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Abstract. We develop an advection-diffusion size-structured fish population
dynamics model and apply it to simulate the skipjack tuna population in the
Indian Ocean. The model is fully spatialized, and movements are parame-
terized with oceanographical and biological data; thus it naturally reacts to
environment changes. We first formulate an initial-boundary value problem
and prove existence of a unique positive solution. We then discuss the numer-
ical scheme chosen for the integration of the simulation model. In a second
step we address the parameter estimation problem for such a model. With
the help of automatic differentiation, we derive the adjoint code which is used
to compute the exact gradient of a Bayesian cost function measuring the dis-
tance between the outputs of the model and catch and length frequency data.
A sensitivity analysis shows that not all parameters can be estimated from the
data. Finally twin experiments in which pertubated parameters are recovered
from simulated data are successfully conducted.

1. Introduction. Fish population dynamics models together with parameter es-
timation techniques are essential to provide assessment of the fish abundance and
fishery exploitation level. Their use forms the basis of scientific advice for fisheries
managements. This is particularly true for tuna fisheries, which are among the
most valuable in the world and subject to increasing fishing pressure and to the
effects of climate changes.

Discrete age-structured models with crude representations of space are most of
the time used for fisheries stock assessments [1, 2]. The classical data used in fishery
science to calibrate models are fishing effort, catch and length frequency data.

Length frequency data are not straightforward to use. Fish of the same age can
exhibit very different sizes depending of their history [3, 4]. Therefore, to compare
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the outputs of age-structured models with length frequency data, a Gaussian size
distribution is generally added to each age class. However, because of non-uniform
mortality over sizes, bias on growth and mortality estimates may result from this
procedure [5].

Another point concerning tuna fisheries is that they are highly heterogeneous in
space and time. This has a significant effect on their functioning. Important mi-
grations of fish occur at various scales, so that fish movements have to be explicitly
represented using spatialized models [6].

These are some of the main problems of current stock assessment models. It is
necessary to carry on the modelling effort by proposing and testing more complex
models dealing more accurately with size distributions and spatial heterogeneity.
This paper follows this direction and its purpose is twofold.

First we describe in section 2 a model of population dynamics in which both size
and space are taken as structure variables to account for growth, movements of fish,
environmental variability and variable distribution of fishing effort. The model con-
sists of an advection-diffusion-reaction equation. Spatial advection-diffusion models
have a long history in ecology [7, 8, 9], but their use in fishery science has grown
recently, particularly for tuna population modeling purposes [10, 11, 6]. To model
tropical tuna population in the Indian Ocean realistically, our model needs to re-
flect the heterogeneous distribution and movements of the population linked to the
environment and fishing effort heterogeneity. Thus in the model fish movements
depend on oceanographical and biological data through a habitat suitability index.
Recruitment, that is to say the input of young fishes in the model, is modeled as a
source term involving a nonlocal nonlinearity. The structure of the model enables
a direct and simultaneous comparison with the two main types of data available for
tuna fisheries: catches and size frequencies.

We assess the mathematical well-posedness of the model in section 3. We for-
mulate an initial-boundary value problem, introduce a variational formulation and
show existence of a unique weak solution. As often with nonlinear problems the
proof uses a fixed-point argument. We also show the positivity of the solution.

Our second goal is to develop and test a data assimilation procedure to estimate
the parameters of the model in a realistic skipjack tuna fishing simulation. Indeed
one of the main objectives of tuna population modeling is to provide robust evalu-
ations of stocks which are hardly possible nowadays for tuna fisheries in the Indian
Ocean because of the lack of robust estimations of many biological parameters, such
as natural and fishing mortality rates or recruitment parameters. Section 4 deals
with the numerical implementation of the simulation model. Then in Section 5 we
describe the data assimilation method developed for parameter estimation as well
as the Bayesian likelihood approach used to formulate a cost function measuring
the distance between the outputs of the model and the data. The paper ends with
some numerical experiments conducted in section 6 to validate the algorithm in the
case of the Indian Ocean skipjack fishery.

2. The model. The dynamics of the population of fish is described through a
density function p(x, y, s, t), where position (x, y) ∈ Ω the bounded domain repre-
senting the ocean, size or length s ∈ (S0, S1) and time t ∈ (0, T ). The number of
fish of size between s1 and s2 at time t and position (x, y) is given by the integral

∫ s2

s1

p(x, y, s, t)ds.
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The population density follows an advection-diffusion process in space. Let

D(x, y, s, t) = diag(Du(x, y, s, t), Dv(x, y, s, t))

be the space diffusion matrix and

V (x, y, s, t) = (u(x, y, s, t), v(x, y, s, t))T

be the velocity field. The population density also follows an advection-diffusion
process in the size variable (see section 2.1 for more details). Let d(s) denote the
dispersion coefficient in size and γ(s) be the growth rate. Finally let m(s) and
F (x, y, s, t) denote the natural and fishing mortality rates, and R(x, y, s, t, p) the
recruitment source term (see sections 2.4 and 2.3). The density function p follows
the balance law,

∂tp = div(D∇p)− div(V p)
+∂s(d∂sp)− ∂s(γp)
−(m+ F )p+R(p), in Ω× (S0, S1)× (0, T ),

(1)

where ∇ and div are the usual differential operators on Ω.
This equation has to be completed with initial conditions

p(x, y, s, 0) = p0(x, y, s), ∀(x, y, s) ∈ Ω× (S0, S1) (2)

and boundary conditions

∂sp(x, y, S0, t) = ∂sp(x, y, S1, t) = 0, ∀(x, y, t) ∈ Ω× (0, T ), (3)

and

∇p(x, y, s, t) · n(x, y) = 0, in ∂Ω, ∀(s, t) ∈ (S0, S1)× (0, T ), (4)

where n(x, y) is the unit normal vector pointing outside Ω. Homogeneous Neu-
mann boundary conditions at s = S0 and s = S1 express the fact that the size of
individuals can not reach values lower than S0 or larger than S1.

