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Linear stability of channel entrance flow

Damien Biau

DICAT, University of Genova, Via Montallegro 1, 16145 Genova, Italy

Abstract

The spatial stability of two dimensional, steady channel flow is investigated in the
downstream entry zone for both exponentially and algebraically growing distur-
bances. A model based on previous work is presented for the base flow which repre-
sents a small deformation of plane Poiseuille flow. The base flow evolution towards
the fully developed state comes from the experimental and theoretical study of M.
Asai and J.M. Floryan ”Certain aspects of channel entrance flow”, Phys. Fluids 16
(2004). This flow is found to be more stable than the parabolic Poiseuille flow. The
most destabilizing base flow defect is then calculated using a variational method.
The compromise between the destabilising effect of the defect, which diffuses down-
stream, and the instability growth is found to be insufficient to provoke transition
in the downstream laminar flow.

Key words: Hydrodynamic instability, channel flow.
PACS: 47.15.Fe, 47.20.-k, 47.27.nd

1 Introduction

This work is concerned with the stability properties of entry channel flow.
The disturbance growth mechanism in parallel and quasi-parallel flows is of
great interest to understand transition to turbulence and has been the object
of several theoretical and experimental studies.

For simple shear flow cases, such as the Poiseuille flow, the experimental flow
behavior and the theoretical results are quite different. Transition to turbu-
lence is observed for minimum Reynolds number (based on the half channel
height and the centreline velocity) around Re = 1000 (Nishioka and Asai [12]),
well below the critical value provided by linear stability theory, i.e. Rec = 5772
(Orszag [13]). The transition may occur at Reynolds number lower than 5772
because of the subcritical character of the instability 1 .

1 The subcritical transition cannot be attributed to the finite spanwise size of
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The stability characteristics of shear flows are extremely sensitive to external
perturbations. This property, linked to the non-normal nature of the dynami-
cal disturbances operator, is crucial in determining the outcome of laboratory
experiments. Research on the topic of transition in shear flows in the last ten
years has been concerned particularly with identifying worst case scenarios,
i.e., those initial (or inlet) conditions responsible for the largest growth of
disturbances, in a linearized setting. The disturbance can be distinguished by
their growth: exponential or algebraic. The physical mechanisms describing
the origin of disturbance growth may be extracted from the Reynolds-Orr
equation describing the time evolution of the fluctuations kinetic energy E.
For a parallel shear flow U(y) this equation is written:

d E

dt
= −

∫

y

Uy < uv > dy − 1

Re

∫

y

< (∇× ~u) > dy, (1)

where < •, • > designs an averaged value in streamwise and spanwise di-
rections. A perturbation can be amplified if the production term − ∫y Uy <
uv > dy overcome the dissipation − 1

Re

∫

y < (∇ × ~u) > dy. This equation
permits a general point of view on the different mechanism of instability. The
production term can be positive in two manners. First the phase shift at the
wall between the streamwise and wall normal velocity perturbations implies
a constructive interaction at the origin of exponentially growing Tollmien-
Schlichting waves. Alternatively, by the lift-up mechanism, wall normal fluc-
tuation induces streamwise velocity fluctuation or streaks (Butler and Farrell
[4], Trefethen et al. [18]). This lift-up mechanism implies algebraic amplifica-
tion, which scales with the Reynolds number.

If a perturbation attains - even if only transiently - a sufficiently large am-
plitude, some nonlinear boot-strapping effect will bring the system to tran-
sition. This interpretation of linear stability theory has led many scientists
studying transition in shear flows to almost abandon the traditional single-
mode growth of the linear stability approach which captures the asymptotic
behavior of the system, to pursue studies of nonmodal transient growth, opti-
mal perturbations, and pseudospectra. The concept of three-dimensional op-
timal disturbances has been introduced by Butler and Farrell [4] and pursued
by many others. All of the studies on optimals in wall-bounded shear flows
(whether temporal or spatial) have shown that streamwise vortices transform
into streaks downstream (in time or space) and that the disturbance energy,
mostly carried by the streaks, can grow by orders of magnitudes over its initial

the channel. Tatsumi and Yoshimura [17] have investigated the linear stability of
Poiseuille flow in a rectangular duct. The critical Reynolds number increases mono-
tonically while decreasing aspect ratio. For large channel, the asymptotic value is
in agreement with the infinite one (i.e. Rec → 5772)
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value. The recent book by Schmid and Henningson [16] provides a complete
account of the recent view of transition.

