model, with an
additional electric degree of freedom to describe the electric potential difference at the electric
terminals. In each regular beam segment they are composed of the following elements:

• The equilibrium equations for the axial force N1(x), the bending moment M1(x), and the
total charge at the electric terminal Q =

R
A q(x)dx, q(x) being the electric charge per unit

line: ⎧⎪⎨⎪⎩
bN(x) +N 0

1(x) = 0
b0M(x)− bT (x) +M 00

1 (x) = 0R
A q(x)dx+ Q̄ = 0

, (8)

where the external actions are represented by the axial bN(x) and transversal bT (x) force
per unit line, the bending moment per unit line bM(x) and the total charge Q̄ prescribed
at the electric terminals. Inertial actions can be included as suitable constitutive prescrip-
tion of bN(x), bT (x), and bM(x); shunting electric networks are modelled as constitutive
prescription of Q̄ in terms of the potential V.

• The natural boundary conditions, which are found by the following variational equations£¡
N1 − N̄

¢
δu
¤
∂A = 0, (9a)£¡

M1 − M̄
¢
δw0 +

¡
T̄ +M 0

1 + bM
¢
δw
¤
∂A = 0, (9b)

where (δu, δw, δw0) are admissible variations of the kinematical fields respecting the es-
sential boundary conditions; N̄, T̄ , M̄ are applied axial force, transverse force, and bending
moment at the boundaries.

• the piezoelectric constitutive equations at the beam level, which appear in the form:⎡⎣ N1

M1

q

⎤⎦ =
⎡⎣ kNu kNw eNV

kNw kMw −eMV

−eNV eMV εqV

⎤⎦⎡⎣ u0

w00

V

⎤⎦ . (10)

The proposed model provides accurate expressions of the constitutive coefficients appearing
in (10), by including the effect of cross-sectional warping and induced electric potential.

2.5 Electromechanical constitutive equations

The expressions giving the constitutive coefficients appearing in (10) are found after simple
manipulations of the Euler-equations of the mixed variational problem under the hypotheses
(3-7). We refer to [20] for the detailed derivation in the case of piezoelectric laminated beams
composed of an arbitrary number of transversely isotropic layers. In the following, we report
only the formulas found for two specific layer configurations which are commonly encountered
in applications: piezoelectric sandwich and piezoelectric bimorph.

6
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2.5.1 Piezoelectric sandwich

In the piezoelectric sandwich beam characterized by the cross section in Figure 1, because of the
material and geometric symmetry, beam extension and bending are decoupled. Moreover, due
to the electric interconnection between the two piezoelectric layers, also extensional and electric
equations are uncoupled. Hence, the constitutive equations (10) for the bending moment, M1,
and the electric charge per unit line, q, assume the following simplified form:∙

M1

q

¸
=

∙
kMw −eMV

eMV εqV

¸ ∙
w00

V

¸
(11)

and the bending-electric problem can be solved separately from the extensional one. The fol-
lowing expressions for the constitutive coefficients in equations (11) are found

kMw = a1K11

µ
1− K2

12

K2
11

¶
+ (a2 − a1)

1

12
h32c̃11

¡
1− ν2

¢
, (12a)

eMV = a1ẽ31 (h1 + h2)

µ
1− K12

K11

¶
, (12b)

εqV =
2a1�̃

S
33

h1
+

a1 (ẽ31 (h1 + h2))
2

K11
, (12c)

where the stiffness parameters K11, K12 are defined as follows (see also Table 1)

Kαβ =
c̃Eαβh

3
1

12

Ã
6

µ
1 +

h2
h1

¶2
+ 2

c̃Dαβ
c̃Eαβ

+
c̃αβ
c̃Eαβ

h32
h31

!
. (13)

2.5.2 Two-layer bimorph

The constitutive coefficients for the bimorph bender made of two piezoelectric layers connected
in parallel and in counter phase are obtained from expressions (12) by letting the thickness of
the elastic layer (h2) go to zero:

k
(b)
Mw =

4(2 + γ2 + 2νE)