The parameterizations of the processes involved in the time evolution of the
population are described in detail in the following subsections.

2.1. Movements: Advection-diffusion in space. Diffusion and velocity in space
have a physical and a biological component. The biological components depend on
a habitat suitability index function, hsi(x, y, t), and its first space derivatives. The
index hsi depends on temperature, T (x, y, t), and forage, Food(x, y, t) which are
input data for the model. The biotic affinities for these environmental factors are
defined as

fT (x, y, t) = 1/(1 + exp(−αT (T (x, y, t)− T0))), (5)

and

fFood(x, y, t) = Food(x, y, t)/(KFood + Food(x, y, t)). (6)

All parameters are given in Table 1, and Fig. 2 shows plots of fT and fFood. In its
most general form the index is defined as

hsi(x, y, t) = (fT (x, y, t))
pT (fFood(x, y, t))

pFood . (7)

The velocity field is computed as

V (x, y, s, t) = Vphy(x, y, t) + Vhsi(x, y, s, t), (8)
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Table 1. Habitat suitability index parameters

name value unit
αT 0.35 (degree C)−1

T0 20 degree C
KFood 1000 J
pT 1
pFood 1

where Vphy = (uphy, vphy)
T represents the physical velocity (computed by a hy-

drodynamical model) and Vhsi = (uhsi, vhsi)
T represents biological velocity defined

by

uhsi(x, y, s, t) = uhsi0(1− hsi(x, y, t))(
∂xhsi(x, y, t)

khsi + |∂xhsi(x, y, t)|
)(

s

S1
),

vhsi(x, y, s, t) = uhsi0(1− hsi(x, y, t))(
∂yhsi(x, y, t)

khsi + |∂yhsi(x, y, t)|
)(

s

S1
).

(9)

Vhsi is proportional to length (large fish can swim faster than small ones) and to
(1−hsi)∇hsi (the model transports the population towards the most suitable places
for fish living according to the temporal habitat index evolution). The diffusion
coefficients are defined as follows:

Du(x, y, s, t) = Dmin + (Dmax −Dmin)
×(1− hsi(x, y, t))

×(1−
|∂xhsi(x, y, t)|

khsi + |∂xhsi(x, y, t)|
)(

s

S1
)2,

Dv(x, y, s, t) = Dmin + (Dmax −Dmin)
×(1− hsi(x, y, t))

×(1−
|∂yhsi(x, y, t)|

khsi + |∂yhsi(x, y, t)|
)(

s

S1
)2.

(10)

The interpretation of such a parameterization is similar to the one given for Vhsi

and all parameters are given in Table 2.

Table 2. Movements parameters

name value unit
Dmin 104 m2.s−1

Dmax 105 m2.s−1

uhsi0 10 m.s−1

khsi 2.5× 10−7 m−1

2.2. Growth and dispersion in size. As time goes on and fish grow older, their
size or length increases with a growth rate γ(s) (see Eq. (11) and Table 3). A
diffusion term in the size variable with a dispersion rate d(s) (see Eq. (12) and Table
3) is included to account for individuals having the same age but different sizes.
Indeed, in a fish population individuals of the same age can often differ markedly
in size [4]. This variability in growth can result from many mechanisms, including
genetic or behavorial traits that confer different performances to individuals, and
factors such as environmental heterogeneity and variability [3]. In fishery science,



ADVECTION-DIFFUSION-REACTION SIZE-STRUCTURED FISH POPULATION MODEL 5

this variability is usually taken into account in age-structured models using a length-
at-age relation perturbed by a Gaussian noise (see, for example, [12]). The model
discussed here is size-structured and uses a diffusion term in the size variable with
dispersion rate d(s) to account for individuals having the same age but different
sizes [13, 5]. The advection-diffusion term in size can be seen as the limit of a
random walk model in which each individual grows with an average velocity but
has at each time step a small binomial probability to grow faster or slower than
this average (see [8] for more details). We consider that fish growth follows a Von
Bertalanfy curve:

γ(s) = γ1 − γ2(
s− S0

S1 − S0
), (11)

d(s) = d1 + d2
γ(s)

γ1
. (12)

Table 3. Parameters for growth and dispersion in size

name value unit
γ1 3.858× 10−9 m.s−1

γ2 3.858× 10−9 m.s−1

d1 3.215× 10−12 m2.s−1

d2 3.215× 10−12 m2.s−1

2.3. Recruitment. Recruitment is computed as a function of the stock spawning
biomass,

B(x, y, t, p) =

∫ S1

smat

fr(s)w(s)p(x, y, s, t)ds, (13)

where smat is the minimum size at maturity, the fecundity rate fr(s) is given by

fr(s) =
bf

(1 + exp(−af (s− smat))
, (14)

and the weight w(s) of a fish of size s by

w(s) = aws
bw . (15)

We use a Beverton and Holt [3] stock-recruitment relation and obtain,

R(x, y, s, t, p) = l1(S0,sr)(s)
b0B(x, y, t, p)

kB +B(x, y, t, p)
, (16)

where l1(S0,sr) is the usual characteristics function and sr is the maximum size of
recruitment.

