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We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics (when written in a Lagrangian form). We study the so-called classical limit of these Bohmian measures, in dependence on the scale of oscillations and concentrations of the sequence of wave functions under consideration. The obtained results are consequently compared to those derived via semi-classical Wigner measures. To this end, we shall also give a connection to the theory of Young measures and prove several new results on Wigner measures themselves. We believe that our analysis sheds new light on the classical limit of Bohmian quantum mechanics and gives further insight on oscillation and concentration effects of semi-classical wave functions.

In this work we consider a quantum systems described by a time-dependent wave-function ψ ε (t, •) ∈ L 2 (R d ; C). The dynamics of ψ ε is governed by the linear Schrödinger equation (1.1) iε∂ t ψ ε = -

ε 2 2 ∆ψ ε + V (x)ψ ε , ψ ε (0, x) = ψ ε 0 (x).
where x ∈ R d , t ∈ R and V = V (x) a given real-valued potential. Here, we already rescaled all physical parameters, such that only one dimensionless parameter ε > 0 remains. We shall mainly be interested in the (semi-)classical limit ε → 0 + , and so in the following refer to ε as the semi-classical parameter. In the usual interpretation of quantum mechanics, the wave-function ψ ε yields a probabilistic description of the position of the particle X(t) ∈ R d , at time t ∈ R. More precisely,

Prob X(t)∈Ω = Ω |ψ ε (t, x)| 2 dx,
is the probability of finding the particle a time t ∈ R within the region Ω ⊆ R d . This requires the wave function to be normalized ψ ε (t, •) L 2 = 1.

In more generality, we recall that, although the wave function ψ ε itself is not a physical observable, (real-valued) quadratic quantities of ψ ε yield probability densities for the respective physical observables. Two important examples of such densities, describing the expected values of observables (in a statistical interpretation), are the position and the current density, i.e.

(1.2)

ρ ε (t, x) = |ψ ε (t, x)| 2 , J ε (t, x) = εIm ψ ε (t, x)∇ψ ε (t, x) .
It is easily seen that if ψ ε solves (1.1), then the following conservation law holds

(1.3) ∂ t ρ ε + div J ε = 0.
Similarly, one can define the total energy of the particle, which is conserved along sufficiently smooth solutions to (1.1). In our case it is given by

(1.4) E[ψ ε (t)] = ε 2 2 R d |∇ψ ε (t, x)| 2 dx + R d V (x)|ψ ε (t, x)| 2 dx,
i.e. by the sum of the kinetic and the potential energy. The semi-classical regime of quantum mechanics corresponds to situations where ε ≪ 1. Note that ε corresponds to the typical wave-length of oscillations within the sequence of wave functions ψ ε . In view of (1.1), this is a highly singular asymptotic regime and thus analyzing the limiting behavior of expectation values of physical observables requires analytical care. In particular, the limit of the highly oscillatory wave function ψ ε itself is of almost no relevance due to the non-commutativity of weak limits and nonlinear functions.

The conservation law (1.3), is also a possible starting point of the Bohmian interpretation of quantum mechanics [START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables" I, II[END_REF] (see also [START_REF] Dürr | Bohmian Mechanics[END_REF] for a broader introduction). To this end one introduces the velocity field

(1.5) u ε (t, x) := J ε (t, x) ρ ε (t, x) = εIm ∇ψ ε (t, x) ψ ε (t, x) ,
which is well-defined, expect at nodes, i.e. zeros, of the wave function ψ ε . Ignoring this problem for the moment, the Bohmian dynamics of quantum particles is governed by the following system of ordinary differential equations for the macroscopic position vector:

(1.6) Ẋε (t, x) = u ε (t, X ε (t, x)), X ε (0, x) = x ∈ R d .

In other words, in Bohmian mechanics a particle is not only described by its wave function ψ ε . Rather, the wave function, called pilot-wave, is used to compute from it the velocity (or momentum) of the particle, whose dynamics is consequently given via the ordinary differential equation (1.6). In addition one assumes that initially the particle's position is not exactly known, but described by the probability distribution ρ ε (0, x) = |ψ ε 0 (x)| 2 . This probabilistic feature of Bohmian mechanics can be understood as a lack of knowledge about the fine details of the considered quantum mechanical system, analogously to the situation in classical statistical mechanics, cf. [START_REF] Dürr | Bohmian Mechanics[END_REF].

The above description of the particle's dynamics can be considered as the Eulerian approach to Bohmian mechanics with u ε the associated Eulerian velocity. While it is certainly interesting to directly study their limits as ε → 0 + , this problem seems to be out of reach so far and hence will not be the object of this paper. Instead we shall describe how to pass to the corresponding Lagrangian point of view on Bohmain dynamics and argue that this viewpoint naturally leads to the introduction of a certain class of probability measures on phase space, which we shall call Bohmian measures. These measures concentrate on Lagrangian sub-manifolds in phase space induced by the graph of the initial velocity u ε (0, x). They consequently evolve via the (Lagrangian version of the) Bohmian dynamics and can be shown to be equivariant with respect to this phase space flow. In addition the first and second moment of these measures yield the correct quantum mechanical position and current density. It is therefore natural to consider their classical limit in order to analyze the emergence of classical dynamics from quantum mechanics (in its Bohmian interpretation).