(4 + γ2)(1 + νE)

a1h
3
1Y

E

3
, (14a)

e
(b)
MV =

4

4 + γ2
a1d31Y

Eh1, (14b)

ε
(b)
qV =

2a1
h1βT33

µ
1− d231Y

EβT33
5 + 2γ2 − 3νE
(4 + γ2) (1− νE)

¶
. (14c)

2.6 Transverse (chordwise) deformations

In Euler-Bernoulli models, through-the-thickness constant and linear contributions to axial nor-
mal strains, say ε1, are given by axis extension u0(x) and axis curvature w00(x), respectively:

ε1(x, z) = u0(x)− zw00(x) (15)

7
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Piezoelectric Layers Elastic Layers
c̃E11=

1
sE11

1

1−(νE)2 c̃D11= c̃E11 (1 + γ2) c̃11=
1
s11

1
1−ν2

c̃E12= νE c̃E11 c̃D12= c̃E12
¡
1 + γ2/νE

¢
c̃12= νc̃11

ẽ31=
d31

sE11(1−νE)
�̃S33=

1
βT33

³
1− 2βT33d

2
31

sE11(1−νE)

´
ν = −s12/s11

νE= −sE12/sE11 γ =
p
ẽ231/ (c̃

E
11ε̃

S
33)

Table 1. Constitutive coefficients of the piezoelectric and elastic layers in the plane stress condition (T33 = 0) .

The present model takes into account also in-plane deformations of the beam cross-sections. In
particular through-the-thickness constant and linear contributions of chordwise normal strains
are introduced as Lagrange multipliers to enforce the conditions (6). Being λ(x, y) the Lag-
range multiplier associated to the conditions of vanish transverse stress resultant (n2(x, y) = 0),
μ(x, y) the one associated to the conditions of vanish moment resultant (m2(x, y) = 0), the
transverse normal strains are given by

ε2(x, y, z) = λ(x, y)− zμ(x, y). (16)

Thus transverse deformations are determined as a function of the axial fields (u0(x), w00(x), V )
so as to ensure the free-transverse bending conditions (6) and relations of the following form
are found ∙

λ
μ

¸
=

∙
αλu αλw

αλw αμu

¸ ∙
u0(x)
w00(x)

¸
+

∙
αλV

αμV

¸
V. (17)

For the piezoelectric sandwich beam, the transverse deformations are given by (it is assumed
that u0(x) = 0)

ε2(x, y, z) =

( −zK12

K11
w00(x)− z ẽ31(h1+h2)

K11
V, y ∈ ¡−a1

2
,−a1

2

¢
−zc̃12/c̃11w00(x), y ∈ ¡−a2

2
,−a1

2

¢ ∪ ¡a1
2
, a2
2

¢ (18)

The introduction of transverse normal deformation in the framework of an Euler-Bernoulli
model is a main improvement with respect to standard modelling techniques. Standard beam
models assume either the plane strain or the plane stress condition in the axis-thickness plane.
In the plane strain case, transverse (chordwise) strains are null. In the plane stress case trans-
verse normal strains are determined to enforce the conditions of pointwise vanishing transverse
stress and different layers are left free to slide on each other, without respecting the bonding
conditions in the transverse direction (see Figure 2) [19, 20]. Here and henceforth we refer to
the model assuming pointwise null transverse normal stresses as NS model, the model assuming
null transverse deformation as ND model, and the model presented above and introducing the
conditions (6) of vanishing stress resultants as NSR model.

8
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Figure 2. Cross-sectional deformations in models assuming null transverse deformations (ND), null transverse
strain (NS), and the present model assuming null stress resultants (NSR).