In this article we are interested on the influence of weak base flow distortions
on linear stability results. The base flow uncertainty of the stability equation
can be represented with δU , a possibly finite, but typically small, distortion
of the idealized base flow Uref (i.e.: U = Uref + δU). The δU -pseudospectrum,
introduced by Bottaro et al. [3], is defined as

ΛδU (L) = {α ∈ C : ǫ ∈ Λ(L(Uref + δU)), for some δU with ‖δU‖ ≤ ǫ} ,

where Λ(L) is the spectrum of the linear stability operator L. The spectrum
of L(U + δU), is a subset of the unstructured pseudospectrum studied by Tre-
fethen et al. [18]. It is well known that the pseudospectrum of a hydrodynamic
stability operator can significantly deviate from its spectrum when the opera-
tor is non-normal, indicating the strong sensitivity of non-normal operators to
external excitations, and the consequences of this fact in hydrodynamic stabil-
ity theory have been explored in details in a seminal paper by Trefethen et al.

[18]. In particular, it has been shown that the pseudospectrum can protrude
far into the unstable half plane for nominally subcritical conditions. The most
destabilising distortion, the so-called minimal defect, can be calculated by a
variational approach. This problem has been recently addressed in the tempo-
ral setting by Bottaro et al. [3] for Couette flow and in the spatial setting by
Gavarini et al. [6] for pipe Poiseuille flow. The approach has been extended by
Hwang and Choi [8] to the case of a two-dimensional wake in order to suppress
or enhance the absolute instability.

The main objective of the present work is to investigate the stability properties
of two-dimensional, steady entry flow, for both exponentially and algebraically
growing disturbances. The paper is organized as follows. The model of entry
flow is described in section 2. The following section is dedicated to the linear
stability analysis of realistic entry flow accruing from experiments by Asai and
Floryan [1]. In the last section the worst possible entry flow is identified, for
subcritical values of the Reynolds number, by optimization method.

2 Base flow defect formulation

The channel flow induced by a streamwise pressure gradient is considered.
The mean velocity is made dimensionless using the maximum velocity U0,
the vertical distance scales with the half-channel height h, so that the fully
developed base flow reads Uref(y) = 1−y2. In this section we present a model
of the channel entry flow, downstream of the channel inlet, where the evolution
has a universal character. Recent review of the relevant literature as well as
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a detailed description of the flow, in the case of channel entrance with sharp
corners, are given in reference [15].

We take as a characteristic streamwise scale L = hRe, as in Prandtl’s bound-
ary layer approximation. This is the only difference with the model presented
by Sadri and Floryan [15] and Asai and Floryan [1]. By proceeding as we do,
the Reynolds number is scaled out in the dimensionless equations. From the
physical point of view, the normal direction is characterized by diffusive effects
and the longitudinal direction is dominated by advection, which justifies the
Reynolds number in the ratio of the different characteristic lengths. By scal-
ing the normal coordinates y with h, the streamwise coordinate x with hRe,
and the streamwise velocity with U0, it follows that U0/Re should be used as
the scale for the normal velocity V . The pressure is normalized by ρ(U0/Re)

2,
with ρ the density of the fluid.

The dimensionless mean flow (U, V, P ), supposed to be two-dimensional and
stationary, may be represented as a steady deviation superposed to the fully
developed Poiseuille flow Uref = 1− y2, Vref = 0, dPref/dx = 2/Re):

U(x, y) = Uref(y) +
∑

κnUn(y) e
λn(x−x0),

V (x, y) =
∑

κnVn(y) e
λn(x−x0),

dP/dx = dPref/dx +
∑

κnPn e
λn(x−x0).

(2)

The streamwise coordinate could be translated along x so that we can in-
troduce a fictitious origin x0. In the following x0 is fixed to zero. The flow
is supposed to be slightly perturbed from plane Poiseuille flow, so the equa-
tion describing the dynamics of the disturbance is be linearized around the
mean state (Uref , Pref). This equation for the streamfunction, defined by
ψ′
n = Un, − λnψn = Vn, takes the form of a generalized eigenvalues problem:

d4 ψn

dy4
− λn

(

Uref
d2 ψn

dy2
− U ′′

refψn

)

= 0, (3)

associated with homogeneous Dirichlet and Neumann boundary conditions:
ψn = ψ′

n = 0 for y = ±1. The first two modes are λ1 = −21.680/Re,
λ2 = −28.221/Re and correspond, respectively, to sinuous (antisymmetric)
and varicose (symmetric) modes, cf. figure 1.