The main analytical tool for studying the classical limit of Bohmian measures will be the theory of Young measures, which provides information on weak limits of oscillatory sequences of functions. The obtained limit will then be compared to the well established theory of (semi-classical) Wigner measures associated to ψ ε (t), see e.g. [START_REF] Lions | Sur les measures de Wigner[END_REF][START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF][START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF]. These are phase space measures which, after taking appropriate moments, are known to give the correct classical limit of (the probability densities corresponding to) physical observables. We shall prove that the limiting Bohmian measure of ψ ε (t) coincides with its Wigner measure locally in-time. That is, before caustic onset, where the first singularity occurs in the solution of the corresponding classical Hamilton-Jacobi equation. Furthermore, we shall argue that in general the limiting Bohmian measure differs from the Wigner measure after caustic onset. In the course of this we shall also prove new results on when Wigner transforms tend to mono-kinetic Wigner measures.

The purpose of the present work is thus twofold: First, to shed new light on the classical limit of Bohmian mechanics. Second, to give further insight on oscillation and concentration effects of semi-classical wave functions (with finite energy) by means of two physically natural, yet again mathematical very different, descriptions via phase space measures. Moreover, we believe that our analysis may very well be used as a first building block towards an optimal transportation formulation of quantum mechanics, by combining our results with those given in [START_REF] Ambrosio | Hamiltonian ODE's in the Wasserstein space of probability measures[END_REF][START_REF] Gangbo | Hamilton-Jacobi equations in the Wasserstein space[END_REF] and [START_REF] Gianazza | The Wasserstein gradient flow of the Fisher information and the Quantum Drift-Diffusion equation[END_REF] (cf. Remark 2.6 below).

A Lagrangian reformulation of Bohmian mechanics

2.1. Existence of Bohmian trajectories. We start with some basic assumptions on the potential V . Since in this work we shall not be concerned with regularity issues we assume

(A.1) V ∈ C ∞ (R d ; R), V (x) 0.
This is (by far) sufficient to ensure that the Hamiltonian operator (2.1)

H ε = - ε 2 2 ∆ + V (x), is essentially self-adjoint on D(H ε ) = C ∞ 0 (R d ; C) ⊂ L 2 (R d ; C), cf. [27]. It therefore generates a unitary C 0 -group U ε (t) = e -itH ε /ε on L 2 (R d ), which ensures the global existence of a unique strong solution ψ ε (t) = U ε (t)ψ 0 ∈ L 2 (R d ) of the Schrödinger equation (1.1), such that ρ ε (t, •) L 1 ≡ ψ ε (t, •) 2 L 2 = ψ ε 0 2 L 2 , ∀ t ∈ R.
From now on, we shall also impose the following assumption on the initial data:

(A.2) ψ ε 0 ∈ C ∞ (R d ), with ψ ε 0 L 2 = 1 and E[ψ ε 0 ] < +∞, uniformly in ε. Since U ε (t)
and H ε commute, we also have that the total energy is conserved, i.e.

E[ψ ε (t)] = E[ψ ε 0 ], ∀ t ∈ R, and 
thus, in view of (A.2), E[ψ ε (t)] is uniformly bounded as ε → 0 + and for all t ∈ R. In addition, the dispersive properties of U ε (t) together with the assumption (A.1) imply that if

ψ ε 0 ∈ C α (R d ), for α 0, then ψ ε (t, •) ∈ C α (R d
) for all times t ∈ R. In the following, we denote

f ε H 1 ε := f ε L 2 + ε∇f ε L 2
and we say that a sequence

f ε ≡ {f ε } 0<ε 1 is uniformly bounded (as ε → 0 + ) in H 1 ε (R d ; C), if sup 0<ε 1 f ε H 1 ε < +∞.
Note that the two conservation laws given above, together with (A.1), (A.2), imply that ψ ε (t, •) ∈ H 1 ε (R d ) uniformly bounded as ε → 0 + and for all t ∈ R. Moreover, in view of (1.2) we have

(2.2) J ε (t, •) L 1 ε ∇ψ ε (t, •) L 2 ψ ε (t, •) L 2 E[ψ ε 0 ]
, and we conclude that for all t ∈ R:

J ε (t, •) ∈ L 1 (R d ; R d ) uniformly as ε → 0 + , provided assumptions (A.1) and (A.2) hold.
Next, we recall the main result of [START_REF] Teufel | Simple proof of global existence of Bohmian trajectories[END_REF] (see also [START_REF] Berndl | On the global existence of Bohmian mechanics[END_REF]) on the global existence of Bohmian trajectories.

Proposition 2.1. Let (A.1) , (A.2) be satisfied. Then the map X ε t : x → X ε (t, x) ∈ R d induced by (1.6) exists globally in-time for almost all x ∈ R d , relative to the measure ρ ε 0 = |ψ ε 0 (x)| 2 dx and X ε t ∈ C 1 on
its maximal open domain. Moreover, the probability density ρ ε (t, •) is the push-forward of the initial density

ρ ε 0 under the map X ε t , i.e. ρ ε (t) = X ε t # ρ ε 0 .
We consequently infer that the Bohmian trajectories, defined through the ordinary differential equation (1.6), exist ρ ε 0 -a.e. and that for any compactly supported test function

σ ∈ C 0 (R d ) it holds (2.3) R d σ(x)ρ ε (t, x)dx = R d σ(X ε (t, x))ρ ε 0 (x)dx.
This property is also called equivariance of the measure ρ ε (t, •) in [START_REF] Berndl | On the global existence of Bohmian mechanics[END_REF][START_REF] Teufel | Simple proof of global existence of Bohmian trajectories[END_REF].

