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ABSTRACT

Restoring a regular image from irregular samples was shown feasible via quadratic regularization using Fourier [1] and

spline [2] representations. When the image is also blurred and noisy (as is usually the case in satellite imaging) ℓ1 regularizers

(like TV) were shown most effective [3], but their Fourier-domain implementation has a prohibitive computational cost. We

present here a new method that combines a spline representation (for speed) with TV regularization to obtain a more accurate

and good-quality restored image. Extending this approach to the blurred case is not as trivial as in the Fourier representation.

Indeed, in order to avoid the sampling operator to lose its sparse structure, a projection of the convolution operator on a spline

space becomes necessary. Extensive experimental results with automatic regularization and stopping criteria show that our

method achieves the accuracy of [3] with much less computational cost, closer to [2].

Index Terms— Image Restoration, Image Sampling, Spline functions, Satellite Applications, Variational Methods

1. INTRODUCTION

The pin-hole camera model with a regular sampling grid on the image plane is widely accepted and used in computer vision.

We keep that model here as the ideal representation of an image, that we want to restore from a more complex acquisition

system. In fact, in certain cases (wide-angle lenses, vibrating push-broom earth observation systems, medical devices) either

the scene or the sampling grid are distorted. In either case we can model the acquisition process as a pin-hole camera with a

blurring kernel and a perturbed sampling grid (a particular kind of irregular sampling). The observation grid is the set Λ of

points Mi,j(xi,j , yi,j), such that xi,j = i + ǫx(i, j) and yi,j = j + ǫy(i, j). ǫx and ǫy are smooth, small perturbation functions

that we assume to be known. Data are denoted by Zi,j and correspond to the values of a function u, convolved with a point

spread function h, at location Mi,j . As data may be noisy, we consider i.i.d. Gaussian variables Ni,j with zero mean and

variance σ2 (see fig. 1 (b) p. 3)

Zi,j = (h ∗ u)(xi,j , yi,j) + Ni,j (1)

Finding u from a set Λ and a vector Z is an ill-posed problem because of (i) the non-uniqueness of the solution and (ii)

instability phenomena. First works on this topic, in dimension one, assume that u is a trigonometric polynomial. In this case the

sampling equation is the linear system Z = SΛ.Ĥ.Û + N , where U is the regular image ( Ui,j = u(i, j) ), Ĥ is the diagonal

matrix associated to ĥ and SΛ is the sampling matrix acting on Fourier coefficients : (SΛ.Û)i,j = u(xi,j , yi,j). The sampling

matrix is such that S∗

Λ.SΛ is a Toeplitz matrix, and one of the first methods in irregular sampling (ACT [1]) takes advantage

of this property. It solves the normal equations associated to the least-squares minimization problem by a conjugate gradient,
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computing the matrix-vector multiplications in O (N log2(N)) operations via the Fast Fourier Transform (N is the size of the

signal). Even when invertible, this linear system can be ill-conditioned, the conjugate gradient then has a poor convergence rate

and produces a signal corrupted with artifacts. That is why Feichtinger et al. proposed to improve conditioning with a diagonal

local weights matrix W1 and regularized the least-squares problem with the square-norm of a weighted Fourier coefficients

vector W2.C (ACT+R)

min
C

‖W2.C‖2 + λ.‖W1.(SΛ.H.C − Z)‖2 (2)

In recent works about perturbed sampling [4][3], the authors exploit the idea of Fourier weights and the good results of the

total variation regularizer in image deblurring. They replaced the first term in (2) by the total variation (ACT+TV [4]), and also

experimented the norm of a derivative-like vector with adapted Fourier coefficients (ACT+FAR [3]) and a local-regularization

method, based on a local noise estimator. These methods are very efficient, but the successive improvements (non quadratic

regularizers and local constraints) have increased the computational complexity of restoration and faster methods have to be

developed to process large images. As proposed by Unser et al. in [2], we will assume that the function u is a spline, which

results in a sparse sampling operator SΛ and a O(N) computation cost for the matrix-vector multiplications. Our variational

formulation, based on discrete total variation, is solved by a Forward-Backward algorithm [5] and uses the TV proximal operator

(Chambolle’s algorithm [6]).