2.4. Natural and fishing mortality. The mortality rate is split into size-dependent
natural mortality m(s) [14] and a fishing mortality rate F (x, y, s, t). The fishing
mortality rate is defined as the sum of the Nf fishing mortality induced by each
fleet,

F (x, y, s, t) =

Nf
∑

f=1

Ff (x, y, s, t). (17)

The mortality rate induced by each fleet is described by the following equation:

Ff (x, y, s, t) = qf (s)Ef (x, y, t), (18)
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Table 4. Recruitment parameters

name value unit
bf 0.5
af 1 m−1

smat 0.5 m
aw 4.82× 10−6 kg.m−bw

bw 3.36
b0 0.35× 10−9 m−1.s−1

kB 0.5× 10−4 kg
sr 0.5 m

where qf (s) is the size-dependent catchability coefficient for fleet f (that is the
probability for a fish of size s to be caught by a unit of fishing effort of fleet f), and
Ef (x, y, t) is the observed fishing effort.

3. Mathematical well-posedness. In this section we prove existence and unique-
ness of a positive weak solution to the model.

3.1. Functional spaces. Let us introduce some functional spaces. The study
is conducted on the open set Q = Ω × (S0, S1). Let T < ∞ be a fixed time.
The population density, p, is considered as an element of the functional space
H = L2(Q), whose Hilbert space machinery is convenient to use. H is equipped
with the scalar product

(p, q)H =

∫

Ω

∫ S1

S0

pqdsdxdy,

and we denote by ||.||H the induced norm. We also consider the separable Hilbert
space defined by H1 = H1(Q) and equipped with the scalar product

(p, q)H1 =

∫

Ω

∫ S1

S0

(pq +∇p.∇q + ∂sp∂sq)dsdxdy.

We denote by ||.||H1 the induced norm on H1.
We will also have to consider the Banch space L∞ = L∞(Q× (0, T )) equipped

with the norm

||p||∞ = inf{M, |p(x, y, s, t)| ≤ M a.e. in Q× (0, T )}.

L2(0, T,H) is the space of functions L2 in time with values in H , equipped with
the norm,

||p||L2(0,T,H) = [

∫ T

0

||p(t)||2Hdt]1/2,

and L∞(0, T,H) is the space of functions L∞ in time with values in H , equipped
with the norm,

||p||L∞(0,T,H) = inf{M, ||p(t)||H ≤ M a.e in (0, T )}.

Similarly C([0, T ], H) is the space of continuous functions on [0, T ] with values in
H . Further, C([0, T ], H), L∞(0, T,H) and L2(0, T,H) are Banach spaces.
ClassicallyH ′ denotes the dual ofH and (H1)′ the dual ofH1. WhenH is identified
with its dual, we have the scheme

H1 ⊂ H = H ′ ⊂ (H1)′,
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where each space is dense in the following and the imbeddings are continuous.
Let us denote by W (H1) the Hilbert space

W (H1) = {p ∈ L2(0, T,H1),
dp

dt
∈ L2(0, T, (H1)′)}.

Lemma 3.1. Every p ∈ W (H1) is a.e equal to a continuous function from [0, T ] to
H. Moreover we have the following continuous imbedding,

W (H1) ⊂ C([0, T ], H).

Proof. See, for example, Dautray and Lions [15]

3.2. Assumptions on the data and preliminary transformation of the sys-

tem. The mortality rates are assumed to satisfy

• m(s), F (x, y, s, t) ≥ 0 a.e in Q× (0, T ), m, F ∈ L∞.

If we assume that the input temperature and forage fields, T (x, y, t) and Food(x, y, t),
are positive and regular enough, it appears clearly from section 2 that

• Du(x, y, s, t), Dv(x, y, s, t) ≥ Dmin > 0, a.e in Q× (0, T ), Du, Dv ∈ L∞;
• u(x, y, s, t), v(x, y, s, t) are differentiable with respect to x and y, respectively
and u, v, ∂xu, ∂yv ∈ L∞.

It is also clear from section 2 that

• d(s) ≥ d1 > 0, a.e in (S0, S1), d ∈ L∞;
• γ(s) is differentiable with respect to s, and γ, ∂sγ ∈ L∞;
• fr(s), w(s) ≥ 0 a.e in (S0, S1), fr, w ∈ L∞.

We also assume that the initial distribution p0(x, y, s) satisfies

• p0(x, y, s) ≥ 0 a.e in Q, p0 ∈ H .

To prove our existence-uniqueness result, it is convenient to perform a change of
unknown function: p satisfies (1)-(4) if and only if p̂ = e−λtp is a solution to the
same equations where −(m+ F )p is replaced with −(m+ F + λ)p in Eq. (1) and
the recruitment R(x, y, s, t, p) is replaced by

R̂(x, y, s, t, p̂) = l1[S0,sr ](s)
b0e

−λtB̂(x, y, t, p̂)

kBe−λt + B̂(x, y, t, p̂)
, (19)

B̂(x, y, t, p̂) =

∫ S1

smat

fr(s)w(s)p̂(x, y, s, t)ds. (20)

In the remaining part of the mathematical analysis, this change of unknown is
implicitly done and we omit the p̂ notation. The constant λ will be fixed to a
convenient value below. Moreover, the possible nullification of the term kBe

−λt +
B̂(x, y, t, p̂) invites us to define

R(x, y, s, t, p) = l1[S0,sr ](s)
b0e

−λtB(x, y, t, p)

kBe−λt + |B(x, y, t, p)|
, (21)

This formulation is being used in the following. We will show that if the initial dis-
tribution, p0 is nonnegative then p ≥ 0 a.e. in Q× (0, T ); thus the two formulations
are equivalent.

3.3. Variational formulation.
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3.3.1. The bilinear form a(t, p, q). Formally multiplying Eq. (1) by a function q
and integrating by parts on Q leads to the definition of the following bilinear form.
For p, q ∈ H1 let us define

a(t, p, q) =

∫

Q

D∇p∇qdxdyds+

∫

Q

V.∇pqdxdyds

+

∫

Q

d(∂sp)(∂sq)dxdyds+

∫

Q

γ(∂sp)qdxdyds

+

∫

Q

(m+ F + λ+ div(V ) + ∂sγ)pqdxdyds.

