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Vibration control in plates by uniformly distributed PZT actuators interconnected via
electric networks

Stefano Vidoli, Francesco dell’Isola ∗

Dipartimento di Ingegneria Strutturale e Geotecnica, Via Eudossiana 18, 00184 Roma, Italy

Abstract – In this paper a novel device aimed at controlling the mechanical vibrations of plates by means of a set of electrically-interconnected
piezoelectric actuators is described. The actuators are embedded uniformly in the plate wherein they connect every node of an electric network to
ground, thus playing the two-fold role of capacitive element in the electric network and of couple suppliers. A mathematical model is introduced to
describe the propagation of electro-mechanical waves in the device; its validity is restricted to the case of wave-forms with wave-length greater than
the dimension of the piezoelectric actuators used. A self-resonance criterion is established which assures the possibility of electro-mechanical energy
exchange. Finally the problem of vibration control in simply supported and clamped plates is addressed; the optimal net-impedance is determined. The
results indicate that the proposed device can improve the performances of piezoelectric actuation.
internal resonance / equivalent circuits

1. Introduction

In (dell’Isola and Vidoli, 1998-a) and (dell’Isola and Vidoli, 1998-b) the problem of controlling a certain
class of truss modular beams has been addressed; it is shown that the available piezoelectric actuators are in
principle able to dampen the mechanical vibrations of the beams. In (Vidoli and dell’Isola, 2000) the concept of
continuously distributed control has been introduced and developed for one-dimensional beams. This control
is obtained by (i) embedding the actuators in the structural members, (ii) interconnecting them by an electric
transmission line.
In the present paper it is proposed to control similarly the vibrations in plates by means of a set of uniformly-

distributed electrically-interconnected actuators. However, because the plate is a two-dimensional structural
member, such an interconnection must be obtained by means of an electrical two-dimensional uniformly-
distributed network. The mathematical diff culty (in comparison with (Vidoli and dell’Isola, 2000)) to be
confronted concerns the need of changing the kinematical descriptors of the electric state of the system. This
diff culty goes along with the need to conceive a way, which is intrinsically two-dimensional, to suitably
interconnect the actuators. Both these diff culties are resolved by: (i) introducing the f eld of e-state (the
material time derivative of which is the electric potential); and (ii) conceiving a truly bidimensional circuital
interconnection scheme among the actuators which is governed by the same Partial Differential Equation (PDE)
valid for a membrane.

∗ Correspondence and reprints: francesco.dellisola@uniroma1.it
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We utilize the classical idea of using actuators for achieving damping. However, to the best of our knowledge,
nowhere in the literature 1 has a system constituted by: (i) a plate; (ii) an embedded uniformly-distributed set
of actuators; (iii) a transmission bidimensional electric network interconneting the actuators, been considered.
In the following sections we show that it is possible to f nd a particular circuital topology which allows for
eff cient damping of mechanical vibrations. This damping effect is obtained using inductances lower than those
needed in the shunt devices proposed up till now (see (Guran and Inman, 1995)). This engineering concept is
novel and may be useful in many applications.

1.1. Advantages of proposed uniformly distributed net-control systems

The common features of the control devices already conceived are the differentiation between the sensing
and the actuation systems and the localization of PZT actuators in a small number of sites of the vibrating
structure. Both limit control eff ciency; indeed, the f rst feature implies the need of a coordinating active system,
controlling the actions of the actuators in response to the inputs from the sensors. On the other hand the latter
feature implies an optimal localization problem – for both actuators and sensors – the solutions of which depend
on the particular mechanical vibration mode to be considered (see (Fuller et al., 1996)). Moreover it is diff cult
to optimize the characteristics of the control system to obtain low equivalent impedances – these are required
to allow for a relevant energy transformation from the mechanical to the electrical form – and eff ciently drive
the PZT actuators (see (Hagood and Von Flotov, 1991) and (Bondoux, 1996)).
Some efforts to overcome the f rst of these drawbacks have been made. In particular, the concept of self-

sensing actuators has been introduced (see (Fuller et al., 1996)); an ad hoc electric circuit is connected to
the piezoelectric patch allowing its two-fold behavior. However every patch remains isolated and its electro-
mechanical action has to be coordinated with the rest of the structure. Furthermore even when a large number
of actuators is used to control the shape of plates (see (Batra and Ghosh, 1995)), interconnecting the actuators
via a circuital network was never considered.
In the present paper exploiting the concept of ‘analogy’ between mechanical structures and electric control

systems, it is proposed to control a plate-like structure by means of a distribution of actuators connected to
an electric transmission network. An internal resonance phenomenon, between structural modes and electric
modes, is induced to obtain the maximum control eff ciency.
The net-control system has two practical advantages: ceteris paribus, it requires lower performances to

the PZT actuators and allows for: (i) a more eff cient control; and (ii) a reduced time to transfer the energy
between electrical and mechanical forms. Moreover the net-control system bypasses the problems of optimal
positioning (of actuators and sensors) being able to manage all mechanical modes thought the same distributed
conf guration of its collocated actuators.
In order to prove the previous statements a mathematical model for the conceived apparatus is used to study

its coupled electro-mechanical vibrations. Using numerical simulations for square plates, results of a more
general nature are obtained. Indeed the considered case yields important information regarding how to establish
the coupling of electrical with mechanical modes. The very nature of the tuning of the electrical network to the
mechanical propagation phenomena is local and therefore independent of the global geometry of the structural
member.

