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THE MATHEMATICS OF COMPUTING BETWEEN LOGIC

AND PHYSICS

GIUSEPPE LONGO AND THIERRY PAUL

Abstract. Do physical processes compute? And what is a computation?
These questions have gained a revival of interest in recent years, due to
new technologies in physics, new ideas in computer sciences (for example
quantum computing, networks, non-deterministic algorithms) and new
concepts in logic. In this paper we examine a few directions, as well as
the problems they bring to the surface.
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2 G. LONGO AND T. PAUL

1. Introduction

Digital machines, by their extraordinary logical and computational capa-
bility, are changing the world. They are changing it with their power and
their originality, but also with the image of the world they reflect: they
help perform thousands of tasks and enable radically new ones, they are
an indispensable tool for scientific research, but they also project their own
mathematical structure upon the processes they are involved in. These ma-
chines are not neutral, but are in fact extremely original and have a complex
history, based on several turning points in terms of the thinking which en-
abled to invent them. They synthesize a vision and a science which is very
profound. They are “alphabetic” in the specific sense of the encoding of
human language, produced by a bagpipe over strings, by means of discrete
and meaningless letter-units, an incredible invention which dates back 5,000
years. They are Cartesian in their software/hardware duality and in their
reduction of thought to the elementary and simple steps of arithmetic calcu-
lus. They are logical by stemming from a logico-arithmetical framework, in
the tradition of Frege and Hilbert, during the 30s (“proofs are programs”).
And this by the final remarkable invention, by Gödel: the number-theoretic
encoding of any alphabetic writing. For all of these reasons, they contribute
to a reading of nature based on the computable discrete, from the alphabet
to arithmetic, on a space-time framed within discrete topology, of which the
access and the measurement are exact, just like in digital databases.

We will see why confounding physics, despite its great “mathematicity”,
with calculus, in any form whatsoever, seems as a mistake to us. First,
the idea that physics “reduces to solving” equations is a mistaken idea. To
be assured of this, one needs only to consider that a great part of physics
concerns variational problems in which the search of a geodesic differs greatly
from the search for the solution to an equation, without mentioning the
singular quantum situation, to be discussed below, nor the life sciences, which
are not very mathematized and for which the notions of invariant and of the
transformation which preserves it, central to mathematics, are far from being
“stabilized”.

The new importance of digital machines, in particular in the natural sci-
ences, requires a thorough analysis of the relationship between computations
and natural processes. We will focus here on the relationships between com-
putations and, among the physical processes, those which we consider as
“natural”, that is, those that occur “independently” of human intervention
(because a machine also produces, or even is, a physical process, but it is a
result of a human construction which is extremely original and theoretically
rich). We will then ask the question: Do physical processes compute?
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2. Computability and continuity

The naive, and unfortunately highly widespread response to this question
is that yes, everything can be seen in terms of alphanumeric information and
its computational elaboration. This is reminiscent of the age of the clock,
when everything was clockwork - and when iatromechanics was inventing
modern anatomy, though working on the physiology of hydraulic pumps, the
medicine of bloodletting. This thesis, under different forms, is often called the
“physical Church thesis”. So let’s return briefly to this thesis in its original
form, which is purely logico-mathematical and in no way physical.

Church’s thesis, introduced in the 30s after the functional equivalence
proofs of various formal systems for computability (and concerning only
computability over integers), is an extremely solid thesis: it ensures that any
finitistic formal system over integers (a Hilbertian-type logico-formal system)
computes at best classical recursive functions, as defined by Gödel, Kleene,
Church, Turing.... This thesis therefore emerged within the context of math-
ematical logic, as grounded on formal systems for arithmetic/discrete com-
putations: the lambda-calculus (Church, 1932), a system for the functional
encoding of logical deductions, and Turing’s Logical Computing Machine1,
were the motors of various equivalence proofs2.

The very first question to ask is the following: If we broaden the formal
framework, what happens? For example, if we consider as basic support for
computation a set “greater” than the natural integers, is this invariance of
formalisms preserved? Of course, if we want to refer to continuous (differen-
tiable) physics-mathematics, an extension to consider may be the following:
What about the computational processing of these computable “limit” num-
bers which are computable real numbers? Are the various formalisms for
computability over real numbers equivalent, when they are maximal? An
affirmative response could suggest a sort of Church thesis “extended” to
this sort of computational “continuity”. Of course, the computable reals are

11936: “A man provided with paper, pencil and rubber, and subject to a strict discipline,
is in effect a Universal (Turing) Machine”, [29]. In fact, the reader/writer needs only to
know how to read/write 0 and 1 on an endless length of tape, then to move one notch
to the right or to the left, according to given instructions (write, erase, move right, move
left) to compute any formally computable function (see the next note).

2The other definitions of computability are more “mathematical”: they propose, in
different ways, arithmetic function classes which contain the constant function 0, the
identity and the successor functions +1, and which are closed by composition, by recursion
(in short: f(x + 1) = h(f(x), x)) and by minimization (that is, f(x) = miny[g(x, y) = 0]).
It is a mathematically non obvious remark that by reading/writing/moving 0s and 1s left
and right on a tape it is possible to calculate all of these functions: there lies the genius
of Turing and the origin of the 0 and 1 machine which will change the world.
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countably many, but they are dense in the “natural” topology over Cantor’s
reals, a crucial difference as we shall see.

With this question, we then begin to near physics, all the while remaining
in a purely mathematical framework, because mathematics on the continuum
of real numbers constitutes a very broad field of application to physics, since
Newton and Leibniz. In particular, it is within spatial and often also temporal
continuity that we represent dynamical systems, that is, most mathematical
models (in logical terms: mathematical formalisms) for classical physics. This
does not imply that the world is continuous, but only that we have said many
things thanks to continuous tools as very well specified by Cantor (but his
continuum is not the only possible one: Lawvere and Bell, say, [6], proposed
another without points, but one which is unfortunately not richer for the
moment in mathematical terms - although some may hope to use it to better
address the geometry of quantum physics; so, let’s rest on Cantor for the
time being).

Now, from this equivalence of formalisms, at the heart of Church’s thesis,
there remains nothing regarding computability over real numbers: the models
proposed, in their original structure, are demonstrably different, in terms of
computational expressiveness (the classes of defined functions).

Today, it is possible to roughly group different formal systems into three
main groups (however not exhaustive ones), in order to perform computations
over real numbers:

- recursive analysis, which develops the approach to Turing’s computable
real numbers, or even the Turing Machine itself, by an infinite extension
recently formalized by Weihrauch (two tapes, one which can encode a com-
putable real hence infinite number, and the other which encodes the program,
see [33]; from the mathematical standpoint, the idea was first developed by
Lacombe and Grezgorzcyk, in 1955-57);

- the Blum, Shub and Smale BSS model (an infinite tape and a little control
system, see [7]);

- the Moore-type recursive real functions (defined in a more mathemati-
cal manner: a few basic functions, and closure by composition, projection,
integration and search for the zero, see [22]);

- different forms of “analog” systems, among which threshold neurons, the
GPAC (General Purpose Analog Computer, attributable to Shannon, [28],
of which a first idea preceded classical recursivity: V. Bush, M.I.T., 1931,
[10]).