(22)

Lemma 3.2. For a.e. t ∈ (0, T ), a(t, p, q) is continuous on H1 × H1, and for
λ large enough, a(t, p, q) is coercive on H1. There exist two constants C1 > 0
and C2 > 0, depending on ||D||∞, ||d||∞, ||u||∞, ||v||∞, ||γ||∞, ||∂xu||∞, ||∂yv||∞,
||∂sγ||∞, ||F ||∞, ||m||∞, Dmin, d1 and λ, such that

|a(t, p, q)| ≤ C1||p||H1 ||q||H1 , ∀p, q ∈ H1, (23)

a(t, p, p) ≥ C2||p||
2
H1 , ∀p ∈ H1. (24)

Proof. The proof is classical and we omit it.

3.3.2. The nonlinear operator R. In this section we show that the recruitment term
R(x, y, s, t, , p) (cf. Eqs. (13)-(16)) allows us to define a Lipschitz continuous oper-
ator R on L2(0, T,H).

Lemma 3.3. Let

Λ =
b0(S1 − S0)||fr||∞||w||∞

kB
;

then the application
p(x, y, s, t) 7→ R(x, y, s, t, p)

defines a bounded nonlinear operator, R, Lipschitz continuous from L2(0, T,H) to
L2(0, T,H) with Lipschitz constant Λ.

Proof. Let us first notice that the application (t, B) 7→ h(t, B) =
b0e

−λtB

kBe−λt + |B|
from [0, T ]× R to R satisfies

|h(t, B)| ≤
b0
kB

|B|. (25)

Furthermore h(t, B) is Lipschitz continuous in B uniformly in t ∈ [0, T ],

|h(t, B1)− h(t, B2)| ≤
b0
kB

|B1 −B2|, ∀B1, B2 ∈ R, ∀t ∈ [0, T ]. (26)

Since B(x, y, t, p)2 = (

∫ S1

smat

fr(s)w(s)p(x, y, s, t)ds)2, we obtain using Cauchy-

Schwarz

B(x, y, t, p)2 ≤ (S1 − S0)||fr||
2
∞||w||2∞||p(x, y, ., t)||2L2(S0,S1)

. (27)

Hence from (25) and (27) we deduce that ∀t ∈ [0, T ],

||Rp(t)||2H =

∫

Ω

∫ S1

S0

[ l1[S0,sr](s)h(t, B(x, y, t, p))]2dxdyds,

≤ Λ2||p(t)||2H ,

(28)
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and that R is well-posed on L2(0, T,H).
In the same way, if to p1 (resp. p2) we associate B1 (resp. B2), we deduce from

(26) that ∀t ∈ [0, T ],

||Rp1(t)−Rp2(t)||2H =

∫

Ω

∫ S1

S0

[ l1[S0,sr ](s)(h(t, B
1(x, y, t, p1))

−h(t, B2(x, y, t, p2)))]2dxdyds,

≤ Λ2||p1(t)− p2(t)||2H ,

(29)

and thus R is Lipschitz continuous on L2(0, T,H).

3.3.3. Weak solutions. We can now give the definition of a weak solution to system
(1)-(4).

Definition 3.1. We say that p ∈ W (H1), is a weak solution of system (1)-(4) if

∀q ∈ H1, (
dp

dt
, q)H + a(t, p, q) = (Rp, q)H , (30)

in the D′(]0, T [) sens,
and p(0) = p0.

Then we can prove the following result.

Theorem 3.1. System (1)-(4) admits a unique non-negative weak solution.
Proof.

Existence and uniqueness. The proof consists mainly in defining a nonlinear
operator Θ by freezing the nonlinear term Rp and applying Banach fixed-point
theorem to Θ. The fixed point is the desired solution.

Step 1. Let p̂ be fixed in W (H1) and in Eq. (30) let us replace (Rp, q)H by
(Rp̂, q)H . The problem becomes linear in p and admits a unique solution (e.g, [15]).
This solution defines an operator Θ on W (H1), Θp̂ = p.

Step 2. Let us show that for T sufficiently small Θ satisfies the following
properties:

1. Θ leaves invariant the ball,

Br = {p ∈ W (H1), ||p||L∞(0,T,H) ≤ r, r ≥
||p0||H

√

(1− (Λ2T/2C2))
}

that is, ΘBr ⊂ Br.
Taking q = p as test function in (30), integrating on [0, t], using the coercive-
ness of a and Cauchy-Schwarz inequality, we obtain

∫ t

0

1

2

d

dt
||p(σ)||2H + C2||p(σ)||

2
H1dσ ≤

∫ t

0

||Rp̂(σ)||H ||p(σ)||dσ.

For all α > 0, Young inequality leads to

||p(t)||2H + 2C2

∫ t

0

||p(σ)||2H1dσ ≤

∫ t

0

1

α
||Rp̂(σ)||2Hdσ +

∫ t

0

α||p(σ)||2dσ + ||p0||2H ,

and choosing α = 2C2 gives

||p(t)||2H ≤
1

2C2

∫ t

0

||Rp̂(σ)||2Hdσ + ||p0||2H .
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Then using Eq. (28) we obtain

||p(t)||2L∞(0,T,H) ≤
Λ2T

2C2
||p̂||2L∞(0,T,H) + ||p0||2H .

If ||p̂||L∞(0,T,H) ≤ r then ||p||L∞(0,T,H) ≤ r for Λ2T
2C2

r2 + ||p0||2H ≤ r2 that is to

say r2(1 − Λ2T
2C2

) ≥ ||p0||2H . This implies Λ2T
2C2

< 1 which is valid for small T ,

and r ≥
||p0||H

√

(1− (Λ2T/2C2))
.

