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BOHMIAN MEASURES AND THEIR CLASSICAL LIMIT

PETER MARKOWICH, THIERRY PAUL, AND CHRISTOF SPARBER

Abstract. We consider a class of phase space measures, which naturally arise
in the Bohmian interpretation of quantum mechanics (when written in a La-
grangian form). We study the so-called classical limit of these Bohmian mea-

sures, in dependence on the scale of oscillations and concentrations of the
sequence of wave functions under consideration. The obtained results are con-
sequently compared to those derived via semi-classical Wigner measures. To
this end, we shall also give a connection to the theory of Young measures
and prove several new results on Wigner measures themselves. We believe
that our analysis sheds new light on the classical limit of Bohmian quantum
mechanics and gives further insight on oscillation and concentration effects of
semi-classical wave functions.
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1. Introduction

In this work we consider a quantum systems described by a time-dependent
wave-function ψε(t, ·) ∈ L2(Rd;C). The dynamics of ψε is governed by the linear
Schrödinger equation

(1.1) iε∂tψ
ε = −ε

2

2
∆ψε + V (x)ψε, ψε(0, x) = ψε0(x).

where x ∈ Rd, t ∈ R and V = V (x) a given real-valued potential. Here, we already
rescaled all physical parameters, such that only one dimensionless parameter ε > 0
remains. We shall mainly be interested in the (semi-)classical limit ε→ 0+, and so
in the following refer to ε as the semi-classical parameter. In the usual interpretation
of quantum mechanics, the wave-function ψε yields a probabilistic description of
the position of the particle X(t) ∈ Rd, at time t ∈ R. More precisely,

ProbX(t)∈Ω =

∫

Ω

|ψε(t, x)|2dx,

is the probability of finding the particle a time t ∈ R within the region Ω ⊆ Rd.
This requires the wave function to be normalized ‖ψε(t, ·)‖L2 = 1.

In more generality, we recall that, although the wave function ψε itself is not a
physical observable, (real-valued) quadratic quantities of ψε yield probability den-
sities for the respective physical observables. Two important examples of such den-
sities, describing the expected values of observables (in a statistical interpretation),
are the position and the current density, i.e.

(1.2) ρε(t, x) = |ψε(t, x)|2, Jε(t, x) = εIm
(
ψε(t, x)∇ψε(t, x)

)
.

It is easily seen that if ψε solves (1.1), then the following conservation law holds

(1.3) ∂tρ
ε + div Jε = 0.

Similarly, one can define the total energy of the particle, which is conserved along
sufficiently smooth solutions to (1.1). In our case it is given by

(1.4) E[ψε(t)] =
ε2

2

∫

Rd

|∇ψε(t, x)|2dx+

∫

Rd

V (x)|ψε(t, x)|2dx,

i.e. by the sum of the kinetic and the potential energy.
The semi-classical regime of quantum mechanics corresponds to situations where

ε≪ 1. Note that ε corresponds to the typical wave-length of oscillations within the
sequence of wave functions ψε. In view of (1.1), this is a highly singular asymptotic
regime and thus analyzing the limiting behavior of expectation values of physical
observables requires analytical care. In particular, the limit of the highly oscillatory
wave function ψε itself is of almost no relevance due to the non-commutativity of
weak limits and nonlinear functions.

The conservation law (1.3), is also a possible starting point of the Bohmian

interpretation of quantum mechanics [10] (see also [14] for a broader introduction).
To this end one introduces the velocity field

(1.5) uε(t, x) :=
Jε(t, x)

ρε(t, x)
= εIm

(∇ψε(t, x)
ψε(t, x)

)
,

which is well-defined, expect at nodes, i.e. zeros, of the wave function ψε. Ignoring
this problem for the moment, the Bohmian dynamics of quantum particles is gov-
erned by the following system of ordinary differential equations for the macroscopic
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position vector:

(1.6) Ẋε(t, x) = uε(t,Xε(t, x)), Xε(0, x) = x ∈ R
d.

In other words, in Bohmian mechanics a particle is not only described by its wave
function ψε. Rather, the wave function, called pilot-wave, is used to compute from
it the velocity (or momentum) of the particle, whose dynamics is consequently given
via the ordinary differential equation (1.6). In addition one assumes that initially
the particle’s position is not exactly known, but described by the probability distri-
bution ρε(0, x) = |ψε0(x)|2. This probabilistic feature of Bohmian mechanics can be
understood as a lack of knowledge about the fine details of the considered quantum
mechanical system, analogously to the situation in classical statistical mechanics,
cf. [14].

The above description of the particle’s dynamics can be considered as the Euler-
ian approach to Bohmian mechanics with uε the associated Eulerian velocity. While
it is certainly interesting to directly study their limits as ε→ 0+, this problem seems
to be out of reach so far and hence will not be the object of this paper. Instead
we shall describe how to pass to the corresponding Lagrangian point of view on
Bohmain dynamics and argue that this viewpoint naturally leads to the introduc-
tion of a certain class of probability measures on phase space, which we shall call
Bohmian measures. These measures concentrate on Lagrangian sub-manifolds in
phase space induced by the graph of the initial velocity uε(0, x). They consequently
evolve via the (Lagrangian version of the) Bohmian dynamics and can be shown
to be equivariant with respect to this phase space flow. In addition the first and
second moment of these measures yield the correct quantum mechanical position
and current density. It is therefore natural to consider their classical limit in order
to analyze the emergence of classical dynamics from quantum mechanics (in its
Bohmian interpretation).

The main analytical tool for studying the classical limit of Bohmian measures
will be the theory of Young measures, which provides information on weak limits of
oscillatory sequences of functions. The obtained limit will then be compared to the
well established theory of (semi-classical) Wigner measures associated to ψε(t), see
e.g. [22, 18, 28]. These are phase space measures which, after taking appropriate
moments, are known to give the correct classical limit of (the probability densities
corresponding to) physical observables. We shall prove that the limiting Bohmian
measure of ψε(t) coincides with its Wigner measure locally in-time. That is, before
caustic onset, where the first singularity occurs in the solution of the corresponding
classical Hamilton-Jacobi equation. Furthermore, we shall argue that in general
the limiting Bohmian measure differs from the Wigner measure after caustic onset.
In the course of this we shall also prove new results on when Wigner transforms
tend to mono-kinetic Wigner measures.

The purpose of the present work is thus twofold: First, to shed new light on the
classical limit of Bohmian mechanics. Second, to give further insight on oscillation
and concentration effects of semi-classical wave functions (with finite energy) by
means of two physically natural, yet again mathematical very different, descriptions
via phase space measures. Moreover, we believe that our analysis may very well
be used as a first building block towards an optimal transportation formulation of

quantum mechanics, by combining our results with those given in [4, 16] and [19]
(cf. Remark 2.6 below).
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2. A Lagrangian reformulation of Bohmian mechanics

2.1. Existence of Bohmian trajectories. We start with some basic assumptions
on the potential V . Since in this work we shall not be concerned with regularity
issues we assume

(A.1) V ∈ C∞(Rd;R), V (x) > 0.

This is (by far) sufficient to ensure that the Hamiltonian operator

(2.1) Hε = −ε
2

2
∆ + V (x),

is essentially self-adjoint on D(Hε) = C∞
0 (Rd;C) ⊂ L2(Rd;C), cf. [27]. It therefore

generates a unitary C0-group U
ε(t) = e−itH

ε/ε on L2(Rd), which ensures the global
existence of a unique strong solution ψε(t) = Uε(t)ψ0 ∈ L2(Rd) of the Schrödinger
equation (1.1), such that

‖ρε(t, ·)‖L1 ≡ ‖ψε(t, ·)‖2L2 = ‖ψε0‖2L2 , ∀ t ∈ R.

From now on, we shall also impose the following assumption on the initial data:

(A.2) ψε0 ∈ C∞(Rd), with ‖ψε0‖L2 = 1 and E[ψε0] < +∞, uniformly in ε.

Since Uε(t) and Hε commute, we also have that the total energy is conserved, i.e.

E[ψε(t)] = E[ψε0], ∀ t ∈ R,

and thus, in view of (A.2), E[ψε(t)] is uniformly bounded as ε → 0+ and for all
t ∈ R. In addition, the dispersive properties of Uε(t) together with the assumption
(A.1) imply that if ψε0 ∈ Cα(Rd), for α > 0, then ψε(t, ·) ∈ Cα(Rd) for all times
t ∈ R. In the following, we denote

‖fε‖H1
ε
:= ‖fε‖L2 + ‖ε∇fε‖L2

and we say that a sequence fε ≡ {fε}0<ε61 is uniformly bounded (as ε → 0+) in
H1
ε (R

d;C), if

sup
0<ε61

‖fε‖H1
ε
< +∞.

Note that the two conservation laws given above, together with (A.1), (A.2), imply
that ψε(t, ·) ∈ H1

ε (R
d) uniformly bounded as ε → 0+ and for all t ∈ R. Moreover,

in view of (1.2) we have

(2.2) ‖Jε(t, ·)‖L1 6 ε‖∇ψε(t, ·)‖L2 ‖ψε(t, ·)‖L2 6 E[ψε0],

and we conclude that for all t ∈ R: Jε(t, ·) ∈ L1(Rd;Rd) uniformly as ε → 0+,
provided assumptions (A.1) and (A.2) hold.