1 During the reviewing process the papers (Hoffmann and Botkin, 1999; Botkin, 1999) and (Hoffmann and Botkin, 2000) were found. These papers
deal with piezoelectric continuously distributed actuators embedded in plates and exhibit very interesting and mathematically rigorous homogenization
results. It has to be underlined, however, that the device modelled there is different from what is considered here. Indeed, in this paper, the uniformly
distributed actuators are interconnected by a resonant passive electrical network.
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After choosing a circuital topology, tuning is obtained by suitably determining circuital impedences. This
is done by means of standard mathematical tools, however, the electro-mechanical coupling effect under
investigation is not studied nor is the energy exchange in inf nite-dimensional partitioned dynamical systems
explicitly considered in the literature (for a detailed discussion of this point see (Vidoli and dell’Isola, 2000)).
Therefore we needed to develop an electro-mechanical coupling criterion and f nd an optimality condition for
mechanical energy dissipation.
For dealing with more complicated geometries, suitable f nite element schemes will be needed. However,

the simple case presented herein seems to be of both theoretical and practical interest. It will allow for a better
understanding of the general properties of the conceived device and therefore will direct the design of piezo-
electromechanical plates with more complex geometries and will represent a benchmark for future numerical
simulation.

1.2. Description of the system

In this paper it is proposed to control the mechanical vibrations of a plate with a distribution of piezoelectric
actuators interconnected by means of electric impedances, as shown in figu e 1: gray boxes represent the
actuators while the black ones represent the electric impedances. The concept of electrical interconnection
of piezoelectric actuators represents the main feature of the considered device. It has to be stressed that this
interconnection can be obtained by means of several different circuital topologies; one possible topology

Figure 1. Assembled plate and network.

Figure 2. Electrical connection scheme.
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is reproduced in figu e 2.2 The fundamental topological difference between the considered bidimensional
network and a transmission line has to be underlined: a node is grounded by means of an actuation device
and is connected to four other nodes. This circumstance is accounted for mathematically by introducing a PDE
governing the evolution of the electric state descriptor.
From an electrical viewpoint the actuators can be considered as capacitors: therefore they are able to store

electric energy in DC regimes. A capacitor is a one-port circuital element with two terminals. In the connection
scheme represented in figu e 2 one of these terminals is connected to the electric network while the other
is grounded. On the other hand, from a mechanical viewpoint, the actuators: (i) exert mechanical actions
in response to electric inputs; (ii) contribute to the structural stiffness of the structure to which they are
mechanically connected; and (iii) provide electric signals in response to mechanical deformations.
Therefore the piezoelectric actuators establish an electro-mechanical interaction and allow for the transfor-

mation of mechanical into electrical energy. On the other hand the interconnecting electric network allows the
electric signal and electric energy to travel simultaneously with the mechanical waves.
The device described in this subsection will be called a piezo-electromechanical plate.

2. Mathematical model

To start the study of the behavior of a piezo-electromechanical plate, a continuum model is introduced which
allows for an accurate description of vibrations when the involved wave-lengths are not too small compared to
the dimensions of the single actuator.
The procedure which is followed leads to a homogenized, continuous model that is in some way similar

to the homogenized model introduced in (Hoffmann and Botkin, 1999; Botkin, 1999) and (Hoffmann and
Botkin, 2000). However we limit ourselves to heuristically deduce it with a formal identif cation in powers,
as done usually in the theory of plates (see the classical results found in (Reissner, 1996)) or in a different
context e.g. by (Di Carlo et al., 1990; dell’Isola et al., 1998). A rigorous mathematical proof – establishing
that the homogenized model we f nd is really a �-limit of the micro-model from which we are starting – is not
attempted.
The subsequently postulated balance of power allows us to obtain a set of PDEs for the f elds describing the

electric and mechanical states.
In the following formulation, the reader will f nd a multiplicity of mathematical symbols; for instance one

will need to distinguish between the Laplacian (respectively gradient) operator in three dimensions and the
Laplacian (respectively gradient) operator in two dimensions. This need is justif ed when one considers that the
aim is to deduce some equations for a 2-D plate starting from the three-dimensional equations of a Cauchy 3-D
continuum. This multiplicity seems to be unavoidable, as it ref ects the complexity of the physical system we
try to describe.
We follow the standard mathematical notation; for instance given a second-order tensor A we will denote

its symmetric part by symA and its trace by trA. Given a two-dimensional surface S embedded in the three-
dimensional Euclidean space we will denote by ∂S its boundary in the sense of Gaussian differential geometry,
× will denote set Cartesian product, · will denote the inner product between vectors, an upper dot will denote
the time derivative of considered f elds. Finally ⊗ will denote the standard tensor product operation.

2 More complicated and maybe more efficien circuital topologies are conceivable: this being the object of further investigations.