In addition we may interpret (2.3) as a way of giving sense to the solution of the continuity equation

(2.4) ∂ t ρ ε + div(ρ ε u ε ) = 0,
where u ε is given by (1.5). Due to the possible occurrence of nodes in ψ ε (t, x), the vector field u ε (t, x) is in general not Lipschitz in x. In fact, not even the general existence theory [START_REF] Ambrosio | Transport Equation and Cauchy Problem for Non-Smooth Vector Fields[END_REF][START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for velocity vector fields which only have a certain Sobolev or BV regularity applies to Bohmian trajectories. The property (2.3) therefore can only interpreted as a very weak notion of solving the continuity equation (2.4). To this end, consider the weak formulation of (2.4), when multiplied with test function

σ ∈ C ∞ 0 ([0, ∞) × R d x ), i.e. ∞ 0 R d ∂ t σ(t, x)ρ ε (t, x) + u ε (t, x) • ∇σ(t, x)ρ ε (t, x)dxdt = - R d σ(0, x)ρ ε 0 (x)dx.
Applying formula (2.3) to the left hand side of this identity, we obtain

∞ 0 R d ∂ t σ(t, X ε (t, x)) + u ε (t, X ε (t, x)) • ∇σ(t, X ε (t, x)) ρ ε 0 (x)dx = = - R d σ(0, x)ρ ε 0 (x)dx.
Now, using the fact that ρ ε 0 -a.e. it holds: u ε (t, X ε (t, x)) = Ẋε (t, x) by (1.6), the fundamental theorem of calculus allows to conclude the following statement.

Corollary 2.2. The density ρ ε (t) = X ε t # ρ ε 0 is a weak solution of the conservation law (2.4) 

in D ′ ([0, ∞) × R d
x ). 2.2. Bohmian measures on phase space. We shall now reformulate Bohmian mechanics by taking the Lagrangian point of view. To this end we first introduce the Lagrangian velocity P ε (t, x) = Ẋε (t, x), for which we want to derive an equation of motion. In view of (1.6), we can differentiate P ε (t, x) ρ ε 0 -a.e. to obtain

(2.5) Ṗ ε (t, x) = ∂ t u ε (t, X ε (t, x)) + Ẋε (t, x) • ∇ u ε (t, X ε (t, x)) = ∂ t u ε (t, X ε (t, x)) + u ε (t, X(t, x)) • ∇ u ε (t, X ε (t, x)).
To proceed further, we need an equation for the velocity field u ε . To this end, we recall the well-known hydrodynamic reformulation of quantum mechanics, where one derives from (1.1) a closed system of equations for the densities ρ ε , J ε . Assuming that ψ ε is sufficiently differentiable, they are found to be (see e.g. [START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF])

(2.6)    ∂ t ρ ε + div J ε = 0, ∂ t J ε + div J ε ⊗ J ε ρ ε + ρ ε ∇V = ε 2 2 ρ ε ∇ ∆ √ ρ ε √ ρ ε .
Remark 2.3. Under the regularity assumptions on V and ψ ε stated above, the weak formulation of the quantum hydrodynamic equations (2.6) holds in a rigorous way, i.e. each of the nonlinear terms can be interpreted in the sense of distributions, see [START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF]Lemma 2.1]. Let us also point out that the hydrodynamic picture of quantum mechanics originates in the seminal work of E. Madelung [START_REF] Madelung | Quanten Theorie in hydrodynamischer Form[END_REF], who interpreted ρ ε , J ε as a description of a continuum fluid instead of a single particle.

Identifying the current as J ε = ρ ε u ε we can formally derive from (2.6) the following equation for u ε :

(2.7)

∂ t u ε + (u ε • ∇)u ε + ∇V = ε 2 2 ∇ ∆ √ ρ ε √ ρ ε .
The right hand side can be seen as the gradient of the so-called Bohm potential (or quantum potential), given by

(2.8) V ε B (t, x) := - ε 2 2 ∆ ρ ε (t, x) ρ ε (t, x) .
Plugging (2.7) into (2.5) we finally arrive at the following system of ordinary differential equations:

(2.9) Ẋε = P ε ,

Ṗ ε = -∇V (X ε ) -∇V ε B (t, X ε
), subject to the initial data X ε (0, x) = x and P ε (0, x) = u ε (0, x), where u ε (0, x) is the initial velocity given by

u ε 0 (x) = εIm ∇ψ ε 0 (x) ψ ε 0 (x)
. Note that the system (2.9) fully determines the quantum mechanical dynamics. It can be regarded as a system of ordinary differential equations, parametrized by the spatial variable x ∈ R d through the initial data, where the position density ρ ε (and its derivatives up to order three) have to be determined additionally. At least numerically, ρ ε can be computed via ray tracing methods, based on the push forward formula (2.3), which requires the trajectories X ε (t, x) for all x at time t. This fact makes the Lagrangian reformulation particularly interesting for numerical simulations, see e.g [START_REF] Gindensperger | Mixing quantum and classical dynamics using Bohmian trajectories[END_REF].

