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We consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpolation inequalities and Gross' logarithmic Sobolev inequality, both without weights, gives a general criterion for such an existence result in some particular cases.

Introduction

In this paper we discuss the existence of extremal functions in two families of interpolation inequalities introduced in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF][START_REF] Del Pino | A logarithmic Hardy inequality[END_REF]: some of the Caffarelli-Kohn-Nirenberg inequalities and weighted logarithmic Hardy inequalities. By extremal functions, we mean functions for which the inequalities, written with their optimal constants, become equalities. Existence of extremal functions is a crucial issue for the study of several qualitative properties like expressions of the best constants or symmetry breaking properties of the extremal functions. Before stating our results, let us recall the two families of inequalities in which we are interested. 

b ≤ a + 1 if d ≥ 3, a < b ≤ a + 1 if d = 2 and a + 1/2 < b ≤ a + 1 1 C CKN (θ, p, a) = inf u∈D 1,2 a (R d )\{0} |x| -a ∇u 2 θ L 2 (R d ) |x| -(a+1) u 2 (1-θ) L 2 (R d ) |x| -b u 2 L p (R d )
.

Weighted logarithmic Hardy inequalities

In [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF], a new class of inequalities has been considered. These inequalities can be obtained from (1.1) by taking θ = γ (p -2) and passing to the limit as p → 2 + . For this problem, a symmetry breaking result similar to the one of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] has been established in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] for any γ < 1/4 + (a -a c ) 2 /(d -1) when d ≥ 2 and a < -1/2.

Finding extremal functions of (1.2) amounts to proving the existence of minimizers for the following variational problem

1 C WLH (γ, a) = inf u∈D 1,2 a (R d ) |x| -(a+1) |u| L 2 (R d ) = 1 |x| -a ∇u 2 L 2 (R d ) e 1 2 γ R d |u| 2 |x| 2 (a+1) log(|x| 2 (ac-a) |u| 2 ) dx .
Existence of extremal functions 3

Main results

Our aim is to prove existence of the extremal functions for inequalities (1.1) and (1.2). We shall assume that C CKN (θ, p, a) and C WLH (γ, a) are optimal, i.e. take their lowest possible value. Cases of optimality among radial functions and further considerations on symmetry breaking will be dealt with in [START_REF] Dolbeault | Radial symmetry and symmetry breaking for some interpolation inequalities[END_REF]. Existence of extremal functions for (1.1) has been studied in various papers in case θ = 1: see primarily [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] and references therein for details. In the case of radial functions, when θ < 1 and d ≥ 1, existence of extremal functions has been established in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] for any θ > ϑ(p, d). Still in the radial case, similar results hold for (1.2) if d ≥ 1 and γ > 1/4. Notice that nonexistence of extremal functions has been proved in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] for d = 1 and θ = ϑ(p, d). Nonexistence of extremal functions without symmetry assumption has also been established in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] for d ≥ 3, θ = 1 and a = b < 0. Our main result goes as follows.

Theorem 1.3. Let d ≥ 2 and assume that a ∈ (-∞, a c ).

(i) For any p ∈ (2, 2 * ) and any θ ∈ (ϑ(p, d), 1), (1.1) admits an extremal function in D 1,2 a (R d ). Moreover there exists a continuous function

a * : (2, 2 * ) → (-∞, a c ) such that (1.1) also admits an extremal function in D 1,2 a (R d ) if θ = ϑ(p, d) and a ∈ (a * (p), a c ). (ii) For any γ > d/4, (1.2) admits an extremal function in D 1,2 a (R d ). Moreover there exists a * * ∈ (-∞, a c ) such that (1.2) also admits an extremal function in D 1,2 a (R d ) if γ = d/4, d ≥ 3 and a ∈ (a * * , a c
). As we shall see below, the optimal constant when p = 2, θ ∈ (0, 1), is (a -a c ) -2 θ and it is never achieved: in this case there are no extremal functions in D 1,2 a (R d ). For a given p ∈ (2, 2 * ), the case θ = ϑ(p, d) deserves a more detailed analysis. Consider the following sub-family of Gagliardo-Nirenberg interpolation inequalities, which have been extensively studied in the context of nonlinear Schrödinger equations (see for instance [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]),

u 2 L p (R d ) ≤ C GN (p) ∇u 2 ϑ(p,d) L 2 (R d ) u 2 (1-ϑ(p,d)) L 2 (R d ) ∀ u ∈ H 1 (R d ) .
If u is a radial minimizer for 1/C GN (p), define u n (x) := u(x + n e) for some e ∈ S d-1 . It is straightforward to check that a ϑ(p, d)

+ (a + 1) (1 -ϑ(p, d)) = b. Since |x| -a ∇u n L 2 (R d ) ∼ n -a ∇u L 2 (R d ) , |x| -(a+1) u n L 2 (R d ) ∼ n -(a+1) u L 2 (R d ) and |x| -b u n L p (R d ) ∼ n -b u L p (R d ) , it follows that C GN (p) ≤ C CKN (ϑ(p, d), p, a). A more careful expansion actually shows that 1 C CKN (ϑ(p, d), p, a) ≤ |x| -a ∇u n 2 ϑ(p,d) L 2 (R d ) |x| -(a+1) u n 2 (1-ϑ(p,d)) L 2 (R d ) |x| -b u n 2 L p (R d ) = 1 C GN (p) 1 + R n -2 + O(n -4 )
as n → ∞, for some real constant R, that can be explicitly computed:

R = R 1 |x| u 2 L 2 (R d ) u 2 L 2 (R d ) + R 0 (1.
3) where R 0 and R 1 are polynomials of degree two in terms of a, with finite coefficients depending on p, d (but not on t). For given d ≥ 2 and p ∈ (2, 2 * ), a sufficient condition for R < 0 is that both R 1 and R 0 are negative, which defines an explicit interval in (-∞, a c ) for which we know that C GN (p) < C CKN (ϑ(p, d), p, a). This will be discussed in Section 5.

Similar results can be proved for (1.2). In that case, we shall consider Gross' logarithmic Sobolev inequality in Weissler's scale invariant form (see [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF][START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF])

e 2 d R d |u| 2 log |u| 2 dx ≤ C LS ∇u 2 L 2 (R d ) ∀ u ∈ H 1 (R d ) such that u L 2 (R d ) = 1 ,
where C LS = 2/(π d e). With (u n ) n as above and u(x) = (2 π) -d/4 exp(-|x| 2 /4), we find that

C -1 WLH ≤ C -1 LS + O(n -2 ). In the cases θ = ϑ(p, d) and γ = d/4, if either C CKN (ϑ(p, d), p, a) = C GN (p) or C WLH (d/4, a) = C LS ,
we have readily found a non relatively compact minimizing sequence. This indicates the possibility of non-existence of extremal functions. On the opposite, if we have strict inequalities, we can expect an existence result and this is indeed the case. 