Each of these systems has its own interest. Besides they confirm the solid-
ity of Church’s original thesis, since the restriction to integers of all known
models of computable continuity again produces classical recursivity (or no
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more than that). What else could we say, concerning inclusions, links, demon-
strable passages, as for these formalisms for computability on continua?

Of course, it is relative continuity: computable real numbers do not form
a Cantor-type continuum, as we said; they are a denumerable set of measure
0. However, their “natural” topology is not the discrete topology (and math-
ematicians know what “natural” means: the discrete topology over Cantor
reals is not natural, one does nothing with it). This is the crucial mathemat-
ical difference from computability over the isolated points of the countable
discrete.

The difference is crucial with regard to physical modelization for the follow-
ing reasons. In physics, the (Cartesian) dimension of space is fundamental:
relativity and string theory, to use some examples, make it into a constitutive
issue; but also, the propagation of heat, or the mean field theory, to remain
in classical physics, depend in an essential way upon the dimension under
consideration, see [3]. Now, computability over real numbers is “indiffer-
ent” to the Cartesian dimension: one cannot change the expressivity of the
machine by changing the dimensions of its databases, but only the polyno-
mial efficiency. This is due to the computable isomorphism < ., . > between
N2 and N . One may therefore define, without difficulty and for any discrete
formalism, the universal function U within the very class of computable func-
tions (that is, once the computable functions have been enumerated, (fi)i∈N ,
function U(i, n) = fi(n) belongs to such class by the coding < ., . >).

These properties, quite interesting, are a consequence of the rather gen-
eral fact that discrete topology does not force a dimension. In short, in the
discrete universe (the category of sets), any infinite set (real numbers, in
particular) is isomorphic to all of its finite (Cartesian) products. But when
discrete topology is no longer “natural”, within a continuum say, with Eu-
clidean (or real) topology, for example, the spaces having different dimensions
are no longer isomorphic. We then say that the dimension is a topological
invariant, for topologies which derive from the interval of physical measure-
ment (Euclidean, typically). A remarkable relationship between geometry
and physics: the metrics (and the topology induced) of the sphere (or inter-
val) indeed corresponds to the “natural” physical measurement, that of the
intervals, and it “forces” the dimension, a crucial notion in physics. So here is
a fundamental difference for continuous mathematics (and for computability
over continua, would they be just dense): any bijective encoding of spaces
with different dimensions is necessarily non-continuous and, in order to de-
fine, typically, the universal function, it is necessary to change dimension,
hence to leave the given class.
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So let’s return to our question, which is, in our view, a rigorous way to ad-
dress the extensions of the Church thesis to the mathematics of physics: can
we correlate different formalisms for computability over a continuum, these
being adequate for physical systems and which therefore make the Cartesian
dimension into a fundamental issue, even if they are non-equivalent? There
are no extensions today of the Church thesis to computable continua and just
partial answers are provided by many authors: [19, 9] present an overview
and recent results which, by the addition of functions and operators which
are highly relevant from the physical standpoint, enable to establish inclu-
sions under certain conditions, these being rather informative links. On the
basis of these works, we should arrive at a notion of “standard system” for
computability over the set of computable real numbers which represent a rea-
sonable extension of Church’s thesis to computable continuity (all “standard”
systems would be equivalent, modulo the fundamental issue of dimensions),
and therefore also find an interesting link with the mathematics of physics.

However, for a large enough class, this standardization is not obvious and
we are far from having a Church-like equivalence between systems. Moreover,
it is clear that we remain, as in the case of the logico-formal Church thesis,
within mathematical formalisms3. And what about physical processes?

3. Mathematical computability and the reality of physics

Let’s ask a preliminary question to asking if nature computes: what could
nature actually compute? If we look at the object before looking at the
method, things may not be so simple. Vladimir Arnol’d recalls in his book
[32] the formula attributed to Newton : “It is necessary to solve equations”.
From another perspective, physics could very well be expressed according to
another formula, provided this time by Galileo4. And from Galileo’s stand-
point which is, however, far from being formalistic or number-theoretic but

3In what concerns the extension of the Church thesis to computer networks and to
concurrent systems in general, systems which are perfectly discrete but distributable over
space-time, this being better understood by means of continuous tools, we refer to [1] and
to its introduction: in this text, it is noted that this thesis, in such a context, is not only
false, but also completely misleading (the processes are not input-output relationships and
their “computational path” - modulo homotopy, for instance - is the true issue of interest).

4“La filosofia scritta in questo grandissimo libro che continuamente ci sta aperto innanzi
agli occhi (io dico l’Universo) non si puó intendere se prima non s’impara a intender la
lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i
caratteri son triangoli, cerchi, ed altre figure geometriche, senza i quali mezzi è impossibile
a intenderne umanamente parola; senza questi è un aggirarsi vanamente per un oscuro
laberinto.” Il saggiatore, 1623.
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rather “geometric”, and which continues to perceive“filosofia” as an interme-
diary between ourselves and the world, the question asked above could very
well be natural.

Newton-Arnold’s view point seems more modern. However, it is now nec-
essary to observe that the importance of an equation, or more generally, of a
mathematical conceptual structure used in physics is often more important
in abstracto than the solutions which it proposes. But let’s nevertheless look
at what happens upwards to this.

Is there something to solve, to compute?

The description of a physical phenomenon takes place within a framework
of “modelization”, that is, within a fundamentally “perturbational” frame-
work. That is, the isolation of a phenomenon, its intrinsic comprehension,
supposes that we neglect its interaction with the rest of the world. But to
neglect does not mean to annihilate: the rest of the world exists and creates
perturbations at this isolation. From this point of view, a model must be
immersed in an “open set” of models.

The isolation of a concept upon which one is working, for instance, results
from the choice of a given scale. Neighboring scales are then supposed to be
either inaccessible (smaller scales), or processable by averaging (larger scales).
In both cases, they can influence the model and the equation which yields
it. Asking the question whether something which we compute, physically,
fits into a framework of computability in the sense evoked by this article
commands having precautions at least.

In particular, are there equations and only equations? A great part of
classical physics rests upon variational principles. The trajectory appears
not only as the solution to an equation, but as a solution that is chosen
because is optimizes, extremizes a quantity (action). Of course, this is equiv-
alent to resolving equations (Euler-Lagrange), but this is only an equivalency.
Let’s recall that Feynman [14] preferred solutions to equations for quantum
mechanics. In this case, no more equations; all possible trajectories (min-
imizing or not the action functional) are what should be involved. This is
possible, but is so thanks to the functional integral, in an infinite dimension.
And what about computability in this case?

Let’s look at another example: quantum field theory, a physical theory
which is not mathematically well founded yet, but which has been phenom-
enally successful in terms of precision, is based entirely on perturbative cal-
culations [24].