Next, we recall the main result of [29] (see also [7]) on the global existence of
Bohmian trajectories.

Proposition 2.1. Let (A.1) , (A.2) be satisfied. Then the map Xε
t : x 7→ Xε(t, x) ∈

Rd induced by (1.6) exists globally in-time for almost all x ∈ Rd, relative to the

measure ρε0 = |ψε0(x)|2dx and Xε
t ∈ C1 on its maximal open domain.

Moreover, the probability density ρε(t, ·) is the push-forward of the initial density

ρε0 under the map Xε
t , i.e.

ρε(t) = Xε
t # ρε0.
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We consequently infer that the Bohmian trajectories, defined through the ordi-
nary differential equation (1.6), exist ρε0−a.e. and that for any compactly supported
test function σ ∈ C0(R

d) it holds

(2.3)

∫

Rd

σ(x)ρε(t, x)dx =

∫

Rd

σ(Xε(t, x))ρε0(x)dx.

This property is also called equivariance of the measure ρε(t, ·) in [7, 29].
In addition we may interpret (2.3) as a way of giving sense to the solution of the

continuity equation

(2.4) ∂tρ
ε + div(ρεuε) = 0,

where uε is given by (1.5). Due to the possible occurrence of nodes in ψε(t, x), the
vector field uε(t, x) is in general not Lipschitz in x. In fact, not even the general
existence theory [3, 13] for velocity vector fields which only have a certain Sobolev
or BV regularity applies to Bohmian trajectories. The property (2.3) therefore can
only interpreted as a very weak notion of solving the continuity equation (2.4). To
this end, consider the weak formulation of (2.4), when multiplied with test function
σ ∈ C∞

0 ([0,∞)× Rdx), i.e.∫ ∞

0

∫

Rd

∂tσ(t, x)ρ
ε(t, x) + uε(t, x) · ∇σ(t, x)ρε(t, x)dxdt = −

∫

Rd

σ(0, x)ρε0(x)dx.

Applying formula (2.3) to the left hand side of this identity, we obtain
∫ ∞

0

∫

Rd

(
∂tσ(t,X

ε(t, x)) + uε(t,Xε(t, x)) · ∇σ(t,Xε(t, x))
)
ρε0(x)dx =

= −
∫

Rd

σ(0, x)ρε0(x)dx.

Now, using the fact that ρε0 − a.e. it holds: uε(t,Xε(t, x)) = Ẋε(t, x) by (1.6), the
fundamental theorem of calculus allows to conclude the following statement.

Corollary 2.2. The density ρε(t) = Xε
t # ρε0 is a weak solution of the conservation

law (2.4) in D′([0,∞)× Rdx).

2.2. Bohmian measures on phase space. We shall now reformulate Bohmian
mechanics by taking the Lagrangian point of view. To this end we first introduce
the Lagrangian velocity

P ε(t, x) = Ẋε(t, x),

for which we want to derive an equation of motion. In view of (1.6), we can
differentiate P ε(t, x) ρε0 − a.e. to obtain

(2.5)
Ṗ ε(t, x) = ∂tu

ε(t,Xε(t, x)) +
(
Ẋε(t, x) · ∇

)
uε(t,Xε(t, x))

= ∂tu
ε(t,Xε(t, x)) +

(
uε(t,X(t, x)) · ∇

)
uε(t,Xε(t, x)).

To proceed further, we need an equation for the velocity field uε. To this end, we
recall the well-known hydrodynamic reformulation of quantum mechanics, where one
derives from (1.1) a closed system of equations for the densities ρε, Jε. Assuming
that ψε is sufficiently differentiable, they are found to be (see e.g. [15])

(2.6)





∂tρ
ε + div Jε = 0,

∂tJ
ε + div

(
Jε ⊗ Jε

ρε

)
+ ρε∇V =

ε2

2
ρε∇

(
∆
√
ρε√
ρε

)
.
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Remark 2.3. Under the regularity assumptions on V and ψε stated above, the
weak formulation of the quantum hydrodynamic equations (2.6) holds in a rigorous
way, i.e. each of the nonlinear terms can be interpreted in the sense of distributions,
see [15, Lemma 2.1]. Let us also point out that the hydrodynamic picture of quan-
tum mechanics originates in the seminal work of E. Madelung [23], who interpreted
ρε, Jε as a description of a continuum fluid instead of a single particle.

Identifying the current as Jε = ρεuε we can formally derive from (2.6) the
following equation for uε:

(2.7) ∂tu
ε + (uε · ∇)uε +∇V =

ε2

2
∇
(
∆
√
ρε√
ρε

)
.

The right hand side can be seen as the gradient of the so-called Bohm potential (or
quantum potential), given by

(2.8) V εB(t, x) := −ε
2

2

∆
√
ρε(t, x)√
ρε(t, x)

.

Plugging (2.7) into (2.5) we finally arrive at the following system of ordinary dif-
ferential equations:

(2.9)

{
Ẋε = P ε,

Ṗ ε = −∇V (Xε)−∇V εB(t,Xε),

subject to the initial data Xε(0, x) = x and P ε(0, x) = uε(0, x), where uε(0, x) is
the initial velocity given by

uε0(x) = εIm

(∇ψε0(x)
ψε0(x)

)
.

Note that the system (2.9) fully determines the quantum mechanical dynamics. It
can be regarded as a system of ordinary differential equations, parametrized by
the spatial variable x ∈ Rd through the initial data, where the position density
ρε (and its derivatives up to order three) have to be determined additionally. At
least numerically, ρε can be computed via ray tracing methods, based on the push
forward formula (2.3), which requires the trajectories Xε(t, x) for all x at time t.
This fact makes the Lagrangian reformulation particularly interesting for numerical
simulations, see e.g [20].

In order to give (2.9) a precise mathematical meaning we shall in the following
introduce what we call Bohmian measures on phase space Rdx×Rdp. To this end we

denote by M+(Rdx×Rdp) the set of non-negative Borel measures on phase-space and

by 〈·, ·〉 the corresponding duality bracket between M(Rdx ×Rdp) and C0(R
d
x ×Rdp),

where C0(R
d
x × Rdp) is the closure (with respect to the uniform norm) of the set of

continuous functions with compact support.

Definition 2.4. Let ε > 0 be a given scale and ψε ∈ H1
ε (R

d) be a sequence of
wave functions with corresponding densities ρε, Jε. Then, the associated Bohmian

measure βε ≡ βε[ψε] ∈ M+(Rdx × Rdp) is given by

〈βε, ϕ〉 :=
∫

Rd

ρε(x)ϕ

(
x,
Jε(x)

ρε(x)

)
dx, ∀ϕ ∈ C0(R

d
x × R

d
p).
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Note that in the definition of βε a fixed scale ε is imposed via the scaling of the
gradient in the definition of the current density (1.2). Formally, we shall denote
the Bohmian measure by

(2.10) βε(x, p) = ρε(x)⊗ δ

(
p− Jε(x)

ρε(x)

)
≡ |ψε(x)|2 ⊗ δ

(
p− εIm

(∇ψε(x)
ψε(x)

))
,

where δ is the usual delta distribution on Rd. Obviously, (2.10) defines a continuous
non-negative distribution on phase space. In addition, the first two moments of βε

satisfy
∫

Rd

βε(x, dp) = ρε(x),

∫

Rd

p βε(x, dp) = ρε(x)uε(x) ≡ Jε(x).

However, higher order moments of βε in general do not correspond quantum me-
chanical probability densities (defined via quadratic expressions of ψε). In partic-
ular, the second moment of βε yields

∫

Rd

|p|2
2
βε(x, dp) =

1

2
ρε(x)|uε(x)|2.

In classical kinetic theory, this would be interpreted as the kinetic energy density
of the particle. However, in view of

(2.11) Ekin[ψ
ε] :=

ε2

2

∫

Rd

|∇ψε(x)|2dx =
1

2

∫

Rd

|Jε(x)|2
ρε(x)

+
ε2

2

∫

Rd

|∇
√
ρε|2dx,

we see that the second moment of βε is not what in quantum mechanics would be
called a kinetic energy density, since it does not account for the second term ∝ ε2.
Note that this term formally goes to zero in the classical limit ε→ 0+.

To proceed further, we shall introduce the following mapping on phase space,

(2.12) Φεt : (x, p) 7→ (Xε(t, x, p), P ε(t, x, p))

where Xε, P ε (formally) solve the ODE system (2.9) for general initial data x, p ∈
Rd. From Proposition 2.1 we conclude the following existence result of Bohmian
trajectories in phase space.

Lemma 2.5. Under the same assumptions as in Proposition 2.1, the mapping Φεt
exists globally in-time for almost all (x, p) ∈ R2d, relative to the measure

βε0(x, p) = ρε0(x)⊗ δ(p− uε0(x)).

Moreover Φεt is continuous w.r.t. t ∈ R on its maximal open domain and

βε(t) = Φεt #βε0.