(R d ). Additionnally, if a ∈ (a ⋆ , a c ) with a ⋆ := a c - √ Λ ⋆ and Λ ⋆ := (d -1) e (2 d+1 π) -1/(d-1) Γ(d/2) 2/(d-1) , then C LS < C WLH (d/4, a).
In case (i), for d ≥ 3 and p = 2 * , according to [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], it is known that C GN (2 * ) = C CKN (1, 2 * , a) for any a ≤ 0. Extremal functions exist for any a ≥ 0 and are radial, up to translations. The case a = 0 corresponds to the celebrated extremal functions of Aubin and Talenti for Sobolev's inequality.

The criteria of Theorem 1.4 are sharp, in the following sense. Consider the case (i). If for some a 0 ∈ (-∞, a c ), (1.1) admits an extremal function in D 1,2 a (R d ) with a = a 0 and θ = ϑ(p, d), then for any a ∈ (a 0 , a c ), by considering an extremal function corresponding to a 0 as a test function for the inequality corresponding to a, we realize that C CKN (ϑ(p, d), p, a) > C CKN (ϑ(p, d), p, a 0 ). Choose now

ā := inf{a ∈ (ā, a c ) : C GN (p) < C CKN (ϑ(p, d), p, a)} .
If ā > -∞, then (1.1) admits an extremal function for any a > ā and admits no extremal function for any a < ā. Similar observations hold in case (ii). See Section 5 for further comments and the proof of the sufficient condition for

C LS < C WLH (d/4, a).
This paper is organized as follows. We shall first reformulate (1.1) and (1.2) in cylindrical variables using the Emden-Fowler transformation and state some preliminary results. Sections 3 and 4 are devoted to the proofs of Theorems 1.3 and 1.4. In Section 5, we shall discuss sufficient conditions for R given by (1.3) to be negative and compare the results of Theorems 1.3 (i) and 1.4 (i) when θ = ϑ(p, d).

Observations and preliminary results

It is very convenient to reformulate the Caffarelli-Kohn-Nirenberg inequality in cylindrical variables as in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. By means of the Emden-Fowler transformation

s = log |x| ∈ R , ω = x |x| ∈ S d-1 , y = (s, ω) , v(y) = |x| ac-a u(x) ,
Inequality (1.1) for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on the cylinder C := R × S d-1 :

v 2 L p (C) ≤ C CKN (θ, p, a) ∇v 2 L 2 (C) + Λ v 2 L 2 (C) θ v 2 (1-θ) L 2 (C) ∀ v ∈ H 1 (C) (2.1) with Λ := (a c -a) 2 . Similarly, with w(y) = |x| ac-a u(x), Inequality (1.2) is equiva- lent to C |w| 2 log |w| 2 dy ≤ 2 γ log C WLH (γ, a) ∇w 2 L 2 (C) + Λ for any w ∈ H 1 (C) such that w L 2 (C) = 1. When w is not normalized in L 2 (C),
this last inequality can also be written as

w 2 L 2 (C) C WLH (γ, a) exp 1 2 γ C |w| 2 w 2 L 2 (C) log |w| 2 w 2 L 2 (C) dy ≤ ∇v 2 L 2 (C) + Λ v 2 L 2 (C) , (2.2 
) for any w ∈ H 1 (C). We shall denote by C * CKN (θ, p, a) and C * WLH (γ, a) the optimal constants among radial functions for (1.1) and (1.2) respectively. Radial symmetry for (1.1) and (1.2) means that there are minimizers of E θ and F γ depending only on s. In such a case, C CKN (θ, p, a) = C * CKN (θ, p, a) and C WLH (γ, a) = C * WLH (γ, a). Radial optimal functions are explicit and the values of the optimal constants, C * CKN (θ, p, a) and C * WLH (γ, a), have been computed in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF]:

C CKN (θ, p, a) ≥ C * CKN (θ, p, a) = C * CKN (θ, p, a c -1) Λ p-2 2p -θ C WLH (γ, a) ≥ C * WLH (γ, a) = C * WLH (γ, a c -1) Λ -1+ 1 4 γ (2.3) where Λ = (a -a c ) 2 , C * CKN (θ, p, a c -1) = 2 π d/2 Γ(d/2) -p-2 p (p-2) 2 2+(2 θ-1) p p-2 2 p 2+(2 θ-1) p 2 p θ θ 4 p+2 6-p 2 p Γ( 2 p-2 + 1 2 ) √ π Γ( 2 p-2 ) p-2 p , C * WLH (γ, a c -1) = 1 4 γ (4 γ-1) 4 γ-1 4 γ (2 π d+1 e) 1 4 γ [Γ(d/2)] 1 2 γ if γ > 1 4 and C * WLH ( 1 4 , a c -1) = [Γ(d/2)] 2 2 π d+1 e if γ = 1 4 .
Symmetry breaking means that Inequalities in (2.3) are strict.

In case (i), for p = 2, it is clear from (2.1) that C CKN (θ, 2, a) ≥ Λ -θ . Let v ∈ H 1 (C) be a function depending only on s such that v L 2 (C) = 1 and define v n (y) := n -1 v(s/n) for any n ≥ 1, y = (s, ω) ∈ C. It is therefore straightforward to observe that lim n→∞ ( ∇v n 2 L 2 (C) + Λ) θ = Λ θ = 1/ C CKN (θ, 2, a) = 1/ C * CKN (θ, 2, a)
. From (2.1), we also read that equality cannot hold for a nontrivial function v.

The following elementary estimates will also be useful in the sequel.

Lemma 2.1. For any x, y > 0 and any η ∈ (0, 1), we have:

(i) (1 + x) η (1 + y) 1-η ≥ 1 + x η y 1-η , with strict inequality unless x = y, (ii) η x 1/η + (1 -η) y 1/(1-η) ≥ x y, with strict inequality unless x = y and η = 1/2. Proof. In case (i), let f (η) := η log(1 + x) + (1 -η) log (1 + y) -log 1 + x η y 1-η . We observe that f (0) = f (1) = 0 and, moreover, f (1/2) > 0, since (1 + x) (1 + y) > (1 + √ x y ) 2 and (1 + x η y 1-η ) 2 f ′′ (η) = -x η y 1-η (log( x y )) 2 < 0, at least if x = y. This proves assertion (i).
In case (ii), let f (η

) := η x 1/η + (1 -η) y 1/(1-η) -x y.
We observe that f (1/2) ≥ 0 (with strict inequality unless x = y) and

f ′′ (η) = η -3 x 1/η | log x| 2 + (1 -η) -3 y 1/(1-η) | log y| 2 > 0 ,
thus proving the second assertion.

The functional w → C |w| 2 log |w| 2 / w 2 L 2 (Ω) dy can be seen as the limit case of w → w 2 L p (C) . At least from the point of view of Hölder's inequalities, this is indeed the case, and the following estimate will be useful in the sequel.