Vibration control in plates 439

2.1. Equation of motion

We deal with a plate body B occupying the region C = S × I , where S is a plane surface and I the real
interval [−h,h]. As usual, the thickness 2h is assumed to be small compared with the diameter of S .
Moreover we assume that the following balance of power: 3∫

S

∫
I
(b · u̇)+

∫
∂S

∫
I
(f · u̇)+

∫
S
(iψ̇)+

∫
∂S
(χψ̇)=

∫
S

∫
I

[
S · (sym Grad u̇)

]+ ∫
S
(I · grad ψ̇), (1)

must hold for every test f eld (u̇, ψ̇). Here u represents the displacement f eld, while ψ̇ is the electric potential
f eld. As a consequence u̇ is the velocity f eld and ψ is the time-integral of the electric potential difference
between the nodes and the ground. Moreover b and f, i and χ , Grad and grad are the body and surface
external forces, the body and surface current densities from the ground, and the gradient operators in C and
S respectively. Finally S is the stress tensor and I is the current vector in the network.
According to the geometry of the body, the position vector is decomposed as:

x= r+ ζe, (2)

where r is the position vector in S , ζ ∈ I and e is the unit vector perpendicular to S . To deduce from the
3-dimensional Cauchy model of B the behavior of a bending plate, we use the Kirchhoff–Love compatible
identif cation procedure based on the following kinematical reduction map for displacements:

u(r, ζ )=w(r)e−ζgradw(r). (3)

As it is easily checked, the previous equation can be interpreted mechanically stating that every material
segment orthogonal to the mean surface of the plate in the reference conf guration remains: (i) orthogonal
in every considered current conf guration; and (ii) has a constant length. The function w models the transverse
displacement of the material particles of the plate. It is assumed that the electric potential ψ̇ depends on r only.
It follows that the inf nitesimal deformation f eld is expressed as (gradgrad denotes the Hessian differential
operator):

E= sym(Gradu)=−ζ sym(gradgradw). (4)

Substituting in the equation (1) the reduction map (3) we obtain:∫
S
(bẇ+B · grad ẇ+ iψ̇)+

∫
∂S
(T ẇ+m·grad ẇ+ χψ̇)=

∫
S
[M · sym(grad grad ẇ)+ I · grad ψ̇], (5)

where

M=−
∫
I
ζS|S , B=−

∫
I
ζb|S , b=

∫
I

b · e, (6)

T =
∫
I
(f · e), m=

∫
I
−ζ f|S, (7)

are the dynamical generalized forces in the reduced plate model. Applying the divergence theorem (div denotes
the divergence operator applied to the following tensor and ν is the outward pointing normal vector to ∂S

3 In the following integrals the standard notation used in modern measure theory is used. Therefore for instance the infinite imal volume dV is not
indicated. As the integration domains are indicated no misunderstanding is possible.
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belonging to the tangent plane to S), we get:
∫
S

[
(b− divB− divdivM)ẇ+ (i + div I)ψ̇

]
+

∫
∂S

{[
T + (B+ divM) · ν]ẇ+ (m−Mν) · grad ẇ+ (χ − I · ν)ψ̇}= 0

(8)

which must hold for every admissible velocity f eld (ẇ, ψ̇); this condition leads to the following balance
equations:

divdivM+ divB− b = 0, div I+ i = 0, on S, (9)

and to the following reduced expression of (8):
∫
∂S

{[
T + (B+ divM) · ν]ẇ+ (m−Mν) · grad ẇ+ (χ − I · ν)ψ̇}= 0 (10)

from which we can get well-posed boundary conditions.
The equations (9) and (10) represent a reduced model for the piezo-electromechanical plate.
Assuming that the body B is linear, isotropic and homogeneous (so that we do not need to distinguish in the

power balance the actual from the reference conf guration) and that the network is linear and dissipative, we
get:

S= 2µLE+ λL(trE)id, b=−ρü, − grad ψ̇ =LN İ+RNI, (11)

where µL and λL are the Lamè moduli, ρ the mass density, LN and RN are respectively the net-inductance
and net-resistance and id is the identity operator in C. As a consequence the part of the reduced constitutive
equations which does not depend on piezoelectro-mechanical coupling (which we denote Mm and ie) reads as
follows:

Mm = JI
[
2µL sym (grad gradw)+ λL(laplw)id

]
, ie = kC

d2
ψ̈, (12)

where JI = 2h3/3, lapl is the Laplacian operator in S and kC is the purely electric grounded capacitance,
while d2 represents the area of inf uence of the actuator (namely the area of the plate divided by the number of
actuators). For the inertial terms from (11) and (6) we get:

B=−JIρ grad ẅ, b=−2hρẅ. (13)

However the piezoelectric actuators have a two-fold behavior: from a mechanical viewpoint they enhance
the bending stiffness of the plate and produce bending moments in response to applied voltage; from an
electric viewpoint they enhance the grounded capacitance per unit area of the electric net and produce a stored
capacitive charge in response to applied curvatures.
Let us introduce an orthonormal coordinate system (o, e1, e2) in S wherein the partial derivatives of the f eld

f with respect to the corresponding coordinate variables xi will be denoted f,i. Concerning the part of bending
moment tensor induced by the piezoelectric effect Me we assume that its component expending power on the
component w,12 of the curvature vanishes so that the following representation holds:

Me =M11(e1 ⊗ e1)+M22(e2 ⊗ e2). (14)
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In addition we specify the properties of the single PZT actuator used by