2. Θ is a strict contraction on Br, there exists 0 < k < 1 such that ∀p1, p2 ∈ Br,
||Θp1 −Θp2||L∞(0,T,H) ≤ k||p1 − p2||L∞(0,T,H).

Let p1 = Θp̂1 and p2 = Θp̂2. Substracting the two associated Eq. (30), taking
p1−p2 as test function and again using the coerciveness of a, Cauchy-Schwarz
and Young inequality leads to

d

dt
||p1(t)− p2(t)||2H ≤

1

2C2
||Rp̂1(t)−Rp̂2(t)||2H .

Since p1(0) = p2(0) = p0, we deduce

||p1(t)− p2(t)||2H ≤
1

2C2

∫ t

0

||Rp̂1(σ)−Rp̂2(σ)||2Hdσ,

and

||p1 − p2||2L∞(0,T,H) ≤
Λ2T

2C2
||p̂1 − p̂2||2L∞(0,T,H).

Then for Λ2T
2C2

< 1, Θ is a strict contraction.

Step 3. For T small enough, by Banach-fixed point theorem Θ admits a unique
fixed point which is the desired solution on (0, T ). Since T does not depend on p0,
the same procedure can be applied on (T, 2T ), ... until a solution is found on the
desired time interval.

Positivity. Let p1 ≥ 0 be given in W (H1), and let us define the sequence
(pn)n≥1 by Θpn = pn+1. Let us prove that p2 is non-negative:
Taking p−2 = max(0,−p2) as test function in (30) leads to

(
d

dt
p2, p

−
2 )H + a(t, p2, p

−
2 ) = (Rp1, p

−
2 )H ,

and therefore to

1

2

d

dt
||p−2 ||

2
H ≤

1

2

d

dt
||p−2 ||

2
H + a(t, p−2 , p

−
2 ) = −(Rp1, p

−
2 )H ,

Since p1 ≥ 0 then Rp1 ≥ 0 and −(Rp1, p
−
2 )H ≤ 0. It results that

d

dt
||p−2 ||

2
H ≤ 0,

that is,

||p−2 (t)||
2
H ≤ ||p−2 (0)||

2
H = ||p0−||2H = 0,

and p2 ≥ 0. An induction then shows that pn ≥ 0, ∀n ≥ 1, and since the sequence
converges to the solution p, this latter is non-negative.
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4. Numerical treatment of the model. In the approximation procedure of the
model a centered finite difference discretization is used. Equation (1) is solved
on a grid with a spatial resolution of 2 degrees, i.e. ∆y = 120 nautical miles in
the latitudinal direction and ∆x = ∆y cos(θ) in the longitudinal direction (θ is
the latitude angle), a discrete length step, ∆s of 4 cm, and a discrete time step
∆t of one day is used. The discretization points are denoted by (xi, yj , sl, tn)
with i ∈ [1 : I], j ∈ [1 : J ] (assuming here for simplicity that the domain Ω
is rectangular), l ∈ [1 : L] and n ∈ [1 : N ]. In what follows, pni,j,l denotes the

numerical approximation of p(xi, yj, sl, tn).
Several difficulties arise in the computation of the solution to Eq. (1). First

the numerical scheme has to be very stable because of possible strong variations in
space and time of the advection and diffusion coefficients, u, v,Du, Dv. Moreover
the numerical solution of Eq. (1) is to be used in a numerical function minimiza-
tion procedure to obtain estimates of model parameters. Therefore the solution
algorithm must be fast because the model and its adjoint may have to be solved
hundreds of time. Moreover, the function minimization algorithm may test param-
eter values that do not necessarily guarantee numerical stability.

The selected scheme combines a splitting method [16, 17] and the use of the
MUSCL scheme for advection terms (monotonic upstream centered scheme for con-
servation laws [18]). At each time step, given an approximation pn of p(x, y, s, tn),
the computation of pn+1 from pn is achieved through four steps. The advection-
diffusion equation in the x variable is integrated first, on [tn, tn+1]:

∂tp(x, y, s, t) = ∂x(Du(x, y, s, t)∂xp)− ∂x(u(x, y, s, t)p),
p(x, y, s, tn) = pn.

(31)

It results in a first approximation pn+1,1. Then the advection-diffusion equation in
the y variable is integrated on [tn, tn+1] starting from pn+1,1:

∂tp(x, y, s, t) = ∂y(Dv(x, y, s, t)∂yp)− ∂y(v(x, y, s, t)p),
p(x, y, s, tn) = pn+1,1.

(32)

It results in a second approximation pn+1,2. Then the advection-diffusion term in
the s variable is integrated on [tn, tn+1] starting from pn+1,2:

∂tp(x, y, s, t) = ∂s(d(s)∂sp)− ∂s(γ(s)p),
p(x, y, s, tn) = pn+1,2.

(33)

It results in a third approximation pn+1,3. Finally mortality and recruitment are
integrated on [tn, tn+1] starting from pn+1,3:

∂tp(x, y, s, t) = −(m(s) + F (x, y, s, t))p+R(x, y, s, t, p),
p(x, y, s, tn) = pn+1,3.