In order to give (2.9) a precise mathematical meaning we shall in the following introduce what we call Bohmian measures on phase space R d

x × R d p . To this end we denote by M + (R d

x ×R d p ) the set of non-negative Borel measures on phase-space and by •, • the corresponding duality bracket between

M(R d x × R d p ) and C 0 (R d x × R d p ), where C 0 (R d x × R d p )
is the closure (with respect to the uniform norm) of the set of continuous functions with compact support. Definition 2.4. Let ε > 0 be a given scale and ψ ε ∈ H 1 ε (R d ) be a sequence of wave functions with corresponding densities ρ ε , J ε . Then, the associated Bohmian measure

β ε ≡ β ε [ψ ε ] ∈ M + (R d x × R d p ) is given by β ε , ϕ := R d ρ ε (x)ϕ x, J ε (x) ρ ε (x) dx, ∀ ϕ ∈ C 0 (R d x × R d p ).
Note that in the definition of β ε a fixed scale ε is imposed via the scaling of the gradient in the definition of the current density (1.2). Formally, we shall denote the Bohmian measure by (2.10)

β ε (x, p) = ρ ε (x) ⊗ δ p - J ε (x) ρ ε (x) ≡ |ψ ε (x)| 2 ⊗ δ p -εIm ∇ψ ε (x) ψ ε (x) ,
where δ is the usual delta distribution on R d . Obviously, (2.10) defines a continuous non-negative distribution on phase space. In addition, the first two moments of β ε satisfy

R d β ε (x, dp) = ρ ε (x), R d p β ε (x, dp) = ρ ε (x)u ε (x) ≡ J ε (x).
However, higher order moments of β ε in general do not correspond quantum mechanical probability densities (defined via quadratic expressions of ψ ε ). In particular, the second moment of β ε yields

R d |p| 2 2 β ε (x, dp) = 1 2 ρ ε (x)|u ε (x)| 2 .
In classical kinetic theory, this would be interpreted as the kinetic energy density of the particle. However, in view of

(2.11) E kin [ψ ε ] := ε 2 2 R d |∇ψ ε (x)| 2 dx = 1 2 R d |J ε (x)| 2 ρ ε (x) + ε 2 2 R d |∇ √ ρ ε | 2 dx,
we see that the second moment of β ε is not what in quantum mechanics would be called a kinetic energy density, since it does not account for the second term ∝ ε 2 . Note that this term formally goes to zero in the classical limit ε → 0 + . To proceed further, we shall introduce the following mapping on phase space, (2.12) Φ ε t : (x, p) → (X ε (t, x, p), P ε (t, x, p)) where X ε , P ε (formally) solve the ODE system (2.9) for general initial data x, p ∈ R d . From Proposition 2.1 we conclude the following existence result of Bohmian trajectories in phase space.

Lemma 2.5. Under the same assumptions as in Proposition 2.1, the mapping Φ ε t exists globally in-time for almost all (x, p) ∈ R 2d , relative to the measure

β ε 0 (x, p) = ρ ε 0 (x) ⊗ δ(p -u ε 0 (x)). Moreover Φ ε t is continuous w.r.t. t ∈ R on its maximal open domain and β ε (t) = Φ ε t # β ε 0 . Proof. First note that Φ ε t when restricted to {graph(u ε 0 )} ⊂ R d x × R d p is well defined β ε 0 -a.e., since the map X ε t established in Proposition 2.1 does not run into nodes of ψ ε (t, •) for almost all x relative to ρ ε 0 . Now, let us w.r.o.g. consider test function ϕ(x, p) = σ(x)χ(p) ∈ C b (R 2d ) and denote u ε = J ε /ρ ε . Then, we have β ε (t), ϕ = R d σ(x)χ(u ε (t, x))ρ ε (t, x)dx = R d σ(X ε (t, x))χ(u ε (t, X ε (t, x)))ρ 0 (x)dx,
where for the second equality we have used (2.3). By definition u ε (t, X ε (t, x)) = P ε (t, x), hence

β ε (t), ϕ = R d σ(X ε (t, x))χ(P ε (t, x))ρ 0 (x)dx = Φ ε t # ρ ε 0 ⊗ δ p=P ε (0) , σχ . Since P ε (0, x) ≡ u ε (0, X ε (0, x)) = u ε 0 (0,
x) the assertion of the lemma is proved.

Remark 2.6. Formally, this allows us to interpret β ε (t) as a solution of the following kinetic equation

(2.13) ∂ t β ε + p • ∇ x β ε -∇ x (V + V ε B ) • ∇ p β ε = 0, subject to (mono-kinetic) initial datum β ε 0 defined in Lemma 2.5.
As before, equation (2.13) can be seen as a conservation law in phase space (endowed with a complex structure). The main problem of (2.13) is, that the term ∇ x V ε B • ∇ p β ε can not be defined in the sense of distributions in a straightforward way. We remark, however, that in the purely diffusive setting of the quantum drift diffusion equation [START_REF] Gianazza | The Wasserstein gradient flow of the Fisher information and the Quantum Drift-Diffusion equation[END_REF], these mathematical difficulties were overcome by using Wasserstein gradient-flow techniques. We believe that a combination of [START_REF] Gianazza | The Wasserstein gradient flow of the Fisher information and the Quantum Drift-Diffusion equation[END_REF] with the results given in [START_REF] Ambrosio | Hamiltonian ODE's in the Wasserstein space of probability measures[END_REF][START_REF] Gangbo | Hamilton-Jacobi equations in the Wasserstein space[END_REF] can lead to rigorous mathematical results on (2.13). From a mathematical point of view, the study of the kinetic equation (2.13) is also interesting for initial data given by more general positive Borel measures. Clearly, in this case the connection with the Schrödinger equation is lost.

Given that the time-dependent Bohmian measure β ε (t) concentrates concentrates on the Lagrangian manifold generated by the quantum mechanical phase space trajectories induced by (2.9), it is natural to consider the limit of β ε (t) as ε → 0 + in order to study the classical limit of Bohmian mechanics. This will be the main task of the upcoming sections.