M11

M22

Q/d2


=



gmm 0 −gme
0 gmm −gme
gme gme gee





w,11

w,22

ψ̇


 , (15)

where Mii and w,ii are the piezo-electrically induced bending moments and curvatures, while Q/d2 and ψ̇

are the charge per unit area and voltage between the actuator plates. The constitutive equation (15) establishes
that the actuators can supply electrically induced moments only in two f xed material orthogonal directions and
that they cannot supply ‘mixed’ moments; the orthogonal system introduced accounts for this directionality.
Moreover we have assumed that the piezoelectric stiffnesses in e1 and e2 are equal; this assumption seems
reasonable when using PZT actuators exploiting Poisson effect.
Therefore the overall constitutive relations for M and i read as follows:

M=Mm + gmm[w,11(e1⊗ e1)+w,22(e2 ⊗ e2)] − gmeψ̇ id, (16)

i = ie + Q̇

d2
= ie + geeψ̈ + gme lapl ẇ. (17)

Let us now introduce the bending stiffness and capacitance per unit area of the plate:

DP = JI(2µL + λL), CN := gee + kC

d2
=: kee + kC

d2
; (18)

the balance equations in terms of kinematical f elds become:

DP dlaplw+ gmm(w,1111+w,2222)− JIρ lapl ẅ+ 2hρẅ− gme lapl ψ̇ = 0,

− laplψ +LNCNψ̈ +RNCNψ̇ +RNgme laplw+LNgme lapl ẇ= 0,
(19)

where dlapl denotes the double Laplacian operators in S .
In order to f nd the dimensionless form of (19) we introduce as spatial characteristic length the diameter of

the plate ', and def ne v := w/', φ := ψ/V̄ , the characteristic pulsation 4 ω = π
'

√
DP

MP
– being MP = 2ρ'2h

the total mass of the plate – so that:

DP

2hρ'4ω2��v +
gmm

2hρ'4ω2 (v,1111+ v,2222)− h2

3'2
�v̈ + v̈− gmeV̄

MP'ω
�φ̇ = 0,

− 1
LNCN'2ω2�φ + φ̈ + RN

LNω
φ̇ + gme

CN'ωV̄
�v̇ + RNgme

LNCNV̄ 'ω
2
�v = 0;

(20)

where � is the dimensionless Laplacian operator, ( ),i and the upper dot denote respectively the dimensionless
space and time derivative. Let us introduce the following Sobolev norm:

‖f ‖H 2 =
∫
f 2 +

∫ ∑
i
(f )2,i +

∫ ∑
ij

(f )2,ij ; (21)

4 This choice implies that the fir t purely mechanical mode in the case of a simply supported plate has a pulsation equal to 2π .
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then we will assume that:

gmm

2hρ'4ω2 �
DP

2hρ'4ω2 ,
h2

3'2
‖�v̈‖H 2 �‖v̈‖H 2 . (22)

This last inequalities are valid when the wave-length is much bigger than the plate thickness and when one
considers only the lower spatial eigenmodes.
The characteristic e-state parameter V̄ := √MP/CN is chosen to maintain the symmetry, so that (20)

becomes:

α��v+ v̈− γ�φ̇ = 0,

−β�φ + φ̈ + γ�v̇+ δφ̇ + δγ�v = 0,
(23)

where

α := DP

MP'2ω2 =
1
π2 , β := 1

LNCN'2ω2 , (24)

γ := gme

'ω

√
1

MPCN

, δ := RN

LNω
(25)

are dimensionless numbers. We remark that when the electro-mechanical coupling parameter γ vanishes, (23)
reduces to the uncoupled system of the Kirchhoff–Love plate and membrane-like electric network equations:

α��v+ v̈ = 0,

φ̈ + δφ̇ = β�φ. (26)

2.2. Partitioned modal analysis

In this section we adapt to the set of equations (23) the reasoning developed in (Vidoli and dell’Isola, 2000).
Let Hm and He be the subspaces of L2(S), the space of R-valued square-integrable functions def ned on

S verifying suitable homogeneous boundary and smoothness conditions. Let v, v̇, v̈ ∈Hm and φ, φ̇, φ̈ ∈He.
Let Lmm and Lee be linear self-adjoint differential operators on Hm and He respectively, and GA

me indicate the
adjoint of the linear differential operator Gme fromHe toHm. We consider the following evolutionary problem:

αLmm(v)+ v̈− γGme(φ̇)= 0,

βLee(φ)+ φ̈ + γGA
me(v̇)+ δφ̇ + δγGA

me(v)= 0,
(27)

starting from suitable initial conditions for v and φ. We remark that equations (23) have the structure of (27).
The subscripts m and e stand for mechanical and electrical respectively.
In order to study the interaction between the electrical and mechanical components of state descriptors we

introduce in Hm and He the eigenbases supplied by the spectral representations theorem for the self-adjoint
operators Lmm and Lee respectively. Therefore, for every v ∈Hm, φ ∈He, we have (Reed and Simon, 1980):

v=∑
h

vhmh, φ =∑
k

φkek, (28)