It is obvious that, even without considering the lack of precision of classical
measurement, which we will address later on, the situation is somewhat fuzzy,
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largely perturbative, and hence that the problem of computability in physics
is multiple and complex.

But let’s suppose that there actually are equations. And let’s suppose
that the true issue is really the solution, which is predictive. We will then
be compelled to remark that the situations where the solution’s values are
important are rare. A simple example: physicists like to draw curves, even
when a formula providing the solution is available. But what is left of com-
putability when the “result” is smooth, where only the general “trends” are
important, not the exact values?.

Let’s take a look at the dynamical systems provided by maps, the case of
the “baker’s map”, for instance. In principle, there is no mapping in physics;
there are fluxes. A map appears when we compute a flux at time 1 (which
we will later iterate), but this flux at time 1 is actually computed from
equations. The Poincaré first recurrence map, and the dynamical systems
which followed, were invented as simpler tools, qualitatively and quantita-
tively more manageable, but it would be wise to not identify them too much
with the initial systems.

In conclusion let us see whether it is possible to consider an isolated equa-
tion in physics. As we observed, if equations come in families within which
(possibly continuous) parameters change, how must one apprehend the prob-
lem of computability, so carefully defined within a discrete and countable
space? Maybe nature does compute, but knowledge, our theory of nature,
fundamentally rests in huge, infinite spaces (spaces of parametrized equa-
tions, typically), which could very well escape any computationalistic ap-
proach.

4. From the principle of least action to the quantum theory

of fields

The concept of differential equation is not the only one which provides
a way of computing dynamics in physics. As we mentioned, an alternative
approach consists in minimizing a certain functional (the action) among dif-
ferent candidates for the trajectory. More precisely to any path γ going from
an initial point to a final one is associated a number, S(γ), and the “true”
trajectory, the one that effectively is going to follow the particle, is the one
which provide the lowest (in fact any extremal) value of these numbers S(γ).
This principle of “least action” does not ask to solve an equation, it just asks
to evaluate the functional S at any possible path γ, and select the extremal
one. If it asks to compute something it doesn’t ask to compute a finite num-
ber or set of numbers, it asks to evaluate a huge set of numbers, and to find
the lowest.
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It is well known that the principle of least action is, in many situations at
least, equivalent to the so-called Euler-Lagrange equations, therefore shown
to be embedded in the operational setting. But the Feynman “path integral”
formulation of quantum mechanics create a revival of this idea of evaluating
instead of computing. The quantum amplitude of probability is obtained
by summing over all paths (actually the same one we just talked about)

expressions of the form ei
S(γ)

~ : the selection to minimizing path disappeared
even. Here again this formalism is shown to be equivalent to Schrödinger
equation, getting back once more to the operational level.

The situation drastically changes with quantum theory of fields, a mix-
ing of quantum mechanics and partial differential equations. This theory,
conceptual basis of our deep understanding of elementary particles, is a gen-
eralization of quantum mechanics to infinite dimension. The formalism of
quantum theory of fields is an extension of the path integral methods to the
case where the “paths” γ seat in infinite dimensional spaces. This is the the-
ory which provides nowadays the most accurate numerical agreement with
experimental data. It “lives” in an extremely huge space (the space of infinite
dimensional paths), and has, up to now, NO equivalent operational setting.

5. Chaotic determinism and predictability

In what concerns the relationships between dynamical systems and their
capacity to predict physical evolutions, there is often a great confusion be-
tween mathematics and physical processes. The notion of deterministic
chaotic system is purely mathematical and is given, in a standard way, by
three formal properties (see [12]). However, it is legitimate to speak of a
physical process and to say that it is deterministic (and chaotic, if such is
the case): what is meant by that is that it is possible, or believed to be so, to
write a system of equations, or even an evolution function, which determines
its evolution (in time or regarding the relevant control parameter).

Unpredictability is then a property which arises at the interface between
physical and mathematical processes. One gives oneself a physical process
and a mathematical system (a system of equations, or even an evolution
function - an iterated system, typically, so a discrete-time system, within
a continuous space). Then the process with regard to the system (or even
with regard to any reasonable system which we consider to modelize the
given process) is said to be unpredictable. A physical process “as such” is
not unpredictable: one must attempt to state or even pre -dict, usually by
mathematical writing, for there to be unpredictability. Likewise, a mathe-
matical system is not unpredictable, as such: it is written and, if fed values,
it computes.
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And this is where computability comes into play. It happens that any
“reasonable” mathematical system would be characterized by effective writ-
ing: save a pathology (feeding a polynomial with non computable coeffi-
cients, Chaitin’s omega for instance!), we normally write evolution functions
which are computable (we will however see some counter-examples). More
specifically, any Cauchy problem (a very broad class of differential equations)
admits computable solutions (if solutions there are), in one of the known
systems for continuous computability. Interesting pathologies, or counter-
examples, do exist; for the moment, it suffices to mention some solutions of
the Poisson equation in [25], the boundary of a Julia set, in [5].

But the problem is not only there (not really there, as a matter of fact):
the choice of scale, of perturbative method, of phase space (or of hidden
variables, or those which were explicitly or unconsciously excluded) shows
the constituted autonomy of mathematical language, because mathematics
is constructed within a friction contingent to the world and then detaches
from it by its symbolic autonomy. And this construction is a highly non-
computable historical decision, often an infinitary transition towards a limit
concept. By this, mathematics is not arbitrary, but the result of a constructed
objectivity.

In summary, when we write a formalism, we give ourselves something “com-
putable” (grosso modo, because the different continuous systems are not yet
unified) but this is obtained by an historical choice or limit process, which
singles out the symbolic construction from the world. So the fact of the
computability of an evolution function, which we suppose to be adequate re-
garding the description (modelization) of a physical system, is the evidence
which we deduct from its writing. The logistic function, for instance, see
[12, 20], is a simple and important chaotic system; a computable bilinear
function, with a coefficient k... ok, only if we take a non-computable k,
a crazy choice, it is not.... A very famous variant of the logistic function
is also given by continuous but non-differentiable deformation which pre-
serves many of its interesting properties; this is the “tent” function which,
grosso modo, modelizes the movements of stretching and mixing of a piece
of dough by a baker who is a little stiff and repetitive in his movements.
These systems, as in the case of any formal writing, are effective and are
in no way unpredictable, as such. We give them values (computable ones)
and they compute: within the limits of the available (finite) machine, they
produce outputs. However, any physical system which is considered to be
modelized (formalized) by one of these functions is unpredictable, even if by
one of their non-differentiable variants (an ago-antagonistic system - chem-
ical action-reaction oscillations, for example, or the baker’s transformation,
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in the differentiable or non-differentiable case of which we were speaking).
As soon as we give the result of a physical measurement, that is, an interval,
to the function in question, this interval is mixed and exponentially widened,
quickly preventing any prediction of the evolution. Of course, the machine
which computes these non-linear functions can also help appreciate chaos:

1 - it provides dense trajectories (sequences of points) in the definition
domain;

2 - a difference (at the 16th decimal, for instance) in the numeric input
gives very different values after few iterations (about 50 in our logistic cases,
see below).

