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Exploiting spectral properties of symmetric banded Toeplitz matrices, we describe simple sufficient conditions for positivity of a trigonometric polynomial formulated as linear matrix inequalities (LMI) in the coefficients. As an application of these results, we derive a hierarchy of convex LMI inner approximations (affine sections of the cone of positive definite matrices of size m) of the nonconvex set of Schur stable polynomials of given degree n < m. It is shown that when m tends to infinity the hierarchy converges to a lifted LMI approximation (projection of an LMI set defined in a lifted space of dimension quadratic in n) already studied in the technical literature.

Introduction

Linear system stability can be formulated algebraically in the space of coefficients of the characteristic polynomial. The region of stability is generally nonconvex in this space, and this is a major obstacle when solving fixed-order or robust controller design problems. In the case of discrete-time linear systems, the region of stability is a bounded open set whose boundary consists of (flat) hyperplanes and nonconvex (negatively curved) algebraic varieties. Recent results on real algebraic geometry and generalized problems of moments can be used to build up a hierarchy of convex linear matrix inequality (LMI) outer approximations of the region of stability, with asymptotic convergence to its convex hull, see e.g. [START_REF] Henrion | Solving nonconvex optimization problems -How Glop-tiPoly is applied to problems in robust and nonlinear control[END_REF] for a software implementation and examples. It is generally more difficult to construct convex LMI inner approximations, see [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF] for a survey. Strict positive realness of rational transfer functions and its connection with polynomial positivity conditions are used in [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF] to generate inner approximations which are lifted LMI sets. For polynomials of degree n, they are projections onto coefficient space R n of an LMI set living in a lifted space R n 2 +3n 2

. The LMI set is built around a particular point, the central polynomial, whose relevance in robust control design is explained in [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF]. These lifted LMI regions are also used in signal processing, see e.g. [START_REF] Dumitrescu | Positive trigonometric polynomials and signal processing applications[END_REF]Section 7.3]. They can be derived in a state-space setting with the Kalman-Yakubovich-Popov lemma [START_REF] Karimi | Robust control of polytopic systems by convex optimization[END_REF].

Whereas lifted LMIs are a powerful modeling paradigm (it is currently conjectured that every convex semialgebraic set is a lifted LMI set), the introduction of a large number of lifting variables can be seen as a drawback. It is therefore relevant to build convex LMI inner approximations of the nonconvex stability region without liftings, namely as affine sections of the cone of positive semidefinite matrices. This is the objective of this paper. We use results of functional analysis on sequences of eigenvalues of Toeplitz matrices to derive sufficient LMI conditions for positivity of trigonometric polynomials, and we apply these results to construct a hierarchy of m-by-m LMI inner approximations of the nonconvex stability domain. Moreover we prove that when m tends to infinity, the hierarchy converges asymptotically to the lifted LMI approximation of [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF].

Trigonometric polynomials and Toeplitz matrices

Let p k , k = 0, 1, 2, . . . , n denote real numbers, and define the trigonometric polynomial

z = e iθ → p(θ) = p 0 + p 1 (z + z -1 ) + p 2 (z 2 + z -2 ) + • • • + p n (z n + z -n ) = p 0 + 2p 1 cos θ + 2p 2 cos 2θ + • • • + 2p n cos nθ
of degree n mapping the unit disk of the complex plane onto the real axis.

For a given integer m > n, define the column vector

v m (z) = [1 z z 2 • • • z m-1 ]
T and represent polynomial p as a quadratic form

p(θ) = 1 m v T m (e -iθ )P m v m (e iθ ) (1) 
where

P m =        p 0 m m-1 p 1 m m-2 p 2 m m-1 p 1 p 0 m m-1 p 1 m m-2 p 2 m m-1 p 1 p 0 . . . p 0        (2) 
is an m-by-m symmetric banded Toeplitz matrix.

Define

R m =        p 0 p 1 p 2 p 1 p 0 p 1 p 2 p 1 p 0 . . . p 0       
as the m-by-m moment matrix of p, so named for

p k = 1 2π 2π 0 p(θ)e -ikθ dθ
is the k-th moment, or Fourier coefficient, of polynomial p. Note that R m has the same banded symmetric Toeplitz structure as P m .