The particular case dP/dx = 0, corresponding to a sinuous disturbance, leads
to a Sturm-Liouville problem. In this form the projection weights κn are simply
determined by an appropriated scalar product; details are given in Appendix
A.
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Fig. 1. Streamwise velocity deviation corresponding to the first and second eigen-
functions of equation (3), normalized with their maximum.

3 Linear stability of Asai and Floryan [1] experimental flow

The model for the base flow measured by Asai and Floryan [1] is used. The
contraction section used in the experiment is symmetric with respect to the
midplane of the channel. So measurements show a deviation shape very similar
to mode 2 in expansion (2) (i.e. κ2 ≫ κn, for n = 1, 3, 4, 5, ...).

U(x, y) = Uref(y) +AU2(y) e
λ2x,

V (x, y) = AV2(y) e
λ2x,

dP/dx = dPref/dx +AP eλ2x.

(4)

A quantifies the deviation from Poiseuille flow. Asai and Floryan [1] give a
relation between the velocity amplitude A and the pressure amplitude as AP =
−A/Re d2U2/dy

2|y=−1.

3.1 Modal analysis

First, we study the evolution of disturbances with a modal analysis based on
the parallel flow assumption. This classical stability analysis is focused on the
sign of the least stable mode, labeled as Tollmien-Schlichting mode, which
is expressed in wave like form in homogeneous directions as: q(y)ei(αx+βz−ωt).
The interpretation of the results depends on how the governing equations are
solved. Three type of analysis can be used. The analysis making the complex
frequency ω the eigenvalue, fixing the streamwise wave number is called a
temporal stability analysis. On the other hand, if ω is fixed real and α is the
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Fig. 2. Base flow profiles for different disturbance amplitudes.

eigenvalue, a spatial stability analysis is performed. If the relationship between
α and ω is restricted such that the combination of both value defines a point
of vanishing group velocity, the resulting analysis determines the absolute
stability of the flow field.

In temporal stability analysis, the disturbance is applied in space and observed
as it evolves in time. The stability of the flow is indicated by the imaginary
part defining the growth rate of the disturbance whereas the real part defines
the circular frequency. Temporal stability analysis was the first type of linear
stability analysis performed in flows, in part because computationally these
calculations are easier to carry out. In spatial stability analysis, the distur-
bance is applied in time and the evolution of the disturbance is observed in
space. Spatial stability result can thus be easily compared to experimental
results where usually the flow is excited at a point and the effects of the ex-
citation is studied as the flow evolves downstream. In addition to these two
types, absolute stability analysis is an important tool. An absolutely unstable
flow field will not allow excitation of any other modes and instead behave like
a self-excited oscillator. To determine absolute stability, all points with vanish
group velocity are found. If any of these points are found to have a positive
temporal growth rate, the flow is absolutely unstable. The saddle point con-
dition is expressed mathematically by: dω

dα
(α0) = 0. An upstream mode is a

mode whose group velocity is negative with respect to the base flow direction.
A downstream mode corresponds to positive group velocity.

The approach adopted here is spatial, implying that the eigenvalue problem
is solved for α ∈ C with ω and β real. In compact form this system can be
noted as Lq̃n = αnq̃n. The modal stability, for arbitrary base flow distortion,
was studied earlier by Hidfi et al. [7]. The work of these authors has been
conducted in the temporal framework, which is simpler but not as physically
relevant as the spatial framework for the kind of open flows examined here.
Although the neutral curve is independent of a spatial or temporal viewpoint,
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these two problems are quite different, because the spatial problem is elliptic.
In fact, with the possible exception of the unstable mode, the upper half of
the complex α-plane contains downstream decaying modes while the lower
half corresponds to upstream decaying modes. The spatial approach permits
a direct comparison between the streamwise evolution of the base flow and
the growth of the unstable mode.

Using Squire theorem, the modal analysis can be reduced to the Orr-Sommerfeld
equation with β = 0:

{(

−iω + iαU − 1

Re
∇2
)

∇2 − iαU ′′

}

v = 0 (5)

The growth rate and corresponding phase velocity c = ω/αr contours, in the
(Re, A) plane, are displayed in figure 3.
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Fig. 3. Growth rate imag(α) of TS mode (continuous lines) and corresponding
phase velocity c (dotted lines) in Reynolds number Re versus the amplitude A
plane. The shaded regions are unstable.