Proof. First note that Φεt when restricted to {graph(uε0)} ⊂ Rdx×Rdp is well defined
βε0 − a.e., since the map Xε

t established in Proposition 2.1 does not run into nodes
of ψε(t, ·) for almost all x relative to ρε0. Now, let us w.r.o.g. consider test function
ϕ(x, p) = σ(x)χ(p) ∈ Cb(R

2d) and denote uε = Jε/ρε. Then, we have

〈βε(t), ϕ〉 =
∫

Rd

σ(x)χ(uε(t, x))ρε(t, x)dx

=

∫

Rd

σ(Xε(t, x))χ(uε(t,Xε(t, x)))ρ0(x)dx,
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where for the second equality we have used (2.3). By definition uε(t,Xε(t, x)) =
P ε(t, x), hence

〈βε(t), ϕ〉 =
∫

Rd

σ(Xε(t, x))χ(P ε(t, x))ρ0(x)dx = 〈Φεt # ρε0 ⊗ δp=P ε(0), σχ〉.

Since P ε(0, x) ≡ uε(0, Xε(0, x)) = uε0(0, x) the assertion of the lemma is proved. �

Remark 2.6. Formally, this allows us to interpret βε(t) as a solution of the fol-
lowing kinetic equation

(2.13) ∂tβ
ε + p · ∇xβ

ε −∇x(V + V εB) · ∇pβ
ε = 0,

subject to (mono-kinetic) initial datum βε0 defined in Lemma 2.5. As before, equa-
tion (2.13) can be seen as a conservation law in phase space (endowed with a
complex structure). The main problem of (2.13) is, that the term ∇xV

ε
B · ∇pβ

ε

can not be defined in the sense of distributions in a straightforward way. We re-
mark, however, that in the purely diffusive setting of the quantum drift diffusion
equation [19], these mathematical difficulties were overcome by using Wasserstein
gradient-flow techniques. We believe that a combination of [19] with the results
given in [4, 16] can lead to rigorous mathematical results on (2.13). From a math-
ematical point of view, the study of the kinetic equation (2.13) is also interesting
for initial data given by more general positive Borel measures. Clearly, in this case
the connection with the Schrödinger equation is lost.

Given that the time-dependent Bohmian measure βε(t) concentrates concen-
trates on the Lagrangian manifold generated by the quantum mechanical phase
space trajectories induced by (2.9), it is natural to consider the limit of βε(t) as
ε → 0+ in order to study the classical limit of Bohmian mechanics. This will be
the main task of the upcoming sections.

3. The classical limit of Bohmian measures

We recall that the assumptions on the initial wave function ψε0 together with the
arguments given at the beginning of Section 2 imply that for all t ∈ R the solution
of the Schrödinger equation ψε(t) is uniformly bounded in H1

ε (R
d) as ε→ 0+, with

a bound independent of time (namely, the initial energy). Since the latter will
be the main technical assumption needed from now on, we shall for the sake of
notation suppress any time-dependence in the following and formulate results on
Bohmian and Wigner measures associated to general sequences of L2 functions ψ
with uniformly (in ε) bounded mass and energy. In Section 6 we shall get back to
time-dependent Schrödinger flows and apply the results of the previous sections.

3.1. Existence of limiting measures. We start with the following basic lemma,
which ensures existence of a classical limit of βε.

Lemma 3.1. Let ψε be uniformly bounded in L2(Rd). Then, up to extraction of

sub-sequences, there exists a limiting measure β0 ≡ β ∈ M+(Rdx × Rdp), such that

βε
ε→0+−→ β in M+(Rdx × R

d
p) w − ∗.

Proof. In view of Definition 2.4 we have, for all test functions ϕ ∈ C0(R
d
x × Rdp):

|〈βε, ϕ〉| 6 ‖ϕ‖L∞(R2d)‖ρε‖L1(Rd) < +∞,
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uniformly in ε, by assumption. By compactness, we conclude that there exists

a sub-sequence {εn}n∈N, tending to zero as n → ∞, such that βεn
n→∞−→ β in

M+(Rdx × Rdp) weak – ∗. �

When ψε = ψε(t) evolves according to the Schrödinger equation with initial
data such that ‖ψε0‖L2 = 1, then βε is in L∞(Rt,M+(Rdx × Rdp)) uniformly as

ε → 0+, since ρ
ε is in L∞(Rt, L

1(Rdx)) uniformly as ε → 0+. Thus there exists
a sub-sequence (which we shall denote by the same symbol) and a t-parametrized
family of limiting probability measures β0 = β0(t), such that βε tends to β0 in
L∞(Rt,M+(Rdx × Rdp) weak – ∗. This is of importance when we shall get back to
Schrödinger wave functions in Section 6, in particular for Proposition 6.1.

Next, we shall be concerned with the classical limits of the densities ρε, Jε. Since
they are both uniformly bounded in L1(Rd), provided ψε is uniformly bounded in
H1
ε (R

d), we conclude, that, up to extraction of a subsequence, it holds

(3.1) ρε
ε→0+−→ ρ, in M+(Rdx;R) w − ∗, Jε

ε→0+−→ J, in M+(Rdx;R
d) w − ∗.

Moreover, it has been proved in [15], that J ≪ ρ in the sense of measures and thus,
by the Radon-Nikodym theorem there exists a measurable function u, such that

(3.2) dJ = u(x)dρ.

Formally, the function u(x) ∈ Rd can be interpreted as the classical limit of the
Bohmian velocity field uε. The following statement gives the connection between
the limits (ρ, J) and β.

Lemma 3.2. Let ψε be uniformly bounded in H1
ε (R

d). Then

(3.3) ρ(x) =

∫

Rd

β(x, dp), J(x) =

∫

Rd

p β(x, dp).

Moreover, we also have

(3.4) lim
ε→0+

∫∫

R2d

βε[ψε](dx, dp) =

∫∫

R2d

β(dx, dp),

provided that in addition ψε is compact at infinity, i.e.

lim
R→∞

lim
ε→0+

∫

|x|>R
|ψε(x)|2 dx = 0.

Thus, the classical limit of the densities ρε, Jε can be obtained from the limiting
Bohmian (phase space) measure β by taking the zeroth and first moment. In
addition no mass is lost during the limiting process at |x|+ |p| = +∞, if in addition
ψε is compact at infinity.

Proof. We first prove assertion (3.3) for ρε. To this end let σ ∈ C0(R
d) and write

∫∫

R2d

σ(x)βε(dx, dp) =

∫∫

R2d

σ(x)χR(p)β
ε(dx, dp)

+

∫∫

R2d

σ(x)(1− χR(p))β
ε(dx, dp),

where for a given cut-off R > 0, χR ∈ C0(R
d), such that: 0 6 χR 6 1 and χR(p) = 1

for |p| < R, as well as χ(p) = 0 for |p| > R + 1. In view of Lemma 3.1 the first
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integral on the r.h.s. converges
∫∫

R2d

σ(x)χR(p)β
ε(dx, dp)

ε→0+−→
∫∫

R2d

σ(x)χR(p)β(dx, dp).

On the other hand, the second integral on the r.h.s. is
∫∫

R2d

σ(x)(1− χR(p))β
ε(dx, dp) 6

∫

Rd

ρε(x)σ(x)1{|uε|>R} dx,

where uε = Jε

ρε and 1Ω denotes the indicator function of a given set Ω ⊆ Rd. We
can now estimate∫

Rd

ρε(x)σ(x)1{|uε|>R} dx 6
1

R

∫

Rd

|Jε(t, x)|σ(x) dx 6
C

R
,

where C ∈ R+ is independent of ε. Here, the last inequality follows from (2.2)
together with the uniform bound of ψε in H1

ε (R
d). We can therefore take the

respective limits ε → 0+ and R → +∞, to obtain the desired statement for the
position density ρε. The assertion (3.3) for Jε can be shown analogously.

Finally, in order to prove (3.4), we refer to [18, 22], where it is shown that

lim
ε→0+

∫

Rd

ρε(x) dx =

∫

Rd

ρ(x) dx,

provided ψε is compact at infinity. Jointly with (3.3), this directly implies (3.4). �

The main task of this work is henceforth to study the limit β ∈ M+(Rdx × Rdp).
In particular, we want to understand under which circumstances β is mono-kinetic.

Definition 3.3. We say that β ∈ M+(Rdx × Rdp) is mono-kinetic, if there exists a

measure ρ ∈ M+(Rdx) and a function u defined ρ− a.e., such that

(3.5) β(x, p) = ρ(x)⊗ δ(p− u(x)).

Obviously, for every fixed ε > 0 the Bohmian measure βε is mono-kinetic by
definition, see (2.10). Note however, that the limit statements for ρε and Jε given
in (3.1), do not allow us to directly pass to the limit in βε. Thus, in general we
can not expect the limiting Bohmian measure β to be of the form (3.5). In order
to obtain further insight into the situation, we shall establish in the upcoming
subsection a connection between β and the, by now classical, theory of Young
measures.

3.2. Connection between Bohmian measures and Young measures. Con-
sider a sequence fε : R

d → Rm of measurable functions. Then, we recall that there
exists a mapping µx ≡ µ(x) : Rd → M+(Rm), called the Young measure associated

to the sequence fε, such that x 7→ 〈µ(x), g〉 is measurable for all g ∈ C0(R
m), and

(after selection of an appropriate subsequence):

lim
ε→0

∫

Rd

σ(x, fε(x)) dx =

∫

Rd

∫

Rm

σ(x, λ)dµx(λ) dx,

for any function σ ∈ L1(Ω;C0(R
m)), cf. [6, 25, 26]. In view of Definition 2.4

we expect a close connection between the classical limit of Bohmian measures and
Young measures. To this end, we shall first state one of the key technical lemmas
of this work.