3 CANTILEVER BIMORPH: NUMERICAL COMPARISONS WITH 3D FEM.

3.1 Analytic expressions of the global constitutive equations

Let us consider a cantilever bimorph beam as shown in Figure 3. The tip-displacement δ and
total electric charge Q are expressed as a function of static applied voltage V and tip-force F as
follows ∙

δ
Q

¸
=

∙
fδF fδV
fδV fQV

¸ ∙
F
V

¸
. (19)

When assuming the Euler-Bernoulli beam model, the coefficients appearing in equations (19)
are found by solving the simple boundary value problem for the electromechanical system:

fδF =
l3

3kMw
, fδV = −eMV l

2

2kMw
, fQV = lεqV

µ
1 +

e2MV

kMwεqV

¶
(20)

Depending on the hypotheses introduced in the beam model, the constitutive parameters (kMw,
eMV , εqV ) can have different expressions. Smits et al. [3] proposed a model assuming uniaxial
stress (T22 = T33 = 0) and a linear distribution of the electric potential through the thickness
of each layer. Similar approaches are followed in [2, 3, 6, 7]. Table 2 compares the analytic
expressions for (fδF , fδV , fQV ) found by Smits, to those obtained in a model in plane-stress but
accounting for the quadratic contribution of the electric potential (NS), and to those found with

9
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Figure 3. Cantilever bimorph with applied voltage and tip force.

Smits et al. [3] NS Present
fδF

3sE11l
2

2ah3
2l3

ah3YE(4+γ2)
l3

4ah3YE

(4+γ2)(1+νE)
γ2+2(1+νE)

fδV
−3d31l2
4h2

− 3d31l2

h2(4+γ2)
−3d31l2

2h2

³
1+νE

γ2+2(1+νE)

´
fQV

2al
βT33

³
1− βT33d31

4sE11

´
2al
hβT33

³
1− d231Y

EβT33
(1+γ2)
(4+γ2)

´
2al
hβT33

³
1− d231Y

EβT33(2γ
2+1+νE)

(1−νE)(γ2+2(1+νE))

´
Table 2. Analytic expressions of the coefficients appearing in the constitutive equations of a piezoelectric bimorph
(Eqn. (19)). Comparisons between the different beam models: Smits et al. [3] assumes uniaxial stress and neglects
the induced potential; (NS) assumes uniaxial stress but includes the effect of the induced potential; the present
model includes assumes transverse stress resultants and includes the effect of the induced potential.

the expressions (14a) associated to the present model assuming null transverse stress resultants.

3.2 3D Finite Element results

Results of 3D finite element simulations provide a numerical reference for the constiutive coef-
ficients reported in Table 2 and are useful also for analyze the influence of the boundary effects.
Due to the 3D effects associated to the clamping conditions beam models are expected to be
accurate only for sufficiently high aspect ratios (length to cross-sectional diameter).

The FE simulations were performed by using the commercial code Ansys 8.0. The basic
brick-shaped SOLID5 element with 10 nodes and 4 d.o.f.’s per node (displacement vector and
electric potential) was adopted. After refinement essays, a mapped mesh composed of 5 ele-
ments through the thickness of each layer and 8 elements through the width was adopted. The
element length in the axial direction was chosen as a function of the total beam length to fix the
element length to thickness aspect ratio to 2.5. For example, for a beam having a/h = l/a = 10,
the mesh is composed of 16000 elements. The two layers are assumed to be perfectly bonded
and the mechanical properties of the electrodes are neglected. The coefficients appearing in (19)
are estimated by detecting the tip displacements δ and the total charge at the electrodes Q for
two different loading conditions: (i) applied potential for null mechanical forcing; (ii) applied

10
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Figure 4. Axial and transverse strains at the center of the upper surface of the piezoelectric bimorph as a functions
of the axial coordinate x. Present model: ε1 and ε2 coincide (−); model with null transverse stress (NS): ε1 (−−)
and ε2 (· · ·) ; FEM 3D: ε1 (4) and ε2 (B).

