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This paper presents a method allowing a complete characterization of wave signals received on a vector-sensor array. The
proposed technique is based on wavefields separation processing and on estimation of fundamental waves attributes as the state of
polarization state and the direction of arrival. Estimation of these attributes is an important step in data processing for a wide range
of applications where vector sensor antennas technology is involved such as seismic processing, electromagnetic fields studies, and
telecommunications, Compared to the classic techniques, the proposed method is based on computation of multicomponent
wideband spectral matrices which enable to take into account all information given by the vector sensor array structures and thus
provide a complete characterization of a larger number of sources.

1. Introduction

Over the past decade, the use of vector-sensor array (VSA)
technology for source localization has significantly increased
allowing a better characterization of the recorded phe-
nomena in a wide range of applications (e.g., acoustics,
electromagnetism, radar, sonar, geophysics, etc.) [1–5]. For
instance in seismic acquisition case, vector sensors are
nowadays widely used, allowing a better characterization
of the layers thanks to the state of polarization dimension
added to detection process. With a vector sensor, we can
have access to the particle-displacement vector that describes
the particle motion in 3D at a given point in space. As the
state of polarization is wavefield dependent, it can be used as
an essential attribute to separate waves in addition to their
different DOAs. To resume multicomponent acquisitions
we provide more detailed information on the recorded
wavefield and VSA-recorded signals allow the estimation of
the directions of arrival (DOA) and the polarizations of
multiple waves (or sources) impinging the array. In the case
of elastic and acoustic seismic surveys, the VSA-recorded
signals are a mixture of various wave types (body waves,
surface waves, converted waves, multiples, noise, etc.). Com-
bined multicomponent acquisition and multicomponent

processing and analysis provide better wave characterizations
and enhance the imaging resolution of geological features.
In order to perform the characterization of each wave,
separation of interfering wavefields is a crucial step. In the
case of multicomponent sensor arrays, methods of filtering,
of source localization, and of polarization estimation have
already been developed for acoustics and electromagnetic
sources. In the last decade, many array processing techniques
for source localization and polarization estimation using vec-
tor sensors have been developed, mainly in electromagnetics.
Nehorai and Paldi [1] proposed the Cramer-Rao bound
and the vector cross-product DOA. Li and Compton Jr [3]
developed the ESPRIT algorithm for a vector-sensor array.
MUSIC-based algorithms were also proposed by Wong and
Zoltowski [6–8], who also developed vector-sensors versions
of ESPRIT [9–13]. These approaches represent a highly
popular subspace-based parameter estimation method and
use matrix techniques directly derived from scalar-sensor
array processing. Such a method is based on the long-vector
approach, consisting in the concatenation of all components
of the vector-sensor array in a long vector [9].
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The originality of our method consists in keeping
multidimensional structures of data organization for pro-
cessing. These structures are more adapted to the nature of
seismic polarized signals, allowing data organization closer
to its multimodal intrinsic structure. This paper presents
a novel subspace separation method performing wavefields
separation. This method issued from the Multicomponent
Wideband Spectral Matrix Filtering (MWSMF) technique
[14, 15] is a subspace separation algorithm derived from
the classic spectral matrix filtering presented in [16, 17].
After a separation step where each wavefield has been
isolated, we propose polarization and DOA estimations
for each separated wavefield that takes all frequencies and
all components into account. The algorithm treats the1
various components as a whole rather than individually. In
Section 2, we summarize the noise filtering and wavefields

separation principles. In Sections 3 and 4, we present the
technique using the estimated multicomponent wideband
spectral matrices of sources leading to the estimations of the
polarization and of the DOA parameters for each wavefield.
Finally in Section 5, we present the performances of the
algorithm on several simulated 2C-datasets.

2. Noise Filtering and Wavefield Separation

In this section, the proposed subspace separation technique
based on Multicomponent Wideband Spectral Matrix Fil-
tering (MWSMF) is briefly explained (for more details, the
reader might refer to [14, 15]).