BOHMIAN MEASURES 11

Lemma 3.4. Let ψε be uniformly bounded in H1
ε (R

d) with corresponding densities

ρε, Jε ∈ L1. Then, for x ∈ Rd a.e., there exists a Young measure

µx : Rr × R
d
ξ → M+,

associated to the pair (ρε, Jε), such that

(3.6) β(x, p) >

∫ ∞

0

rd+1µx(r, rp) dr,

in the sense of measures, with equality if ρε ⇀ ρ in L1(Rd), as ε → 0+. In the

latter case, µx is a probability measure on Rd+1.

The property of weak convergence of the particle density is crucial in order to
express the limiting Bohmian measure β by (a moment of) the Young measure
associated to ρε, Jε.

Proof. Assume weak convergence of ρε ⇀ ρ in L1(Rd), as ε → 0+. Thus, by the
Dunford-Pettis theorem ρε is uniformly integrable Next, consider the sequence

αε(x) := ρε(x)ϕ

(
x,
Jε(x)

ρε(x)

)
,

for ϕ ∈ C∞
0 (R2d;R) such that w.r.o.g. ‖ϕ‖L∞ = 1. Then |αε| 6 ρε, and in addition

the sequence αε is uniformly integrable. Thus αε ⇀ α0 in L1(Rd) weakly, even
though Jε does not necessarily converge weakly in L1. In view of Definition 2.4, we
obviously have 〈βε, ϕ〉 =

∫
αε(x)dx, and thus also in the limit 〈β, ϕ〉 =

∫
α0(x)dx.

On the other hand, we know that for x ∈ Rd, the mapping

α : (x, r, ξ) → r ϕ

(
x,
ξ

r

)

is continuous in r, ξ and measurable in x, hence a Carathéodory function (cf. [25]).
From what we have seen before, we know that α(x, ρε(x), Jε(x)) ≡ αε(x) con-
verges weakly in L1(Rd,R) and thus Theorem 2.3 in [25] asserts the existence of a
probability measure µx, associated to (ρε, Jε), such that

lim
ε→0

∫

Rd

α(x, ρε(x), Jε(x)) dx =

∫

Rd

∫

Rd+1

rϕ

(
x,
ξ

r

)
dµx(r, ξ) dx

=

∫

Rd

∫

Rd+1

rd+1ϕ(x, p)dµx(r, rp) dx,

where the second line follows from the simple change of variables rp = ξ. Since
ρε > 0 the Young measure µx has to be supported in [0,∞) × Rd and thus, we
obtain

〈β, ϕ〉 =
∫

Rd

∫

[0,∞)×Rd

rd+1ϕ(x, p)dµx(r, rp) dx,

i.e. the assertion of the theorem, provided ρε ⇀ ρ in L1(Rd).
On the other hand, if we discard the assumption of weak L1 convergence of ρε,

we infer the existence of a Young measure µx, such that µx(R
d+1) 6 1, i.e. not

necessarily a probability measure, and that (see also Proposition 4.4 in [25]):

lim inf
ε→0

∫

Rd

α(x, ρε(x), Jε(x)) dx >

∫

Rd

∫

[0,∞)×Rd

rd+1ϕ(x, p)dµx(r, rp) dx,

This concludes the proof. �
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To proceed further we recall the following definition: A sequence of (measurable)

functions {fε}0<ε61 : Rd → R is said to converge in measure to (the function) f̃ as
ε→ 0, if for every δ > 0:

lim
ε→0

meas
(
{|fε(x)− f̃(x)| > δ}

)
= 0.

Note that if in addition 0 6 fε
ε→0+−→ f in M+(Rd) w−∗, then in general: f̃ 6 f in

the sense of measures.

Theorem 3.5. Let ψε be uniformly bounded in H1
ε (R

d) with corresponding densities

ρε, Jε ∈ L1. If ρε
ε→0+−→ ρ strongly in L1(Rd) and Jε

ε→0+−→ J̃ in measure, then β is

mono-kinetic, i.e.

(3.7) β(x, p) = ρ(x)⊗ δ

(
p− J̃(x)

ρ(x)

)
.

and in addition J̃ = J , where J is the measure weak −∗ limit established in (3.1).

Proof. We first note that strong convergence of ρε in L1(Rd) implies that ρε
ε→0+−→ ρ

in measure. Since it is known that convergence in measure of ρε, Jε is equivalent
to the fact that µx is only supported in a single point of Rd+1, cf. [25, Proposition
4.3], we conclude

(3.8) µx(r, ξ) = δ(r − ρ(x))⊗ δ(ξ − J̃(x)).

In addition, since strong convergence of ρε in L1(Rd) also implies weak convergence,
we can insert (3.8) into (3.6) (with equality), to obtain

β(x, p) = ρd+1(x)⊗ δ(ρ(x)p− J̃(x)),

and a simple change of variable yields (3.7). By computing the first moment of

(3.7) w.r.t. p and keeping in mind (3.3), we conclude that J̃ = J in this case. �

Recalling the results of [15], we infer that the limiting measure β given by (3.7)
can be rewritten as

β(x, p) = ρ(x)⊗ δ (p− u(x)) ,

where u is defined ρ − a.e. by (3.2). In this case u can be considered the classical
limit of the Bohmian velocity field.

Remark 3.6. In the case where ρε
ε→0+−→ ρ̃ in measure, but not necessarily weakly

in L1(Rd), we still know that the Young measure is given by (3.8). However, in
such a situation, we can only conclude that

β(x, p) > ρ̃(x)⊗ δ

(
p− J̃(x)

ρ̃(x)

)
.

If ρ̃ = 0, which in principle may happen, no information on β is provided.

One may want to describe the classical limit of βε by the Young measure νx
associated to (ρε, uε) instead of (ρε, Jε). However, the problem with using νx
instead of µx is the fact that uε := Jε/ρε is only defined ρε − a.e. and thus, we
can not directly obtain a result for νx analogous to the one given in Theorem 3.5.
Rather, we need to assume the existence of an appropriate extension of uε defined
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on all of Rd, which satisfies the required convergence in measure. In this case, a
change of variables yields

νx(r, ξ) = rdµx(r, rξ), (r, ξ) ∈ R
1+d.

Thus, instead of (3.6) we obtain

(3.9) β(x, p) >

∫ ∞

0

rνx(r, p) dr.

Despite the above mentioned drawback, the measure νx is still useful to show that
the converse statement of Theorem 3.5 is not true in general. To this end, we
assume β to be mono-kinetic, i.e. β(x, p) = ρ(x) ⊗ δ (p− u(x)), from which we
conclude from (3.9) that

suppx,p

(∫ ∞

0

rνx(r, p) dr

)
⊆
{
(x, p) ∈ R2d : p = u(x), x ∈ supp ρ

}
.

Thus

suppr,pνx ⊆
{
(r, p) ∈ R2d : p = u(x), r > 0} ∪ {(r = 0, p) : p ∈ R

d
}

and we consequently infer

νx(r, p) = ωx(r)⊗ δ(p− u(x)) + δ(r)γx(p),

where suppr ωx ⊆ (0,∞). The appearance of the second term on the right hand
side makes the converse statement of Theorem 3.5 fail in general. In other words,
the fact that β is mono-kinetic does not imply that νx is a delta distribution in p,
which makes it impossible to conclude the strong convergence of uε (or Jε). This
fact can be further illustrated by the following example.

Example. First note that for any ψε ∈ L2(Rd) we can write

(3.10) ψε(x) =
√
ρε(x)eiS

ε(x)/ε,

where Sε(x) ∈ R is defined ρε− a.e., up to additive integer multiples of 2π. In this
representation (which should not be confused with the WKB ansatz to be discussed
in Section 6) the current density reads Jε = ρε∇Sε. Assume now, that for some
measurable set Ω ⊂ Rd we have

ρε = ρε11Ω + ρε21{Rd/Ω}

with ρε1
ε→0+−→ 0 in L1(Ω) strongly and ρε2

ε→0+−→ ρ2 6= 0 in L1(Rd/Ω) weakly. Simi-
larly, we assume

Sε = Sε11Ω + Sε21{Rd/Ω}

with ∇Sε1
ε→0+−→ ∇S1 in L∞(Ω) weak−∗ (but not strongly) and ∇Sε2

ε→0+−→ ∇S2

almost everywhere on Rd/Ω. Then, one easily checks that

β(x, p) = ρ21{Rd/Ω} ⊗ δ(p−∇S2(x)),

i.e. mono-kinetic. The corresponding Young measure however, is found to be

νx(r, p) = ωx(r)1{Rd/Ω} ⊗ δ(p−∇S2(x)) + δ(r)1Ωγx(p),

where ωx(r) is the Young measure of ρε21{Rd/Ω} and γx(p) is the Young measure
of ∇Sε11Ω. In other words, the oscillations within Sε1 do not show in the limiting
Bohmian measure β (since the corresponding limiting density vanishes), but they
do occur in the corresponding Young measure.
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4. Comparison to Wigner measures

In this section we shall compare the concept of Bohmian measures (and in par-
ticular their classical limit) to the well known theory of semi-classical measures,
also called Wigner measures, see e.g. [17, 18, 22] for a broader introduction. In the
following, we denote the Fourier transform of a function ϕ(x) by

ϕ̂(ξ) :=

∫

Rd

ϕ(x)e−ix·ξdx.