2. VARIATIONAL FORMULATION

2.1. Spline approximation

Regular B-splines of order D ≥ 0, denoted by β(D), are piecewise polynomial functions on R with D − 1 smoothness degree

and support in [−D+1
2 , D+1

2 ]. They are defined by β(0) = 1[− 1

2
, 1

2
] and

β(D+1) = β(D) ∗ 1[− 1

2
, 1

2
]

with 1[− 1

2
, 1

2
](·) the indicator function of segment [− 1

2 , 1
2 ]. We work with the tensorial product of β(3)(x) and β(3)(y) (cubic

splines), which we simply denote by β(3)(x, y), and the approximation space V is the vectorial space spanned by translations

of β3(x, y) by a unit step in each direction. We periodize it with periods (n, 0) and (0, m) (original image dimensions) and

further consider periodic convolution for h.

Irregular samples of a function in V are linear combinations of its coefficients Ci,j in the bicubic splines basis, and the

sampling operator on R
n × R

m has the sparse form

SΛ((i, j), (k, l)) = β(3)(xi,j − k, yi,j − l) (3)

2.2. Adapted constrained formulation

This operator may also be non-invertible or ill-conditioned, so we adopt a constrained formulation and minimize the discrete

total variation of u, such that the differences between (h ∗ u) and Z, at locations Mi,j , have a square norm no larger than the

noise variance σ2 times the number of samples m.n

min
u∈V

TV (u)

s.t.
∑

i,j

|(h ∗ u)(xi,j , yi,j) − Zi,j |
2 ≤ m.n.σ2 (4)

At this point the formulation does not meet our need for a sparse and easily computable matrix SΛ because (h ∗ u) might

not be a spline or have a convenient analytical expression. This is why we replace it with its projection on V . By linearity, shift

invariance and periodicity, we only have to compute one projection

projV (h ∗ β(3)) = argminv∈V ‖h ∗ β(3) − v‖2
L2(V )

=
∑

i,j

h̃[i, j]β
(3)
i,j



with β
(3)
i,j (x, y) = β(3)(x − i, y − j). Coefficients h̃[i, j] solve the following m.n × m.n linear system

∑

i,j

h̃[i, j]
〈

β
(3)
i,j , β

(3)
k,l

〉
=

〈
h ∗ β(3), β

(3)
k,l

〉
∀ k, l

Since
〈

β
(3)
i,j , β

(3)
k,l

〉
=

〈
β(3), β

(3)
k−i,l−j

〉
, it can be solved with Fourier transforms if both scalar products are known. The

first term is a classic computation with splines and is equal to β(7)(k − i, l − j) (with care to the periodicity). The second term

must be computed in the Fourier domain with Plancherel’s formula, i.e. by an infinite sum of Fourier coefficients

〈
h ∗ β(3), β

(3)
k,l

〉
L2(V )

=

〈
ĥ β̂(3), β̂

(3)
k,l

〉

l2(Z)

=
∑

q,r∈Z

ĥ |β̂(3)|2(
2πq

n
,
2πr

m
) . ei( 2πq.k

n
+ 2πr.l

m
)

The fast decay of ĥ.|β̂(3)|2 allows the computation of a very good approximation for indices varying in [−2n + 1, 2n] ×
[−2m + 1, 2m] but this can be done with any accuracy between [−Kn + 1, Kn] × [−Km + 1, Km] for K large enough.

This approximation is the decimated discrete Fourier transform of a 2Kn × 2Km signal, and finally the coefficients h̃[i, j] are

obtained by division in the discrete Fourier domain.