2.1. Model Formulation and Hypothesis. Let us consider
an uniform linear array composed of Nx omnidirectional
sensors uniformly spaced by distanceΔ and receiving P waves
with P < Nx. A convolutive model of seismic signal was
first suggested by Robinson [18] and, using the superposition
principle, the signal Oi(t) recorded on sensor i is a linear
combination of the P waves received on the array added
with noise ni(t). Waves have been propagated through a
medium and could have been attenuated, time delayed, or
phase shifted. The signal Oi(t) recording all wavefieds can be
expressed as

xi(t) =
P∑

p=1

apwp

(
t − τi

(
θp
))

+ ni(t) (1)

with

(i) wp(t), the waveform signal emitted by a source p (or
a wavefied p),

(ii) ap, a random amplitude of the source p,

(iii) τi(θp), a time propagation between source p and
sensor depending of θp (the direction-of-arrival
(DOA) of source p),

(iv) ni(t), a random noise supposed to be additive,
temporally and spatially white, uncorrelated with
the sources, nonpolarized and with a power spectral
density given by σ2

n .

In frequential domain, the problem can be divided into a
set of instantaneous mixtures of signals as

xi
(
f
) = P∑

p=1

apwp
(
f
)
e−2 jπ f τi(θp) + ni

(
f
)
, (2)

with xi( f ),wp( f ), and n( f ), respectively, the Fourier trans-
form of xi(t), wp(t) and ni(t). The time delay τi(θp) can be
expressed as summation of two terms

τi
(
θp
)
= τ0,p + ξi

(
θp
)

, (3)

with τ0,p the time of propagation between the source and
a referenced sensor (classically, the first sensor is used as
reference) also called offset. ξi(θp) is the time of propagation
between the reference and sensor i depending of the DOA
(θp) of source p as

ξi
(
θp
)
= (i− 1)

Δ sin
(
θp
)

V
, (4)

where V characterizes the apparent wave velocity and Δ the
distance between two adjacent sensors.

In matrix formulation, (2) can be written as

X = S A + N (5)

with

(i) X = [x1( f ), . . . , xi( f ), . . . , xNx ( f )]T , a vector of size
Nx describing signals recorded on array at frequency
bin f (T stands transposition operator),

(ii) S = [Sx1( f ), . . . , Sxp( f ), . . . , SxP( f )], a matrix of
size Nx × P whose columns are steering vec-
tors describing the propagation of each wave with
SxP( f ) = [sx,1,p( f ), . . . , sx,Nx,p( f )]T and sx,i,p( f ) =
wp( f )e−2 jπ f τi(θp),

(iii) A = [a1, . . . , ap, . . . , aP]T , a vector of size P which
contains the random amplitudes of the waves,

(iv) N is a vector of size Nx which corresponds to the
additive noise.

In case of multicomponent acquisition with vector sensor
array, seismic data depend on three parameters: time (Nt

samples), distance (Nx sensors), and number of components
(Nc components). These components, recording signals in
three directions as X (for in-line axis), Y (for cross-line
axis), and Z for vertical axis, allow to express the state of
polarization of the different wavefields.

On component Z, we can write the recorded signal as

zi
(
f
) = P∑

p=1

αpe
jϕpapwp

(
f
)
e−2 jπ f τi(θp) + ni

(
f
)
, (6)

where αp and ϕp are, respectively, the amplitude ratio and
the phase-shift between components X and Z characterizing
polarization parameters for a source p.



EURASIP Journal on Advances in Signal Processing 3

Frequency 1

Frequency 1

Frequency
Nf

Frequency
Nf

Component
X

Component
Z

Sensor 1

Sensor Nx

Sensor 1

Sensor 1

Sensor 1

Sensor Nx

Sensor Nx

Sensor Nx

Multicomponent wide band
spectral matrix

Classical spectral matrices
Wideband spectral matrix

on the Z component

ZX

Γ
X ,X Γ

X ,Z

Γ
Z,X Γ

Z,Z

Figure 1: Diagram of a 2-Component wideband spectral matrix showing in red the cross-component matrices, in blue the inner-component
matrices, and in black each classical spectral matrices defined at each frequency bin.