However, if it is re-launched with the same initial values in a discrete

context (and this is fundamental) it will always return the same trajectory
(sequence of numbers). The point is that, in discrete state machines, access
to data is exact : this is the crucial difference w.r. to access to the world by
(classical) physical measure, which is given by the interval of (approximated)
measurement, by principle (there is at least the thermal fluctuation).

And there lies also the advantage of the discrete state machine, of which the
access to the database is exact: it iterates identically, because it is, firstly, an
iterating machine. Iteration founds Gödel-type primitive recursion, which is
iteration and +1 in a register (see the note above). It enables the portability
of the software and hence its identical transferal and iteration at will (and
it works - without portability and iterability of software, there would be no
computing, nor market for software). You may launch a program hundreds
of times, thousands of times and it iterates.

Computer scientists are so good that they have been able to produce re-
liable and portable software (that is iterating identically) even for networks
of concurrent computers, embedded in continuous space-time, with no abso-
lute clock. Yet, the discrete data types allow this remarkable performance.
Note that identical iteration of a process is very rare in Nature (fortunately,
otherwise we would still be with the Universe of the origin or the early pro-
tozoans). We, the humans, along our history, invented the discrete state
machines, which iterate. A remarkable human construction, in our space
of humanity, using the alphabet, Descartes dualism (software/hardware),
Hilbert’s systems, Gödel’s numberings, Turing’s ideas... and a lot of dis-
crete state physics. Computing, programs and alike are not “already there”
in nature. Unfortunately, some miss the point and do not appreciate the orig-
inality nor the founding principles of computing and claim, for example, that
“sometimes they do not iterate”, like nature. Of course, there may be hard-
ware problems, but these are problems, usually and easily fixed. Instead,
non-iteration, identically, is part of the principles of non linear dynamics.
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Let alone life sciences where the main invariant is... variability, even within
“structural stability”, which is not phenotypic identity.

But let’s go back to the interface mathematics/physics. The passage from
the physical process to the formal system is done by means of measurement.
If the only formalization/determination we have, or which we consider to
be relevant for a given process, is of the deterministic but chaotic type, the
(classical) physical measurement, which is always an interval (and which we
describe, in general, within a context of continuity) enables to only give an
interval as input for the computation. And this has a further fundamental
connection with physics, that we already mentioned: the interval topology
yields the topological invariance of dimension, a fundamental property of the
continua of mathematical physics. Now, given that non-linear dynamics are
mixing (the extremes and the maximum and minimum points of any interval
are “mixed” at each step) and have an “exponential drift” as Turing puts
it. This is a nice way, Turing’s way, to say what we observed: the interval
of measurement soon occupies in a chaotic - mixing - way an increasing part
of space and it is impossible to further predict the evolution of the physical
process. If we were to use as input not an interval, but a rounded value,
this would obviously not help prediction: the result of the computation may
have nothing to do with the physical evolution - for the logistic function,
with k = 4, a rounded value at the 16th decimal makes any physical process
unpredictable approximately from the 50th iteration, - this is calculated using
the value of the Lyapounov exponent, [12].

To return to the baker’s dough, a very simple and common example, it is
a physical process determined by a demonstrably chaotic evolution function:
it is a mistake to say, as we sometimes hear, that it is non-deterministic; it is
unpredictably deterministic, which is quite different (the error, in this case,
is exactly Laplace’s error, for whom determination should imply predictabil-
ity). In physical terms, the forces at play are all known, the “tent” function
determines its evolution well, just as the logistic determines that of the ago-
antagonistic processes or as the equations of Newton-Laplace determine the
evolution of Poincaré’s three bodies. In classical physics everything is deter-
ministic, even a toss of dice! But sometimes, it is impossible to predict or
calculate evolutions because of the approximation of physical measurement
in conjunction with the sensitivity to contour conditions, proper to the in-
tended, modellizing, mathematical systems (or with the excess of relevant
but hidden variables in the process: Einstein hoped to transfer this very
paradigm to quantum physics).

So, in general, the mathematical systems which we write are computable
and predictable; some of these systems, being chaotic, refer to unpredictable
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physical processes. In principle, the latter, as such, do not “compute”, in the
sense of the Church thesis or of its continuous versions. Let’s specify this
point once more.

Computation is an issue of numbers, in fact of the (re-)writing of integer
numbers: lambda-calculus, Turing Machines, are actually a paradigm of it.
Now, to associate a number to a physical system, it is necessary to have
recourse to measurement, a challenge and major issue regarding principles
in physics, as has been realized since Poincaré and Planck, extraneous to
the logic of arithmetic and, thus, largely forgotten by computationalist (the
World is a large “digital computer”). Classically, if we were to decide that
a certain state of a physical process constitutes the input, and another the
output, and that we associate these states to measurement intervals and if
all we know of this process is mathematically unpredictable, then it will be
impossible, in general and after a sufficient amount of time (if time acts as
a control parameter), to compute or predict an output interval from the in-
put interval of the order of magnitude of the given physical measurement. In
short, if we launch a good old physical double pendulum, if we manipulate
a baker’s dough, it will be impossible to compute, within the limits of mea-
surement, its position after 5 or 6 oscillations or foldings, although they may
themselves be determined by two equations or by an evolution function in
which all is computable. So the double pendulum, the stretched dough, as a
physical machine/process, does not compute a computable function. As for
quantum mechanics, we will return to this below.

But do they define a function? Because in the same initial (physical)
conditions, they do not generally iterate, and therefore do not even define a
mathematical function of an argument (which one?) within the initial interval
of measurement, a function which would always return the same value! It
would therefore be necessary to parameter them across time according to a
physical reference system: at best they would define a function with multiple
variables of which one is the time of the chosen reference system. This makes
them rather useless as machines for defining non-computable functions: they
cannot even be re-used, in time, to compute the same function, because
at each different moment we would have different values which are a priori
non-repeatable. And no one would buy them as “non-Turing” machines.

And here we are confronted once more with another common error: ex-
pecting that if the physical Church thesis was to be false, then the counter
example should return a process which computes more than Turing. But
such is not the case. This is an error because a “wild” physical process (as
biologists would put it), in general, does not even define a function, that
is, a single-valued argument/value relation. The very idea that a process
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could be reiterated suggests that it could be redone in the same (identical, as
within a discrete framework) initial conditions. And this, which is so trivial
(in both the English and French senses of the term) for a discrete state ma-
chine, is unachievable in nature, except in very rare or artificial cases, save
the extension of the parameters to an additional temporal dimension which
takes account of the counting of the experience performed. In what concerns
life phenomena, do not by any means try to make the halting of a Turing
Machine computed by a paramecium and the movements of its two thousand
cilia: quite upstream to computation, paramecia do not define functions
by their activities (between the paramecium and computation there is the
“wall” of measurement: how to measure, what to measure, using which level
of approximation?).