Let Ω be an arbitrary measurable set and consider Hölder's inequality,

w L q (Ω) ≤ w η L 2 (Ω) w 1-η L p (Ω) with η = 2 (p -q)/(q (p -2))
for any q such that 2 ≤ q ≤ p ≤ 2 * . For q = 2, this inequality becomes an equality, with η = 1, so that we can differentiate with respect to q at q = 2 and obtain

Ω |w| 2 log |w| 2 w 2 L 2 (Ω) ≤ p p -2 w 2 L 2 (Ω) log w 2 L p (Ω) w 2 L 2 (Ω)
.

(2.4)

Proof of Theorem 1.3

In case (i), let p ∈ (2, 2 * ) and θ ∈ (ϑ(p, d), 1) . In case (ii), let γ > d/4. Consider sequences (v n ) n and (w n ) n of functions in H 1 (C), which respectively minimize the functionals

E θ [v] := ∇v 2 L 2 (C) + Λ v 2 L 2 (C) θ v 2 (1-θ) L 2 (C) , F γ [w] := ∇w 2 L 2 (C) + Λ exp -1 2 γ C |w| 2 log |w| 2 dy , under the constraints v n L p (C) = 1 and w n L 2 (C) = 1 for any n ∈ N.
We shall first prove that these sequences are relatively compact and converge up to translations and the extraction of a subsequence towards minimizers if they are bounded in H 1 (C). Next we will establish the a priori estimates in H 1 (C) needed for the proof of Theorem 1.3. Under restrictions on a, these a priori estimates are also valid for θ = ϑ(p, d) or γ = d/4 and also give an existence result for minimizers.

Convergence of bounded minimizing sequences

Consider C as a manifold embedded in R d+1 and denote by B r (y) the ball in R d+1 with radius r centered at y. From [3, Lemma 4.1], which is an adaptation of [10, Lemma I.1, p. 231], we have the following lemma.

Lemma 3.1. [10, 3] Let r > 0 and q ∈ [2, 2 * ). If (f n ) n is bounded in H 1 (C) and if lim sup n→∞ Br(y)∩C |f n | q dy = 0 for any y ∈ C, then lim n→∞ f n L p (C) = 0 for any p ∈ (2, 2 * ).
As a consequence of this result and of the convexity estimates of Lemma 2.1, the relative convergence of bounded sequences is a rather straightforward issue.

Proposition 3.2. Let d ≥ 2, p ∈ (2, 2 * ) and θ ∈ [ϑ(p, d), 1). Let (v n ) n be a minimizing sequence for E θ such that v n L p (C) = 1 for any n ∈ N. If (v n ) n is bounded in H 1 (C), then (v n ) n is

relatively compact and converges up to translations and the extraction of a subsequence to a function

v ∈ H 1 (C) such that v L p (C) = 1 and E θ [v] = 1/ C CKN (θ, p, a).
Proof. Up to translations and the extraction of a subsequence, (v n ) n weakly converges in H 1 (C), strongly in L 2 loc ∩L p loc (C) and a.e. in C towards a function v ∈ H 1 (C). By Lemma 3.1, v is non-trivial and v L p (C) = 0.

Up to the extraction of subsequences, using

lim n→∞ v n 2 L 2 (C) = v 2 L 2 (C) + lim n→∞ v n -v 2 L 2 (C) , lim n→∞ ∇v n 2 L 2 (C) = ∇v 2 L 2 (C) + lim n→∞ ∇v n -∇v 2 L 2 (C) , with η = θ, x = lim n→∞ ∇v n -∇v 2 L 2 (C) + Λ v n -v 2 L 2 (C) ∇v 2 L 2 (C) + Λ v 2 L 2 (C)
and y = lim

n→∞ v n -v 2 L 2 (C) v 2 L 2 (C)
, by Lemma 2.1 (i), we find that

1 C CKN (θ, p, a) = lim n→∞ E θ [v n ] ≥ E θ [v] + lim n→∞ E θ [v n -v] ≥ 1 C CKN (θ, p, a) v 2 L p (C) + lim n→∞ v n -v 2 L p (C)
By the Brezis-Lieb Lemma (see [1, Theorem 1]), we know that 

1 = v n p L p (C) = v p L p (C) + lim n→∞ v n -v p L p (C) . The function f (z) := z 2/p + (1 -z) 2/p is strictly concave so that for any z ∈ [0, 1], f (z) ≥ 1 with strict inequality unless z = 0 or z = 1. Applied with z = v p L p (C) , this proves that v L p (C) = 1. Since lim n→∞ E θ [v n ] ≥ E θ [v],
F γ such that w n L 2 (C) = 1 for any n ∈ N. If (w n ) n is bounded in H 1 (C), then (w n ) n is

relatively compact and converges up to translations and the extraction of a subsequence to a function

w ∈ H 1 (C) such that w L 2 (C) = 1 and F γ [w] = 1/ C WLH (γ, a).
Proof. Consider now the sequence (w n ) n and denote by w its weak limit in H 1 (C), after translations and the extraction of a subsequence if necessary.

By (2.2) and (2.4), we know that

F γ [w n ] ≥ C WLH (γ, a) -1 w n - p γ (p-2) L p (R d )
for any p ∈ (2, 2 * ). If w ≡ 0, then lim n→∞ w n L p (R d ) = 0 by Lemma 3.1, which contradicts the fact that (w n ) n is a minimizing sequence and C WLH (γ, a) is finite. Hence we have w 2 L 2 (C) = 0. By the Brezis-Lieb lemma and by semi-continuity, we know that

1 C WLH (γ, a) = lim n→∞ F γ [w n ] ≥ ∇w 2 L 2 (C) + Λ w 2 L 2 (C) + lim n→∞ ∇w n -w 2 L 2 (C) + Λ w n -w 2 L 2 (C) exp -1 2 γ lim n→∞ C |w n | 2 log |w n | 2 dy
up to the extraction of subsequences. We may apply (2.2) to w and w n -w. Let

η := w 2 L 2 (C) , so that lim n→∞ w n -w 2 L 2 (C) = 1 -η. We know that η ∈ (0, 1]. If η < 1, with x = exp 1 2 γ C |w| 2 log |w| 2 w 2 L 2 (C)
dy ,

y = exp 1 2 γ lim n→∞ C |w n -w| 2 log |wn-w| 2 wn-w 2 L 2 (C) dy ,
we can write

1 C WLH (γ, a) ≥ η x 1 η + (1 -η) y 1 1-η exp -1 2 γ lim n→∞ C |w n | 2 log |w n | 2 dy .
We may then apply Lemma 2.1 (ii) and find that

1 C WLH (γ, a) ≥ x y C WLH (γ, a) exp -1 2 γ lim n→∞ C |w n | 2 log |w n | 2 dy .
According to [ 

C WLH (γ, a) ≥ 1 C WLH (γ, a) exp -1 2 γ η log η + (1 -η) log(1 -η)
This proves that η = 1. Using (2.4), we have lim

n→∞ C |w n -w| 2 log |w n -w| 2 dy = 0.
Hence w is an extremal function, which completes the proof.