In time domain, dataset recorded on a vector array of Nx

sensors (during Nt samples) can be expressed as

Tt ∈ RNx×Nt×Nc . (7)

In the frequency domain, this dataset is

T = FT
{
Tt

}
∈ CNx×Nf ×Nc (8)

with Nf the number of frequency bins. To simplify notations,
we will consider the case of 2-component sensors (X
and Z so Nc = 2). Nevertheless, proposed method can
be used for higher number of components (3, 4, 6,. . .).
Dataset T is concatenated into a long-vector noted T of size

(NxNf Nc) which contains all frequencies of all sensors and
all components:

T =
[
X
(
f1
)T , . . . ,X

(
fN f

)T
, Z
(
f1
)T , . . . ,Z

(
fN f

)T]T
, (9)

where X( fi) and Z( fi) are vectors of size Nx which corre-
sponds to the ith frequency bin received on the Nx sensors,

respectively, on components X and Z. So the mixture model
is rewritten as

T = S A + N , (10)

where

(i) S = [S1, . . . , SP], a matrix of size NxNf Nc × P
whose columns are steering vectors describing the
propagation of the P waves along the antenna for all
frequencies and all components,

(ii) A = [a1, . . . , aP]T , a vector of size P which contains
the random amplitudes of the waves,

(iii) N , a vector of size NxNf Nc which corresponds to the
additive noises supposed to be additive, temporally
and spatially white, uncorrelated with sources, non-
polarized and with identical power spectral density
σ2
n .

2.2. Estimation of the Multicomponent Wideband Spectral
Matrix. Relations between components and sensors are
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, the 2-Component wideband spectral matrix of the wave p.
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expressed in the calculation of the Multicomponent Wide-
band Spectral Matrix (MWSM) Γ̂ of T as

Γ̂ = E
[
T TH

]
(11)

with E the expectation operator and H the transpose
conjugate operation.

To avoid the fact that T TH is noninvertible (not full
rank) and to decorrelate sources from noise and from
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Figure 4: Mean Absolute Error for estimation of the amplitude
ratio between components for various SNRs (plain line: MWSM
based method; dotted line: Flinn’s method).

themselves, we perform smoothing operators to estimate the
matrix Γ̂. This step is crucial since the effectiveness of filtering
depends on this estimation. In practice, mathematical expec-
tation operator E is an averaging operation, like spatial or
frequential smoothing or both of them [19–22]. Objective
of these averaging operations is to reduce the influence of
terms corresponding to the interactions between different
sources in order to uncorrelate them, and to uncorrelate
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sources and noise, making the inversion of the spectral
matrix possible. The spatial smoothing could be done by
averaging spatial sub-bands. The uniform linear array with
Nx sensors is subdivided into overlapping subarrays in order
to have several identical arrays, which will be used to estimate
spectral matrices in order to build a smoothed matrix. Shan
et al. [21] have proven that if the number of subarrays is
greater than or equal to the number of sources Nw, then
the spectral matrix of the sources is nonsingular. However,
one assumption is that the wave does not vary rapidly over
the number of sensors used in the average, in particular,
amplitude fluctuations must be smoothed out. To introduce
frequency smoothing, two ways can be performed: either
by weighting the autocorrelation and cross-correlation func-
tions (in the time domain) or by averaging frequential sub-
bands (in the frequential domain). For a better estimation of
the multicomponent wideband spectral matrix, it is suitable
to realize jointly spatial and frequential smoothing. For more
details on averaging operators, we suggest to read [14].

The multicomponent wideband spectral matrix Γ̂ is a
matrix of dimension NxNf Nc × NxNf Nc. The structure

of Γ̂ is presented diagrammatically on Figure 1. Γ̂
X ,X

and

Γ̂
Z,Z

correspond to the single-component wideband spectral
matrix for X and Z components, respectively. These terms
are located on the main diagonal of Γ̂. The other blocks
correspond to the cross-component spectral matrices which
contain information relating to the interaction between the
components and especially information on polarization.
The results obtained by multicomponent wideband matrix
filtering are better than the ones obtained applying classical
filtering methods on each components for the reason that the
former contains more information on the signal especially
on polarization Since the multicomponent wideband matrix
filtering provides more information on the signal and
especially on polarization, better filtering results are obtained
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Figure 6: 2-Component initial dataset in time and distance ((a):
Horizontal component X , (b): Vertical component Z).

rather than results based on classical filtering methods used
independently on each component.