The distortion on the entry flow displays a stabilizing effect on the viscous
instability (Tollmien-Schlichting waves). For undisturbed Poiseuille flow, the
critical Reynolds number is 5772. This threshold increases with the defect’s
amplitude. In addition, for high distortions an inviscid intability appears,
linked to an inflection point of the mean velocity profile. This inviscid un-
stable mode is solution of Rayleigh’s equation:

{

(−iω + iαU)∇2 − iαU ′′
}

v = 0 (6)

The flow present an unstable inviscid mode for amplitude A lower than −0.11.
The associated phase velocitiy is larger than for the viscous Tollmien-Schlichting
modes c(ω) = ω/αr ≈ constant = 0.85.
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3.2 Transient growth

As a next step, we investigate an algebraically growing perturbations, that
cannot be attributed to single-mode exponential growth. The search for initial
condition for transiently growing perturbations usually starts with the search
of optimal perturbation, i.e. the search of the inlet condition that provides the
largest energy growth. Consequently, we define the maximum kinetic energy
amplification Gmax as,

Gmax = max
∀x∈[0;∞[

‖q(x)‖E ,

with the normalization, ‖q(0)‖E = 1. The subscript E denotes an energetic
norm defined, in continuous and discrete form, as:

G

Re2
=

∫+1
−1 u2 dy|x=xopt

∫+1
−1 v2 + w2 dy|x=x0

=
qTHout q|x=xopt

qTHin q|x=x0

(7)

The disturbances corresponding to this maximum take the form of streamwise
elongated and steady structures. In this case the parallel base flow assumption
is no longer valid and the characteristic scales for the perturbation must be
identical to those for the base flow defined in section 2. The algebraically
growing perturbations can be adequately described by the use of linearized
equations in which the long scale (hRe) is used to normalize streamwise length,
and the short scale (h) is used for the cross-stream directions. Applying these
scales to the linearized Navier-Stokes equations it follows that the disturbance
equations, at leading order, are independent of the Reynolds number and
parabolic in the streamwise direction. Moreover, the linearization permits a
mode-by-mode study in Fourier space. Along the homogeneous directions the
perturbations are expressed in Fourier-like form : exp(iβz − iωt). Finally, the
disturbance equations take the symbolic form Aqx = Bq, which in expanded
form, read:

ux + vy + iβw = 0

−iωu+ (Uu)x + V uy + Uyv = uyy − β2uzz

−iωv + (V u+ Uv)x + 2(V v)y + iβV w = −py + vyy − β2vzz

−iωw + (Uw)x + (V w)y = −iβp+ wyy − β2wzz

(8)

These equations are associated to homogeneous Dirichlet boundary conditions
at the walls. This system was previously used by Luchini [11] for optimal
perturbations in non-parallel boundary layer. The inflow condition for the
equations (8) was computed using the discrete Lagrange multipliers method:
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a Lagrangian functional is defined as

L =
G(L)

Re2
+

L
∫

0

p̄T [(Aqx)−Bq] dx,

maximization of L leads to the unconstrained set of equations:

q(x = 0, y) = AH−1
in p(x = 0, y),

(Aq)x = Bq.

p(x = L, y) = (ĀT )−1Houtq(x = L, y),

ĀTpx = −B̄T p.

(9)

The perturbations are normalized such that the inflow energy is equal to one.
The equations are discretized using a Chebyshev collocation method in the
wall normal direction and a finite difference scheme in the streamwise direc-
tion. The iterations are pursued until the subsequent changes in the maximal
gain dropped below a threshold value, fixed at 10−4. The parameters ωopt, βopt
and xopt, corresponding to the largest possible gain, at fixed Reynolds number
and amplitude, are obtained using a shooting method. The optimal frequency
was found to vanish in all cases. The maximum gain Gmax/Re

2 and corre-
sponding βopt and xopt are drawn in figure 4 as function of the initial defect
amplitude.
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Fig. 4. Maximum gain (G), optimal streamwise location xopt and optimal spanwise
wave number (β) versus the amplitude A.