The constrained problem, with the same weights W1 as in (2), takes the following Lagrangian form

min
C

TV (SZ2 .C) + λ.‖W1.(SΛ.H̃.C − Z)‖2

By the change of variable U = SZ2 .C (the regularly sampled image) it is equivalent to the following problem

min
U

TV (U) + λ.‖W1.(SΛ.H̃.(SZ2)−1.U − Z)‖2

︸ ︷︷ ︸
E1(λ,U)

(5)

This problem always has a solution, but the minimizer is generally not unique due to the non strict convexity of the total

variation. Nevertheless, all solutions have the same level lines and the data fitting term generally imposes uniqueness in most

parts of the image.

(a) Reference (b) Data

Fig. 1. Detail of reference and data with σ = 5.



3. FROM VARIATIONAL FORMULATION TO FORWARD-BACKWARD ALGORITHM

Our problem belongs to the more general class of problems treated by Combettes et al. in [5], namely

min
U

f1(U) + f2(U) (6)

with f1 the discrete total variation and f2 the data fitting term. They are both proper, lower semi-continuous convex functions

and f2 is differentiable with affine gradient. We refer the reader to [5] for convex theory and particularly proximal operators,

which were first introduced by Moreau in the 60s [7].

The proximal operator we use here is the TV − l2 denoiser with parameter γ > 0

prox(TV,γ) (U) = argminV TV (V ) +
1

2γ
.‖V − U‖2

︸ ︷︷ ︸
E2(U,V )

(7)

It has been extensively studied and many algorithms have been developed to solve this minimization problem. One of the

fastest and simplest is Chambolle’s well known algorithm [6] which uses a dual formulation and solves a projection problem

in the dual variable. There exist faster algorithms in the case of anisotropic total variation using graph cuts, which would yield

similar results, but in our case γ stays small and Chambolle’s algorithm is very fast. Problem (5) is equivalent to the following

equation (with L = SΛ.H̃.S−1
Z2 ) (see [5])

U = prox(TV,γ)

(
U − 2.γ.λ.L∗.W 2

1 .(L.U − Z)
)

(8)

The Forward-Backward algorithm associated to problem (5) is the fixed point iteration of eq. (8). It only involves the

proximal operator (7) of the total variation and the gradient of the data fitting term





U (k+1/2) = U (k) − 2.γ.λ.L∗.W 2
1 .(L.U (k) − Z)

U (k+1) = prox(TV,γ) (U (k+1/2))

Articles [5] and [8] provide theoretical results of convergence for this algorithm, which can be applied in our case. Its

convergence speed has been studied in the case of a variable step γ (Nesterov [9]) and is then a O
(

1
k

)
.

3.1. Experiments

3.1.1. Implementation

We implemented this algorithm in C and used the FFTW library for fast convolutions. A first initial guess of λ is obtained

by a simple truncated conjugate gradient (see section 3.1.3), which gives an approximate value of λ and U , and accelerates

our Uzawa loop. Parameter γ is estimated by an iterative scheme, ensuring stability and convergence (it depends on λ and the

largest eigenvalue of L∗.W 2
1 .L).

The algorithm contains three nested loops (i) Chambolle’s algorithm , (ii) fixed point and (iii) Uzawa’s loop on λ. The

first two loops automatically stop with decreasing energy. A good stopping criteron for theses variational problems is a relative

decay rate of 1.10−5 for E2(U, V k) (see eq. (7)) and 1.10−4 for E1(λ, Uk) (see eq. (5)).

Uzawa’s loop tunes λ such that equality holds in (4), because the solution lies on the boundary of the constraint (except

in the very special case of nearly constant images). The parameter λ is updated with a multiplicative method [10] until (4) is

verified up to a small tolerance.



3.1.2. Simulations

We simulated realistic irregular acquisition of a continuous scene, by applying a low-pass filter to a high resolution image and

then sampling on Λ. This low-pass filtering allows for irregular sampling and sub-sampling with a small alias.