Connections between the spectrum of matrix R m and the values taken by polynomial p on the unit circle have been studied extensively. In the sequel, λ min denotes the minimum eigenvalue of a symmetric matrix. In this section we aim at establishing a similar spectral property linking matrix P m and polynomial p. First let us state a few instrumental results.

Lemma 2.1 For all θ it holds λ min (P m ) ≤ p(θ) and as a consequence

lim sup m→+∞ λ min (P m ) ≤ min θ p(θ). (3) 
Proof: From relation (1) and the identity

v T m (e -iθ )v m (e iθ ) = m, it follows that v T m (e -iθ )P m v m (e iθ ) v T m (e -iθ )v m (e iθ ) = p(θ) (4) 
and hence λ min (P m ) ≤ p(θ). When m → ∞ we obtain the desired result.

Lemma 2.2 P m -R m = O(m -1 2 ).
Proof:

Consider P m -R m =        0 1 m-1 p 1 1 m-2 p 2 1 m-1 p 1 0 1 m-1 p 1 1 m-2 p 2 1 m-1 p 1 0 . . . 0       
and hence for the Froebenius norm

P m -R m 2 = n k=1 m -k (m -k) 2 p 2 k = n k=1 1 m -k p 2 k .
We are now ready to state our main result. Proof: Let v be an eigenvector of P m such that v T v = 1 and

P m v = λ min (P m )v. From the equality v T P m v = v T (P m -R m )v + v T R m v,
we obtain with the help of Lemma 2.2 the following inequality

λ min (P m ) ≥ O(m -1 2 ) + λ min (R m ).
Taking the limit, we obtain lim inf

m→+∞ λ min (P m ) ≥ lim m→+∞ λ min (R m ).
Using Lemma 2.1 and Theorem 2.1, we can see that

lim inf m→+∞ λ min (P m ) ≥ lim m→+∞ λ min (R m ) = min θ p(θ)
and hence lim inf

m→+∞ λ min (P m ) ≥ min θ p(θ) ≥ lim sup m→+∞ λ min (P m ).
If x m is a real sequence then it is well-known that if lim inf m→+∞ x m = lim sup m→+∞ x m , then the sequence x m converges to lim m→+∞ x m = lim inf m→+∞ x m = lim sup m→+∞ x m , and this completes the proof.

Corollary 2.1 Assume that polynomial p is positive. Then, there exists a sufficiently large integer m 0 such that for m ≥ m 0 , the Toeplitz matrix P m is positive definite.

Proof: Use Theorem 2.2.

Remark 2.1 Note that when p is positive, matrices P m are not necessarily positive definite if m is not large enough. As a simple example consider the positive polynomial p(θ) = 2 + 2 cos θ + 8 5 cos 2θ. We have

P 3 =     2 3 2 12 5 3 2 2 3 2 12 5 3 2 2    
which is not positive definite, since λ min (P 3 ) = -2 5 . Also, the next Toeplitz matrix ≈ -0.3415. However, one can check that when m ≥ m 0 = 30, matrices P m are indeed positive definite.

P 4 =      

LMI inner approximations of stability domain

Consider a monic polynomial

d(z) = d 0 + d 1 z + • • • + d n-1 z n-1 + z n
of degree n, with coefficient vector d ∈ R n and let us define the set

S = {d ∈ R n : d(z) stable}
where stability is meant in the discrete-time, or Schur sense, i.e. all the roots of d(z) belong to the open unit disk. Many control problems (e.g. fixed-order or robust controller design) can be formulated as linear programming problems in S. Unfortunately S is nonconvex when n > 2, which renders controller design difficult in general. It can therefore be relevant to describe convex inner approximations of S, in particular by exploiting the modeling flexibility of linear matrix inequalities (LMIs), see [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF] and references therein.