The remainder of this section is devoted to the a priori estimates which are needed to establish the boundedness of minimizing sequences in H 1 (C). 

A priori estimates for

v ∈ H 1 (C) with v L p (C) = 1 and E θ [v] ≤ 1+ε CCKN(θ,p,a) , then v H 1 (C) ≤ A. If d ≥ 3, there exists a positive function a * ε : (2, 2 * ) → (-∞, a c ) such that, whenever a ∈ (a * ε (p), a c ), the same conclusion holds if θ = ϑ(p, d).
Proof. By Hölder's and Sobolev's inequalities, for any p ∈ [2, 2 * ], we have

v 2 L p (C) ≤ v ϑ(d,p) L 2 * (C) v 1-ϑ(d,p) L 2 (C) 2 ≤ C CKN (1, 2 * , a c -1) ∇v 2 L 2 (C) + Λ 0 v 2 L 2 (C) ϑ(d,p) v 2 (1-ϑ(d,p)) L 2 (C)
where

Λ 0 := a 2 c . Let t := ∇v 2 L 2 (C) / v 2 L 2 (C) and write Λ = Λ(a) for brevity. Because of the condition E θ [v] ≤ (1 + ε)/ C CKN (θ, p, a), we have (t + Λ) θ = E θ [v] v 2 L p (C) v 2 L 2 (C) ≤ (1 + ε) v 2 L p (C) C CKN (θ, p, a) v 2 L 2 (C) ≤ (1 + ε) (C CKN (1, 2 * , a c -1)) ϑ(d,p) C CKN (θ, p, a) (t+ Λ 0 ) ϑ(d,p) .
This proves that t is bounded if θ > ϑ(p, d).

If d ≥ 3 and θ = ϑ(p, d), let κ θ ε := (1 + ε) C * CKN (1, 2 * , a c -1) θ /(C * CKN (θ, p, a c -1)) . Since C CKN (1, 2 * , a c -1), the best constant corresponding to Sobolev's critical em- bedding D 1,2 (R d ) ֒→ L 2 * (R d )
, is achieved among radial functions, by (2.3) the above condition reads

t + Λ ≤ κ ε Λ 1 d -1 0 Λ 1-1 d t + Λ 0 , which again shows that t is bounded if a ∈ (a * ε (p), a c ), for some a * ε (p) such that a c -a * ε (p) > 0 is not too big. Since v 2 L 2 (C) (t+ Λ) θ = E θ [v] ≤ (1 + ε)/ C CKN (θ, p, a), v L 2 (C) and ∇v L 2 (C) = t v L 2 (C)
are also bounded as soon as t is bounded, thus establishing a bound in H 1 (C).

If d = 2, let θ > ϑ(p, 2) = p-2
p . For a choice of q such that η = q (p-2) p (q-2) < θ, i.e. for q > p θ 2-p (1-θ) , by Hölder's inequality we have v

L p (C) ≤ v η L q (C) v 1-η L 2 (C) . Hence, from (t + Λ) θ ≤ (1 + ε) v 2 L p (C) C CKN (θ, p, a) v 2 L 2 (C) ≤ (1 + ε) (C CKN (1, q, a)) η C CKN (θ, p, a) (t+ Λ) η ,
we deduce that t is bounded. As above, this proves that v is bounded in H 1 (C).

A more careful investigation actually provides an explicit expression of a * ε (p). We get an upper bound for t if we simultaneously have

κ ε Λ 1 d -1 0 Λ 1-1 d and Λ < κ ε Λ 1 d -1 0 Λ 1-1 d Λ 0 , that is Λ < min Λ 0 κ -d d-1 ε , Λ 0 κ d ε .
Hence, for d ≥ 3, t is bounded for ε > 0 small enough if

a > a * 0 (p) := a c -a c min κ -d 2(d-1) 0 , κ d 2 0 . (3.1) 
We shall comment on this bound in Section 5.

Proof of Theorem 1.3 (i). Consider a minimizing sequence (v

n ) n for E θ such that v n L p (C) = 1. For any given ε > 0, the condition E θ [v n ] ≤ 1+ε CCKN(θ,p,a)
is satisfied for n large enough. By Lemma 3.4, (v n ) n is bounded in H 1 (C). By Proposition 3.2, we know that it converges towards a minimizer v ∈ H 1 (C) with v L p (C) = 1, up to translations and the extraction of a subsequence. This concludes the proof with a * = a * 0 given by (3.1).

A priori estimates for the weighted logarithmic Hardy inequalities

Lemma 3.5. Assume that d ≥ 2, γ ≥ d/4 and γ > 1/2 if d = 2. For any ε > 0, there exists an A > 0 such that, for any w ∈ H

1 (C) with w L 2 (C) = 1 and F γ [w] ≤ 1+ε CWLH(γ,a) , then w H 1 (C) ≤ A. If d ≥ 3, there exists a * * ε ∈ (-∞, a c ) such that (1.2) also admits an extremal function in D 1,2 a (R d ) if γ = d/4, d ≥ 3 and a ∈ (a * * ε , a c ).
Proof. By (2.1) and (2.4), we find that for any α < a c and any p ∈ (2, 2 * ),

C |w| 2 log |w| 2 w 2 L 2 (C) dy ≤ p p -2 w 2 L 2 (C) log w 2 L p (C) w 2 L 2 (C) ≤ p p -2 w 2 L 2 (C) log C CKN (1, p, α) (t + Λ(α)) with t := ∇w 2 L 2 (C) / w 2 L 2 (C) and Λ(α) := (α -a c ) 2 . Assuming that w L 2 (C) = 1 and F γ [w] ≤ (1 + ε)/ C WLH (γ, a), using (2.3) we find that t + Λ C CKN (1, p, α) (t + Λ(α)) 1 2 γ p p-2 ≤ F γ [w] ≤ 1 + ε C WLH (γ, a) ≤ (1 + ε) Λ(a) 1-1 4 γ C * WLH (γ, a c -1)
, which provides a bound on w in H 1 (C) if one of the two following cases:

(i) For d ≥ 3, if either γ > d 4 or γ = d 4 and Λ ∈ (0, a 2 c
) is small enough (we choose α = 0, p = 2 * so that 1 Proof of Theorem 1.3 (ii). Consider a minimizing sequence (w n ) n for F γ such that

w n L 2 (C) = 1. For any given ε > 0, the condition E γ [w n ] ≤ 1+ε CWLH(γ,a)
is satisfied for n large enough. By Lemma 3.5, (w n ) n is bounded in H 1 (C). By Proposition 3.3, we know that it converges towards a minimizer w ∈ H 1 (C) with w L 2 (C) = 1, up to translations and the extraction of a subsequence. This concludes the proof with a * * = lim inf ε→0+ a * * ε .