Quite thankfully, we have invented an alpha-numeric machine that is not
wild at all, but well domesticated and exact. It comes with its own refer-
ence system and clock (hence the problem in concurrent networks, where a
spatio-temporal absolute is lacking). Thanks to its structure as a discrete
state machine, as Turing emphasized from the moment he produced his in-
vention5, this machine enables an access to the data and computations and
. . . it iterates, identically, when made to: there are the two reasons for its
strength. And even within computer networks, thanks to the discrete as-
pect of databases, we manage to iterate processes, as we said, despite the
challenges entailed by concurrency within physical space-time.

6. Return to computability in mathematics

Let’s return to the issue of computability beyond the measurement which
we just addressed.

Mathematically, chaos is a long-time phenomenon: as for the sensitivity to
the initial conditions, it is the long-time asymptotic behaviour which differs
between chaos and integrability. What is the evolution of the baker’s dough
in the case of an infinite number of iterations? Let’s be more specific and look
at the case of ergodicity, a property of chaos which is actually weak (and non-
characteristic). A system is ergodic when, for almost all points (the “ergodic”
ones), the temporal and spatial averages of any observable coincide at the
infinite limit. This is a property “in measure” (measure meant here in the
mathematical sense) and it requires, in its “time” component, an integration
over an infinite time.

5Or shortly after: in 1936, it was nothing more than a logical machine, “a man in the
act of computing”; it is only after 1948 that Turing viewed it also as a physical process -
a discrete state one, as he called it in [30] and [31].
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Clearly, the question of computability of average up to time t for any value
of t makes sense, and has a clear answer in terms of properties of computabil-
ity of ordinary differential equations, but the passing to the limit t → ∞

shifts us towards these limits of which it was question earlier and which we
will return to now. In particular, the rate of (mathematical) convergence
will intervene in the answer to the first question, and obtaining information
on the rate of this convergence is a very delicate problem especially in what

concerns real, practical flows, those which nature provides us with.
One must nevertheless not forget the huge contribution of computer sci-

ence: the computer, however fundamentally non-chaotic, “sees” chaos per-
fectly well, suggests it, presents it to our eyes in a very spectacular and now
completely indispensable way. And this by the (approximated) images of
the density of trajectories, by the amazingly different results in the change
of the 16th decimal or so etc.. By developing turbulences of any sort in an
otherwise unfeasible way and showing them on a screen, a fantastic help to
scientific insight is achieved.

The passing to continuity

The passing from rational numbers to real numbers poses more problems
than it may seem: a quantum system in a finite volume is indeed represented
by a vector space of finite dimension. Yet, some caution is required; not
only must this space be bounded, but so must the momentum dimension,
that is, the phase space, of which the standard of measurement is Plank’s
constant. But the superposition principle immediately makes the number of
states infinite (to the power of the continuum): this is precisely the “vectorial
aspect” of the theory. Quantum mechanics resides in vector spaces and the
“finitude” of space entails the finitude of the dimensions of these spaces, not
their cardinals. It is impossible, for a set value of the Planck constant, to put
anything but a finite number, d = V

~
, of independent vectors (states) within

a finite volume V , but thanks to (because of) the superposition principle,
it is in fact possible to put an infinite number of vectors, as many as there
are points in C

d. This doesn’t mean of course that, for certain definitions of
information, the “quantity” of information could not remain bounded as the
system remains confined in a finite volume, but this shows the difference of
the concepts of space in classical and quantum situations (for a discussion of
this discrete/continuous dichotomy see e.g. [23]).

One must then evoke the Rolls-Royce of mathematical physics: the theory
of partial derivatives equations (PDEs). A PDE can be seen as an ordinary
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differential equation in infinite dimension, it is like a system of ordinary dif-
ferential equations each of them labelled by a continuous parameter (by the
way, it is precisely this aspect which the computer retains before discretizing
this continuous variable): each point in space “carries” a dynamic variable
of which the evolution depends on immediately (even infinitesimally) neigh-
boring points. Contrary to ordinary differential equations which, in general,
have a solution for all values of time, we can say that a PDE has (still gener-
ally speaking, in the “hyperbolic” case) a limited life span, in the sense that
its solution can explode in a finite amount of time. We therefore witness
the emergence of two pitfalls: one passing to infinity for space, and one pas-
sage to “finitude” for time. This is another example where the very notion of
computability does not apply well to the physico-mathematical phenomenon.

Let’s now ask ourselves why chaos was invented. The sensitivity to the
initial conditions has appeared as a negative result, preventing integrability.
The negation of integrability aims to be perceptible in a finite amount of
time (since integrability places us in front of eternity). But it is very difficult
to demonstrate that a system is not integrable. A recourse to asymptotic
results is then made (a bit like the use and abuse of statistics today), these
often being the only available ones. Hence the intervention of chaos, another
extreme and antipodic point of integrable systems, and hence its limits with
regard to computability.

7. Non-determinism?

In computer science, we often define non-functional relations as being “non-
deterministic”; in short, when we associate a number to a set. Let’s first
examine the case of so-called “non-deterministic” Turing Machines, of which
the transition functions have precisely this nature (from a value to a set of
values). Calling them non-deterministic may be reasonable, as an a priori

as long as we remain within logico-computational formalisms, but makes no
physico-mathematical sense. Is there an underlying physical process which
will associate to an input number a set or an element of the set in ques-
tion? Not necessarily. So, if deterministic (classical) means (potentially)
determined by equations or evolution functions, a “non-deterministic” Tur-
ing Machine is indeed determined by a function which associates an output
set to an input value (an issue of asymmetrical typing, nothing more). If
there is indeed a choice of value among a set, quantum physics could cer-
tainly propose one: it is legitimate to say that quantum measurement, by
giving probabilities within possible values, performs such an operation. Can
we use a classical process for the same association? Why not: we can take
a physical double pendulum, determined by two equations or the baker’s
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dough, of which the evolution is described by the “tent” function - so there
is nothing more deterministic than these two objects and their evolutions.
We give them an input number; the evolution starts off on an interval of
measurement which is roughly centered around this number, but the result,
which is unpredictable after a few iterations, can take a value among all those
within the space. This is what deterministic unpredictability is. Yet, with
a playful use of language (and a little bit of confusion), we could also say
that this association (one value/one set) produces a non-functional relation
and so consider it as non-deterministic. But contextual clarity, necessary
to the good relationship between mathematics and physics, then disappears:
all is grey and that which is not functional (nor calculable) is the same, as
there is no more difference between classical unpredictable determination and
quantum indetermination, typically.