(34)

It results in the final value pn+1.
In each of the first three steps, diffusion is treated implicitly in time, and the

MUSCL scheme is used for the advection term. For example, the discretization
used to solve Eq. (31) can be written as follows:
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− ∆t
2∆x2 (D

n+1
u;i−1,j,l +Dn+1

u;i,j,l)p
n+1
i−1,j,l

+(1 + ∆t
2∆x2 (D

n+1
u;i−1,j,l + 2Dn+1

u;i,j,l +Dn+1
u;i+1,j,l)p

n+1
i,j,l

− ∆t
2∆x2 (D

n+1
u;i,j,l +Dn+1

u;i+1,j,l)p
n+1
i+1,j,l

= ∆t
∆x(f

n
i+1/2,j,l − fn

i−1/2,j,l),

(35)

where

fn
i+1/2,j,l =







un
i+1/2,j,l(p

n
i,j,l + 1/2∆n

i (1− un
i+1/2,j,l

∆t
∆x)), if un

i+1/2,j,l ≥ 0,

un
i+1/2,j,l(p

n
i+1,j,l − 1/2∆n

i+1(1 + un
i+1/2,j,l

∆t
∆x )), otherwise.

(36)
In this last equation, if (pni−1,j,l ≤ pni,j,l ≤ pni+1,j,l)

or if (pni+1,j,l ≤ pni,j,l ≤ pni−1,j,l) then

∆min = min(
|pn

i+1,j,l−pn
i−1,j,l|

2 , 2|pni+1,j,l − pni,j,l|, 2|p
n
i,j,l − pni−1,j,l|),

∆n
i = sign(pni+1,j,l − pni−1,j,l)∆min,

(37)

and otherwise,

∆n
i = 0. (38)

5. Parameter estimation. In this section we describe the data assimilation al-
gorithm developed to estimate the parameters of the model.

5.1. The outputs of the model corresponding to the data. Total catches in
weight as well as length frequencies of the catches are computed and compared to
observations to estimate the parameters of the model. In each cell (i, j) of the grid,
where during month m (30 days), the fishing effort is nonzero, catches of fleet f are
computed as follows:

Ci,j,m,f =

L
∑

l=1

30m
∑

n=30(m−1)+1

qf,lE
n
f,i,j,lp

n
i,j,lwl∆s∆x∆y∆t, (39)

and length frequencies as

Qi,j,l,m,f =

30m
∑

n=30(m−1)+1

qf,lE
n
f,i,j,lp

n
i,j,l∆s∆x∆y∆t

L
∑

l=1

30m
∑

n=30(m−1)+1

qf,lE
n
f,i,j,lp

n
i,j,l∆s∆x∆y∆t

. (40)

5.2. The cost function. The parameters of the model are denoted in what follows
by K ∈ R

Np where Np is the number of parameters. K is being estimated in
a Bayesian context by computing the mode of the posterior density function of
the parameters knowing the data. We use the maximum of posterior distribution
method [19], which involves minimizing the sum of the negative log-likelihood of
the data plus the log of prior density functions.

We assume that the observation errors for catch data follow a log-normal distri-
bution. Therefore the contribution of total catches to the negative log-likelihood
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is

JC(K) =
1

2σ2
C

∑

i,j

∑

m

∑

f

(log(Ci,j,m,f )− log(Cobs
i,j,m,f ))

2. (41)

The observation errors for length frequency data are assumed to be normal and
the contribution of frequency data to the negative log-likelihood reads

JQ(K) =
1

2σ2
Q

∑

i,j

∑

l

∑

m

∑

f

(Qi,j,l,m,f −Qobs
i,j,l,m,f)

2. (42)

The negative log of prior density functions for the parameters is

JP (K) =
∑

n

1

2σ2
n

(Kn −K0
n)

2, (43)

where K0
n are the reference a priori parameters given in Tables 1-4. The cost

function to be minimized is the sum of those three terms:

J(K) = JC(K) + JQ(K) + JP (K). (44)

The parameters have different units and orders of magnitude. To avoid any nu-
merical difficulties that might arise from this during the minimization, we adimen-
sionalize the parameter vector K, dividing each parameter Ki by its first guess a
priori value K0

i . Let D = diag(K0
i ) then the adimensionalized control vector is

k = D−1K. Such an adimensionalization procedure can be regarded as a precon-
ditioning for the minimization. The final cost function is

j(k) = j(D−1K) = J(K), (45)

and the a priori reference adimentionalized parameter vector is k0 = 1.

5.3. Optimization: Computing the gradient with the adjoint model. To
minimize the cost function j, we used the quasi-Newton algorithm implemented in
the n1qn3 Fortran subroutine of Gilbert and Lemaréchal [20]. The computation of
the gradient of j with respect to control variables is required at each step of the
minimization. This gradient results in one integration of the adjoint model. The
adjoint code was obtained using the automatic differentiation program Odyssée
[21, 22], which is an efficient tool for deriving adjoint codes since it enables the
automatic production of adjoint instructions. However, codes produced by auto-
matic differentiation do not usually use computer memory in a very efficient way.
Saving the direct model trajectory is the major problem. A differentiation pro-
gram has to follow systematic methods to provide the evaluation trajectory. Thus
Odyssée systematically uses a local calculation and storage technique for the trajec-
tory. Automatically differentiating a 3D model and using the adjoint code directly
seems impossible for the moment. Thus the code generated by Odyssée had to be
improved manually. A Taylor test was then conducted to compare the exact deriva-
tives computed by the adjoint code to a finite difference approximation. Generally
speaking, one aims at verifying that

r(ǫ) =
j(k + ǫδk)− j(k)

ǫ(∇j(k), δk)
−→
ǫ→0

0 (46)

for any direction of perturbation δk. We present in Table 5 the result of such a test.
As ǫ becomes smaller, one observes that the ratio r(ǫ) first tends linearly towards
1 up to ǫ = 10−6, which is the optimal value for a finite difference computation.
Afterwards, the substraction of close floating-point numbers leads to a large cancel-
lation error, which dominates the truncation error coming from the computation of
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Table 5. Result of a Taylor test

ǫ r(ǫ)
10−1 1.010756398
10−2 1.001203422
10−3 1.000115118
10−4 1.000015861
10−5 1.000001463
10−6 1.000000518
10−7 0.999993143
10−8 0.999985731
10−9 0.999847627
10−10 0.997712868

the gradient by the finite difference method. A Taylor test with such a numerical
behavior of the ratio r(ǫ) is said to be correct. It verifies that the adjoint code
provides an exact computation of the gradient.