The streaks presents a weak sensitivity to the mean flow distortion, in contrast
to TS waves. When the defect amplitude increases, the streaks maximum am-
plitude decreases slowly. Simultaneously, the corresponding location decreases
and the streaks’ width increases. An example of optimal perturbation is pre-
sented in figure 5.

The optimal perturbations in the entry channel flow are very similar to those
found for the unperturbed Poiseuille flow (cf. Biau and Bottaro [2]).
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Fig. 5. Optimal inflow disturbances at x = 0 (left) and resulting streaks at
x = xopt/Re (right) for A = −0.2. The inflow perturbation is represented through
the cross-stream velocity (vectors). The outflow is displayed with isolines of the
streamwise velocity; the positive and negative values are respectively denoted by
continuous and dotted lines.

4 Worst-case scenario

In the previous sections the stability properties of realistic entry flows was
investigated. The results show a net stabilizing effect. Now we are interested
in finding the worst, most destabilizing, flow distortion, following the method
developed by Bottaro et al. [3]. Bottaro et al. described a technique, in the
temporal framework, to identify optimally configured defects of the base flow
capable of rendering Couette flow linearly unstable. The work has been ex-
tended to the spatial frame by Gavarini et al. [6] for the case of pipe Poiseuille
flow. This work has shown that the optimal base flow distortion is efficient to
provoke transition in laminar pipe flow. Hwang and Choi [8] have investigated
the effect of basic-flow modification on the absolute instability in a wake at low
Reynolds number. Using the method of calculus of variation, they optimally
modify the basic flow to suppress or enhance the absolute instability. For a
two-dimensional parallel model wake and a circular-cylinder wake, this work
shows that the positive and negative velocity perturbations to the basic flows,
respectively, at the wake centreline and separating shear layer suppress the
absolute instability. Here, the same technique is used for entry channel flow
in subcritical conditions, by considering disturbances developing in space.

The deviation from the undisturbed Poiseuille flow is quantified by a kinetic
energy norm:

ǫ =
∫

y

(U(x = 0, y)− Uref(y))
2 dy. (10)

The laminar basic flow is specified by projection on the set of eigenfunction
defined in section 2, equation 2). The inflow distortion δU(x = 0, y) is obtained
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by an optimisation method. The mean velocity profiles are available at any
streamwise location (x) using the discrete projection:

δU(x, y) =
∑

n

Qn(κne
−λnx) with κ = Q−1 δU(x = 0, y). (11)

The matrix Q is constituted by the eigenfunctions of equation (3), i.e. Qnm =
Un(ym).

4.1 Modal analysis

Operators resulting from perturbations of the base flow are subject to Squires
theorem and transformation. Hence, we limit ourselves here to considering only
the Orr-Sommerfeld equation. An infinitesimal, locally parallel variation δU
in the Poiseuille flow, injected into the Orr-Sommerfeld equation, symbolically
written as LOS, leads to:

LOS(U + δU ;α + δα)(v + δv) = 0, (12)

which can be rewritten, after linearization, as:

LOS δv + δU
∂LOS

∂U
v + δα

∂LOS

∂α
v = 0. (13)

In order to isolate the eigenvalue variation, we now project onto the ad-
joint subspace spanned by a(y), with the scalar product (·, ·) defined by
(p, q) =

∫

y p
∗q dy. The function a(y) is solution of the adjoint Orr-Sommerfeld

equation:

LOS
†a =

{[

−iω + iα∗U +
1

Re
∇2
]

∇2 + 2iα∗U ′∂y

}

a = 0, (14)

with homogeneous Dirichlet and Neumann boundary conditions. The variation
in a given eigenvalue arising from an arbitrary variation δU is:

δα =

+1
∫

−1

GUδU dy, (15)

where the sensitivity function GU is an appropriate combination, after inte-
gration by parts, of direct and adjoint eigenfunctions of the given mode:

GU = αa∗∇2v − α(a∗v)′′, (16)
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with the direct-adjoint normalization:

−(a, ∂αLOSv) =

1
∫

−1

a∗ [U ′′ + 2α(αU − ω)+(
4iα

Re
− U

)

∇2
]

v dy = 1.