The classical limit of Bohmian measures

We recall that the assumptions on the initial wave function ψ ε 0 together with the arguments given at the beginning of Section 2 imply that for all t ∈ R the solution of the Schrödinger equation ψ ε (t) is uniformly bounded in H 1 ε (R d ) as ε → 0 + , with a bound independent of time (namely, the initial energy). Since the latter will be the main technical assumption needed from now on, we shall for the sake of notation suppress any time-dependence in the following and formulate results on Bohmian and Wigner measures associated to general sequences of L 2 functions ψ with uniformly (in ε) bounded mass and energy. In Section 6 we shall get back to time-dependent Schrödinger flows and apply the results of the previous sections.

3.1.

Existence of limiting measures. We start with the following basic lemma, which ensures existence of a classical limit of β ε . Lemma 3.1. Let ψ ε be uniformly bounded in L 2 (R d ). Then, up to extraction of sub-sequences, there exists a limiting measure

β 0 ≡ β ∈ M + (R d x × R d p ), such that β ε ε→0+ -→ β in M + (R d x × R d p ) w - * .
Proof. In view of Definition 2.4 we have, for all test functions

ϕ ∈ C 0 (R d x × R d p ): | β ε , ϕ | ϕ L ∞ (R 2d ) ρ ε L 1 (R d ) < +∞,
uniformly in ε, by assumption. By compactness, we conclude that there exists a sub-sequence {ε n } n∈N , tending to zero as n → ∞, such that

β εn n→∞ -→ β in M + (R d x × R d p ) weak - * .
When ψ ε = ψ ε (t) evolves according to the Schrödinger equation with initial data such that

ψ ε 0 L 2 = 1, then β ε is in L ∞ (R t , M + (R d x × R d p )) uniformly as ε → 0 + , since ρ ε is in L ∞ (R t , L 1 (R d x )
) uniformly as ε → 0 + . Thus there exists a sub-sequence (which we shall denote by the same symbol) and a t-parametrized family of limiting probability measures

β 0 = β 0 (t), such that β ε tends to β 0 in L ∞ (R t , M + (R d x × R d p ) weak - * .
This is of importance when we shall get back to Schrödinger wave functions in Section 6, in particular for Proposition 6.1.

Next, we shall be concerned with the classical limits of the densities ρ ε , J ε . Since they are both uniformly bounded in

L 1 (R d ), provided ψ ε is uniformly bounded in H 1 ε (R d ),
we conclude, that, up to extraction of a subsequence, it holds

(3.1) ρ ε ε→0+ -→ ρ, in M + (R d x ; R) w - * , J ε ε→0+ -→ J, in M + (R d x ; R d ) w - * .
Moreover, it has been proved in [START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF], that J ≪ ρ in the sense of measures and thus, by the Radon-Nikodym theorem there exists a measurable function u, such that

(3.2) dJ = u(x)dρ.
Formally, the function u(x) ∈ R d can be interpreted as the classical limit of the Bohmian velocity field u ε . The following statement gives the connection between the limits (ρ, J) and β.

Lemma 3.2. Let ψ ε be uniformly bounded in H 1 ε (R d ). Then (3.3) ρ(x) = R d β(x, dp), J(x) = R d p β(x, dp).
Moreover, we also have

(3.4) lim ε→0+ R 2d β ε [ψ ε ](dx, dp) = R 2d β(dx, dp),
provided that in addition ψ ε is compact at infinity, i.e.

lim R→∞ lim ε→0+ |x| R |ψ ε (x)| 2 dx = 0.
Thus, the classical limit of the densities ρ ε , J ε can be obtained from the limiting Bohmian (phase space) measure β by taking the zeroth and first moment. In addition no mass is lost during the limiting process at |x| + |p| = +∞, if in addition ψ ε is compact at infinity.

Proof. We first prove assertion (3.3) for ρ ε . To this end let σ ∈ C 0 (R d ) and write

R 2d σ(x)β ε (dx, dp) = R 2d σ(x)χ R (p)β ε (dx, dp) + R 2d σ(x)(1 -χ R (p))β ε (dx, dp),
where for a given cut-off R > 0, χ R ∈ C 0 (R d ), such that: 0 χ R 1 and χ R (p) = 1 for |p| < R, as well as χ(p) = 0 for |p| > R + 1. In view of Lemma 3.1 the first integral on the r.h.s. converges

R 2d σ(x)χ R (p)β ε (dx, dp) ε→0+ -→ R 2d σ(x)χ R (p)β(dx, dp).
On the other hand, the second integral on the r.h.s. is

R 2d σ(x)(1 -χ R (p))β ε (dx, dp) R d ρ ε (x)σ(x)1 {|u ε |>R} dx,
where u ε = J ε ρ ε and 1 Ω denotes the indicator function of a given set Ω ⊆ R d . We can now estimate

R d ρ ε (x)σ(x)1 {|u ε |>R} dx 1 R R d |J ε (t, x)|σ(x) dx C R ,
where

C ∈ R + is independent of ε.
Here, the last inequality follows from (2.2) together with the uniform bound of

ψ ε in H 1 ε (R d ).
We can therefore take the respective limits ε → 0 + and R → +∞, to obtain the desired statement for the position density ρ ε . The assertion (3.3) for J ε can be shown analogously.

Finally, in order to prove (3.4), we refer to [START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF][START_REF] Lions | Sur les measures de Wigner[END_REF], where it is shown that

lim ε→0+ R d ρ ε (x) dx = R d ρ(x) dx,
provided ψ ε is compact at infinity. Jointly with (3.3), this directly implies (3.4).