Lmm(v)=
∑
h

λhvhmh, Lee(φ)=
∑
k

νkφkek. (29)
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Here λh and νk respectively denote the eigenvalues of Lmm and Lee, mh and ek are the corresponding
eigenfunctions, vh := 〈v,mh〉L2 and φk := 〈φ, ek〉L2 are the time-dependent Fourier coeff cients. If we def ne
the scalars:

Chk := 〈
mh,Gme(ek)

〉
L2, (30)

Ckh := 〈
ek,GA

me(mh)
〉
L2 = 〈

Gme(ek),mh

〉
L2 = Chk, (31)

and consider that mh and ek are bases ofHm and He as eigenfunctions of self-adjoint operators, equations (27)
can be written:

v̈h + αλhvh − γ
∑
k

Chkφ̇k = 0,

φ̈h + βνhφh + δφ̇h + γ
∑
k

Ckh(δvk + v̇k)= 0,
h, k = 1,2,3, . . . . (32)

Equations (32) clearly show that the inf uence on the mode mh exerted by the mode ek is measured by the
matrix Chk that we can regard as a modal e→m coupling matrix. In an absolutely similar way Ckh represents
the modal m→ e coupling matrix. It is now easy to formulate the following:
CRITERION FOR ELECTRO-MECHANICAL COUPLING. A necessary condition for the presence of electro-

mechanical energy exchange between ek and mh modes is:

Chk = 〈
mh,Gme(ek)

〉
L2 �= 0. (33)

3. Results of numerical simulations

In this section we particularize the evolution equations found in the previous section to the case of a square
piezo-electromechanical plate, describing with suitable boundary conditions the action of both the mechanical
and electrical constraints. The criterion (33) is exploited in order to establish a self-resonance between the
mechanical and electrical vibration modes. The results we f nd in the particular case considered are, however,
of wider applicability. Indeed the tuning of the electrical impedence to get a relevant energy exchange between
the electrical and mechanical modes is obtained in a form which is independent of both the shape of the plate
and the considered boundary conditions. The numerical simulations described in the present section show that
the proposed concept of electrically coordinated actuation allow for the eff cient exploitation of available PZT
actuators in vibration suppression of relatively large (see table III ) plates.

3.1. Analytical solution for the simply supported square plate

Consider a simply supported square piezo-electromechanical plate of side '. Assume, moreover, that the
electric network interconnecting the PZT actuators – on the boundary – has grounded terminal nodes; in this
case the boundary conditions for equations (23) become:

v = 0, Mν = 0, φ = 0, (34)

on each side of the square domain S . The eigenvalues of the purely mechanical and electrical operators:

Lmm(f )=��f, Lee(g)=−�g, (35)
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Table I. Mode labeling.

k = 1 2 3 4 5 6 7 8 9
ik 1 1 2 2 1 3 2 3 3
jk 1 2 1 2 3 1 3 2 3

are respectively given by:

λk = π4(i2k + j 2k
)2
, νk = π2(i2k + j 2k

)
. (36)

If r denotes the position of the generic material point of S in the reference conf guration, let us introduce the
variables xi = (r · ei)/'. Then the eigenfunctions corresponding to the eingenvalues (36) are:

ek = sin(ikπx1) sin(jkπx2), mk = sin(ikπx1) sin(jkπx2), (37)

where the indices ik and jk which determine the modal forms are def ned according to table I.
Recalling that in this case Gme(g)=�g, we can compute the matrix Chk getting (summation over repeated

indices suppressed):

Chk =
∫
S
�(ek)mh =−π2(i2k + j 2k

)∫
S
ekeh =−π2(i2k + j 2k

)
δhk, (38)

where δhk denotes the Kronecker delta. Note that, because the eigenfunctions are mutually orthogonal, the
coupling matrix is diagonal; thus, the coupling can exists only between corresponding modes!
The system (23) is decomposed into an uncoupled sequence of coupled systems of two equations for two

unknown functions like the following:

v̈h + αλhvh − γChhφ̇h = 0,

φ̈h + βνhφh + δφ̇h + γChh(δvh + v̇h)= 0,
h= 1,2,3, . . . , (39)

or omitting the subscript h:

v̈ +Av −Cφ̇ = 0,

φ̈ +Bφ +Cv̇+Dφ̇ +CDv = 0,
(40)

where A= αλh, B = βνh, C = γChh and D = δ.
Therefore in the case of a simply supported rectangular plate the membrane-like electric network is able to

couple one mechanical mode exactly with one electrical mode so that one can get a self-resonance suitably
tuning the electric network parameters.
However the parameters appearing in (39) depend on the considered mode number; in general the

aforementioned tuning will induce the self-resonance of only one pair of electro-mechanical modes.
Therefore the problem of determining the optimal circuital topology for the interconnection of PZT actuators

arises. This problem will be addressed in subsequent investigations. We simply remark here (see also the
following figu e 10) that once a self-resonance between a f xed mechanical and a f xed electrical mode is
tuned some weaker (but sometimes non negligible and exploitable for damping purposes) electro-mechanical
intermodal energy exchanges can be established.