6. Numerical results.

6.1. The simulation set-up. The standard run consists in a one-year simulation
for the Indian Ocean. The spatial numerical grid used is shown on Fig. 1. Sizes of
simulated skipjack tunas range from S0 = 0.4 m to S1 = 1.2 m.

Figure 1. The 46 × 32 numerical grid used to integrate the
population dynamics model on the Indian Ocean (earth in black,
ocean in white).

Inititial conditions are chosen to be homogeneous over the space grid with a size
distribution

p0(x, y, s) = 0.1e−0.5s. (47)

This distribution assumes that the population is dominated by small organisms.
Using these initial conditions a spin-up run of 6 years is conducted in order to
reach an experimental and numerical fixed-point where mortality processes balance
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the recruitment process and the total biomass slowly varies around a mean value
during the year. The final distribution at the end of the spin up period provides
the initial distribution for the standard run.

Since skipjack tunas inhabit the surface layer of the ocean, the model is forced
with monthly velocity of oceanic surface currents, sea surface temperature and for-
age fields (Fig. 2). Velocity and temperature fields are outputs of the ocean general
circulation model OPA,1 whereas forage fields are outputs of a size structured model
representing the energy flow in marine ecosystems from zooplankton to organisms
of the size of tuna forage [23].
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Figure 2. Response functions, fT and fF included in the hsi
formulation corresponding to temperature (left) and forage (right).
Frequency distributions over the whole grid and the whole year of
temperature and forage values are also plotted.

Figure 3 shows a contour plot of the index hsi for the month of march. The
strong south-north gradient of the index in the lower half of the map is typical of
the area. Low temperatures are not suitable for tuna, which stay in the upper half
of the map as shown on Fig. 4.

To test the possibility of estimating some parameters of the model from standard
fishing data, we conduct in the following section numerical experiments with a syn-
thetic data set computed by one simulation of the model. All parameters are set to
their reference a priori values. Moreover for the sake of simplicity the two mortal-
ity parameters m and q are assumed to be size-independent; that is constants with
values m = 4.2438 10−8 s−1 [6] and q = 6.43 10−8 s−1. Only one fleet is considered
(Nf = 1), and the fishing effort is assumed to be constant and homogeneous during
the year on an area roughly corresponding to the real fishing areas of the purse
seine fleet in the Indian Ocean (see Fig. 5). With this configuration, a data set is
computed following Eqs. (39) and (40).

6.2. Sensitivity analysis. We conduct a sensitivity analysis in order to identify
the most important input parameters whose changes impact the most the outputs
of the model (catches and length frequencies).

1http://www.lodyc.jussieu.fr/opa/
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Figure 3. Contour plot of the index hsi for the month of March.
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Figure 4. Contour plot of the population density function
summed over size classes at the end of the month of March.

As a measure of the outputs of the model we consider the quantities

hC(k) =
∑

i,j

∑

m

(Ci,j,m)2 (48)

and
hQ(k) =

∑

i,j

∑

l

∑

m

(Qi,j,l,m)2. (49)

Then the vector of relative sensitivities of these quantities to variations of the input
parameters computed at the point k are

sC(k) =
∇hC(k)

hC(k)
(50)

and

sQ(k) =
∇hQ(k)

hQ(k)
. (51)
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Figure 5. Distribution of the fishing efforts used in the simula-
tions. F = 0 in the gray area and F = 1 in the black area.

Each of these relative sensitivity vector requires the computation of a gradient
which is easily obtained with one integration of the adjoint model.

Table 6 shows the relative sensitivity vectors, sC(k
0) and sQ(k

0), computed with
the initial a priori parameter vector k0. Globally the different relative sensitivities
are quite low, indicating that it may be difficult to estimate correctly all the param-
eters of the model using the two types of fishery data which are generally available.
In the remaining part of this paper we will not try to estimate parameters which
have the lowest sensitivities (10−3, 10−2). These parameters are

• Dmin, Dmax related to diffusion in space,
• d1, d2, γ1 and γ2 related to growth,
• af and smat related to recruitment.

Interestingly the relative sensitivities sQ corresponding to variations in bf , kB
and aw (see Table 6) are exactly equal up to a sign. This comes from the formulation
of recruitment in the model, which from Eqs. (13)-(16) can be rewritten with
obvious notations as

b0B

kB +B
=

b0bfawB̂

kB + bfawB̂
=

b0B̂

kB
bfaw

+ B̂

. (52)

An inconsistency in the formulation of the inverse parameter estimation problem
appears clearly. The 3 parameters, bf , kB and aw can not be determined indepen-
dently, since for example an increase in kB can also be interpreted as a decrease
in bf or in aw. For this reason in our identification experiments we keep bf and
aw fixed to their reference values and only try to estimate kB. Moreover since the
length/weight parameters aw and bw are well known we also do not select bw for
the parameter estimation formulation.

Although the 2 mortality parameters m and q do not correspond to very high
sensitivities, we will try to estimate them since they really are badly known.