2.3. Estimation of Signal Subspace. Following the assump-
tions made in Section 2.1, Γ̂ can be written as

Γ̂ = S Γ̂
A
SH + σ2

n I. (12)

After smoothing (averaging) operators step, Γ̂
A

=
E[A AH] is nonsingular (with full rank equals to P in case of
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free noise dataset or equals to N−x in case of noisy dataset).2
As columns of S are linearly independent, then the rank of the

signal part S Γ̂
A
SH is P. So the estimated spectral matrix can

be decomposed uniquely using an eigenvalue decomposition
as

Γ̂ =
NxNf Nc∑
i=1

λiuiu
H
i , (13)

where λi and ui are, respectively, the real eigenvalues, the
orthonormal eigenvectors of Γ̂. Eigenvalues can be arranged
in decreasing order (λ1 ≥ λ2 ≥ · · · ≥ λNxNf Nc ≥ σ2

n .).
Each eigenvalue λi corresponds to the energy of the data
associated with their respective eigenvector ui. The space
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generated by the smallest eigenvectors associated to the
smallest eigenvalues is referred to as the noise subspace Γ̂

N
,

and its orthogonal complement as the signal subspace Γ̂
S
,

spanned by the steering vectors of the signal [23]. Estimated
Multicomponent Wideband Spectral Matrix can be written
as

Γ̂ = Γ̂
S

+ Γ̂
N
=

P∑
i=1

λiuiu
H
i +

NxNf Nc∑
k=P+1

λkuku
H
k . (14)

After performing efficient average, a decorrelation of
waves from themselves and waves from noise is obtained and
the spectral matrix is well estimated. Under these conditions,
Thirion et al. in [24–26] have shown that the steering vectors
are identifiable to the eigenvectors. In fact steering vectors
that account several frequencies (wideband context) can
easily show to be asymptotically orthogonal. In that case, the
spectral matrix corresponding to the pth source (wave) is
noted Γ̂

s,p
and is equal to

Γ̂
s,p
= λpupu

H
p . (15)

2.4. Filtering by Projection onto the Signal Subspace. The
filtering step corresponds to an orthogonal projection of the
initial data T onto the first P eigenvectors corresponding to
the signal subspace:

Ts =
P∑
i=1

〈
T ,ui

〉
ui. (16)

The projection onto the noise subspace (Tn) is obtained by
subtraction of Ts from the initial data

Tn = T − Ts =
NxNf Nc∑
i=P+1

〈
T ,ui

〉
ui. (17)
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Figure 10: First extracted wave after projection of initial dataset
onto the first eigenvector. (a) Component X , (b) Component Z.

The final steps consist of rearranging the long-vectors Ts

and Tn in its initial form and computing an inverse Fourier
transform in order to come back to the time-distance-
component domain.

3. Polarization Estimation

3.1. Introduction. After presenting the separation process-
ing part, we propose to find polarization parameters on
each separated wavefield. State of polarization analysis is

5

10

15

20

0 20 40 60 80 100 120

Time

Se
n

so
rs

Component X

(a)

5

10

15

20

0 20 40 60 80 100 120

Time

Se
n

so
rs

Component Z

(b)

Figure 11: Second extracted wave after projecting initial dataset on
the second eigenvector. (a) Component X , (b) Component Z.

based on the computation of parameters describing the
particle movement associated with wave propagation. That
movement of the ground induced useful parameters which
were first identified by Jolly in 1956 [27], whereas the first
attempt to measure this movement was done by Shimshoni
and Smith in 1964 [28]. They introduced a successful
method of polarization analysis for earthquake data. Many
other algorithms were developed subsequently for seismic
exploration applications [29–31]. One of the most effective
and stable approaches in this regards is the algorithm



8 EURASIP Journal on Advances in Signal Processing

1

2

3

4

5

500 1000 1500 2000 2500 3000

×10−3

(1) (4)

(3)(2)

500 1000 1500 2000 2500 3000

2

0

−2

Figure 12: Upper plot = modulus of diagonals of blocks (1) and (4)
diagonals of the spectral matrix of wave 1 (Figure 8). Bottom plot:
angle of blocks (2) and (3) diagonals of the spectral matrix of wave
1 (Figure 8).

−0.5 −1−1.5 −2−2.5 −3 0 20 40 60 80 100 120
0

2

4

6

8

10

12

OffsetDOA (pts.)