An approach consists in choosing a monic polynomial

c(z) = c 0 + c 1 z + • • • + c n-1 z n-1 + z n
which is stable. Once c is given, we define the trigonometric polynomial where the last term is the cosine of the oriented angle between vectors c(e iθ ) and d(e iθ ) in the complex plane. Therefore p c,d (θ) positive implies that the cosine is positive and hence that the angle between c(e iθ ) and d(e iθ ) is less than π 2 in absolute value for any given value of θ. This means that complex number d(e iθ ) also encircles the origin n times when θ range from 0 to 2π, and hence that polynomial d(z) is Schur stable. Set P c m is therefore a valid convex inner approximation of the nonconvex stability region S. Its geometry depends only on the choice of a stable polynomial c(z).

z = e iθ → p c,d (θ) = c(z -1 )d(z) + c(z)d(z -1 ) = 2
Theorem 3.2 Let c(z) be a given stable polynomial. Then P c = lim m→+∞ P c m .

Proof: Use Theorem 2.2.

Finally we make the connection with the results in [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF]. Recall that a discrete-time rational function is strictly positive real (SPR) whenever its real part is strictly positive when evaluated along the unit circle. Polynomial c(z) is referred to as a central polynomial in [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF] since set P c is built around c(z) in the coefficient space. Note however that there is no guarantee that c(z) belongs to P c m if m is not large enough, see Remark 2.1.

Example

Second-order polynomials

We consider second-order polynomials for which the exact stability region is a triangle with vertices (z + 1) 2 , (z -1)(z -1) and (z -1) 2 [1, Example 11.13].

Choosing c(z) = z 2 , we have p c,d (θ) = 2 + 2d 1 cos θ + 2d 0 cos 2θ. The first LMI inner approximation is

P c,d 3 = {(d 0 , d 1 ) : P c,d 3 =   2 3 2 d 1 3d 0 3 2 d 1 2 3 2 d 1 3d 0 3 2 d 1 2   ≻ 0}
and it is represented on the left of Figure 1 within the stability triangle, as claimed by Theorem 3.1. The second LMI inner approximation is

P c,d 4 = {(d 0 , d 1 ) : P c,d 4 =     2 4 3 d 1 2d 0 0 4 3 d 1 2 4 3 d 1 2d 0 2d 0 4 3 d 1 2 4 3 d 1 0 2d 0 4 3 d 1 2     ≻ 0}, see the right of Figure 1.
On the left of Figure 2 we represent the LMI set cubic) and 6480000 + 4536000d 0 -9525600d 2 0 -8820000d 2 1 -4445280d 3 0 + 7717500d 0 d 2 1 + 3111696d 4 0 -4321800d 2 0 d 2 1 + 1500625d 4 1 (a quartic) factor the determinant of the 7-by-7 pencil P c,d 7 . See Figure 3 for a representation of this set and the algebraic components of its boundary.

P c,d 7 = {(d 0 , d 1 ) : P c,d 7 =          
On the right of Figure 2 we represent the LMI set P c,d 50 which, according to Theorem 3.2, is almost equal to the lifted LMI set P c,d = {(d 0 , d 1 ) : ∃ (q 0 , q 1 , q 2 ) :

  q 0 q 1 d 0 q 1 q 2 -q 0 d 1 -q 1 d 0 d 1 -q 1 2 -q 2   ≻ 0},
the projection onto R 2 of an LMI living in R 5 , and which is the union of an ellipse and a triangle, as studied in [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF].

Third order

We consider third-order polynomials for which the exact stability region is delimited by a nonconvex hyperbolic parabolic embedded in a tetrahedron with vertices (z + 1) 3 , (z + 1) 2 (z -1), (z + 1)(z -1) 2 and (z -1) 3 , see [START_REF] Ackermann | Robust control: the parameter space approach[END_REF]Example 11.14]. Choosing c(z) = z 3 , we have p c,d (θ) = 2 + 2d 2 cos θ + 2d 1 cos 2θ + 2d 0 cos 3θ. The first LMI inner approximation is

P c,d 4 = {(d 0 , d 1 , d 2 ) : P c,d 4 =     2 4 3 d 2 2d 1 4d 0 4 3 d 2 2 4 3 d 2 2d 1 2d 1 4 3 d 2 2 4 3 d 2 4d 0 2d 1 4 3 d 2 2     ≻ 0}
and it is represented on the left of Figure 4 within the nonconvex stability region, as claimed by Theorem 3.1. On the right of Figure 4 is represented the LMI set P c,d 50 which, according to Theorem 3.2, is almost equal to the lifted LMI set P c,d .