Elastic Layers
Y = 1/s11= 69× 109N /m2 ν = −s11/s12= 0.33
Piezoelectric Layers
Y E= 1/sE11= 62× 109N /m2 νE= −sE11/sE12= 0.31
d31= −320× 10−12m /V βT33= 1/ε

T
33= 2.97× 107m /F

Table 3. Constitutive properties of the considered piezoelectric (PZT-5H) and elastic (aluminum) materials.

uniform distribution of shear forces at the beam free-end, under the short-circuit condition. The
numerical simulations assumes a = 10h, h = 0.5mm and the material data reported in Table 3.
The full 3D constitutive equations used for the finite element calculations coincide with those
reported in [20]. The results obtained for beam having different length-to-width aspect ratios
are reported in Tables 4-6 and compared with the corresponding estimates given by the different
beam models. For applied electric potential, Figure 4 reports also the distributions of axial and
transverse strains at the center line of the upper surface of the upper piezoelectric transducer
as function of the axial coordinate. The axial (ε1(x, 0, h)) and transverse (ε2(x, 0, h)) strains
found with a FE simulation are compared to those obtained with the present model and the NS
model.

3.3 Comments

The analysis of the numerical results shows that:

• For slender beams (l/a ≥ 10) the one-dimensional models are supposed to be in good

11
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Equivalent Capacitance (fQV )
l/a 3DFEM Smits NS Present

nF % diff. % diff. % diff.
2 5.122 +25.27% +22.29% +1.03%
4 10.36 +23.84% +20.89% −0.13%
6 15.56 +23.40% +20.38% −0.48%
8 20.83 +23.19% +20.17% −0.65%
10 26.07 +23.06% +20.05% −0.76%
20 52.25 +22.80% +19.80% −0.96%

Table 4. Electric charge at the electrodes for applied unit potential difference and null tip force (i.e. equivalent
piezoelectric capacitance at constant force) of a piezoelectric bimorph as a function of the aspect ratio l/a (length
over width). Comparisons between results from different beam models and 3D FE simulations (Smits et al. [3]:
null transverse stress without induced potential; (NS): null transverse stress with induced potential; Present (NSR):
null transverse stress resultants with induced electric potential)

Compliance (fδF )
l/a 3DFEM Smits NS Present

μm /N % diff. % diff. % diff.
2 11.02 17.04% −2.25% 7.69%
4 91.03 13.39% −5.30% 4.33%
6 311.4 11.88% −6.56% 2.95%
8 743.4 11.08% −7.23% 2.20%
10 1456 10.59% −7.647% 1.75%
20 11770 9.57% −8.49% 0.82%

Table 5. Tip displacement for applied unit tip force under the short-circuit condition (i.e. mechanical compliance at
constant potential) of a piezoelectric bimorph as a function of the aspect ratio l/a (length over width). Comparisons
between results from different beam models and 3D FE simulations

Piezoelectric Coupling (fδV )
l/a 3DFEM Smits NS Present

μm /V % diff. % diff. % diff.
2 0.0785 22.10% 2.01% −6.13%
4 0.3090 23.80% 3.24% −4.80%
6 0.6907 25.09% 4.47% −3.87%
8 1.221 25.81% 5.07% −3.32%
10 1.900 26.28% 5.47% −2.96%
20 7.539 26.33% 5.63% −2.15%

Table 6. Tip displacement for unit potential difference and null tip force (piezoelectric coupling coefficient) of a
piezoelectric bimorph as a function of the aspect ratio l/a (length over width). Comparisons between results from
different beam models and 3D FE simulations
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Figure 5. Experimental set-up for strain analysis. Two two-element 90◦ tee rosette were positioned at the center
of each transducer. The strain gages capture both axial and transverse strains and are connected to detect only
anti-symmetric bending strains.

agreement with the 3D theory. However, only the present NSR model gives good results
for all the electromechanical coefficients appearing in equations (11). In models assuming
the uniaxial stress condition, the equivalent piezoelectric capacitance presents substantial
errors. The comparison between the NS model and the Smits’ model shows that the in-
troduction of the induced potential implies a reduction of the mechanical stiffness and
piezoelectric coupling. But, while introducing the induced potential ameliorates the estim-
ate of the coupling coefficient, it leaves approximately the same error on the mechanical
stiffness, changing only the sign (from an overestimate to a underestimate).