×104

Figure 13: Amplitude of MW-MUSIC functional as a function of
DOA and offset.

0

5

10

15
×104

−3−2.8 −2.5 −2 −1.5−1.3 −1 −0.5 0

DOA (pts.)

Figure 14: DOA estimation (cross-section for various offsets).

0

5

10

15

20

25

30

0 20 40 60 80 100

Temps

C
ap

te
u

rs

Onde 1

Onde 2

Composante X

(a)

0

5

10

15

20

25

30

0 20 40 60 80 100

Temps

C
ap

te
u

rs

Composante Z

(b)

Figure 15: Model of two waves with close DOAs.

developed by Flinn [32, 33] using the covariance matrix of
the data. In the following part, we compare our proposed
method (based on MWSM) with Flinn’s algorithm.

3.2. Proposed Method. We propose to use the spectral
matrices of rank one (linked to each pth source) obtained
from the decomposition of the multicomponent wideband
spectral matrix (see (15)). Thus, once a wavefield has
been separated from other waves and from noise, we show
that its polarization parameters can be characterized from
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the matrix elements of wavefield, Γ̂
s,p

. After separation

processing, the signal, noted Ox,p,i( f ), corresponding to the
pth source received on component X at frequency f and on
sensor i can be expressed as

Ox,p,i
(
f
) = apwp

(
f
)
e− j2π f τi(θp), (18)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

DOA en echantillons

MCWB-MUSIC
LV-MUSIC

−0.2

Figure 17: Comparison between MW-MUSIC and LV-MUSIC.

where τi(θp) is the time of propagation between the source
and the sensor i (for wave p). For the second component Z,
we obtain

Oz,p,i
(
f
) = αpe

jϕpapwp
(
f
)
e−2 jπ f τi(θp). (19)

The diagonal element of Γ̂
s,p

at the frequency f on the

ith sensor which corresponds to the interaction of the X
component with itself could be expressed by

Γ̂
s,p(X ,X)

(
i, f
) = σ2

p

∣∣∣wp
(
f
)∣∣∣2

. (20)

Likewise, the term corresponding to the interaction of Z
component with itself is

Γ̂
s,p(Z,Z)

(
i, f
) = α2

pσ
2
p

∣∣∣wp
(
f
)∣∣∣2

(21)

and finally, the cross-term corresponding to the interaction
between component X and Z could be written as

Γ̂
s,p(X ,Z)

(
i, f
) = αpσ

2
p

∣∣∣wp
(
f
)∣∣∣2

e− jϕp . (22)

All these terms are located either on the principal diagonal
or on the secondary diagonals of the matrix Γ̂

s,p
(see

Figure 2). Based on these structures, we deduce estimators
for polarization parameters of the pth wave on each sensor
i at frequency f . In fact, polarization parameters (αp,ϕp)
expressed as amplitude ratio between components X and Z
and phase shift for wave p can be expressed, respectively, by

α̂p(X ,Z)

(
i, f
) =

√√√√√ Γ̂
s,p(Z,Z)

(
i, f
)

Γ̂
s,p(X ,X)

(
i, f
) ,

ϕ̂p(X ,Z)

(
i, f
) = arg

[
Γ̂
s,p(X ,Z)

(
i, f
)]
.

(23)

Classically, the propagation medium is regarded as
isotropic (nondispersive for frequency) so that the polariza-
tion parameters are independent of frequency and sensor.
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But in more realistic context where some dispersion appears,
a better estimate of the polarization parameters can thus be
obtained by averaging them over a range of frequencies and
sensors. However, in order to have a correct estimate, the
averaging must be done only on the frequencies belonging
to the signal bandwidth (L3dB = [ finf , fsup]). The estimators
thus obtained are

α̂p(X ,Z) =

√√√√√ 1
card(L3 dB) ·Nx

Nx∑
i=1

fsup∑
f= finf

Γ̂
s,p(Z,Z)

(
i, f
)

Γ̂
s,p(X ,X)

(
i, f
) , (24)

ϕ̂p(X ,Z) = arg

⎡⎣ 1
card(L3 dB) ·Nx

Nx∑
i=1

fsup∑
f= finf

Γ̂
s,p(X ,Z)

(
i, f
)⎤⎦ (25)

with card(L3 dB) being the cardinal of L3 dB.