Vibration control in plates 445

3.1.1. Non damped energy exchange
In order to establish the conditions assuring the maximal energy exchange between the mechanical and

electrical states, one could develop the general treatment delineated in the case of one-dimensional electro-
mechanical structures in (Vidoli and dell’Isola, 2000). However, with a view towards the applications, we
consider here a simplif ed version of that treatment, studying the 1-1 coupling through equations (40) and then
extending the results to multiple couplings.
First of all we analyze the non-dissipative case (D = 0) of equations (40). Its solution, starting from purely

mechanical initial data v0, is the following modulated signal:

v(t)= V1 cos(α1t)+ V2 cos(α2t), φ(t)=41 sin(α1t)+42 sin(α2t), (41)

where:

α1=
√
1
2
[
(C2 +A+B)−

√
(C2 +A+B)2 − 4AB

]
,

α2=
√
1
2
[
(C2 +A+B)+

√
(C2 +A+B)2 − 4AB

]
,

V1= u0

2

(
1+ C2 −A+B√

(C2 +A+B)2 − 4AB

)
, (42)

V2= u0

2

(
1− C2 −A+B√

(C2 +A+B)2 − 4AB

)
,

41= α21 −A

α1C
V1, 42 = α22 −A

α2C
V2.

In the hypothesis C2� A, with simple manipulations one can f nd the low frequency analogical components
of the modulated signal i.e.:

IMAX = (V1 + V2) cos
(
α1 − α2

2
t

)
, Imin = (V1 − V2) sin

(
α1 − α2

2
t

)
, (43)

respectively representing the envelopes of the maxima and minima, and, as usual, related to the energy contents.
Since we are interested to the most eff cient exchange of energy between the mechanical and electrical forms,

we seek values of the parameter B that minimize the amplitude of Imin and the time Ttr elapsed to transform the
maximal possible amount of initial energy in electrical form:

min
B
|Imin| =min

B
|V1 − V2|, min

B
Ttr =max

B
|α1 − α2|. (44)

These conditions imply respectively:

B1 =A−C2, B2 =A+C2, (45)

indicating that in the interval (B1,B2) we get self-resonance. Everywhere in the following we will assume that
the self-resonance condition is B =A.
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Let us now consider the ratio:

k= C2

A
= g2me

DPCN

, (46)

which is much smaller than 1 in the applications considered here. This number plays an important rôle in
determining the pulsation of the low-frequency analog components in the chosen self-resonance condition.
Indeed the dimensionless time interval Ttr|B=A needed to transform the mechanical energy of the considered
mode into electrical energy is given as a function of k (see figu e 4) by:

Ttr|B=A = 1

2
(√

1+√k−
√
1−√k

) . (47)

Recall that Ttr is a dimensionless time and Ttr = 1 represents one period of the f rst purely mechanical mode.
The self-resonance condition B =A also implies:

β � αλh

νh
= απ2(i2k + j 2k

)
. (48)

Figure 3. Low-frequency analogue components.

Figure 4. Elapsed time to transfer energy Ttr as a function of the coupling coeff cient k.
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Figure 5. Electric (gray) and mechanical (black) energies vs. time.

Note that β depends on the net-inductance LN that is a tunable parameter. Thus we can simply tune the net-
inductance value to couple two modes which, verifying the criterion (33), can be made resonant; the optimal
value L∗Nh to couple the h-th modes is:

L∗Nh =
1

(i2h + j 2h)CN'2ω2 =
1

(i2h + j 2h )(kee + kC)NAω2 ; (49)

here NA = '2/d2 is the total number of actuators.
The energy f ux related to the solution (41) for B = A, is visualized in figu e 5 where the thick gray line

represents the electric energy.
Note that in figu e 5 there are four different kinds of energies involved:
1. the mechanical elastic energy, Av2/2;
2. the mechanical kinetic energy, v̇2/2;
3. the electric inductive energy, Bφ2/2;
4. the electric capacitive energy, φ̇2/2,

only the total sum of these energies is constant.

3.1.2. Damped energy exchange
The characteristic polynomial of equations (40) is now:

P(s) := s2C2 + sDC2 + (
s2 +A

)(
s2 + sD +B

)= 0, (50)

its complex roots representing the damping ratios (real parts) and the pulsations (imaginary parts) of the
associated eigenfunctions.
In figu e 6 a pair of roots (the other pair is the complex conjugate) are drawn as functions of the

ratio D/C; the gray scale measures the electro-mechanical coupling of the associated eigenvectors: black
implies comparable electro-mechanical energy contents. Moreover, the projections of the curves on the planes
{D/C,−Re} and {D/C, Im} are drawn.
We observe that:
1. Increasing the ratio D/C (i.e. the net-resistance) def nitively leads to the uncoupling of the electro-

mechanical wave-forms.
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2. The projections on the plane {D/C,−Re} show a maximum of the damping ratio of the root relative to
wave-form turning to purely mechanical content when D/C tends to inf nity. This circumstance allows
for the determination of the critical value for the parameter D proportional to the net-resistance.