The main task of this work is henceforth to study the limit

β ∈ M + (R d x × R d p ).
In particular, we want to understand under which circumstances β is mono-kinetic.

Definition 3.3. We say that β ∈ M + (R d x × R d p ) is mono-kinetic, if there exists a measure ρ ∈ M + (R d
x ) and a function u defined ρ -a.e., such that (3.5)

β(x, p) = ρ(x) ⊗ δ(p -u(x)).
Obviously, for every fixed ε > 0 the Bohmian measure β ε is mono-kinetic by definition, see (2.10). Note however, that the limit statements for ρ ε and J ε given in (3.1), do not allow us to directly pass to the limit in β ε . Thus, in general we can not expect the limiting Bohmian measure β to be of the form (3.5). In order to obtain further insight into the situation, we shall establish in the upcoming subsection a connection between β and the, by now classical, theory of Young measures.

3.2.

Connection between Bohmian measures and Young measures. Consider a sequence f ε : R d → R m of measurable functions. Then, we recall that there exists a mapping µ x ≡ µ(x) : R d → M + (R m ), called the Young measure associated to the sequence f ε , such that x → µ(x), g is measurable for all g ∈ C 0 (R m ), and (after selection of an appropriate subsequence): [START_REF] Ball | A version of the fundamental theorem for Young measures[END_REF][START_REF]Optimization, relaxation and Young measures[END_REF][START_REF]Parametrized Measures and Variational Principles[END_REF]. In view of Definition 2.4 we expect a close connection between the classical limit of Bohmian measures and Young measures. To this end, we shall first state one of the key technical lemmas of this work. Lemma 3.4. Let ψ ε be uniformly bounded in H 1 ε (R d ) with corresponding densities ρ ε , J ε ∈ L 1 . Then, for x ∈ R d a.e., there exists a Young measure

lim ε→0 R d σ(x, f ε (x)) dx = R d R m σ(x, λ)dµ x (λ) dx, for any function σ ∈ L 1 (Ω; C 0 (R m )), cf.
µ x : R r × R d ξ → M + , associated to the pair (ρ ε , J ε ), such that (3.6) β(x, p) ∞ 0 r d+1 µ x (r, rp) dr,
in the sense of measures, with equality if ρ ε ⇀ ρ in L 1 (R d ), as ε → 0 + . In the latter case, µ x is a probability measure on R d+1 .

The property of weak convergence of the particle density is crucial in order to express the limiting Bohmian measure β by (a moment of) the Young measure associated to ρ ε , J ε .

Proof. Assume weak convergence of ρ ε ⇀ ρ in L 1 (R d ), as ε → 0 + . Thus, by the Dunford-Pettis theorem ρ ε is uniformly integrable Next, consider the sequence

α ε (x) := ρ ε (x)ϕ x, J ε (x) ρ ε (x) , for ϕ ∈ C ∞ 0 (R 2d ; R) such that w.r.o.g. ϕ L ∞ = 1. Then |α ε | ρ ε
, and in addition the sequence α ε is uniformly integrable. Thus α ε ⇀ α 0 in L 1 (R d ) weakly, even though J ε does not necessarily converge weakly in L 1 . In view of Definition 2.4, we obviously have β ε , ϕ = α ε (x)dx, and thus also in the limit β, ϕ = α 0 (x)dx.

On the other hand, we know that for x ∈ R d , the mapping

α : (x, r, ξ) → r ϕ x, ξ r
is continuous in r, ξ and measurable in x, hence a Carathéodory function (cf. [START_REF]Optimization, relaxation and Young measures[END_REF]).

From what we have seen before, we know that α(x, ρ ε (x), J ε (x)) ≡ α ε (x) converges weakly in L 1 (R d , R) and thus Theorem 2.3 in [START_REF]Optimization, relaxation and Young measures[END_REF] asserts the existence of a probability measure µ x , associated to (ρ ε , J ε ), such that

lim ε→0 R d α(x, ρ ε (x), J ε (x)) dx = R d R d+1 rϕ x, ξ r dµ x (r, ξ) dx = R d R d+1 r d+1 ϕ(x, p)dµ x (r, rp) dx,
where the second line follows from the simple change of variables rp = ξ. Since ρ ε 0 the Young measure µ x has to be supported in [0, ∞) × R d and thus, we obtain

β, ϕ = R d [0,∞)×R d r d+1 ϕ(x, p)dµ x (r, rp) dx, i.e. the assertion of the theorem, provided ρ ε ⇀ ρ in L 1 (R d ).
On the other hand, if we discard the assumption of weak L 1 convergence of ρ ε , we infer the existence of a Young measure µ x , such that µ x (R d+1 ) 1, i.e. not necessarily a probability measure, and that (see also Proposition 4.4 in [START_REF]Optimization, relaxation and Young measures[END_REF]):

lim inf ε→0 R d α(x, ρ ε (x), J ε (x)) dx R d [0,∞)×R d r d+1 ϕ(x, p)dµ x (r, rp) dx,
This concludes the proof.

To proceed further we recall the following definition: A sequence of (measurable) functions {f ε } 0<ε 1 : R d → R is said to converge in measure to (the function) f as ε → 0, if for every δ > 0:

lim ε→0 meas {|f ε (x) -f (x)| δ} = 0. Note that if in addition 0 f ε ε→0+ -→ f in M + (R d ) w - * , then in general: f f in the sense of measures. Theorem 3.5. Let ψ ε be uniformly bounded in H 1 ε (R d ) with corresponding densities ρ ε , J ε ∈ L 1 . If ρ ε ε→0+ -→ ρ strongly in L 1 (R d ) and J ε ε→0+ -→ J in measure, then β is mono-kinetic, i.e. (3.7) β(x, p) = ρ(x) ⊗ δ p - J(x) ρ(x) .
and in addition J = J, where J is the measure weak - * limit established in (3.1).