3.3. Comparison between Flinn’s Method and Proposed Method
Based on MWSM. MWSM’s and Flinn’s methods are two
different approaches for polarization analysis. Flinn’s method
uses a covariance matrix and proposes a temporal approach
on a single trace whereas our proposed method is a
frequential approach which can either be on a single trace
or on the whole array. In the case studied here, the waves’
state of polarization can be considered as constant over
distance. Consequently, for a given wave, we can estimate the
amplitude ratio and phase shift between the components by
carrying out an averaging of the parameters found on each
sensor.

To compare Flinn’s and our method and to illustrate
polarization estimation, we consider the trivial case of a
single wave with infinite velocity, received on a 2C-sensors
array, whose phase shift ϕ (= 0.4 rad) and amplitude ratio α
(= 0.8) are constant over the array.

Figures 3 and 4 correspond respectively to the Mean
Absolute Error (MAE) between the theoretical and the
estimated values of phase shift and amplitude ratio for
various signal-to-noise ratio (SNR) from −10 dB to 15 dB.
The average is done for 500 noisy realizations.

These figures show that for both methods, polarization
analysis is very sensitive to noise and thus the estimates are
better when SNR increases. We can notice that our MWSM-
based method always gives better estimation than the Flinn’s
method for small SNR.

4. Direction-of-Arrival Estimation

4.1. Proposed Method. Just as we did for polarization state
estimation, we propose a DOA estimation method based on
the structure of Multicomponent Wideband Spectral Matrix.
We call it MW-MUSIC for Multicomponent Wideband-
MUSIC as it is an extension of the MUSIC (MUltiple
SIgnal Classification) algorithm [34–37]. This method is an
extension of the MUSIC algorithm for vector-sensor arrays
called LV-MUSIC for Long-Vector MUSIC [1]. The first3
extensions of MUSIC algorithm to polarized sources were
made by Schmidt [34], Ferrara and Parks [38], Wong and
Zoltowski [6, 8], and Wong et al. [13]. Algorithms to estimate

DOAs of polarized sources in electromagnetism were also
proposed in [1, 39, 40]. Our proposed method has the
advantage of being able to compute both DOA and offset.

We define two matrices U
s

(NxNf Nc × P size) and U
n

(NxNf Nc × (NxNf Nc − P) size), containing the eigenvectors
corresponding to signal subspace and noise subspace, respec-
tively,

U
s
= [u1, . . . ,uP

]
,

U
n
=
[
uP+1, . . . ,uNxNf Nc

]
.

(26)

These complex matrices enable us to write MWSM as

Γ = U
s
Λ
s
UH

s
+ σ2

bUn
UH

n (27)

with Λ
s

being a diagonal matrix containing the P highest
eigenvalues. If we multiply (12) on the right by U

n
, we obtain

ΓU
n
= SΓ

A
SH U

n
+ σ2

b Un
. (28)

By combining (27) and (28) and by using the orthogo-
nality property of the matrices U

s
and U

n
, we obtain

σ2
bUn

= SΓ
A
SH U

n
+ σ2

bUn (29)

which implies:

SH U
n
= 0. (30)

We can rewrite it as

SHp U
n
UH

n
Sp = 0 (31)

with Sp, being the propagation vector corresponding to

the wave p. Thereafter, we note Π
n
= U

n
UH

n
, the matrix

corresponding to the projection on noise subspace.
According to relation (31), propagation vectors are

orthogonal to noise subspace. Consequently, their projection
on Π

n
is zero. MW-MUSIC algorithm exploits this idea by

carrying out the projection of directional vector h(θ, τ0,α,ϕ)
on the estimated noise subspace. This vector models the
arrival of a polarized wave of direction θ on multicomponent
sensors’ antenna and is expressed as

h
(
θ, τ0,α,ϕ

) = 1
NxNf Nc

(
d(θ, τ0)

αe jϕd(θ, τ0)

)
(32)

with

d(θ, τ0) =

⎛⎜⎜⎜⎜⎜⎝
w
(
f1
)
e− j2π f1τ0e

(
θ, f1

)T
...