3. The projections on the plane {D/C, Im} show that in varying D the eigenfrequencies attain a minimal
distance; when D/C tends to inf nity the mechanical eigenfrequency tends to

√
A, the electric one

vanishes.
A further description of the locus of the roots of the characteristic polynomial (50) can be obtained by

introducing the following other polynomial:

Q(s) := s2C2 + (
s2 +A

)(
s2 + sD +A

)
. (51)

As P and Q are real polynomials their roots can be paired by conjugation having coincident (negative because
D is positive) real parts. Let us call these real parts ρPm, ρPe and ρQm, ρQe. It can be proven that:

A> 0, B > 0, D > 0, C > 0 �⇒ (ρQm,ρQe)⊂ (ρPm,ρPe). (52)

Therefore an upper bound for the maximum mechanical damping ratio is obtained by the real parts of the roots
ofQ when D = 2C and its dimensionless value is 1/2. These considerations are summarized in figu e 7 where
the bold lines represent the real parts of the root of Q and the dashed ones represent the real parts of the roots
of P when B→A.
Using the approximated condition D = 2C obtained by means of Q and recalling the def nitions of D, C,

Chh, and L∗N we get the following estimated values for the optimal net-resistance:

R∗N =
2π2gme

CN'3ω2

√
1

MPCN

= 2π2gme

(kee + kC)N
3/2
A ω2

√
1

MP(kee + kC)
. (53)

Note that R∗N is, in this case, independent of the mode number; this fact will not hold true when the
clamped plate is considered. Remark that both the values of the optimal inductance L∗Nh and resistance R∗N
decrease when a ‘more distributed’ net-control system is considered (namely when the number of actuators NA

increases).

Figure 6. Characteristics roots as functions of the ratio D/C .
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When a dissipative net is considered – in equation (40) D �= 0 –, the energy, once transformed in electric
form, is now dissipated and only a fraction transforms back in mechanical form, this is shown in figu e 8.
In comparing figu e 5 and 8 one should consider that the displayed energy dissipation is obtained for a value

of the net-resistance which is not the optimal one.

3.2. Numerical solution for the clamped plate

When considering a completely clamped plate a technical diff culty arises in applying the criterion for
electro-mechanical coupling. Indeed there is not a treatable closed form for the eigenfunctions of Lmm, however
one can use their close approximation represented by the product of the eigenfunctions of a clamped–clamped
beam (see the f rst row in figu e 9); on the other side we still consider a membrane-like network electrically
grounded on its boundary so that the eigenfunctions of Lee will not change (second row in figu e 9). The
labeling of the basis in L2(S) we have just chosen trivially parallels that previously introduced in table I.
We will apply the coupling criterion to this set of approximated eigenfunctions. The coupling matrix C is no

longer diagonal, however, due to the similarities between the modes, the matrix C is quasi-diagonal. Figure 10
shows a representation of the matrix C by means of the gray scale (blank cell means a vanishing value); the
f rst nine mechanical and the f rst nine electrical modes are considered.
The novelty in the case of clamped plate is represented by the possibility of coupling one mechanical mode

with different electrical ones (if the corresponding Chk is non vanishing). Indeed note that a simple tuning of

Figure 7. Plot of the polynomial Q(s).

Figure 8. Dissipation of electric (gray) and mechanical (black) energies.
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Figure 9. Functional basis for the clamped plate.

Figure 10. Representation of the coupling matrix. A blank cell indicates a vanishing value.

Figure 11. Electric and mechanical frequencies.

Table II. Compared eigenvalues.

k = 1 2 3 4 5 6 7 8 9
νk = (i2

k
+ j2

k
) 2 5 5 8 10 10 13 13 18

λk = (i2
k
+ j2

k
)2 4 25 25 64 100 100 169 169 324

λ
(c)
k

13.4 55.8 55.8 121.6 180.2 180.2 282.6 282.6 501.0
ck 3.35 2.23 2.23 1.90 1.80 1.80 1.67 1.67 1.55
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the net-inductance allows one to make coincident any two frequencies; however all the electric frequencies are
shifted together (see figu e 11).
In order to use the analysis of the previous section in the present case, we list in table II:
• the eigenvalues νk of the spatial operator Lee(g)=:g with g = 0 on ∂S ;
• the eigenvalues λk of the spatial operator Lmm(v)=::v simply supported on ∂S ;
• the eigenvalues λ(c)k of the spatial operator Lmm(v)=::v clamped on ∂S ;
• the ratios ck = λ

(c)
k /λk.

The eigenvalues λ(c)k have been obtained estimating the Rayleigh ratio on the approximated eigenfunctions.
Table II is used to determine the optimal inductance and resistance values, namely:

L∗Nh =
MP

ch(i
2
h + j 2h )CNπ2DP

, R∗Nh =
2gme

chCN'DP

√
MP

CN

. (54)

Figure 12. Plots of the mechanical (black), electrical (gray) and electro-mechanical (dashed) frequency-response functions. The impedance is set to the
optimal value for mode 1.

Figure 13. Plots of the mechanical (black), electrical (gray) and electro-mechanical (dashed) frequency-response functions. The impedance is set to the
optimal value for modes 2 and 3.

Table III. Mechanical and electrical parameters.