Proof of Theorem 1.4

This section is devoted to the limit cases θ = ϑ(p, d) or γ = d/4. A sharp criterion for the existence of extremal functions for Caffarelli-Kohn-Nirenberg and weighted logarithmic Hardy inequalities is given by the comparison of their optimal constants with the optimal constants of Gagliardo-Nirenberg and Gross' logarithmic Sobolev 

written for θ = θ n such that v n L p (C) = 1 for any n ∈ N, then (v n ) n is bounded in H 1 (C) if C GN (p) < C CKN (ϑ(p, d), p, a). In that case, (v n ) n converges,

up to translations and the extraction of a subsequence, towards a minimizer

v ∈ H 1 (C) of E ϑ(p,d) , under the constraint v L p (C) = 1.
Proof. For brevity, let us write θ = ϑ(p, d) and recall that θ n -θ > 0 for all n ∈ N. Consider first a smooth, compactly supported function

v ε such that E θ [v ε ] ≤ 1/ C CKN (θ, p, a) + ε and v ε L p (C) = 1. We have lim inf n→∞ 1 C CKN (θ n , p, a) ≤ lim inf n→∞ E θn [v ε ] = E θ [v ε ] ≤ 1 C CKN (θ, p, a) + ε
for any ε > 0 and can pass to the limit as ε → 0 + . On the other hand, we know from [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] that C CKN (θ n , p, a) is bounded uniformly as n → ∞, so that 0 < lim inf 

t n := ∇v n 2 L 2 (C) / v n 2 L 2 (C) ,
the Euler-Lagrange equation satisfied by v n for each n ∈ N reads

-θ n ∆v n + (1 -θ n ) t n + Λ v n = C CKN (θ n , p, a) -1 (t n + Λ) 1-θn v n p-1 on C .
As in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], using the translation invariance of (2.1) in the s-variable, the invariance of the functional E θ under rotations on S d-1 , and the fact that v n is a minimizer, we can assume that v n is nonnegative and achieves its maximum at some fixed, given point ω * ∈ S d-1 . By the maximum principle, we know that -∆v n (0, ω * ) ≥ 0 and hence

M n := v n (0, ω * ) = v n L ∞ (C) is such that M p-2 n ≥ C CKN (θ n , p, a) (1 -θ n ) t n + Λ (t n + Λ) θn-1 .
After the extraction of a subsequence, we may assume that (L n ) n converges and

L := lim n→∞ L n ∈ ((1 -θ n ) C CKN (θ n , p, a), +∞] where L n := M p-2 n t -θn n . Let us consider the rescaled function f n defined on C n := R×σ n S d-1 by v n (x) = M n f n (y), where y = σ n x and σ 2 n = (t n + Λ) 1-θn M p-2 n / C CKN (θ n , p, a). For any n ∈ N, the function f n is nonnegative, satisfies -θ n ∆f n + (1 -θ n ) t n + Λ σ -2 n f n = f p-1 n
and reaches its maximum value, 1, at the point (0, ω n ), where ω n = σ n ω * . Assume by contradiction that

lim n→∞ t n = ∞ .
In such a case, we know that

E θn [v n ] ∼ t θn n v n 2 L 2 (R d ) so that v n 2 L 2 (R d ) ∼ t -θn n and ∇v n 2 L 2 (R d ) = t n v n 2 L 2 (R d ) ∼ t 1-θn n . Moreover, we have M p-2 n = L n t θn n → ∞ and, by (4.1), σ 2 n ∼ t 1-θn n M p-2 n ∼ L n t n → ∞, and f n solves -θ n ∆f n + 1 -θ n L n (1 + o(1)) f n = f p-1 n .
As a consequence, ∆f n is locally uniformly bounded.

Next we define on R d the functions g n (s, Π n ω) := f n (s, ω) ρ n (s, Π n ω), where ω ∈ σ n S d-1 and Π n is the stereographic projection of σ n S d-1 onto R d-1 , considered as the tangent plane to S d-1 at ω n . The cut-off function ρ n is smooth and such that ρ n (x) = ρ(x/ log(1 + σ n )) for any x ∈ R d , with 0 ≤ ρ ≤ 1, ρ ≡ 1 on B 1 and supp ρ ⊂ B 2 . Locally around (0, ω n ), Π n converges to the identity while its first and second derivatives converge to 0. Hence we know that

∇g n 2 L 2 (R d ) ≤ ∇f n 2 L 2 (Cn) (1 + o(1)) and ∇f n 2 L 2 (Cn) ∼ σ d-2 n M -2 n ∇v n 2 L 2 (C)
as n → ∞. Altogether, we find that

∇g n 2 L 2 (R d ) = O t (θ-θn) p p-2 n L d-2 2 -2 p-2 n which means that (∇g n ) n is bounded in L 2 (R d ) and (g n ) n converges in H 1 loc (R d ) to a constant if L = ∞. In any case, up to the extraction of a subsequence, (g n ) n con- verges weakly in H 1 loc (R d ). Since ∆g n is bounded in L ∞ (R d ), by elliptic estimates, (g n ) n strongly converges in C 2 loc (R d ) to a nonnegative function g : R d → R such that, with θ = ϑ(p, d), -θ ∆g + A g = g p-1 in R d , g(0) = g L ∞ (R d ) = 1 ,
where g is constant and A = 0 if L = ∞, and A = (1 -θ)/L otherwise. However, if L = ∞, then g ≡ 1 cannot be a solution. This proves that L is finite and A takes a finite, positive value. Moreover,

g n 2 L 2 (R d ) ∼ σ 2 n t -1 n ∇g n 2 L 2 (R d ) ∼ ∇g n 2 L 2 (R d ) is bounded so that (g n ) n weakly converges in H 1 (R d ) to g ≡ 0. Hence we get lim inf n→∞ E θn [v n ] = lim inf n→∞ (t n + Λ) θn-θ E θ [v n ] ≥ lim inf n→∞ E θ [v n ] = lim inf n→∞ M 2 n σ 2 d/p n ∇f n 2 θ L 2 (Cn) f n 2 (1-θ) L 2 (Cn) ≥ ∇g 2 θ L 2 (R d ) g 2 (1-θ) L 2 (R d ) lim n→∞ f n 2 L p (R d )
, eventually after extraction of a subsequence, where the latter inequality holds by semi-continuity. Let

E θn,Cn [f ] := σ 2 (ϑn-ϑ) n ∇f n 2 L 2 (C) + Λ σ 2 n f n 2 L 2 (C) θn f n 2 (1-θn) L 2 (C) so that E θn [v n ] = E θn,Cn [f n ] / f n 2 L p (Cn)
. Because of the change of variables, we know that Inequality (2.1) becomes

E θn,Cn [f ] f 2 L p (Cn) ≥ 1 C CKN (ϑ n , p, a) ∀ f ∈ H 1 (C n ) . (4.2) 
By the local strong convergence of the sequence (g n ) n , there exists a sequence