w
(
fN f

)
e− j2π fN f τ0e

(
θ, fN f

)T

⎞⎟⎟⎟⎟⎟⎠,

e
(
θ, fn

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

...

e− j2π fn(i−1)(Δ sin(θ)/V)

...

e− j2π fn(Nx−1)(Δ sin(θ)/V)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(33)
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The extended MUSIC functional, calculated by projec-
tion of h(θ, τ0,α,ϕ) on the noise subspace is given by

MW−MUSIC
(
θ, τ0,α,ϕ

)
= 1

h
(
θ, τ0,α,ϕ

)H
Π

n
h
(
θ, τ0,α,ϕ

) . (34)

The functional allows local maxima for a set of values θ, τ0,α,
and ϕ. We use the fact that two parameters (α,ϕ) have been
already found by the method proposed on Section 3. After
this stage, the functional only depends on two parameters,
θ the direction of arrival and τ0, the offset, and it will give
maximum for values of (θ, τ0) corresponding to the sources
present in the signal. It is clear that processing will work with
lot of efficiency in case of far field sources (waves can be
considered as locally plane).

4.2. Study of Estimator Variance. In this part, we compare
variances of various estimators: MUSIC, LV-MUSIC and
MW-MUSIC. Mean Square Error (MSE) for DOA estima-
tion is presented for various SNRs (Figure 5). Each point
corresponds to an average over 200 realizations. In this
case under study, a polarized source is received on an
array of 30 2C-sensors. The DOA of the source, expressed
in terms of samples of delay between two sensors, is 1
sample. A white Gaussian noise is added to the signal with
a SNR from −18 dB to 0 dB. For classical MUSIC algorithm
which operates only on one component, we carry out an
average of the results obtained from the two components.
Figure 5 shows clearly that when we take into account the
polarization information and frequential coherency given
by the MWSM’s structure, statistical performances of the
estimator are improved. This induces that MW-MUSIC gives
better results rather than Classical-MUSIC algorithm.

5. Synthetic Examples

Proposed method consisting of wavefield separation followed
by polarization and DOA estimation steps is applied on
a 2-Components synthetic seismic profile to validate the
efficiency of the method. Figure 6 plots two waves received
on an array of 24 2C-sensors superimposed by a white
gaussian noise (SNR = 4 dB). The fastest wave, (called wave 1)
has a linear polarization parameter (α = 1.5 and ϕ = 0 rad)
and the slowest wave (called wave 2) is characterized by an
elliptic polarization (α = 1.5 and ϕ = 1.5 rad).

5.1. Wavefield Separation. The first step of proposed method
consists of separating the two waves and the noise using
the multicomponent wideband spectral matrix filtering tech-
nique (see Section 2). Estimation of the Multicomponent
Wideband Spectral Matrix (MWSM) is done using both
spatial and frequential smoothing. Its modulus of this matrix
is presented in Figure 7. We observe the same structure as
in Figure 1 where the large energetic pattern is associated
to wave 1 (low frequency content), and smaller energetic
pattern to wave 2 (high frequency content). The MWS
Matrix is then decomposed using eigenvalue decomposition.

Table 1: True and estimated values of polarization parameters of
wave 1 and wave 2.

True values Estimated values

wave 1
α1 = 1.5 α̂1 = 1.1

ϕ1 = 0 rad ϕ̂1 = 3 · 10−2 rad

wave 2
α2 = 1.5 α̂2 = 1.17

ϕ2 = 1.5 rad ϕ̂2 = 1.54 rad

Observing the decrease of eigenvalues, we decide to keep the
two first eigen sections, corresponding to modeled waves:

Γ
s,1
= λ1u1u

H
1 , Γ

s,2
= λ2u2u

H
2 . (35)

Figures 8 and 9 show the modulus of Γ
s,1

(wave 1) and Γ
s,2

(wave 2). We can observe from these figures that separation
of waves is efficient since patterns are well separated and
no energetic interferences appear. Thus, by projecting the
initial data on the first eigenvector u1, we obtain the first
extracted wavefield (wave 1) (Figure 10) and on the second
eigenvector u2, the second extracted wavefield (wave 2)
(Figure 11). These two figures clearly show that the noise has
been removed and the waves have been well separated.