'= 1m h= 1mm NA = 7× 7= 49 gme = 28.10−5 N V−1
ρ = 2700 Kg m−3 EY = 70 GPa kee = 0.6 µF kC = 1 µF
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We conclude this section with two plots of the frequency-response functions. In them the net-inductances
and resistances are tuned respectively on the optimal values (L∗N1,R

∗
N1) and (L∗N2,R

∗
N2). The black and gray

lines represent the norms of the purely mechanical and purely electric part of the response function, while the
dashed one represents the norm of the coupling part of the response function.
The numerical results, shown in figu es 12 and 13, conf rm the validity of the coupling criterion as a

consequence of the optimal impedance values. Indeed the electro-mechanical coupling shows maximal peaks
with wider frequency bandwidths when these optimal values are chosen.
In the numerical simulations the values in table III were used. The assumed performances of PZT actuators

are realistic; they concern the ACX actuators QP20W.

Figure 14. Mechanical (left column) and electrical (right column) vibrations induced in the piezo-electromechanical plate by an impulse concentrated at
the point P1. Its localization is specifie by the black dot. Electric potential is represented as a black–white scale: gray means ground, non-dimensional

time is indicated.
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3.3. Response of piezo-electromechanical plates to impulsive external actions

In this subsection we describe some numerical simulations conceived in order to describe the response of
piezo-electromechanical plates to a large class of impulsive external actions. These simulations allowed us
to produce some interesting and suggestive animations. The interested reader can download them from the
web-site http://www.esm.vt.edu/∼henneke/vcpa/animation.
We considered a clamped piezo-electromechanical plate, electrically grounded at its boundary. This last

boundary condition means that the electric network interconnecting the PZT actuators behaves as an edge-
supported membrane.
Moreover it is assumed that only the modes previously labelled (1,1), (1,2), (2,1), (2,2) (see table I ) can

be considered in Fourier expansion and that initial displacement and electric state are everywhere vanishing.
Finally the network is tuned choosing as optimal impedence that found for mode (1,1).
The impulsive external action is represented by a Dirac δ initial velocity f eld concentrated in the two points

P1 and P2 of the piezo-electromechanical plate. In the case of vibrations described in figu es 14 and 15 the
point P1 has coordinates (0.6L,0.55L), while those in figu es 16 and 17 are relative to external actions applied
in P2 = (0.75L,0.5L) where L is the length of the plate side.
The numerical experiment shows that in the f rst case nearly all electromechanical vibration energy is used

to excite the f rst mode. The black dot represents the localization of P1.
The corresponding time evolution of both mechanical displacement and electric state is shown in figu e 15,

which clearly shows an eff cient transfer of energy from mechanical into electrical form.
Rather different is the result represented in the subsequent f gures: the impulsive action being concentrated in

P2, a non-negligible amount of electromechanical vibration energy is used to excite also the second mode. As
the optimal impedences are tuned on the f rst mode, and as the coupling coeff cient between the f rst and second

Figure 15. Time evolution of displacement and electric state in a representative point of the piezo-electromechanical plate, with
impulse concentrated in P1.
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Figure 16. Mechanical (left column) and electrical (right column) vibrations induced in the piezo-electromechanical plate by an impulse concentrated at
the point P2. Its localization is specifie by the black dot. Electric potential is represented as a black–white scale: gray means ground, non-dimensional

time is indicated.

mode is very small (see figu e 10), the mechanical vibrations cannot be dissipated using the piezoelectric action
of the actuators. This was expected as the electromechanical coupling matrix is nearly diagonal and therefore
only a f xed pair of electrical and mechanical modes are coupled.
The previous considerations are conf rmed by the time evolutions plotted in figu e 17, the mechanical

vibration energy is only reduced by the PZT actuation, while after a characteristic time the electric vibration
fades. This means that only the mechanical energy initially exciting the f rst mode is transferred into an
electric vibration mode and then dissipated. The non-negligible part of mechanical energy present in the second
mechanical mode is not transferred into any electrical mode and is not therefore dissipated.
We conclude that in order to further improve the eff ciency of the considered device, more complicated

interconnecting electric networks need to be conceived.
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Figure 17. Time evolution of displacement and electric state at a representitive point of the piezoelectromechanical plate, with impulse
concentrated at P2.

4. Conclusions

The device proposed in this paper is based on the concept of global synergic response of a set of PZT
actuators to a given mechanical vibration mode. This global response is obtained by conceiving an electric
network interconnecting the single actuators. The single electric signal produced by one of them is the potential
drop between a node of the electric net and the ground. Thus, PZT actuation is accompanied by an electric
waveform which evolves together with the mechanical one. In order to study the performances of the conceived
system a mathematical model of its dynamic behavior has been developed. The model is obtained by means of a
homogenization procedure and therefore it gives only rough predictions when short wavelengths of the electro-
mechanical signals are considered. In the framework of this model, it is proven that a criterion exists assuring
electro-mechanical coupling. This criterion allows for the determination of the net-impedances maximizing the
electromechanical energy exchange. The eff ciency of the device is indicated by the very low damping ratios
which it shows when the optimal net impedance is chosen. This is its main advantage when compared with the
devices based on the concept of concentrated actuation (see (Guran and Inman, 1995) and (Fuller et al., 1996)).
Furthermore a remarkable decrease of the needed impedance for electro-mechanical coupling is obtained.
At the present stage the construction of a prototype to prove that the concept proposed can be realized in

practice, – standing the available technological state of the art – is needed. Two experimental set-ups are being
developed at Virginia Polytechnic Institute and State University and Università di Roma La Sapienza.
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