(R n ) n with lim n→∞ R n = ∞ such that lim n→∞ Cn∩BR n f p n dy f n p L p (Cn) = δ and lim n→∞ Cn∩(R d \B4R n ) f p n dy f n p L p (Cn) = 1 -δ . Here B R denotes the ball of radius R centered at (0, ω n ) in R d+1 . Consider now two smooth cut-off functions ρ and ζ such that 0 ≤ ρ ≤ 1, 0 ≤ ζ ≤ 1, ρ ≡ 1 on B 1 , ζ ≡ 1 on R d+1 \ B 2 , and supp ρ ⊂ B 2 , supp ζ ⊂ R d+1 \ B 2 . Then we define ρ n and ζ n by ρ n (x) := ρ(x/R n ) and ζ n (x) := ζ(x/R n ) for any x ∈ R d+1 . We can write 1 C CKN (θ n , p, a) = E θn,Cn [f n ] f n 2 L p (Cn) ≥ E θn,Cn [f n ρ n ] + E θn,Cn [f n ζ n ] -η n f n 2 L p (Cn)
where η n = C/R n for some constant C > 0. Inequality (4.2) applied to f n ρ n and

f n ζ n shows that 1 C CKN (θ n , p, a) ≥ f n ρ n 2 L p (Cn) + f n ζ n 2 L p (Cn) -η n C CKN (θ n , p, a) f n 2 L p (Cn)
.

By passing to the limit n → ∞, we find that δ ∈ (0, 1] is such that

δ 2/p + (1 -δ) 2/p ≤ 1 . Hence δ = 1, g p L p (R d ) = lim n→∞ f n ρ n p L p (Cn)
and using (4.1), we readily find that

1 C CKN (ϑ(p, d), p, a) ≥ lim inf n→∞ 1 C CKN (θ n , p, a) = lim inf n→∞ E θn [v n ] ≥ ∇g 2 θ L 2 (R d ) g 2 (1-θ) L 2 (R d ) g 2 L p (R d ) ≥ 1 C GN (p) ,
a contradiction with our hypothesis.

With Lemma 4.1, it is straightforward to establish the results of Theorem 1.4 using Proposition 3.2 as in Section 3.2. Details are left to the reader. Proof. For any n ∈ N, the function w n solves the Euler-Lagrange equation

-∆w n - 1 2 γ n C |∇w n | 2 dy + Λ w n 1 + log |w n | 2 = µ n w n
for some Lagrange multiplier µ n ∈ R. Multiplying this equation by w n and integrating by parts, we get

C |∇w n | 2 dy - 1 2 γ n C |∇w n | 2 dy + Λ C |w n | 2 1 + log |w n | 2 dy = µ n . 1 2 γ n C |w n | 2 log |w n | 2 dy = log C WLH (γ n , a) (t n + Λ) .
From the above estimates, we deduce that

µ n = t n -(t n + Λ) 1 2 γ n + log C WLH (γ n , a) (t n + Λ)
also diverges as n → ∞ like -t n log t n . As in Section 4.1, notice that, using approximate minimizers for the case γ = d/4, it is easy to verify that lim inf

n→∞ 1 C WLH (γ n , a) ≤ 1 C WLH (d/4, a)
.

Let us define M n =: max C w n . By the maximum principle, we have

- t n + Λ 2 γ n (1 + log M 2 n ) ≤ µ n , which shows that M n ≥ t γn (1+o(1)) n → ∞ as n → ∞ and a n := M 1/γn n t -1 n is such that lim inf n→∞ a n ≥ 1. Let σ n := M 2/d n
and consider the sequence of rescaled functions (f n ) n defined on

C n := R × σ n S d-1 by w n (•) = M n f n (σ n •).
These functions are such that f n L 2 (Cn) = 1 and they solve

-∆f n - t n + Λ 2 γ n σ 2 n f n log |f n | 2 = µ n σ 2 n + t n + Λ 2 γ n σ 2 n 1 + log σ d n f n .
Moreover, we can assume with no restriction that the function f n attains its maximum value, 1, at the point (0, ω n ) with ω n = σ n ω * , for some given ω * ∈ S d-1 . By assumption, we know that γ n ≥ d/4, so that, for n large enough,

Cn |∇f n | 2 dy = t n σ 2 n ≤ t n σ d/(2 γn) n = t n M -1/γn n = 1 a n and µ n σ 2 n + t n + Λ 2 γ n σ 2 n 1 + log σ d n = t n log a n σ 2 n (1 + o(1)) ≤ log a n a n (1 + o(1)) .
As in Section 4.1, let Π n be the stereographic projection of σ n S d-1 onto R d-1 , considered as the tangent plane to S d-1 at ω n where ω n = σ n ω * . Let g n be such that

g n (s, Π n ω) = f n (s, ω) ρ n (s, Π n ω) for any (s, ω) ∈ R × σ n S d-1 = C n .
Here ρ n is a cut-off function as in Section 4.1. From the equation for f n , we deduce that ∆g n is bounded in L ∞ (R d ) uniformly with respect to n ∈ N. Using elliptic estimates, up to the extraction of subsequences, we can prove that (g n ) n locally converges towards a function g, defined on R d and satisfying

-∆g -A g (1 + log |g| 2 ) = B g in R d , g(0) = 1 . where A = 2 d lim n→∞ (t n + Λ)/σ 2
n and B := lim n→∞ (log a n )/a n are two nonnegative real numbers. If lim n→∞ a n = +∞, then A = 0 = g 2 L 2 (R d ) , B = 0 and g satisfies -∆g = 0 on R d , which means g ≡ 1. But on the other hand, the uniform boundedness of

f n in L 2 (C n ) implies that g ∈ L 2 (R d ), a contradiction. Notice indeed that R d |g| 2 dx ≤ lim inf n→∞ R d |g n | 2 dx ≤ lim inf n→∞ Cn |f n | 2 dy = 1 .
The sequence (a n ) n is therefore bounded, A, B are positive and δ := R d |g| 2 dx ∈ (0, 1]. Notice indeed that g ≡ 0 would contradict g(0) = 1 and hence δ > 0.