• For short beams, the boundary effects have an influence. In particular, the clamping con-
dition, blocking the sectional deformations, leads to a stiffening phenomenon and to an
increase of the axial-electric coupling. In the present model, as expected for a beam the-
ory, the lower is the slender ratio l/a, the lower is the model accuracy (the errors being still
under 5% for l/a = 4). On the contrary, the NS model takes advantage of the boundary
stiffening and the relative errors on the compliance and the coupling coefficient becomes
smaller for shorter beams. But this is due more to a cancellation of error effect than to an
effective catching of the distribution of the electromechanical 3D energy. This is clearly
shown by the errors on the piezoelectric capacitance, which increase.

The present results on the numerical validation of the beam model complete those presented
in [20], where the influence of boundary effects was not analyzed and only a comparison of the
local constitutive equations in the form (11) is given.
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4 EXPERIMENTS

4.1 Static strain analysis of a beam with piezoelectric patches

4.1.1 Experimental set-up

A pair of identical piezoelectric transducers (Piezo-System T110-H4E-602) were bonded on a
cantilever aluminum beam (Al6061-T6) as shown in Figure 5. The transducers are electrically
connected in parallel and counter-phase, so as to form, with the aluminum layer, a sandwich
beam with electric-bending coupling. The single piezoelectric transducer is made of a layer
of thickness-polarized piezoelectric ceramic (PZT-5H) having the upper and lower surfaces
electroded by a nickel film. The transducers were bonded on the beam using a two-component
structural epoxy. The electric contact between the inner electrode of each transducer and the
grounded beam was achieved by applying a small spot of electrically conductive adhesive at the
central region of the piezoelectric transducer, where, as shown by stress-transfer analysis [1],
interfacial stresses are low. Each transducer was instrumented with a strain gage CEA-06-
062UT-350, bonded at the center of the piezoelectric elements with proper adhesive. This is
a two-element 90◦ tee rosette and it was positioned to measure longitudinal and transverse
strains. The strain gages on the lower and the upper piezoelectric transducers were connected in
the half-bridge configuration so as to sense only antisymmetric bending strains. Two different
signal conditioners HBM Scout 55 were used as Wheatstone bridges and signal amplifiers. The
axial and transverse strains were measured for two different loadings: a) a voltage difference
V applied between the grounded beam and the electric terminal of the piezoelectric sandwich;
b) a displacement imposed at the tip of the beam. In the first case, the voltage was applied
through an amplifier suitably designed for the high-impedance of the piezoelectric transducers
and the beam was left free to deform. In the second case, a controlled static tip displacement
was imposed by a micrometer and the pair of piezoelectric transducers was shorted to ground.

4.1.2 Results

Applied voltage Figure 6 reports the axial and transverse strains at the surfaces of the piezo-
electric transducers measured when different voltages V are imposed at the piezoelectric pair.
Two different sets of measurements were taken. The first set is in static condition, the second
set is in quasi-static conditions. Static tests are affected by the well-known drift phenomenon,
i.e. a slow increase of the strain with time after the application of the DC field [14]. In the
present tests, each strain value was recorded after holding the corresponding DC voltage for
about one minute. The voltage where increased from 0 to 45 Volt with steps of 5 Volt and then
decreased again to 0 Volt. Quasi-static2 tests were performed by applying harmonic voltage
at the frequency of 6Hz, for 16 different peak-to-peak amplitudes in the range between 3.4
and 32.8 Volt. The strain values induced by these voltage levels are quite small (in the range
1÷ 50με) and at the limit of the sensitivity of strain gauges and the related measurement chain.

2The first resonance frequency of the beam is at 47.3Hz .
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Figure 6. Bending strain on the surfaces of the piezoelectric transducers for applied electric potential. Axial (a) and
transverse (b) strains and corresponding linear trends are reported for measures taken in the static and quasi-static
(6Hz) conditions.