Concluding Remarks

We have used results on spectra of Toeplitz matrices to construct a hierarchy of convex inner approximations of the nonconvex set of stable polynomials, with potential applications in fixed-order robust controller design. The main difference with respect to previous results is that the inner sets are defined by LMIs (affine sections of the cone of positive definite matrices) without the need to resort to projections and lifting variables. Moreover, our LMI sets belong to a hierarchy converging asymptotically to a lifted LMI inner approximation described previously in [START_REF] Henrion | Positive polynomials and robust stabilization with fixed-order controllers[END_REF]. It is likely that our results can be extended to deal with positive trigonometric polynomial matrices and block Toeplitz matrices, with potential applications in multi-input multioutput control systems.

Sufficient conditions ensuring that a real polynomial is a sum-of-squares (and hence that it is positive) have been proposed in [START_REF] Lasserre | Sufficient conditions for a polynomial to be a sum of squares[END_REF], so it could be insightful to transpose these conditions to trigonometric polynomials and compare with our approach. Results in [START_REF] Lasserre | Sufficient conditions for a polynomial to be a sum of squares[END_REF] are also valid for multivariate polynomials, and this may have applications in fixed-order or robust controller design for multi-dimensional systems.

  It is a corollary of Gábor Szegő's fundamental eigenvalue distribution theorem, see e.g. [5, Corollary 4.2].

,

  is not positive definite either, since λ min (P 4 ) =8 13 -2 √ 509 15

Lemma 3 . 1

 31 c j d k cos lθ and the set P c = {d ∈ R n : p c,d (θ) > 0 ∀ θ ∈ R}. Let c(z) be a given stable polynomial. Then P c ⊂ S. Proof: A geometric proof is as follows. Since polynomial c(z) is Schur stable, when z = e iθ varies along the unit circle, complex number c(e iθ ) has a net increase of argument of 2nπ, or equivalently the plot of c(e iθ ) encircles the origin n times, see e.g. [2, Section 1.3.3] or use Cauchy's argument principle. Notice that the real number p c,d (θ) = c(e -iθ )d(e iθ ) + c(e iθ )d(e -iθ ) is equal to 2|c(e iθ )d(e iθ )| cos(c(e iθ ), d(e iθ ))

LetTheorem 3 . 1

 31 P c,d m be the symmetric banded Toeplitz matrix corresponding to polynomial p c,d , built as in (2), and define the set P c m = {d ∈ R n : P c,d m ≻ 0} where ≻ 0 means positive definite. Note that symmetric matrix P c,d m depends affinely on d, so that P c m is a convex LMI set. Let c(z) be a given stable polynomial of degree n, and let m > n. Then P c m ⊂ S. Proof: Since mp c,d (θ) = v T m (e -iθ )P c,d m v m (e iθ ), positive definiteness of matrix P c,d m implies positivity of polynomial p c,d (θ). Then use Lemma 3.1.

Theorem 3. 3 P 2 d

 32 c = {d ∈ R n : d(z) c(z) SPR}. Proof: Since c(z) is stable, the SPR inequality Re d(e iθ ) c(e iθ ) = 1 (e iθ ) c(e iθ ) + d(e -iθ ) c(e -iθ ) = c(e -iθ )d(e iθ ) + c(e iθ )d(e -iθ ) 2|c(e iθ )| 2 > 0 is equivalent to positivity of trigonometric polynomial p c,d (θ).
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 113 Figure 1: 3-by-3 LMI set (shaded gray, left) and 4-by-4 LMI set (shaded gray, right) within second-order discrete-time stability region (triangle).
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 127 Figure 2: 7-by-7 LMI set (shaded gray, left) and 50-by-50 LMI set (shaded gray, right) within second-order discrete-time stability region (triangle).

Figure 3 :

 3 Figure 3: 7-by-7 LMI set (shaded gray) and the algebraic components of its boundary (thick black lines).

Figure 4 :

 4 Figure 4: 4-by-4 LMI set (shaded gray, left) and 50-by-50 LMI set (shaded gray, right) within third-order discrete-time stability region (delimited by a meshed hyperbolic parabolic embedded in a tetrahedron).
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