In what concerns concurrent systems, the situation is more interesting.
Over the course of a process, which occurs within physical space-time, choices
are made among possible values, following the interaction with other pro-
cesses. In concrete machines, these choices can depend on classical, relativis-
tic, quantum, or even human phenomena which intervene within a network.
In the first two cases, everything is deterministic, although described by non-
singled-valued relations and although there may be classical unpredictability
(which value within the determined set? - a lesser temporal discrepancy can
produce different choices). In the other two cases (quantum and “human”),
the choice of value will be intrinsically non-deterministic, but, in principle,
for different reasons (not being able to give an appropriate physical name
to the will of humans acting upon a network). In some cases, authors in
concurrency, by non-determinism, refer to a “do-not-care” of the physical
“determination”: whatever is your hardware and your (compatible) operat-
ing system or compiler, my program for the network must work identically.
A new concept of “non-determination” a very interesting one, probably with
no analogy in natural sciences (my soul doesn’t work independently of my
body, this was Descartes’s mistake, nor it is portable).

It would be preferable to introduce a notion of “indeterminacy” specific
to computer science corresponding to the absence of univocity of the input-
output relation with choices, in particular that which can be found in “mul-
titasking”, in the concurrence of network processes, etc.

The discrete and the “myth” of continuity.

This loss of meaning of continuous physics can be found in Gandy’s re-
flections on Church Thesis, for instance (he was one of the pioneers of the
physical Church thesis, [17]). He posits among other things a physical world
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within which information is finite, because it is part of a finite universe. So
it is made to be discrete, all the while remaining within a classical frame-
work, and then deterministic chaos disappears, as happens with the Turing
Machine (Turing says this very clearly in [30], see also [21]) - see also the
discussion on finitude in quantum mechanics in the preceding paragraph.

Firstly, the mathematical definitions of chaos use continuity (to represent
the interval of measurement); they will loose their meaning when the natural
topology of space considered is discrete topology (we keep returning to this,
because it is important: the access to the measurement of the process will
then become exact, because isolated points are accessed, mathematically -
another way to summarize all which we have just said).

Now Gandy does not appear to have followed his master Turing, the in-
ventor of the “Discrete State Machine” (which is theoretically predictable,
says Turing, [30], though it may be practically hard to predict - very long
programs), in the adventure of the continuity of non-linear dynamics (the-
oretically unpredictable, Turing remarks, this being their most interesting
property, [31], see [21] for a discussion).

Now Turing had a good understanding of this issue in the later years
of his life, making a remarkable contribution to the development of what
he called “continuous systems” (the name which he gives to the linear and
non-linear models of morphogenesis, [31], and which he already uses in [30]
in contraposition to his machine). In fact, continuity is currently the best
tool we have for addressing classical determination. It is the “myth” of an
underlying or abstract space, a mathematical continuum, which leads us to
think that any classical trajectory is deterministic: it is “filiform” (widthless)
and stems from a Euclid-Cantor point (dimensionless, said Euclid). It is a
“myth” in the sense of Greek mythology, because it constructs knowledge,
but removed from the world. This limit, the point and Euclid’s widthless
line are not given by measurement, our only access to the physical world.
The myth is at the limit, like the thermodynamic integral which gives us the
irreversibility of diffusion at the infinite limit (that is, which demonstrates
the second principle, by supposing an infinity of trajectories for the molecules
of a gas within a large, but finite volume). The mythical (conceptual, if the
reader prefers) limit makes us understand: how audacious this beginning of
a science, this imagination of the widthless line, of the point of no dimension.
Without those limit (infinitary!) concepts, which are not in the world, there
would have been no theory of the measurement of surfaces: it is necessary
to have “widthless” edges and dimensionless points at the intersections of
lines to propose a general theory of areas (how thick should otherwise be the
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border of a triangle?). Finitude, as the discrete of a naive and pre-scientific,
pre-Greek perception, entails machine-like stupidity.

In this context and since Einstein, we have gone further and have even
come to say that finite, for the universe, does not mean limited. Think of the
relativistic model of the Riemann sphere: it is finite but unlimited, contrary
to the notion of finitude as limitation to be found with Euclid (infinite = a-
peiron = without limits). Why would the information on the Riemann sphere
be “finite” in such a model? Of which type of finitude would we be speaking
of? Euclidean finitude or modern unlimited finitude? Be it relativistic or
quantum, “finitude” contains infinity.

Except for great thinkers such as Turing, logicians and computer scien-
tists tend to have a culture of the finite/discrete/Laplacian, as Turing said
of his machine, which is difficult to escape. Its origin is the arithmetizing
perspective of Frege with regard to the “delirium” of Riemannian geometry
and the incomprehension of Hilbert, one of the great figures of mathematical
physics, concerning unpredictability, of even Poincaré’s type of undecidabil-
ity (it is impossible to calculate - decide - the position of three planets after
a sufficiently long period of time), when he speaks of mathematics: 20 years
later, he will launch one decidability conjecture after the other, all of them
being false (Arithmetics, Choice, Continuum Hypothesis), despite the highly
justified objections from Poincaré (Mr. Hilbert thinks of mathematics as
a sausage-making machine!). Poincaré had already experimented with un-
decidability, as unpredictability, though in the friction between mathemat-
ics and physics (not of purely mathematical statements, Hilbert’s question).
However, this culture of predictable (and integrable!), of the determination,
within a universe (a discrete, finite and limited database), has given us mar-
velous Laplacian machines. Let’s just make an effort to better correlate
them to the world, today. A good practice, and theory, of modelization
and of networks, that of concurrency, impose them. They evolve within a
space-time which we understand better, for the moment, thanks to continu-
ity. Thankfully, there are also hybrid systems and continuous computability
which also propose quite different perspectives. And likewise for the work
of Girard which tries to enrich logic with concepts that are central to the
field of the physico-mathematical: symmetries, operator algebra, quantum
non-commutativity.

But let’s return to quantum mechanics.

8. The case of quantum mechanics

The quantum issue could at first glance present a perfect symbiosis between
the two preceding sections: we are dealing with a fundamentally fundamental
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equation, Schrödinger’s equation, which derives from nothing, which must be
at the center of any fundamental process, and of which the mathematization
is perfect, depending on only a single parameter (actually, is Planck con-
stant’s value a computable number?). Moreover, “measurement” takes on a
whole new dimension. The interval, as such, no longer exists and intrinsic
randomness is introduced.

Let’s now mention the importance, particularly in the field of the physics
of elementary particles, of the role played by computers. The computation
of precise numeric values, for instance the calculation of the electron’s mag-
netic moment, and their literally “phenomenal” concordance with experience
has doubtlessly had a crucial importance for the development of the theory.
And this precisely in the very field where computers have become irreplace-
able: numeric computation. Associating a number to hundreds, to thousands
of Feynman diagrams is an operation beyond human capability and which
computer science bravely accomplishes.