Applied Voltage Applied Displacement
ε1/V ε2/V ε2/ε1 ε1/V ε2/V ε2/ε1
(με/V ) (με/V ) (με/mm) (με/mm)

Exp.Static 0.72± 0.05 0.75± 0.03 1.04 57.2± 0.5 −18.0± 0.3 −0.32
Exp.Quasi-Static 0.69± 0.01 0.66± 0.01 0.96 − − −
Present Model 0.60 0.65 1.08 58.2 −18.7 −0.32
NS Model 0.61 1.36 2.23 58.2 −19.9 −0.34

Table 7. Axial and transverse strain at the surface of the piezoelectric element measured either for applied electric
voltage or for applied tip displacement. Experimental values are compared to the estimates of the present model
and the NS model. The confidence intervals (95 refer to the regression analysis of the data reported in Figures 6
and 7.

Applied displacement Figure 7 reports the axial and transverse strains measured when ap-
plying a tip displacement with short-circuited piezoelectric transducers. The tip displacement
is applied with increments of 0.2mm, reaching the maximum amplitude of 2mm.

Comments and comparisons with theoretical results Table 7 resumes the experimental res-
ults for the axial and transverse strains and comnpares them with the analytical estimates given
by the present model (NSR) and the standard model assuming null transverse stress (NS). The
values are reported as microstrain per Volt and microstrain per millimeter. For the two load-
ing conditions, applied voltage and applied displacement, they are extrapolated from regression
analysis of the experimental data reported in Figure 6 and 7. The theoretical estimates refer to
the nominal values of the constitutive and geometric parameters given in Table 3 and in Figure
5. The analysis of Table 7 leads to the following comments:

• The present model correctly predicts the ratio between transverse and axial strains for
both loading conditions. The NS model gives a good estimate for the case of applied
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Figure 7. Axial and transverse strains for applied tip displacement under the short-circuit condition. Experimental
values and corresponding linear trends are reported.

displacement, but fails in predicting the transverse strain in the case of applied potential.
This is coherent to what reported, for the bimorph beam, in Figure 4 and to the qualitative
sketch in Figure 2.

• The discrepancy between measured strains and theoretical estimates form the NSR model
is reasonable. The theoretical analysis assumes a perfect bonding conditions and com-
pletely neglects the influence of the bonding layer. It is expected that the neglect of the
bonding layer leads to a underestimate of the strain for applied displacement and an over-
estimate of the strain for applied voltage.

• As expected, the strain for applied voltage measured in the static case is bigger than the
strain measured in the quasi-static case. This is explained by the drift phenomenon. How-
ever, the experimental data reveal an unexpected difference between the reductions of the
axial and transverse strains. More accurate tests should be performed to assess if it is due
to a bias in the measure of the quasi-static axial strain or if it is a real effect.

4.2 Dynamic tests: piezoelectric capacitance and resonant shunt

4.2.1 Experimental set-up

Piezoelectric elements are frequently used to damp structural vibrations. Resonant shunting is
shown to be an effective mean for passive electric damping [22, 23]. Dynamic experimental
tests were performed by shunting the piezoelectric element of the beam in Figure 5 on the par-
allel RL circuit shown in Figure 8. The beam was excited by imposing the voltage V̄ (t) and
the system response was measured by a laser vibrometer (Polytec OFV 350) targeted at the
tip of the cantilever beam. The input signal was generated digitally in Labview, converted by
the D/A converter National Instruments AT-MIO-16E-10, and amplified by ad-hoc designed
voltage amplifier. The analog output of the laser was measured by the A/D converter National
Instruments PCI-4452 and a personal computer was used for digital signal processing. To ob-
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tain high-value high-quality-factor tunable inductors, an analog active RC circuit (Antoniou’s
circuit) was used to simulate the grounded inductive impedance of the shunting circuit (see [23]
for further details).