Using Lagrange multipliers and following the method described in Bottaro et

al. [3], we obtain :











U = Uref +
Im(GU (x=0,y))

2λ

λ = −
√

1
4ǫ

∫

y (Im(GU(x = 0, y)))2 dy

For the case of undisturbed Poiseuille flow, the shape of the sensitivity function
(Im(GU)) shows that Tollmien-Schlichting mode is mostly sensitive to near–
wall symmetric forcing of the mean flow. The most sensitive mode, which
maximises the imaginary part of the sensitivity function ‖Im(Gu)‖∞ with
respect to ω, is followed during the iterative process. The final results do
not appear to depend on the choice of the tracked mode (for example some
computations have been done with the least stable mode leading to the same
final pseudo-mode). The results are presented in figure 6, where the growth
rate is represented in the plane Reynolds number, in the range 1000 < Re <
4000, versus amplitude of the defect, in the range 5 × 10−6 < ǫ < 10−4.
The minimum energy threshold satisfies the Reγ-scalings, with γ = −3/2;
corresponding to γ = −3/4 for the amplitude threshold.

Re

ε

−0.1

−0.2
−0.3

0.9

0.8

0.7

0.6

4 10310
3

10
−5

10
−4

Fig. 6. Iso-αi (continuous lines) in Reynolds number (Re) and defect energy norm
(ǫ) plane. The stable domain is shaded. The dashed lines are isolines of the frequency
ω of the most unstable mode.

In dynamical system point of view, the basin of attraction of laminar state
shrinks for large Re as Reγ say with γ < 0, so that small but finite pertur-
bations lead to transition. Some authors have tried to describe this property

12



with a scaling law with the amplitude of the perturbation triggering transi-
tion obeying a power law (Reγ) with negative γ value. Trefethen et al. [18],
by using arguments based on dominant balance of non-normal growth and
nonlinear-feedback conjectured that γ < −1. Chapman [5], through a formal
asymptotic analysis of the Navier-Stokes equations, found that for streamwise
initial perturbations γ = −3/2 (factoring out the unstable modes), while for
oblique initial perturbations γ = −5/4. An experimental evidence for the value
of γ = −3/2 for channel flow is proposed by Philip et al. [14]. The disturbance
amplitude (the H∞ norm) varies like Re−3/2 in agreement with the theoretical
value obtained by Chapman. The discrepancy between the value found here
and the previous one probably comes from the two-dimensional assumption
for the mean flow defect.

Some representative deviation shapes are plotted in figure 7. The mean flow

−0.03 −0.02 −0.01 0 0.01 0.02
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0
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∆ U 
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x Re=0
x Re=0.8
x Re=1.6

Fig. 7. Minimal defect for Re = 2000, ǫ = 5 × 10−5 and ω = 0.773 at various
dowstream locations.

defect is damped downstream so the the resulting instability results from the
balance between the base flow defect diffusion against the growth of the insta-
bility. In order to compare these two phenomenon the so-called eN method is
used. The case is considered of Re = 2000 and ǫ = 5×10−5; the corresponding
optimal frequency is ω = 0.773. A local stability analysis of this nearly parallel
base flow is performed to determine the growth rate of the locally unstable
disturbances for various frequencies ω and various streamwise locations. The
stability diagram of amplified Tollmien-Schlichting waves as a function of the
streamwise distance is depicted in figure 8 (left).

Let us consider now a wave which propagates downstream at a fixed fre-
quency ω. The growth rate presented in figure 8 (left) shows that this wave
is amplified up to a certain distance and is damped further downstream be-
cause of the defect diffusing away. At any station x > 0, the wave amplitude
ATS can be related to its initial amplitude ATS

0 by the relation ATS/ATS
0 =

exp(
∫ x
0 −αi dx). The initial amplitude is linked to external noise through some
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Fig. 8. Iso-growth rate (αi) for Re = 2000, ǫ = 5 × 10−5. Associated N factor for
ω = 0.5, 0.55, ... 1.

receptivity mechanism. The streamwise variation of the natural logarithm
ln(ATS/ATS

0 ) is plotted in figure 8 (right) for several frequencies. The con-
tinuous line, representing the envelope of these curves, is called the N factor:
N = max ln(ATS/ATS

0 ); ∀ω. At each location, N represents the maximum
amplification factor of the disturbances. As can be seen in figure 8 this am-
plification factor is too weak to overcome the viscous damping of the mean
flow defect defect (figure 7), and the N -factor maintains very small values. For
comparison purposes, in the Blasius boundary layer transition is triggered for
N = 9.