In the simple unblurry case we try to restore irregular samples from a twice higher resolution image convolved with a 0.5
cut-off prolate. The continuous underlying model we adopted is trigonometric polynomials. The reference image (see fig. 1

(a) ) is obtained by convolving the high resolution image with the prolate and subsampling it by a factor of two.

In the deblurring case, the low-pass filter corresponds to the modulation transfer function of the device, which we display

in fig. 2. This filter has size (2m, 2n) and its Fourier transform is small for frequencies larger than one half. We do not forget

the prolate we used to generate the reference image and apply the same post-processing to all restored images (zoom + prolate

convolution + subsampling).

Fig. 2. MTF with normalized frequencies (size 2m.2n)

3.1.3. Results

We show some results with the following five methods

• ACT [1] : a truncated conjugate gradient with trigonometric polynomials, which stops when the constraint (4) is met.

• AC-S : the same as ACT in a spline space

• Tychonov-S : a quadratic regularizer with splines and global constraint as in [2], which we adapted to the deblurring

problem. It is solved by a conjugate gradient and has automatic λ update (as in the Uzawa loop of section 3.1.1).

• ACT+FAR [3] : a method with trigonometric polynomials, local constraints and a ℓ1 regularizer very close to TV.

• TV-S : our algorithm, which is a TV-regularized method with splines, global constraint and automatic λ update (as in the

Uzawa loop of section 3.1.1).

All these methods have a stopping criterion based on the noise variance σ2. We considered different noise levels σ ∈
{1, 5, 10} (see tab. 1) and display images for σ = 5 (see fig. 4). In the first column we displayed the restored image, in the

second column the residue (L.U − Z) (also known as method noise), and in the third column the Fourier transform of the

residue.



σ = 1 σ = 5 σ = 10 σ = 10
ACT 39.16 31.07 28.42 28.68

7.4s 5.5s 4.9s 4.8s

AC-S 38.79 30.56 28.42 31.65

0.9s 0.4 0.3s 0.1s

Tychonov-S 38.65 30.89 28.61 31.97

6.5s 2.3s 2.2s 1s

ACT+FAR 40.51 32.08 28.90 32.85

4mn37s 2mn35 2mn30s 1mn12s

TV-S 40.82 32.26 28.85 32.28

9.9s 3.4s 3.2s 3.1s

Table 1. PSNR and Computation times for a 259x259 image, blurry case with σ ∈ {1, 5, 10} (first three columns) and unblurry

case with σ = 10 (last column)

Fig. 3. Restored image with Tychonov-S method (left) and TV-S method (right) (σ = 5)



Fig. 4. Deblurring experiments (σ = 5), from top to bottom : ACT (1) , AC-S (2) , Tychonov-S (3) , ACT+FAR (4) , TV-S (5)

(our method)



4. CONCLUSION

These experiments show several interesting things. Our algorithm performs very well in deblurring, with equivalent or better

results than ACT+FAR method, but much less computation time. It is a little bit slower than the quadratic regularization

(Tychonov-S) but improves the global image quality, as it is less blurry and less noisy.

We also note that in the denoising case (last column of table 1) with an important noise level our algorithm is more efficient

than a quadratic regularizer, although it is usually not the case for low noise levels. This can be explained by the erosion effect

of total variation, which is too important with such a stopping condition, but could get fixed by adapting the target denoising

level. (see [3])

Visual aspect of the result is also very good, we can see that the residue contains almost no structures (unlike ACT and

AC-S). Smooth parts of the image are well restored, they look less noisy than Tychonov-S results (fig 3).

Deblurring has successfully been handled with this new spline formulation and computation time dramatically reduced

compared to Fourier methods. We are enthusiastic towards more sophisticated methods including splines in irregular sampling,

like non-local methods.

The authors would like to thank the CNES agency for kindly providing its copyrighted test image.
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