4.2.2 Resonant shunting: 2 d.o.f.’s modal model of the beam with the shunting circuit

In a narrow frequency band around the first mechanical resonance, the beam with the piezo-
electric transducer can be modelled as 1 d.o.f. system, by neglecting the influence of higher
mechanical modes. Hence, the coupled electromechanical dynamics of the first mode of the
beam and the shunting circuit is described by the following system of equations (see [24,25]):

mp̈(t) + kp(t)− gψ̇(t) = 0 (21)

Cpψ̈(t) +
1

R
ψ̇(t) +

1

L
ψ(t) + gṗ(t) =

1

R
V̄ (t) (22)

where p(t) is the Fourier coefficient of the first bending mode of the beam, ψ(t) is the flux-
linkage (time primitive of the electric potential) at the electric terminal of the piezoelectric
element, V̄ (t) is the exciting voltage applied as in Figure 8, m and k are the modal mass and
stiffness of the first bending mode of the beam, g is the modal piezoelectric coupling coefficient.
R and L are the resistance and the inductance of the shunting circuit. The capacitanceC appear-
ing in the equation (22) is the inherent piezoelectric capacitance for blocked axial displacement.
Referring to electromechanical constitutive equations (11), it is given by

Cp = εqV lp (23)
where lp = 36.2mm is the length of the piezoelectric element. The electrical and mechanical
natural frequencies coincide when the inductor is tuned to the value

Lopt =
1

ω21Cp
(24)

where ω21 = k/m is the first mechanical resonance for the piezoelectric transducer kept at con-
stant voltage (e.g. short-circuited). If the resistance R is sufficiently high, when L = Lopt

the modulus of the beam mobility function (tip velocity over applied voltage) has the char-
acteristic pattern reported in Figure 8, with two picks are at the same height [22, 23]. This
condition optimizes the energy transfer between the mechanical and the electric forms by an
internal resonance. It is imposed to obtain efficient electric dynamic absorbers of mechanical
vibrations [22]. For this reason, the knowledge of the piezoelectric capacitance Cp is important
in designing passive shunt circuits.

4.2.3 Inherent piezoelectric capacitance

The inverse relation of equation (24) allows for an accurate experimental identification of the
inherent piezoelectric capacitance Cp by the measures of the first mechanical resonance fre-
quency ω1 and of the inductance Lopt for which the two picks of the mobility function are at
the same height. For the present experimental set-up the following values for the first beam
resonance frequency and the inductance satisfying the tuning condition (24) are found:
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Figure 8. Parallel RL shunting circuit with voltage excitation (a) and experimental frequency response (b) for the
beam with the resonant circuit having L = 103.5H , R = 1MΩ .

Experimental Present model NS model
Cp 109.4 nF 103.4 nF (−5.50%) 134.0 nF (+22.47%)

Table 8. Inherent piezoelectric capacitance for the piezoelectric transducer on the beam in Figure 5. The experi-
mentally identified capacitance is compared with the theoretical estimates.

f1 =
ω1
2π
= 47.3Hz, L = 103.5H .

The corresponding values of the piezoelectric capacitance satisfying (24) is reported in Table
8. It is compared with the theoretical estimates obtained with the proposed model accounting
for the influence of transverse stress (equation (12c)) and the standard NS model assuming the
uniaxial stress condition. Table 8 shows the improvement obtained with the present modelling
approach.

5 CONCLUSIONS

This paper studied the influence of cross-sectional deformations in beam models of piezoelec-
tric laminates. Numerical and experimental analyses have shown that the hypotheses on the
mechanical strains and stresses which are usually accepted in the technical literature are not
physically grounded. They lead to relevant errors in the estimate of the electric and mech-
anical constitutive properties because they do not properly account for transverse (chordwise)
interactions between different layers. An Euler-Bernoulli-like beam model properly including
the effect of cross-sectional deformations and of the induced electric potential was proposed.
The model keeps the same degrees-of-freedom of a standard Euler-Bernoulli electromechan-
ical theory, but introduces further hypotheses in the distribution of the electromechanical fields
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through a mixed variational principle. This allows to get a closer agreement with 3D theories
and experimental results. Main corrections are shown for the estimate of the equivalent piezo-
electric capacitance, which is an important parameter in the design of many control systems.
This is achieved by properly accounting for the effect of transverse deformations, as confirmed
by numerical and experimental strain analysis.
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