4.1. Short review of Wigner measures. In order to obtain a phase space pic-
ture of quantum mechanics one usually considers the Wigner function (or Wigner
transformation) wε ≡ wε[ψε], as introduced in [30]:

(4.1) wε(x, p) :=
1

(2π)d

∫

Rd

ψε
(
x− ε

2
y
)
ψε
(
x+

ε

2
y
)
eiy·p dy.

In view of this definition, the Fourier transform of wε w.r.t. p is given by

ŵε(x, y) ≡
∫

Rd

w(x, p)e−iy·pdp = ψε
(
x+

ε

2
y
)
ψε
(
x− ε

2
y
)
,(4.2)

and thus, Plancherel’s theorem together with a simple change of variables yields

‖wε‖L2(R2d) = ε−d(2π)−d/2‖ψε‖2L2(Rd).

The real-valued function wε(t, x, p) acts as a quantum mechanical analogue for
classical phase-space distributions. In particular, its moments satisfy

(4.3) ρε(x) =

∫

Rd

wε(x, p)dp, Jε(x) =

∫

Rd

pwε(x, p)dp,

where the integrals on the r.h.s. have to be understood in an appropriate sense,
since wε 6∈ L1(Rdx × Rdp) in general.

Remark 4.1. More precisely, it is proved in [22, 18] that the p-Fourier transform
satisfies ŵε ∈ C0(R

d
y;L

1(Rdx)) and likewise for the Fourier transformation of wε

w.r.t. x ∈ Rd. T his allows to define the integral of wε via a limiting process (after
convolving with Gaussians), cf. [22] for more details.

The evolution equation for wε(t, x, p) ≡ wε[ψε(t)] is easily derived from the linear
Schrödinger equation (1.1). It reads

(4.4) ∂tw
ε + p · ∇xw

ε +Θε[V ]wε = 0, wε(0, x, p) = wε0(x, p),

where wε0 ≡ wε[ψε0] and Θε[V ] is a pseudo-differential operator

(Θε[V ]f)(x, p) := − i

(2π)d

∫∫

R2d

δV ε(x, y)f(x, q) eiy·(p−q) dy dq,

with symbol δV ε given by

δV ε(x, y) =
1

ε

(
V
(
x+

ε

2
y
)
− V

(
x− ε

2
y
))

.

Obviously, under the assumption (A.1) it holds δV ε
ε→0+−→ y · ∇xV , in which case

(4.4) formally simplifies to the classical Liouville equation on phase space.
Note that the Wigner picture of quantum mechanics is completely equivalent to

the Schrödinger picture. The main drawback of using wε is that in general it can
also take negative values and hence can not be regarded as a probability distri-
bution. Nevertheless it has the following important property (see e.g. [18]): For
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any operator Opε(a), defined by Weyl-quantization of the corresponding classical
symbol a(x, p) ∈ S(Rdx × Rdp), one can compute the expectation value of Opε(a) in
the state ψε via

(4.5) 〈ψε,Opε(a)ψε〉L2 =

∫∫

R2d

a(x, p)wε(x, p)dx dp,

where the right hand side resembles the usual formula from classical statistical
mechanics. To proceed further, we recall the main result proved in [22, 18]:

Proposition 4.2. Let ψε be uniformly bounded in L2(Rd). Then, the set of Wigner

functions {wε}0<ε61 ⊂ S ′(Rdx × Rdp) is weak−∗ compact and thus, up to extraction

of subsequences

wε[ψε]
ε→0+−→ w0 ≡ w in S ′(Rdx × R

d
p) w − ∗,

where the limit w ∈ M+(Rdx × Rdp) is called the Wigner measure. If, in addition

ψε ∈ H1
ε (R

d) uniformly, then we also have

ρε(x)
ε→0+−→ ρ(x) =

∫

Rd

w(x, dp), Jε(x)
ε→0+−→ J(x) =

∫

Rd

pw(x, dp).

This result allows us to exchange limit and integration on the limit on the right
hand side of (4.5) to obtain

〈ψε,Opε(a)ψε〉L2

ε→0+−→
∫∫

R2d

a(x, p)w(x, p) dx dp.

The Wigner transformation and its associated Wigner measure therefore are highly
useful tools to compute the classical limit of the expectation values of physical
observables.

In addition it is proved in [22, 18], that w(t) = Φt#w0, where w0 is the initial
Wigner measure and Φ(t) is the classical phase space flow given by the Hamiltonian
ODEs

(4.6)

{
Ẋ = P, X(0, x, p) = x,

Ṗ = −∇V (X), P (0, x, p) = p.

In other words w(t) can be considered a weak solution of the Liouville equation.
Note that Φt is formally obtained from (2.12) in the limit ε → 0+. It is there-
fore natural to compare the Wigner measure associated ψε with the corresponding
classical limit of the Bohmian measure associated to ψε.

4.2. The sub-critical case. As a first step we shall prove the following basic
result, relating β and w in the sub-critical case w.r.t. to the scale ε.

Theorem 4.3. Assume that ψε is uniformly bounded in L2(Rd) and that in addition

(4.7) ε∇ψε ε→0+−→ 0, in L2
loc(R

d)

Then, up to extraction of subsequences, it holds

w(x, p) = β(x, p) ≡ ρ(x)⊗ δ(p).

The result can be interpreted as follows: Sequences of functions ψε which neither

oscillate nor concentrate on the scale ε (but maybe on some larger scale), yield in
the classical limit the same mono-kinetic Bohmian or Wigner measure with p = 0.
Note that for the free Schrödinger flow the condition (4.7) is easily seen to be
propagated in time.
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Proof. Let ϕ ∈ C∞
0 (Rdx × Rdp) and write

〈βε, ϕ〉 − 〈ρε ⊗ δp=0, ϕ〉 =
∫

Rd

ρε(x)ϕ

(
x,
Jε(x)

ρε(x)

)
dx−

∫

Rd

ρε(x)ϕ (x, 0) dx

=

∫

Ω

∇pϕ (x, ηε) · Jε(x) dx,

by using the mean value theorem. Using the fact that ϕ ∈ C∞
0 (Rdx × Rdp), we can

estimate

|〈βε, ϕ〉 − 〈ρε ⊗ δp=0, ϕ〉| 6 C

∫

Ω

|Jε(x)| dx 6 C‖ψε‖L2(Ω)‖ε∇ψε‖L2(Ω),

and since, by assumption, ε∇ψε → 0 in L2
loc(R

d) we conclude that the limiting
Bohmian measure is of the form given above.

In order to prove the same statement for the Wigner function we again use the
mean value theorem to write

(4.8) ψε
(
x± ε

2
y
)
= ψε(x)± ε

2

∫ 1

0

∇ψε
(
x± εs

2
y
)
· y ds,

and consider the Fourier transformation of wε w.r.t. the variable p ∈ Rd, i.e.

ŵε(x, y) = ψε
(
x+

ε

2
y
)
ψε
(
x− ε

2
y
)
,

as computed in (4.2). Inserting (4.8) into ŵε(x, y) we can write

|〈ŵε, ϕ〉 − 〈ρε, ϕ〉| 6 |〈Rε, ϕ〉|,
where for every ϕ ∈ C0(R

d
x × Rdy) the remainder Rε can be estimated using the

Cauchy-Schwarz inequality:
∣∣∣∣
∫∫

R2d

Rε(x, y)ϕ(x, y) dx dy

∣∣∣∣ 6 ε2
∫∫

R2d

ϕ(x, y)
(∫ 1

−1

∣∣∣∇ψε
(
x+

εs

2
y
)
· y
∣∣∣ ds
)2
dx dy

6 ε2C

∫∫

Rd

ϕ(x, y)
∣∣∣∇ψε

(
x+

εs

2

)
y
∣∣∣
2

dx dy

6 ε2C ‖∇ψε‖2L2(Ω),

where the last inequality follows from a simple change of variables. We therefore
conclude ŵε(x, y) ⇀ ρ(x), as ε → 0+ and an inverse Fourier transformation w.r.t.
y then yields the desired result. �

Remark 4.4. The proof given above, shows that the conclusion β = ρ(x) ⊗ δ(p)

still holds, if (4.7) is replaced by the weaker assumption: Jε
ε→0+−→ 0, strongly in

L1
loc(R

d).

4.3. The case of mono-kinetic Wigner measures. In situations where we have
concentrations or oscillation on the critical scale ε the connection between β and w
is much more involved. The first problem we aim to analyze in more detail, is to
find sufficient conditions under which the limiting Wigner measure is mono-kinetic.
We remark that mono-kinetic Wigner measures correspond to semi-classical limits
of Schrödinger flows before caustic onset time, see [28] and Section 6 of this paper.

The first result in this direction given in the following theorem, which can be
seen as an analogue of Theorem 3.5 for β. Recall the representation formula (3.10),
i.e.

ψε(x) =
√
ρε(x)eiS

ε(x)/ε,
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which we shall use frequently in the following.

Theorem 4.5. Let ψε be uniformly bounded in H1
ε (R

d), and assume ρε
ε→0+−→ ρ

strongly in L1(Rd). If in addition there exists an extension of Sε to be denoted by

the same symbol and a function S ∈ C1(Ω), such that

lim
ε→0+

‖∇Sε −∇S‖L∞(Ω),

where Ω ⊆ Rd is an open set containing supp ρ, then it holds

w(x, p) = β(x, p) ≡ ρ(x)⊗ δ(p−∇S(x)).