4.2 Transient growth

To quantify the deviation from the undisturbed Poiseuille flow we use the pre-
vious definition of the kinetic energy (see equation 10). The gain is defined with
the energy transfer for the mean flow U to the disturbances: − ∫xy uv dU/dy dydx;
the lagrangian functional is thus:

L = −
∫

xy

uv
dU

dy
dydx− λ(

∫

y

(U(x = 0, y)− Uref)
2dy − ǫ)

Note that for computational conveniency the gain is defined from a term which
arises from the parallel flow assumption. We obtain:











U = Uref +
1
2λ

∫

x
∂(uv)
∂y

dx

λ = −
√

1
4ǫ

∫

y

(

∫

x
∂(uv)
∂y

dx
)2

First the perturbations are optimized following the equations 9, then the base
flow defect is optimized. The process is repeated until the subsequent change
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in the maximal gain dropped below a threshold value, fixed at 10−3. The
frequency ω is fixed to zero in all cases. The maximum gain Gmax/Re

2 and
corresponding βopt and xopt are drawn in figure 9 as function of the initial
defect ’amplitude’

√
ǫ.
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Fig. 9. Maximum gain (G), optimal streamwise location xopt and optimal spanwise
wave number (β) versus defect amplitude

√
ǫ.

The algebraically growing perturbations are weakly sensitive to base flow de-
viation, even for high defect amplitude. The gain is almost three times greater
than in the Poiseuille case and the optimal streaks are slightly modified by the
defect. The base flow distortion presents an increasing shear near the position
of maximum amplitude of the streaks but is strongly damped downstream
(figure 10).
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Fig. 10. Distorted base flow (left) and optimal streaks at x = xopt = 0.0499 (right);
for ǫ = 0.04, β = βopt = 1.843.

5 Conclusions

In this study, spatial linear stability theory has been used to examine the sta-
bility of channel entrance flow. The presence of the entrance has a stabilizing
effect in accordance with the well-know result that shear flows in a pressure
drop region (accelerated flow) are more stable than those in the pressure de-
crease region (decelerated flow). For weak base flow distortion, in a negative
pressure gradient (accelerated flow), the mean velocity profile has no inflection
point and the instability - if it exists - is very weak. So the critical Reynolds
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number increases and the instability region decreases. For strong distortions,
an inflection point gives rise to an inviscid instability described by Rayleigh
theory. Secondly, the optimal distortion was determined, for both exponential
and algebraic growing perturbations, but the instability growth is too weak
to overcomes the viscous damping of the defect. Far downstream the defect is
damped and critical values tend to the classical results for Poiseuille flow.

These conclusions are drawn under a strong hypothesis on the base flow dis-
tortion which is supposed to be weakly two-dimensional, i.e. depending on the
wall normal coordinates with a slow streamwise variation. Work in progress
focuses on two directions. First the stability of a base flow distortion which
depends on spanwise coordinate, to try and capture the defect of minimal
norm, taking the form of spanwise-periodic streaks, which could cause transi-
tion in subcritical duct flow. The final goal will be to compare and link such
steady, finite amplitude structures to experimental observations of streaks and
self-sustained structures in channel flows. Alternatively a streamwise influence
coming from the leading edge induces a strong non normality in the stream-
wise direction (global instability) which must influences the receptivity and
instability process.
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A Receptivity to inflow disturbances

For boundary layer flows, Libby & Fox [9] proposed a procedure to calcu-
late the mode amplitude from an inflow condition imposed at x0. Luchini [10]
extended this results to overcome the leading edge singularity linked to alge-
braic form. In channel flow, without singularity at x0 = 0, the Sturm–Liouville
problem obtained for the auxiliary function H = (ψ/U)′ is:

(U3H ′)′ + (3U ′′U2 − λU4)H = 0, (A.1)

with the associated orthogonality relation :

1
∫

−1

HkHldy = Ckδkl Ck =

1
∫

−1

H2
kdy,

with δkl the kroneker symbol. The defect is expanded in the form:

δψ(x, y) =
∑

k

Akψk(y) e
λ(x−x0),

so that the amplitude Ak can be expressed using inflow condition:

Ak = C−1
k

∫

y

(

δU(x0, y)

U(y)

)′ (

ψk(y)

U(y)

)′

U4 dy.

Moreover, multiplying equation A.1 by ψk and integrating shows that eigen-
values λ are real and negatives, which implies that the base flow distortion is
damped in the downstream direction.
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