Finally the chosen formulation includes 11 parameters to be estimated:

• movements parameters : khsi, pT , pFood, αT , T0,KFood, uhsi0

• recruitment parameters : b0, kB
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• mortality parameters : m, q

Table 6. Relative sensitivities of catch and length frequency data

param. sC(k
0) sQ(k

0)
Dmin 1.39 10−2 −8.21 10−3 −
Dmax 7.81 10−2 −1.12 10−2 −
khsi 1.36 10−1 −3.59 10−2 +
pT −1.54 10−1 4.75 10−2 +
pFood −1.06 10−1 1.50 10−2 +
αT −1.00 3.12 10−1 +
T0 2.58 10−1 −8.06 10−2 +
KFood −1.01 10−1 1.43 10−2 +
uhsi0 −1.68 10−1 4.08 10−2 +
d1 5.53 10−3 −3.83 10−2 −
d2 4.78 10−3 −3.47 10−2 −
γ1 3.87 10−2 −3.51 10−1 −
γ2 −4.93 10−3 3.36 10−2 −
b0 1.93 10−1 3.02 10−1 +
bf −1.55 10−1 −2.49 10−1 −
kB 1.55 10−1 2.49 10−1 +
aw 3.19 10−1 2.49 10−1 −
bw 4.16 3.24 −
af −1.22 10−3 −2.07 10−3 −
smat −3.90 10−2 −6.27 10−2 −
m −9.11 10−2 3.42 10−2 +
q 7.47 10−2 2.49 10−2 +

Note: In the last column, a + or − indicates whether or not the corresponding
parameter is estimated.

6.3. Identification experiments. An essential validation step to perform before
assimilation of real observed data is to conduct twin experiments. Synthetic data
are produced by the model using the first guess parameter vector k0. To fully test
the possibility of recovering the selected parameters from the synthetic data, no
penalty term is added and the cost function reduces to

j(k) = jC(k) + jQ(k). (53)

The assumed variances are as follows: σC = 0.1 and σQ = 0.01. This provides
a good balance between the two terms of j. In the experiments conducted, the

convergence criterion is
||∇j(k)||

||∇j(k0)||
≤ ǫ, where ǫ is a small value fixed to 10−5.

6.3.1. Experiment 1. A first numerical experiment was conducted to assess the
capacity of the parameter estimation algorithm to distinguish between low (or high)
recruitment and high (or low) mortality rates on the one hand and natural and
fishing mortality rates on the other hand. Therefore in this optimization only the
four parameters b0, kB, m, and q can vary, the others being fixed to their reference
a priori value used to simulate the data. Different first guesses for the parameter
vector were obtained by perturbing these four parameters within reasonable range
(up to 50% of their reference value). All the corresponding optimizations converged
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to the minimum of the cost function. The results of such an experiment are shown
in Figs. 6, 7, and 8. The convergence criterion is satisfied after 20 iterations. The
cost function value decreased from 2.9 105 to 5.1 10−7 indicating that it has reached
its global minimum and all 4 parameters have been recovered.
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Figure 6. Convergence of the 4 selected parameters towards
their reference value (k0 = 1) during the optimization experiment
1.
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Figure 7. Evolution of the cost function j(k) during the opti-
mization experiment 1.

6.3.2. Experiment 2. A second numerical experiment was conducted to assess the
capacity of the parameter estimation algorithm to recover all the 11 parameters at
the same time. Therefore in this second optimization experiment all of 11 param-
eters can vary. Different first guesses for the parameter vector were obtained by
perturbing these parameters within reasonable range (up to 20% of their reference
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Figure 8. Evolution of the gradient ||∇j(k)|| during the opti-
mization experiment 1.
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Figure 9. Convergence of the 11 selected parameters towards
their reference value (k0 = 1) during the optimization experiment
2.

value). All the corresponding optimizations converged to the minimum of the cost
function. The results of such an experiment are shown in Figs. 9, 10, and 11.

The convergence criterion is satisfied after 59 iterations. The cost function value
decreased from 6.4 106to 2.0 10−1, indicating that it has reached its global minimum
and all 11 parameters have been recovered.
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Figure 10. Evolution of the cost function j(k) during the opti-
mization experiment 2.
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Figure 11. Evolution of the gradient ||∇j(k)|| during the opti-
mization experiment 2.
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7. Conclusion. We developed an advection-diffusion size-structured fish popula-
tion dynamics model and applied it to simulate the skipjack tuna population in
the Indian Ocean. The model is fully spatialized and movements are parameter-
ized with oceanographical and biological data. Thus the model naturally reacts
to environmental and climatic changes. We have formulated an initial-boundary
value problem and proved its mathematical well-posedness. We then discussed the
numerical scheme chosen for the integration of the simulation model. From a mod-
eling point of view, this study, is to our knowledge, the first one in which space
and size structure of the population are fully taken into account and in which both
mathematical and numerical difficulties were dealt with in a rigorous manner.

In a second step we addressed the parameter estimation problem for such a
model. With the help of automatic differentiation we derived the adjoint code which
enabled us to compute the exact gradient of a Bayesian cost function measuring the
distance between the outputs of the model and catch and length frequency data.
Thanks to the size structure of the modeled population the outputs of the model can
be naturally compared to length frequency data. A sensitivity analysis showed that
not all parameters could be estimated from the data. Finally twin experiments in
which pertubated parameters were recovered from simulated data were successfully
conducted. This point is particularly crucial since one limitation of the model lies
in the choice to be made for different parameters value, or even in the choice to be
made in the type of functions of temperature or forage parameterizing the habitat.
The numerical experiments conducted demonstrate that fishing data can be used
to estimate these parameters accurately.

This study is an important first step towards the assimilation of real observed
fishing data in the model which is under progress. The mathematical and numer-
ical tools which have been developed and validated will be extended to confront
the model with tagging data which should bring more information and enable the
estimation of several supplementary parameters such as growth and movements
parameters. Developing a tool using tagging data is indeed especially timely, since
no reliable stock assessment can be conducted at present for the skipjack tuna
in the Indian Ocean and since a large-scale tuna tagging program in the Indian
Ocean (IOTTP) has recently started and an important tag-recapture data set will
be available in the coming months.
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