Proof. We first note that strong convergence of ρ ε in L 1 (R d ) implies that ρ ε ε→0+ -→ ρ in measure. Since it is known that convergence in measure of ρ ε , J ε is equivalent to the fact that µ x is only supported in a single point of R d+1 , cf. [25, Proposition 4.3], we conclude

(3.8) µ x (r, ξ) = δ(r -ρ(x)) ⊗ δ(ξ -J(x)).
In addition, since strong convergence of ρ ε in L 1 (R d ) also implies weak convergence, we can insert (3.8) into (3.6) (with equality), to obtain

β(x, p) = ρ d+1 (x) ⊗ δ(ρ(x)p -J(x)),
and a simple change of variable yields (3.7). By computing the first moment of (3.7) w.r.t. p and keeping in mind (3.3), we conclude that J = J in this case.

Recalling the results of [START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF], we infer that the limiting measure β given by (3.7) can be rewritten as

β(x, p) = ρ(x) ⊗ δ (p -u(x)) ,
where u is defined ρ -a.e. by (3.2). In this case u can be considered the classical limit of the Bohmian velocity field.

Remark 3.6. In the case where ρ ε ε→0+ -→ ρ in measure, but not necessarily weakly in L 1 (R d ), we still know that the Young measure is given by (3.8). However, in such a situation, we can only conclude that

β(x, p) ρ(x) ⊗ δ p - J(x) ρ(x) .
If ρ = 0, which in principle may happen, no information on β is provided.

One may want to describe the classical limit of β ε by the Young measure ν x associated to (ρ ε , u ε ) instead of (ρ ε , J ε ). However, the problem with using ν x instead of µ x is the fact that u ε := J ε /ρ ε is only defined ρ ε -a.e. and thus, we can not directly obtain a result for ν x analogous to the one given in Theorem 3.5. Rather, we need to assume the existence of an appropriate extension of u ε defined on all of R d , which satisfies the required convergence in measure. In this case, a change of variables yields

ν x (r, ξ) = r d µ x (r, rξ), (r, ξ) ∈ R 1+d .
Thus, instead of (3.6) we obtain (3.9) β(x, p) ∞ 0 rν x (r, p) dr.

Despite the above mentioned drawback, the measure ν x is still useful to show that the converse statement of Theorem 3.5 is not true in general. To this end, we assume β to be mono-kinetic, i.e. β(x, p) = ρ(x) ⊗ δ (p -u(x)), from which we conclude from (3.9) that supp x,p

∞ 0 rν x (r, p) dr ⊆ (x, p) ∈ R 2d : p = u(x), x ∈ supp ρ . Thus supp r,p ν x ⊆ (r, p) ∈ R 2d : p = u(x), r > 0} ∪ {(r = 0, p) : p ∈ R d
and we consequently infer

ν x (r, p) = ω x (r) ⊗ δ(p -u(x)) + δ(r)γ x (p),
where supp r ω x ⊆ (0, ∞). The appearance of the second term on the right hand side makes the converse statement of Theorem 3.5 fail in general. In other words, the fact that β is mono-kinetic does not imply that ν x is a delta distribution in p, which makes it impossible to conclude the strong convergence of u ε (or J ε ). This fact can be further illustrated by the following example.

Example. First note that for any ψ ε ∈ L 2 (R d ) we can write (3.10)

ψ ε (x) = ρ ε (x)e iS ε (x)/ε ,
where S ε (x) ∈ R is defined ρ ε -a.e., up to additive integer multiples of 2π. In this representation (which should not be confused with the WKB ansatz to be discussed in Section 6) the current density reads J ε = ρ ε ∇S ε . Assume now, that for some measurable set Ω ⊂ R d we have

ρ ε = ρ ε 1 1 Ω + ρ ε 2 1 {R d /Ω} with ρ ε 1 ε→0+ -→ 0 in L 1 (Ω) strongly and ρ ε 2 ε→0+ -→ ρ 2 = 0 in L 1 (R d /Ω) weakly. Simi- larly, we assume S ε = S ε 1 1 Ω + S ε 2 1 {R d /Ω} with ∇S ε 1 ε→0+ -→ ∇S 1 in L ∞ (Ω) weak- * (but not strongly) and ∇S ε 2 ε→0+ -→ ∇S 2 almost everywhere on R d /Ω. Then, one easily checks that β(x, p) = ρ 2 1 {R d /Ω} ⊗ δ(p -∇S 2 (x)),
i.e. mono-kinetic. The corresponding Young measure however, is found to be

ν x (r, p) = ω x (r)1 {R d /Ω} ⊗ δ(p -∇S 2 (x)) + δ(r)1 Ω γ x (p),
where ω x (r) is the Young measure of ρ ε 2 1 {R d /Ω} and γ x (p) is the Young measure of ∇S ε 1 1 Ω . In other words, the oscillations within S ε 1 do not show in the limiting Bohmian measure β (since the corresponding limiting density vanishes), but they do occur in the corresponding Young measure.