In view of Theorem 3.5, the above given assumptions are of course far from
optimal when one is only concerned with the limit of β.

Proof. The assertion for β follows immediately from the definition of βε, by using

that Jε/ρε = ∇Sε ε→0+−→ ∇S uniformly on supp ρ ⊂ Ω.
In order to prove the assertion for w, we use the p–Fourier transformed Wigner

function and the representation (3.10), which yields

ŵε(x, y) =

√
ρε
(
x+

εs

2
y
)√

ρε
(
x− εs

2
y
)
exp (iδSε(x, y)) ,

where we denote the difference quotient

δSε(x, y) :=
1

ε

(
Sε
(
x+

ε

2
y
)
− Sε

(
x− ε

2
y
))

.

We aim to show that ŵε converges weakly to

ŵ(x, y) = ρ(x) exp (iy · ∇S(x)) .

To this end we shall first show that
√
ρε

ε→0+−→ √
ρ strongly in L2(Rd). Since, by

assumption
∫

Rd

(√
ρε(x)

)2
dx ≡

∫

Rd

ρε(x) dx
ε→0+−→

∫

Rd

ρ(x) dx =

∫

Rd

(√
ρ(x)

)2
dx,

it suffices to show
√
ρε ⇀

√
ρ in L2(Rd) weakly. This, in turn, follows from a Young

measure argument based on Proposition 4.2 and Proposition 4.3 of [25].
With the strong L2 convergence at hand, we can write

ŵε(x, y)− ŵ(x, y) =

(√
ρε
(
x+

ε

2
y
)√

ρε
(
x− ε

2
y
)
− ρ(x)

)
eiδS

ε(x)

+ ρ(x)
(
eiδS

ε(x,y) − eiy·∇S(x)
)
.

Due to the strong convergence of
√
ρε and the strong continuity of the shift-operator

on L2(Rd), the first term on the right hand becomes zero in the weak limit as
ε → 0+, i.e. after localizing with a compactly supported test-function. It remains
to estimate the third term, for which we use

∣∣∣eiδSε(x,y) − eiy·∇S(x)
∣∣∣ 6 |δSε −∇S · y| 6 |∇Sε − δS|+ |δS −∇S|,

by the mean-value theorem. Here, we first note that |δS − ∇S| ε→0+−→ 0, due to
the assumed continuity of ∇S. For the other term we again invoke the mean-value
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theorem and write

|∇Sε − δS| 6 ε

2

∫ 1

−1

y · ∇(Sε − S)
(
x+

εs

2
y
)
ds.

It is then easily seen that the this term likewise goes to zero, as ε → 0+, by
assumption on (the gradient of) Sε. �

Alternatively, we can also show the following variant of Theorem 4.5.

Corollary 4.6. Let Ωε ⊆ Rd be an open set containing supp ρε. Then the assertion

of Theorem 4.5 also holds true, if there exists an extension Sε defined on Ωε and a

function S ∈ C1
(⋃

ε61 Ω
ε
)
such that

lim
ε→0+

‖∇Sε −∇S‖L∞(Ωε).

In comparison Theorem 4.5 we hereby impose a slightly stronger assumption
on the limiting phase function S. In turn, the assumption on the extension Sε is
slightly weaker than before.

Proof. The only difference from the proof given above is, that this time we write

ŵε(x, y)− ŵ(x, y) =

√
ρε
(
x+

ε

2
y
)√

ρε
(
x− ε

2
y
)
eiy·∇S(x) − ρ(x)eiy·∇S(x)

+

√
ρε
(
x+

ε

2
y
)√

ρε
(
x− ε

2
y
)(

eiδS
ε(x,y) − eiy·∇S(x)

)
.

Due to the strong convergence of
√
ρε and the strong continuity of the shift-operator

on L2(Rd), the first two terms on the right hand side cancel each other in the limit
ε → 0 (see also Example III.1 in [22]). The second term is then treated similarly
as before using the mean-value theorem. �

4.4. The general case. As we have seen, we cannot expect w or β to be mono-
kinetic in general. It is therefore natural to study the connection between the two
measures under more general circumstances.

Theorem 4.7. Let ψε be uniformly bounded in H1
ε (R

d) with corresponding densities

ρε, Jε ∈ L1. If

ε∇
√
ρε

ε→0+−→ 0, in L2
loc(R

d)

and if there exists an extension of Sε, such that

ε sup
x∈Ωε

∣∣∣ ∂
2Sε

∂xℓ∂xj

∣∣∣ ε→0+−→ 0, ∀ ℓ, j ∈ 1, . . . , d,

where Ωε is an open set containing supp ρε, then it holds

lim
ε→0+

|〈wε, ϕ〉 − 〈βε, ϕ〉| = 0, ∀ϕ ∈ C0(R
d
x × R

d
p).

Proof. We again consider ψε to be given via (3.10), and the corresponding p–Fourier
transformed Wigner function

ŵε(x, y) =

√
ρε
(
x+

εs

2
y
)√

ρε
(
x− εs

2
y
)
exp (iδSε(x, y)) ,

which we want to compare with the p–Fourier transformed representation of βε,
which, in view of (2.10), is given by

β̂ε(x, y) = ρε(x) exp (iy · ∇Sε(x)) .
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To this end, we rewrite

ŵε(x, y) =

(√
ρε
(
x+

εs

2
y
)√

ρε
(
x− εs

2
y
)
− ρε(x) + ρε(x)

)
exp (iδSε(x, y)) ,

and also

δSε(x, y) =
1

2

∫ 1

−1

∇Sε
(
x± εs

2
y
)
· y ds

=∇Sε(x) · y + ε2

2

∫ τ

0

∫ 1

−1

y⊤D2Sε
(
x± εsτ

2
y
)
y dτ ds,

where D2Sε denotes the Hessian matrix of Sε. In other words, we have δSε(x, y) =
∇Sε(x) · y +Φε(x, y) and thus we obtain

ŵε(x, y)− β̂ε(x, y) = ρε(x)ei∇S
ε(x)·y

(
eiΦ

ε(x,y) − 1
)

+

(√
ρε
(
x+

εs

2
y
)√

ρε
(
x− εs

2
y
)
− ρε(x)

)
ei∇S

ε(x)·y.

In view of the assumption on Sε the first term on the right hand side goes to zero,
as ε→ 0+ and we therefore only need to take care of the second term. Using again
the mean-value theorem we can rewrite
√
ρε
(
x+

εs

2
y
)√

ρε
(
x− εs

2
y
)
=
ε

2

∫ 1

0

y · ∇z

(√
ρε(x+ z)

)√
ρε(x− z)

∣∣∣
z=εy/2

ds

+
ε

2

∫ 1

0

√
ρε(x+ z) y · ∇z

(√
ρε(x− z)

) ∣∣∣
z=εy/2

ds+ ρε(x).

Now, let ϕ ∈ C0(R
2d) with |supp ϕ| 6 R < ∞. Then, we can estimate, using the

Cauchy-Schwarz inequality several times

ε

2

∫∫

R2d

∫ 1

0

ϕ(x, y)
√
ρε(x∓ z) y · ∇z

(√
ρε(x± z)

) ∣∣∣
z=εy/2

ds dx dy

6 C(ϕ)

(∫

Rd

ρε(x) dx

)1/2
(∫

|x|<2R

|ε∇
√
ρε(x)|2 dx

)1/2

,

where C(ϕ) > 0 depends on the supp ϕ. By assumption, this bound goes to zero
as ε→ 0+, which yields the assertion of the theorem. �

Note that the ε∇√
ρε

ε→0+−→ 0 in L2
loc(R

d), implies that the one part the quantum
mechanical kinetic energy (2.11) which is not captured by the second moment of βε

has to converge to zero (at least locally in x). In fact, it is shown in the following
corollary, that this assumption is “almost necessary” (i.e. at least for wave functions
which are slightly more regular) to infer β = w.

Corollary 4.8. Assume ψε ∈ H1
ε (R

d) uniformly bounded, ε∇ψε compact at infinity

and that there exists a κ > 0, such that:

(4.9) |εξ|κ+1ψ̂ε(ξ) ∈ L2(Rd), uniformly, as ε→ 0+,

and let w = β. Then ε∇√
ρε

ε→0+−→ 0 in L2(Rd).



20 P. MARKOWICH, T. PAUL, AND C. SPARBER

In combination with Theorem 4.7 we conclude that for wave functions ψε which
are uniformly bounded in any ε-scaled Sobolev space of higher order than H1

ε (R
d)

and for which ε∇ψε is compact at infinity, the fact that ε∇√
ρε

ε→0+−→ 0 in L2
loc(R

d),
is indeed a necessity to obtain w = β.

Proof. Recall that (for uε = Jε/ρe) we have
∫∫

R2d

|p|2wε(x, p) dx dp =
∫

Rd

|uε(x)|2ρε(x) dx+ ε2
∫

Rd

|∇
√
ρε(x)|2 dx

=

∫∫

R2d

|p|2βε(x, p) dx dp+ ε2
∫

Rd

|∇
√
ρε(x)|2 dx,

(4.10)

in view of (2.10) and (2.11). Thus
∫∫

R2d

|p|2β(x, p) dx dp 6 lim
ε→0+

∫∫

R2d

|p|2βε(x, p) dx dp

6 lim
ε→0+

∫∫

R2d

|p|2wε(x, p) dx dp = lim
ε→0+

∫∫

R2d

|p|2nε(p) dp,

where nε denotes the momentum density, i.e.

nε(p) :=

∫

Rd

wε(x, p) dx = ε−d
∣∣∣ψ̂ε

(p
ε

)∣∣∣
2

.