As a consequence of the strong convergence of (g n ) n in L 2 loc (R d ), there exists a sequence

(R n ) n with lim n→∞ R n = ∞ such that lim n→∞ Cn∩BR n |f n | 2 dy = δ and lim n→∞ Cn∩(R d+1 \B4R n ) |f n | 2 dy ≥ 1 -δ .
Here B R denotes the ball of center (0, ω n ) and radius R in

R d+1 ⊃ C n . As in 4.1, consider two smooth cut-off functions ρ, ζ, such that ρ ≡ 1 on B 1 , ζ ≡ 1 on R d \ B 2 and supp ρ ⊂ B 2 , supp ζ ⊂ R d \ B 2 . Then, we define ρ n (x) := ρ(x/R n ), ζ n (x) := ζ(x/R n ). We know that f n 2 L 2 (Cn) ≥ f n ρ n 2 L 2 (Cn) + f n ζ n 2 L 2 (Cn) for any n ∈ N, lim n→∞ f n ρ n 2 L 2 (Cn) = δ and lim n→∞ f n ζ n 2 L 2 (Cn) = 1 -δ. Moreover, we have ∇f n 2 L 2 (Cn) ≥ ∇(f n ρ n ) 2 L 2 (Cn) + ∇(f n ζ n ) 2 L 2 (Cn) + η n with η n = O(1/R n ). For any f ∈ H 1 (C n ), define F γn,Cn [f ] := σ 2-d 2 γn n Cn |∇f | 2 dy + Λ σ 2 n Cn |f | 2 dy exp 1 2 γn Cn |f | 2 f 2 L 2 (Cn ) log |f | 2 f 2 L 2 (Cn ) dy . Inequality (2.2) simply amounts to F γn,Cn [f ] ≥ Cn |f | 2 dy CWLH(γn,a) for any f ∈ H 1 (C n ).
By assumption, we know that, for any n ∈ N, 1/C WLH (γ n , a) = F γ [w n ] = F γn,Cn [f n ] and f n L 2 (Cn) = 1. From the above estimates, we have

F γn,Cn [f n ] exp 1 2 γ n Cn |f n | 2 log |f n | 2 dy = ∇f n 2 L 2 (Cn) + Λ f n 2 L 2 (Cn) ≥ α n + β n + η n with α n := ∇(f n ρ n ) 2 L 2 (Cn) + Λ f n ρ n 2 L 2 (Cn) , β n := ∇(f n ζ n ) 2 L 2 (Cn) + Λ f n ζ n 2 L 2 (Cn) , lim n→∞ η n = 0 .
By definition of F γn,Cn , we can rewrite α n and β n as

α n = F γn,Cn [f n ρ n ] exp 1 2 γn Cn |f n ρ n | 2 log |fn ρn| 2 fn ρn 2 L 2 (Cn ) dy fn ρn -2 L 2 (Cn ) , β n = F γn,Cn [f n ζ n ] exp 1 2 γn Cn |f n ζ n | 2 log |fn ζn| 2 fn ζn 2 L 2 (Cn ) dy fn ζn -2 L 2 (Cn )
. By applying (2.2) to f n ρ n and f n ζ n , we find that

F γn,Cn [f n ρ n ] ≥ f n ρ n 2 L 2 (Cn) C WLH (γ n , a) and F γn,Cn [f n ζ n ] ≥ f n ζ n 2 L 2 (Cn)
C WLH (γ n , a) .

Using 

and η = δ, if δ < 1, we find that lim inf n→∞ 1 C WLH (γ n , a) = lim inf n→∞ F γn,Cn [f n ] ≥ δ x 1 δ + (1 -δ) y 1 1-δ x y δ δ (1 -δ) 1-δ 2 d lim inf n→∞ 1 C WLH (γ n , a)
.

Hence we know that δ δ (1 -δ) 1-δ ≤ 1 by Lemma 2.1 (ii). This proves that δ ∈ (0, 1] is actually equal to 1.

Since C WLH (d/4, a) -1 ≥ lim inf n→∞ C WLH (γ n , -1 , we have 1 C WLH (d/4, a) ≥ lim n→∞ 1 C WLH (γ n , a) = lim inf n→∞ F γn [w n ] ≥ lim inf n→∞ F d/4 [w n ] = lim inf n→∞ σ 2 n ∇f n 2 L 2 (Cn) + Λ σ d 2 γn n e 2 d Cn |fn| 2 log |fn| 2 dy ≥ R d |∇f | 2 dx e 2 d R d |f | 2 log |f | 2 dy ≥ 1 C LS ,
a contradiction with the assumption C LS < C WLH (d/4, a). This proves that (t n ) n is bounded.

With Lemma 4.2, it is straightforward to establish the results of Theorem 1.4 using Proposition 3.2 as in Section 3.3. Details are left to the reader. We postpone the proof the sufficient condition for C LS < C WLH (d/4, a) to the next section.

Concluding remarks and open questions

Let us conclude with some comments on the range of the parameter a for which (1.1) admits extremal functions if θ = ϑ(p, d). If (3.1) is satisfied, this is the case and because of the strict monotonicity of a → C CKN (ϑ(p, d), p, a) as soon as C GN (p) < C CKN (ϑ(p, d), p, a), we know that this inequality also holds for any larger value of a, up to a c . In Section 1.3, we gave a sufficient condition for which C GN (p) < C CKN (ϑ(p, d), p, a) holds. Let us give some details.

Consider R given by (1.3). To obtain R < 0, a sufficient condition is to have R 1 < 0 and R 2 < 0. This can be established in some cases. Notice that the expressions of R 1 and R 2 being polynomial of order 2 in a and p, an explicit expression of ā can be established, which depends of p and d.

Proof. With no restrictions, that is, up to a scaling and a multiplication by a positive constant, the radial minimizer u for 1/C GN (p) solves the Euler-Lagrange equation -∆u + u -u p-1 = 0 . z 2 z 0 .

Using the above identities and t := y 2 /y 0 > 0, we can eliminate x i , y i , and z i for i = 1, 2 in the expression of R = R 1 t + R 0 in terms of t. Notice that R 0 and R 1 are polynomials of degree two in terms of a, with finite coefficients depending on p, d (but not on t). For a = a c , we observe that 

1. 1 .

 1 Caffarelli-Kohn-Nirenberg interpolation inequalities Let 2 * := ∞ if d = 1, 2, and 2 * := 2 d/(d -2) if d ≥ 3. Define ϑ(p, d) := d (p-2)/(2 p) and consider the space D 1,2 a (R d ) obtained by completion of D(R d \{0}) with respect to the norm u→ |x| -a ∇u 2 L 2 (R d ) . Under the restriction θ > 1/2 if d = 1, notice that θ ∈ [ϑ(p, d), 1) for a given p ∈ [2, 2 * ) if and only if θ ∈ [0, 1), p ∈ [2, p(θ, d)] with p(θ, d) := 2 d/(d -2 θ). Let a c := (d -2)/2. Theorem 1.1. [2] Let d ≥ 1. For any p ∈ [2, 2 * ] if d ≥ 3 or p ∈ [2, 2 * ) if d = 1, 2, for any θ ∈ [ϑ(p, d), 1] with θ > 1/2 if d = 1, there exists a positive constant C CKN (θ, p, a) such that R d |u| p |x| b p dx 2 p ≤ C CKN (θ, p, a) for any u ∈ D 1,2 a (R d ).Here a, b and p are related by b = a -a c + d/p, with the restrictions a ≤

Theorem 1 . 2 . [ 4 ]

 124 Let d ≥ 1, a < a c , γ ≥ d/4 and γ > 1/2 if d = 2. Then there exists a positive constant C WLH (γ, a) such that, for any u ∈ D 1,2 a (R d ) normalized by R d |x| -2 (a+1) |u| 2 dx = 1, we have R d |u| 2 |x| 2 (a+1) log |x| 2 (ac-a) |u| 2 dx ≤ 2 γ log C WLH (γ, a) R d |∇u| 2 |x| 2 a dx . (1.2) Moreover, the constants C WLH (γ, a) are uniformly bounded outside a neighborhood of a = a c .