5.2. Polarization Estimation. After separation of waves, the
second step consists of making the polarization analysis
of the two waves using the matrix elements of Γ

s,1
and

Γ
s,2

(see Section 3). As previously presented, in Figure 8

(resp., Figure 9), blocks (1) and (4) correspond to wideband
spectral matrices of wave 1 (resp., wave 2) on components
X and Z, respectively. We denote them by Γ

s,1(X ,X)
and Γ

s,1(Z,Z)

(resp., Γ
s,2(X ,X)

and Γ
s,2(Z,Z)

). Blocks (2) and (3) correspond

to the cross-spectral matrices of wave 1 (resp., wave 2)
containing the interactions between components X and Z.
We denote them by Γ

s,1(X ,Z)
and Γ

s,1(Z,X)
(resp., Γ

s,2(X ,Z)
and 4

Γ
s,2(Z,X)

).

Figure 12 shows two graphs. The upper plot corresponds
to the modulus of diagonals of blocks (1) and (4) of Γ

s,1
. It

enables to determine the frequency band L1 = [ finf 1, fsup 1]
used to estimate the polarization parameters as well as to
carry out the estimation of the amplitude ratio α̂1 between
components X and Z (see (25)). The bottom graph of
Figure 12 shows the phase of blocks (2) and (3) diagonals.
It allows to obtain phase shift ϕ̂1 between components X and
Z (see (25)). In a similar way, it is possible to estimate the
polarization parameters of wave 2 by using the principal and
secondary diagonals of the spectral matrix Γ

s,2
.

The values obtained for the polarization parameters of
each wave are summarized in Table 1. The phase shift ϕ
estimation results are really satisfactory as we find less than
2% error. The amplitude ratio α is also well estimated with
a bigger error (10%). This can be attributed to the spectral
matrix estimation step. Infact, the spatial smoothing used
to estimate MWSM might affect the wave amplitudes since
smoothing is equivalent to an averaging in distance over a
small number of sensors.
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Table 2: Estimation of DOAs and offsets.

DOA (pts.) Offset (pts.)

True Values Estimated Values True Values Estimated Values

wave 1 −1.3 −1.30 28 27

wave 2 −2.8 −2.84 44 42

5.3. DOA Estimation. The last step is the estimation of
DOA and offset of each wave (see Section 4). We compute
the MW-MUSIC functional for values of the DOA, ξ(θ),
between [− 3; 3] with a step of 0.01 and for the offset
τ0, between [0; 127] with a step of 1. The results obtained
are shown in Figure 13. The two main lobes are found at
the original values of offsets and DOAs of the two waves
samples. Figure 14 corresponds to the cross-sections of the
3D-function (Figure 13) for fixed offsets. The vertical lines
show the theoretical values of the DOAs. The estimated
values for the DOAs and the offsets are recapitulated in
Table 2. One can note that the estimated values are very close
to the true values (percentages of error between 0 and 4%).

5.4. A More Realistic Example. Now, we consider a 2-
Component acquisition simulation recording two waves
(15). These two waves called Onde1 and Onde2 have shown
same spectrum, same offset, same polarisation parameters,
and two very close DOAs (ξ(θO1) = 0; ξ(θO2) = −0.2). The
Signal-to-Noise ratio is estimated at 0 dB (Figure 16).

We propose to compare Long Vector-MUSIC and Multi-
component Wideband-MUSIC algorithms. We show on
Figure 17, that resolution given by MW-MUSIC is better
than LV-MUSIC. A full separation, polarisation and DOA’s
estimation have been also realized on a real seismic example
[41].

6. Conclusion

A novel method providing wavefields separation along with
an estimation of both the polarization parameters and the
directions of arrival was presented. Taking into account
the polarization and the widebandness of the signal leads
to a better characterization of a greater number of waves
(NxNf Nc − 1) as opposed to the monocomponent array case
(Nx − 1). The performance and efficiency of the method
was proven using several simulations. Comparison of the
wideband matrix filtering method with those of the classic
filtering technique has already been done [15] and gave
encouraging result for wideband case. We also obtained
promising results for DAO estimation using the proposed
method which can be attributed to the fact that our method
takes into account the entire frequency information and is
therefore insensitive to frequency band selection.
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