Now, using the results given in [22, Proposition 1.7], it is easy to show that

lim
ε→0+

∫∫

R2d

|p|2wε(x, p) dx dp =
∫∫

R2d

|p|2w(x, p) dx dp,

provided that ψε satisfies the assumptions stated above. Since β = w, by assump-
tion, we obtain

lim
ε→0+

∫∫

R2d

|p|2βε(x, p) dx dp =
∫∫

R2d

|p|2w(x, p) dx dp =
∫∫

R2d

|p|2β(x, p) dx dp.

We therefore conclude from (4.10) that ε∇√
ρε

ε→0+−→ 0 in L2(Rd). �

In Subsection 5.1 we shall show that an ε-oscillatory velocity field ∇Sε may
cause the limiting Bohmian measure to be different from the Wigner measure.

5. Case studies

In this section we shall study the case of oscillations and concentration effects on
the (critical) scale ε and compare the corresponding Bohmian and Wigner measure.

5.1. Oscillatory functions. Let ψε(x) = f(x)g
(
x
ε

)
, where f ∈ C∞

0 (Rd;C) and

g ∈ C∞(Rd,C) is assumed to be periodic w.r.t. some lattice L ≃ Zd, i.e. g(y+ ℓ) =
g(y) for any y ∈ Rd and ℓ ∈ L. In other words, ψε is a slowly modulated high-
frequency oscillation. Computing the corresponding Bohmian measure we find

βε(x, p) = |f(x)|2
∣∣∣g
(x
ε

)∣∣∣
2

⊗ δ

(
p− Im

(
∇g
(
x
ε

)

g
(
x
ε

) + ε
∇f(x)
f(x)

))
.

Taking ϕ ∈ C0(R
d
x×Rdp) we conclude by invoking the theory of two-scale convergence

(see e.g. [2]), that

〈βε, ϕ〉 ε→0+−→ 1

|Y |

∫

Rd

∫

Y

|f(x)|2|g(y)|2ϕ
(
x, Im

(∇g(y)
g(y)

))
dy dx,
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where Y ⊂ L is the fundamental domain of the lattice L. We thus find, that the
limiting Bohmian measure is given by

(5.1) β(x, p) = |f(x)|2 ⊗ 1

|Y |

∫

Y

|g(y)|2 δ
(
p− Im

(∇g(y)
g(y)

))
dy.

On the other hand, let

g(y) =
∑

ℓ∗∈L∗

ĝℓ∗e
−iy·ℓ∗ ,

be the Fourier series of g(y), where L∗ denotes the corresponding dual lattice, and
consider the Wigner function of ψε, after Fourier transformation w.r.t. the variable
p ∈ Rd, i.e.

ŵε(x, y) = f
(
x+

ε

2
y
)
f
(
x− ε

2
y
) ∑

ℓ∗,m∗

ĝℓ∗ ĝm∗e−i((x/ε+y/2)·ℓ
∗−(x/ε−y/2)·m∗)).

Then it is easy to see that, as ε→ 0+:

ŵε(x, y)⇀ |f(x)|2
∑

ℓ∗∈L∗

|ĝℓ∗ |2eiy·ℓ
∗

.

More precisely we find that

〈wε, ϕ〉 ε→0+−→
∑

ℓ∗∈L∗

|ĝℓ∗ |2
∫

Rd

|f(x)|2ϕ(x, ℓ∗)dx,

and hence the Wigner measure associated to the L-oscillatory function ψε is given
by

(5.2) w(x, p) = |f(x)|2 ⊗
∑

ℓ∗∈L∗

|ĝℓ∗ |2δ(p− ℓ∗),

which should be compared to (5.1).

Lemma 5.1. For g ∈ C∞(Rd) the limiting measures (5.1) and (5.2) coincide, if

and only if carries only a single oscillation ℓ∗ ∈ L∗.

Proof. In order to show that β 6= w it is enough to prove that their respective
second moments do not coincide. To this end, we compute

∫

Rd

|p|2 βε(x, dp) = |Y |−1|f(x)|2
∫

Y

|g(y)|2
∣∣∣∣Im

(∇g(y)
g(y)

)∣∣∣∣
2

dy

and ∫

Rd

|p|2 wε(x, dp) = |f(x)|2
∑

ℓ∗∈L∗

|ℓ∗|2|ĝℓ∗ |2 ≡ |Y |−1|f(x)|2
∫

Y

|∇g(y)|2dy.

Using the polar decomposition g(y) = r(y)eiθ(y) these integrals can be rewritten as
∫

Y

|g(y)|2
∣∣∣∣Im

(∇g(y)
g(y)

)∣∣∣∣
2

dy =

∫

Y

|r(y)|2|∇θ(y)|2dy

and ∫

Y

|∇g(y)|2dy =

∫

Y

|∇r(y)|2 + |r(y)|2|∇θ(y)|2dy.

Obviously these two integrals can only coincide, if |∇r(y)| = 0, which implies
g(y) = ceiθ(y), with c > 0 and θ(y) ∈ R. In this case the support of the x-
projection of β is the closure of the range of ∇θ, i.e. bounded in Rdp. On the other
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hand, the support of the x-projection of w is L∗. Hence, for a smooth function g
the two supports can only be equal if θ(y) = y · ℓ∗ for some ℓ∗ ∈ L∗, in which case
w = β. �

Assume now that f is real-valued and let g(y) = eiθ(y). Then, the sequence ψε

is obviously uniformly bounded in H1
ε (R

d) and the phase Sε(x) = εθ(x/ε) is such
that

ε
∂2Sε

∂xℓ∂xj
=

∂2θ

∂yℓ∂yj

(x
ε

)
, ℓ, j = 1, . . . , d.

Therefore the first assumption of Theorem 4.7 is satisfied, but the second is not,
unless θ = 0. As stated above, β 6= w.

5.2. Concentrating functions. We consider wave function ψε which concentrate
at a single point. To this end, let, for some x0 ∈ Rd, ψε(x) = ε−d/2f

(
x−x0

ε

)
with

f ∈ C∞
0 (Rd;C). Thus |ψε(x)|2 ⇀ δ(x−x0), as ε→ 0+. The corresponding Wigner

measure has been already computed in [17, 22] as

(5.3) w(x, p) = (2π)−d|f̂(p)|2 ⊗ δ(x− x0),

where f̂ denotes the Fourier transform of f . On the other hand, we easily compute

βε(x, p) = ε−d
∣∣∣f
(x
ε

)∣∣∣
2

⊗ δ

(
p− Im

(
∇f

(
x−x0

ε

)

f
(
x−x0

ε

)
))

,

and thus

〈βε, ϕ〉 = ε−d
∫

Rd

∣∣∣f
(x
ε

)∣∣∣
2

ϕ

(
x, Im

(
∇f

(
x−x0

ε

)

f
(
x−x0

ε

)
))

dx

=

∫

Rd

|f(p)|2ϕ
(
εp+ x0, Im

(∇f(y)
f(p)

))
dp,

by a simple change of variables. We therefore conclude

〈βε, ϕ〉 ε→0+−→
∫

Rd

|f(p)|2ϕ
(
x0, Im

(∇f(p)
f(p)

))
dp.

In other words,

(5.4) β(x, p) = δ(x− x0)⊗
∫

Rd

|f(y)|2δ
(
p− Im

(∇f(y)
f(y)

))
dy,

Again we see that the Wigner measure (5.3) and the classical limit of the Bohmian
measure (5.4) are rather different in this case.

Lemma 5.2. The limiting measures (5.4) and (5.3) do not coincide, unless f = 0.

Proof. Again, it is enough to prove that the second moments of β and w do not
coincide. By the same arguments as in the proof of Lemma 5.1, we conclude that the
second moments can only coincide if f(y) = ceiθ(y), c > 0, which is in contradiction
to the fact that f ∈ L2(Rd), unless c = 0. �
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5.3. Examples from quantum physics. As a possible application we shall now
consider some important examples of quantum mechanical wave functions, which
incorporate oscillatory and concentrating effects in their classical limit.

Example (Semi-classical wave packets). In this example we consider so-called semi-
classical wave packets (or coherent states), which incorporate, both, oscillations and
concentrations, i.e.

ψε(x) = ε−d/4f

(
x− x0√

ε

)
eip0·x/ε, x0, p0 ∈ R

d,

for some given profile f ∈ C∞
0 (Rd;C). Similarly as before, we compute

〈βε, ϕ〉 = ε−d/2
∫

Rd

∣∣∣∣f
(
x− x0√

ε

)∣∣∣∣
2

ϕ


x, p0 +

√
ε Im



∇u
(
x−x0√

ε

)

u
(
x−x0√

ε

)




 dx,

which in the limit ε→ 0+ yields

β(x, p) =

∫

Rd

|f(x)|2dx δ(x− x0)⊗ δ(p− p0).