The results provided by quantum physics are precise, and have a level
of precision which any other physical theory has yet to attain. They are
also discrete, meaning that the richness of continuity has been lost, and
that we are facing a (discrete) play of possibilities. Of course, what we are
actually measuring is a classical object, a classical trace (bubble chamber,
photographic plate...) with a quantum value. We are indeed at the heart of
the problem: a quantum measurement provides values belonging to a discrete
set (set of values specific to the Hamiltonian), hence a certain rigidity that is a
source of stability and therefore of precision (those of discrete topology). Seen
from this angle, quantum “precision” seems tautological in a way; we allow
ourselves no leeway around discrete values which would enable to extend into
the voluptuousness of imprecision. We could even say: let’s provide ourselves,
once and for all, with all the values specific to all the Hamiltonians of the
world and we will have a field of “outputs” which is discrete in its very
essence.

But this is precisely forgetting that the result of such measurement is
obtained upon a classical object given that it is accessible to us. The spectral
lines appear on a photographic plate. And we therefore find the classical
continuum a posteriori, and its virtues which are harmful because prone
to introduce imprecision. And so what the fact that quantum mechanics is
incredibly precise signifies is that during experiments, it leaves classical traces
of an extreme level of precision, practically exhibiting a discrete structure of
continuity.

And this is not tautological at all.
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In addition to this discreteness, and precision, quantum mechanics has
caused some difficulties by conferring a random aspect to the result of mea-
surement. Let’s say right now that something had to happen, because the
principle of quantum superposition prohibits a direct access, beyond measure-
ment, to the quantum space of states (we do not “see” superposed states,
or entangled states); more accurately, we “look” at them, and they must be
looked at to be seen, by getting measured, they “de-superpose” themselves,
they de-entangle. This random aspect immediately escapes any computa-
tional system of . . . computability. No more determinism, no more equations.
Of course, it is possible to talk about statistics, and to wonder whether these
statistics are computable. We then return to the non-deterministic algo-
rithms of the preceding section, but with a different problem.

Quantum algorithms are a perfect illustration. Let’s recall that a quantum
algorithm consists in a quantum system evolving from an initial piece of
data having, in a way, a classical “input”. By principle of superposition,
entanglement, at the end of an evolution, has done its job and the final
state is typically quantum, superposed in several states, of which a single
one contains the “output” sought. To get it, we then perform a measurement
that is supposed, by construction, to produce the good result with a maximal
probability.

What is Turing computable in all of this?
We can wonder regarding the first part of the quantum evolution related

to quantum “equational” evolution, modulo the remarks made at the end of
the section 6 concerning PDEs (Schrödinger’s equation is a PDE after all,
but a linear and not an hyperbolic one), and could possibly answer : yes,
this part of the quantum evolution is computable. But the last phase, that
of measurement, again escapes computational reduction: the random aspect

of measurement, let us rest assured, will never enable a quantum computer

to decode a credit card at the desired moment with certainty.

Quantum algorithms versus non-deterministic algorithms

It could be advisable to specify the important difference between quantum
and non-deterministic algorithms, a source, it appears, of many confusions.
Indeed, one could confuse two very different “parallel” aspects.

A quantum algorithm, in a way, works well in parallel; computation is
fundamentally vectorial because of the very nature of quantum dynamics.
But the final result, that which needs to be extracted from the final quantum
state, is a single one of the components present within the latter. The other
components, the whole “final state” vector, has no interest as such: firstly
because it is inaccessible, then because the other components (other than the
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component containing the results) do not carry any information related to
the initial problem. So it is not an issue of dispersing the information in order
to parcel it out and hence increase the power of the computation and then
“patching the pieces back together”, in a way, but rather of placing oneself
within a space (a quantum space, and again, one that has not yet been
satisfactorily achieved experimentally) from which one needs to suddenly
return in order to finish the computation.

Because the essential is indeed there: the “computation”, the “process”
is finished only once the ultimate measurement is taken. It is this total
process which must be placed in the view of computability, and not the
purely quantum part which conveys no information. It is exactly the same
idea which is responsible for there being no “EPR paradox” because, although
we are acting from a distance upon the entangled vector, no information is
transmitted.

Let us mention also that logic based on quantum mechanics paradigm
has been recently introduced by J.Y. Girard, without explicit motivation
in the direction of quantum calculus [18]. We conclude by saying that the
randomness of quantum mechanics is intrinsic, it escapes computation. What
about classical randomness?

9. Randomness, between unpredictability and chaos

In [4], classical randomness and deterministic unpredictability are identi-
fied, from the point of view of mathematical physics. Randomness would
present itself, we observed, at the interface between mathematics (or, more
generally, between language) and physical processes. It must however not be
ignored that, in certain probabilistic, purely mathematical frameworks (mea-
sure theory), we can also speak of randomness, away from physical processes.
By computation theoretic tools, Per Martin-Löf advanced, 40 years ago, a
purely mathematical notion of randomness. More specifically, one can, by
means of computability, tell when an infinite sequence of integers (of 0s and
1s for example) is random, without reference to an eventual physical gener-
ative process. In short, a random sequence is Martin-Löf computable if it is
“strongly” non-computable, a definition which requires a little bit of work (see
[27] for a recent overview). In a sense, formal computability/predictability
can tell us when we leave its domain: a bit like Gödel who, in his proofs,
never left the formal, and who was yet able to give a formula which escapes
the formal (which is formally unprovable, jointly to its negation).

Moreover, what interests us here, this purely mathematical randomness, is
“at infinity”, exactly like the randomness within chaotic classical dynamics
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is asymptotic: a random Martin-Löf sequence is infinite (the initial segments
are at best incompressible).

What can then be said of the relationship between this notion, purely
mathematical, and physics? From the statistical viewpoint, which was the
preoccupation of Martin-Löf (ML) at the time, every thing is fine: the distri-
bution of the probabilities of a ML-random sequence, for a good probability
measurement, is that of the toss of a coin, to infinity. But what about the
relationship to the physico-mathematical of dynamical systems? How can
one pass directly, by mathematical means, without reference to the physical
processes that the two approaches modelize, from ML-randomness to unpre-
dictable determinism (systems of equations or evolution functions)? We can
see possible correlations in some works which are in progress (particularly
those by M. Hoyrup and C. Rojas in the CIM team of one of the authors):
the points and the trajectories within chaotic systems are analyzed in terms
of ML-randomness, all the while using suitable notions of measure, of mathe-
matical entropy and Birkhoff ergodicity. In the two cases, those of sequences
of integers and of continuous dynamics, we work to infinity.

Let’s be more precise. A dynamical system, as a purely mathematical
formalism for physics, is said to be “mixing” if the correlation of a given
pair of observables decreases at least polynomially with time. Like ergod-
icity,this is an asymptotic property of “disorder”, a weak forms of chaos.
What was recently proved is that, in mixing dynamics, ergodic points coin-
cide with ML-random ones (in fact for a slightly different definition of ML-
randomness). Thus deterministic unpredictability, as ergodicity in mixing
dynamics, overlap with a strong form of undecidability. In other words, if we
want to relate physical processes to effective computations, which is an issue
of elaboration of numbers, we can, but, at the limit, all processes that are
modeled by a somewhat chaotic system, produce non-computable sequences,
within the mathematical system. Or, also, (strong) non-computability (as
ML-randomness) may be found in formal writings of the physical world (dy-
namical systems are perfectly formalisable, of course). That is, at the limit,
we may say “no” to Laplace’s conjecture of predictability of deterministic
systems and, this, in terms of undecidability, à la Gödel. Predicting, in
physics, is a matter of “saying” (pre-dicere, to say in advance) by a formal
language or system about a physical process in finite time, as we said sev-
eral times: by these results, instead, Poincaré’s finite unpredictability joins
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undecidability, asymptotically. In conclusion, deterministic ergodic and mix-
ing dynamics, which model somewhat “chaotic” physical processes, generate
non-computable features6.