  Caffarelli-Kohn-Nirenberg inequalities Lemma 3.4. Assume that d ≥ 2, p ∈ (2, 2 * ) and θ ∈ (ϑ(p, d), 1). For any ε > 0, there exists an A > 0 such that, for any

  If d = 2, for all γ > 1 2 (we choose α = -1, and p > 4 γ 2 γ-1 ).

Lemma 4 . 1 .

 41 inequalities. As already noted in the introduction, C GN (p) ≤ C CKN (ϑ(p, d), p, a) and C LS ≤ C WLH (d/4, a) for any a ∈ (-∞, a c ). When equality holds, compactness of minimizing sequences is lost, because of translations. Here we shall establish a compactness result for special sequences of functions made of minimizers for C CKN (θ n , p, a) and C WLH (γ n , a) with θ n > ϑ(p, d), lim n→∞ θ n = ϑ(p, d) and γ n > d/4, lim n→∞ γ n = d/4. 4.1. Compactness of sequences of extremal functions for Caffarelli-Kohn-Nirenberg inequalities approaching the limit case θ = ϑ(p, d) Let d ≥ 2, p ∈ (2, 2 * ) and a < a c . Consider a sequence (θ n ) n such that θ n > ϑ(p, d) and lim n→∞ θ n = ϑ(p, d). If (v n ) n is a sequence of extremal functions for (2.1)

n→∞ 1 C 1 C

 11 CKN (θ n , p, a) ≤ CKN (ϑ(p, d), p, a) . (4.1) Consider now the sequence (v n ) n of Lemma 4.1. With

4. 2 . 4 Lemma 4 . 2 .

 2442 Compactness of sequences of extremal functions for the weighted logarithmic Hardy inequality approaching the limit case γ = d/Let d ≥ 3, a ∈ (-∞, a c ), and assume that C LS < C WLH (d/4, a). Consider a sequence (γ n ) n such that γ n > d/4, lim n→∞ γ n = d/4 and a sequence (w n ) n of extremal functions in H 1 (C) for (2.2) written for γ = γ n : F γn [w n ] = 1/C WLH (γ n , a) and w n L 2 (R d ) = 1 for any n ∈ N. Then (w n ) n is bounded in H 1 (C) if C LS < C WLH (d/4, a). In that case, (w n ) n converges, up to translations and the extraction of a subsequence, towards a minimizer w ∈ H 1 (C) of F d/4 , under the constraint w L 2 (C) = 1.

Proposition 5 . 1 .

 51 Let d ≥ 5, p ∈ (2, 2 * ) and θ = d). There is a constant ā ∈ (-∞, a c ) such that R is negative if a ∈ (ā, a c ).In such a case, C GN (p) < C CKN (ϑ(p, d), p, a) holds and (1.1) admits an extremal function in D 1,2 a (R d ).

Let x 0 - 2 2 x 0 + d 2 y 0 -d p z 0 = 0 .- 4 2 x 2 + d+2 2 y 2 |x| 2 |y| 2 - γ =+ o 1 |y| 2 as 2 R d |x| 2 g dx R d g dx + o 1 n 2

 020422γ222 := ∞ 0 |u ′ | 2 r d-1 dr, y 0 := ∞ 0 |u| 2 r d-1 dr and z 0 := ∞ 0 |u| p r d-1 dr. Multiplying the equation by u r d-1 and r u ′ r d-1 and integrating with respect to r ∈ (0, ∞), we find respectively x 0 + y 0z 0 = 0 and dLet x 2 := ∞ 0 |u ′ | 2 r d+1 dr, y 2 := ∞ 0 |u| 2 r d+1 dr and z 2 := ∞ 0 |u| p r d+1 dr. Multiplying the equation by u r d+1 and r u ′ r d+1 and integrating with respect to r ∈ (0, ∞), we find respectively x 2 -d y 0 + y 2z 2 = 0 and d-d+2 p z 2 = 0 . With e = y/|y|, let us observe that|x + y| -2 γ = |y| -2 γ 1 + 2 x • e |y| + |y| -2 γ 1 -2 γ x • e |y| -γ |x| 2 |y| 2 + 2 γ (γ + 1) (x • e) 2 |y| 2 |y| → ∞.Consider a radial smooth function g, so that R d x g dx = 0, and defineg n (x) := g(x + n e). Using R d (x • e) 2 g dx = 1 d R d |x| 2 g dx, we find that R d |x| -2 γ g n dx = n -2 γ 1 + r(γ) n as n → ∞, where r(γ) := 2 d γ (γ -a c ). With the notations of Section 1.3, R given by (1.3) takes the value R = θ r(a

R = - d -4 2 p 2 dProposition 5 . 2 .

 252 -(d -2) p 2 (d + 2) -(d -4) p 2 d + (p -2) t , thus proving the result. In practice, it turns out that the bound given by (3.1) is actually better than the condition of Proposition 5.1 in many cases. This however leaves open the question to decide if Inequality (1.1) with θ = ϑ(p, d), d ≥ 2 and p ∈ (2, 2 * ), admits extremal functions for any a ∈ (-∞, a c ) or if ā := inf{a ∈ (ā, a c ) : C GN (p) < C CKN (ϑ(p, d), p, a)} is finite. In such a case, (1.1) would admit an extremal function for any a > ā and would not admit any extremal function for any a < ā. If ā > -∞, whether there is an extremal function for a = ā is also open. We finally provide a sufficient condition for having C LS < C WLH (γ, a), in order to prove the last statement of Theorem 1.4 (ii). Let d ≥ 3. If a ∈ (a ⋆ , a c ) with a ⋆ as in Theorem 1.4, then C LS < C * WLH (d/4, a). Details of the proof are left to the reader, as a consequence of (2.3) and C LS = 2/(π d e). Whether the optimal interval is (-∞, a c ) or not is an open question.

  we know that v is a nontrivial extremal function for(1.1). This completes the proof. Proposition 3.3. Let d ≥ 2 and γ ≥ d/4 with strict inequality if d = 2. Let (w n ) n be a minimizing sequence for

  n ρ n | 2 log |f n ρ n | 2 dy + lim n→∞ Cn |f n ζ n | 2 log |f n ζ n | 2 dy . With x = lim n→∞ exp 1 2 γn Cn |f n ρ n | 2 log = lim n→∞ exp 1 2 γn Cn |f n ζ n | 2 log

	[1, Theorem 2] and (2.4), we obtain
	lim n→∞ Cn	|f n | 2 log |f n | 2 dy
		= lim n→∞ Cn
		|fn ρn| 2 fn ρn 2 L 2 (Cn )	dy ,
		y |fn ζn| 2 fn ζn 2 L 2 (Cn	dy ,

|f
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