On the other hand, the Wigner measure of a coherent state is found in [22] to be

w(x, p) =

∫

Rd

|f(x)|2dx δ(x− x0)⊗ δ(p− p0).

Thus, β = w in this case, a fact which makes coherent states particularly attractive
for the study of the classical limit of Bohmian mechanics, cf. [9]. Note that for
p0 = 0 this can be seen as a particular case of Theorem 4.3, since coherent states
concentrate on the scale

√
ε.

Example (Eigenfunctions). Let us consider a Hamiltonian operator

Hε = −ε
2

2
∆ + V (x),

with (real-valued) smooth confining potential V (x) → +∞ as |x| → ∞. The
corresponding spectrum is known to be discrete and the associated spectral problem
reads

Hεψεn = λεn ψ
ε
n, n ∈ N,

with normalized eigenstates ψεn ∈ L2(Rd) and eigenvalues λn ∈ R. Now, let {εn}n∈N

be a sequence such that εn
n→∞−→ 0 and λεnn

n→∞−→ Λ ∈ R. Since V (x) is confining
(and since ψεnn is normalized) there exists a subsequence, which we denote by the
same symbol, such that ∣∣ψεnn

∣∣2 n→∞−→ ρ(x) 6= 0,

weakly in measure. Since Hε is self-adjoint the eigenfunctions ψεn can be chosen
real-valued and we therefore conclude β(x, p) = ρ(x)⊗ δ(p).

For the particular case of the harmonic oscillator V (x) = 1
2 |x|2 the Wigner

measure w, as computed in [22], is w(x, p) = δ(|x|2 + |p|2 − Λ), i.e. a uniform
distribution on the energy sphere. Thus, w 6= β, unless Λ = 0 and ρ(x) = δ(x),
which corresponds to a classical particle at rest, sitting at the minimum of V (x) =
1
2 |x|2. In more generality, the fact that w 6= β can be concluded by invoking results
from quantum ergodicity, see e.g. [21] or microlocal analysis, which shows that
suppw ⊆ { 1

2 |p|2 + V (x) = Λ}.
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6. Connection to WKB approximations

WKB expansions are a standard approach in semi-classical approximation of
quantum mechanics (see e.g. [11, 28] and the references given therein). To this end
one seeks an approximation of the exact solution ψε(t, x) to (1.1), in the following
form

(6.1) ψεwkb(x) = aε(t, x)eiS(t,x)/ε,

where S(t, x) ∈ R is some ε-independent (real-valued) phase function and aε(x) a
slowly varying amplitude (not necessarily real-valued), which admits an asymptotic
expansion

aε ∼ a+ εa1 + ε2a2 + . . . .

Note that the ansatz (6.1) specifies a certain ε-oscillatory structure of ψε (due to
the fact that the phase S(x) is assumed to be ε-independent). In particular, it
should not be confused with the representation (3.10), which is much more general.
Obviously, we find that the Bohmian measure in this case is

βε[ψεwkb(t)] = |aε(t, x)|2 ⊗ δ(p−∇S(t, x)).
By plugging (6.1) into the Schrödinger equation (1.1) and assuming sufficient smooth-
ness, one obtains in leading order the following equation for the the phase

(6.2) ∂tS +
1

2
|∇S|2 + V (x) = 0

and the leading order amplitude

(6.3) ∂ta+∇a · ∇S +
a

2
∆S = 0,

which is easily rewritten as a conservation law for ρ = a2, i.e.

∂tρ+ div(ρ∇S) = 0.

Equation (6.2) is nothing but the classical Hamilton-Jacobi equation. If we set
u = ∇S, then we clearly obtain from (6.2) the inviscid field-driven Burgers equation

(6.4) ∂tu+ (u · ∇)u+∇V (x) = 0,

which can formally be seen as the classical limit of (2.7).
The main problem of the WKB approach arises from the fact that (6.2), or

equivalently (6.4), in general does not admit global smooth solutions. In general
S(t, ·) ∈ C∞(Rd) only for t ∈ [0, T ∗), for some (typically small) finite time T ∗ > 0,
which marks the appearance of the the first caustic, or, equivalently, the appearance
of the first shock in (6.4), cf. [11, 28]. Caustics reflect the fact that new ε-scales are
generated in the exact solution ψε(t, x), which are no longer captured by the simple
ansatz (6.1). Nevertheless, at least locally in-time the WKB approximation yields
a simple representation for ψε(t, x). In addition is was shown to be robust enough
to be extended to nonlinear Schrödinger equations, see [11, 12]. Its connection to
Wigner measures has been extensively studied in [28]. The connection to Bohmian
measures is given in the following result.

Proposition 6.1. Let Assumption A.1 and A.2 hold and let T ∗ > 0 be the caustic

onset time. Assume there exist smooth solutions a, S ∈ C∞([0, T ∗) × Rd), with

a(t, ·) ∈ L2(Rd). Then, for the exact solution ψε(t) of the Schrödinger equation

with WKB initial data, it holds

β(t, x, p) = w(t, x, p) ≡ |a(t, x)|2 ⊗ δ(p−∇S(t, x)), ∀ t ∈ [0, T ∗).
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Proof. The statement for the Wigner measure has been proven in [15] and (in more
generality also in [28]). In order to prove that β is mono-kinetic before caustics we
refer to [1], where it is shown that for T ∈ [0, T ∗):

ρε
ε→0+−→ |a|2, Jε

ε→0+−→ |a|2∇S,
strongly in C([0, T ];L1(Rd)). Thus, recalling Theorem 3.5, we directly conclude
the desired result. �

In other words, as long as the WKB approximation is valid (i.e. locally in-time
before caustics) the classical limit of the Bohmian measure of the true solution ψε(t)
to the Schrödinger equation is mono-kinetic and the same holds for the Wigner
measure. For the latter it has been shown in [28] that locally away from caustics
the Wigner measure can always be written as a sum of mono-kinetic terms. The
proof requires the use of the Hamiltonian flow (4.6) governing w(t). Unfortunately,
such a limiting phase space flow is not available for β. All we can conclude from
above is that for t ∈ [0, T ∗), the dynamics of β is governed by

(6.5)

{
Ẋ = P, X(0, x) = x,

Ṗ = −∇V (X), P (0, x) = ∇S(0, x).
This is the characteristic flow associated to (6.2). Since it breaks down at caustics
no information for t > T ∗ can be obtained by following this approach. A possible
way to overcome this problem could be a Young measure analysis of the Bohmian
trajectories themselves along the lines of [5], which, however, is beyond the scope
of this work.

Remark 6.2. In order to give an intuition on the limiting behavior of the Bohmian
measure after caustics, we recall that by stationary phase arguments (see e.g. [28])
the wave function after caustics can be approximated by a superposition of WKB
states. To illustrate the kind of phenomena which can happen in this situation, we
consider here a sum of two WKB states, i.e.

ψε(x) = a1e
iS1(x)/ε + a2e

iS2(x)/ε,

with real-valued a1, a2 ∈ C∞
0 (Rd), S1, S2 ∈ C∞(Rd), such that, for all x ∈ Rd it

holds: ∇S1(x) 6= ∇S2(x) and a1(x) > a2(x).
One the one hand, we infer from [28], that, in this case the Wigner measure is

given by

w(x, p) = a21(x)⊗ δ(p−∇S1(x)) + a22(x)⊗ δ(p−∇S2(x)),

i.e. the sum of two mono-kinetic measures. On the other hand, a lengthy but
straightforward computation shows that the limiting Bohmian measure acts on
test-function ϕ ∈ C0(R

2d) as follows:

(6.6) 〈β, ϕ〉 = 1

2π

∫

Rd

∫ 2π

0

n(x, θ)ϕ (x,Φ(x, θ)) dθ dx,

where

n(x, θ) := a21(x) + a22(x) + 2a1(x)a2(x) cos θ,

and

Φ(x, θ) :=
1

n(x, θ)

(
a21(x)∇S1(x)+a

2
2(x)∇S2(x)+a1(x)a2(x) cos θ(∇S1(x)+∇S2(x)

)
.
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To this end, we note that the computation of the current vector field Im
(

∇ψε(x)
ψε(x)

)

yields a smooth function which is periodic in θ(x) = (S2(x) − S1(x))/ε and thus
admits a Fourier expansion w.r.t. θ. By standard two scale-convergence we infer
that the limit as ε → 0+ is given by the zeroth order coefficient of this Fourier
series, from which we deduce (6.6).

Finally, let us mention that multi-phase type WKB methods have been used
recently, for the study of the “quantum hydrodynamic” regularisation of the Burgers
equation [24] (see also [15, 28]).

Acknowldegment. The authors want to thank Wilfrid Gangbo for stimulating
discussions on the derivation of (2.13) and on optimal transportation formulations
of the Schrödinger equation.
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Math. Phys. 109 (1987), 313–326.

[22] P. L. Lions and T. Paul, Sur les measures de Wigner. Rev. Math. Iberoamericana 9

(1993), 553–618.
[23] E. Madelung, Quanten Theorie in hydrodynamischer Form, Zeitschrift für Physik, 40

(1926), 322–326.

[24] T. Paul, Some remarks concerning the Burgers equation and quantum hydrodynamics,
preprint.

[25] P. Pedregal, Optimization, relaxation and Young measures, Bull. Amer. Math. Soc.
36 (1999), no. 1, 27–58.

[26] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel
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