10. General conclusions

The reader might have felt that the authors have a point of view “against”
a vision of the nature that would be too much organized around computa-
tions. Once again computers have brought so much to science that it is not
necessary to recall the benefit provided. It seems to us that this situation,
where a given viewpoint invades a whole field of science happened several
times in the past. An example is the case of mathematical analysis at the
turn of the last century, a period where many new objects in mathematics
were born, such as functions nowhere differentiable, Cantor sets, summation
methods of diverging series . . . . To focus on the latter let us quote Emile
Borel, in the Introduction of his famous book on diverging series [8], where
he talks about the fact that analysis “à la Cauchy”, based on convergent
Taylor expansions of analytic functions, although it brought a considerable
amount of progress in mathematics, fixed also into rigidity a lot of non-
rigorous methods used by the geometers (in the sense of physicists) of the
older time: “This revolution7 was necessary: nevertheless one might ask if
dropping the less rigorous methods of the geometers (...) was good or not
: (..) but this period8 being passed, the study of former methods might be
wealthy...”.

Let’s see what we have done so far. We have reviewed certain aspects of
computation in physics and in mathematics. We have seen that many situ-
ations in physics, even classical physics, cause processes which are “beyond
computation” (in the sense of “calculus resolving equations”) to intervene.
We have also mentioned the calculatory contribution of computer science and
its essential role. Now, let’s not forget the importance as such of the plu-
rality of “visions” for understanding the natural sciences, a plurality which
has always existed in the sciences. The new perspective proposed by the
discrete, in great part due to the contribution of computer science, is a con-
ceptual and technical resource, which adds itself to the differentiable physico-
mathematical continuum, from Newton to Schrödinger (or even consider, for

6see [16], [15] and http://www.di.ens.fr/∼longo/ for ongoing work. Connections be-
tween algorithmic and quantum randomness are analyzed in [11].

7The Cauchy and Abel rigorous vision of Analysis based on convergence of expansions
of Taylor series.

8of rigor
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example, its importance of computer modelling in biology, to mention an-
other discipline, [32]). On the other hand, the reduction to a conceptual and
mathematical dimension that is too “computational” (in the excessively naive
sense of the term) would, in our view, lead us to sterile boredom, in which
even the “nuances” of the post-Laplacian continuum would be absent. Fi-
nally and in particular, within “equational” framework for the play between
the continuum and the discrete, we have discussed notions that appear to
be fundamental to modern science, such as those of determinism and of pre-
dictability, from where emerges the notion of uncertainty. But let’s take a
further look.

As compounded in [4], classical physical randomness is of an “epistemic”
nature, whereas that of quantum measurement is intrinsic or “objective”: a
distinction which should be solely an instrument of clarity, of conceptual clar-
ity if possible, and nothing more. By this we refer to several aspects among
which the one of interest to us is the following: classical randomness can be
analyzed by means of different methods. In short, it is possible to address
dice, the double pendulum, the baker’s dough, etc., in terms of statistically
random sequences and of probability distributions (central limit theorem,
etc.), but also by means of the mathematics of chaotic determinism (if we
have the courage to write the several equations needed for the movement
of dice, it is easy for the double pendulum and the baker’s dough). Some
people, mainly in the field of computer science as we have seen, say that
the toss of dice or that the baker’s dough (or even the three bodies?) are
non-deterministic because, by using the approximation of measurement, it is
possible to associate several numeric outputs to an exact input number and
the same wording is used for computational non-determinism. It is an abuse
of language which ignores the specifications brought by the broadening by
Poincaré of the field of determination, which includes classical randomness
in the field of chaotic determination (the non-linearity of “continuous sys-
tems”, says Turing), and by the indetermination of quantum physics. This
is specific to the culture of the discrete, which is wonderful for our discrete
state machines, but which misses the 120 years of geometrization of physics
(geometry of dynamic and relativistic systems) and which fails to appreciate
the role of measurement (classical/quantum).

We thus see the apparition of three idealizations thanks to which we could
think it possible to discover and understand the world (classical).

1. The digital, discrete ideal which (possibly) shows nature as computing

and only as computing. Computing, iterating and reiterating to infinity with
a wonderful and misleading precision.
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2. The ideal of continuous mathematics, where nature (mathematics)
solves equations. In itself, this vision is perfectly deterministic, the equa-
tions have solutions.

3. The ideal of the equation, for which nature divides itself into different
scales, impenetrable the ones into the others-for example the quantum world,
the classical one, hydrodynamics, celestial mechanics, cosmology etc.

These ideals (1,2,3) are placed in anti-chronological order: historically,
equations were the first to appear, followed by their mathematical models
and finally by their digital simulation.

To conclude, let’s look at the connections and anti-connections between
these three worldviews, these three tiers that we could compare to Girard’s
three basements. This would be the result of the present work.

At first glance, we could easily go up from the 3rd to the 2nd and then
to the 1st level. Continuous mathematics seem perfect for equations, and
digital approximation has become so commonplace that one must almost
hide to criticize it. But the elevator does not work properly: between the
3rd and 2nd levels, Poincaré shakes things up (the sensitivity to the initial
conditions, as it is, makes difficult the practical idea of a trajectory within
continuity), and between the 2nd and 1st levels we have lost, by climbing to
the level of the discrete, a few aspects that were important to continuity (the
fluctuations below the threshold of discretization as well as... the discrete
blackness of milk). If we take the stairs to go down, we get dizzy: lack of
computational equivalency for the passing to continuity, and loss of reliability
with the introduction of the interval of imprecision when passing from the
2nd to the 3rd levels...

And there is quantum mechanics with its intrinsic randomness. Ideal #3 is
then shattered during measurement: no more equations. Of course, physics
can make do without individual measurement phenomena: we have not (yet)
experimentally observed the reduction of wave packets during unique events,
all which we can observe is averages, statistics. But recent physics pushes
towards the study and observation of simple quantum physical systems which
are always better at conducting the “gedenken Experiment”9 of the founding
fathers [26], and in any case the reduction of the wave packet during mea-
surement is, we believe, a necessary component of quantum formalism, an
axiom which makes it coherent.

This situation is not new in physics: we do not observe Newtonian me-
chanics in a mole of gas. And yet it is thanks to such mechanics that we can
reconstruct the dynamics of gases and thermodynamics, which are the result
of the passing to infinity from a finite non-observable model.

9EPR paradox, Schrödinger’s cat for example.
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