Comparison to Wigner measures

In this section we shall compare the concept of Bohmian measures (and in particular their classical limit) to the well known theory of semi-classical measures, also called Wigner measures, see e.g. [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF][START_REF] Lions | Sur les measures de Wigner[END_REF] for a broader introduction. In the following, we denote the Fourier transform of a function ϕ(x) by 

ϕ(ξ) := R d ϕ(x)e -ix•ξ dx.
w ε (x, p) := 1 (2π) d R d ψ ε x - ε 2 y ψ ε x + ε 2 y e iy•p dy.
In view of this definition, the Fourier transform of w ε w.r.t. p is given by

w ε (x, y) ≡ R d w(x, p)e -iy•p dp = ψ ε x + ε 2 y ψ ε x - ε 2 y , (4.2)
and thus, Plancherel's theorem together with a simple change of variables yields

w ε L 2 (R 2d ) = ε -d (2π) -d/2 ψ ε 2 L 2 (R d ) .
The real-valued function w ε (t, x, p) acts as a quantum mechanical analogue for classical phase-space distributions. In particular, its moments satisfy

(4.3) ρ ε (x) = R d w ε (x, p)dp, J ε (x) = R d p w ε (x, p)dp,
where the integrals on the r.h.s. have to be understood in an appropriate sense, since

w ε ∈ L 1 (R d x × R d p ) in general. Remark 4.1.
More precisely, it is proved in [START_REF] Lions | Sur les measures de Wigner[END_REF][START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF] that the p-Fourier transform satisfies w ε ∈ C 0 (R d y ; L 1 (R d x )) and likewise for the Fourier transformation of w ε w.r.t. x ∈ R d . T his allows to define the integral of w ε via a limiting process (after convolving with Gaussians), cf. [START_REF] Lions | Sur les measures de Wigner[END_REF] for more details.

The evolution equation for w ε (t, x, p) ≡ w ε [ψ ε (t)] is easily derived from the linear Schrödinger equation (1.1). It reads

(4.4) ∂ t w ε + p • ∇ x w ε + Θ ε [V ]w ε = 0, w ε (0, x, p) = w ε 0 (x, p), where w ε 0 ≡ w ε [ψ ε 0 ] and Θ ε [V ] is a pseudo-differential operator (Θ ε [V ]f )(x, p) := - i (2π) d R 2d
δV ε (x, y)f (x, q) e iy•(p-q) dy dq, with symbol δV ε given by

δV ε (x, y) = 1 ε V x + ε 2 y -V x - ε 2 y .
Obviously, under the assumption (A.1) it holds δV ε ε→0+ -→ y • ∇ x V , in which case (4.4) formally simplifies to the classical Liouville equation on phase space.

Note that the Wigner picture of quantum mechanics is completely equivalent to the Schrödinger picture. The main drawback of using w ε is that in general it can also take negative values and hence can not be regarded as a probability distribution. Nevertheless it has the following important property (see e.g. [START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF]): For any operator Op ε (a), defined by Weyl-quantization of the corresponding classical symbol a(x, p) ∈ S(R d

x × R d p ), one can compute the expectation value of Op ε (a) in the state ψ ε via (4.5)

ψ ε , Op ε (a)ψ ε L 2 = R 2d a(x, p)w ε (x, p)dx dp,
where the right hand side resembles the usual formula from classical statistical mechanics. To proceed further, we recall the main result proved in [START_REF] Lions | Sur les measures de Wigner[END_REF][START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF]:

Proposition 4.2. Let ψ ε be uniformly bounded in L 2 (R d ).
Then, the set of Wigner functions

{w ε } 0<ε 1 ⊂ S ′ (R d x × R d p )
is weak- * compact and thus, up to extraction of subsequences

w ε [ψ ε ] ε→0+ -→ w 0 ≡ w in S ′ (R d x × R d p ) w - * , where the limit w ∈ M + (R d x × R d p ) is called the Wigner measure. If, in addition ψ ε ∈ H 1 ε (R d )
uniformly, then we also have

ρ (x) ε→0+ -→ ρ(x) = R d w(x, dp), J ε (x) ε→0+ -→ J(x) = R d p w(x, dp).
This result allows us to exchange limit and integration on the limit on the right hand side of (4.5) to obtain

ψ ε , Op ε (a)ψ ε L 2 ε→0+ -→ R 2d a(x, p)w(x, p) dx dp.
The Wigner transformation and its associated Wigner measure therefore are highly useful tools to compute the classical limit of the expectation values of physical observables.

In addition it is proved in [START_REF] Lions | Sur les measures de Wigner[END_REF][START_REF] Gérard | Homogenisation Limits and Wigner transforms[END_REF], that w(t) = Φ t # w 0 , where w 0 is the initial Wigner measure and Φ(t) is the classical phase space flow given by the Hamiltonian ODEs (4.6) Ẋ = P, X(0, x, p) = x, Ṗ = -∇V (X), P (0, x, p) = p.

In other words w(t) can be considered a weak solution of the Liouville equation. Note that Φ t is formally obtained from (2.12) in the limit ε → 0 + . It is therefore natural to compare the Wigner measure associated ψ ε with the corresponding classical limit of the Bohmian measure associated to ψ ε .

4.2.

The sub-critical case. As a first step we shall prove the following basic result, relating β and w in the sub-critical case w.r.t. to the scale ε.

Theorem 4.3. Assume that ψ ε is uniformly bounded in L 2 (R d ) and that in addition

(4.7) ε∇ψ ε ε→0+ -→ 0, in L 2 loc (R d ) Then, up to extraction of subsequences, it holds w(x, p) = β(x, p) ≡ ρ(x) ⊗ δ(p).
The result can be interpreted as follows: Sequences of functions ψ ε which neither oscillate nor concentrate on the scale ε (but maybe on some larger scale), yield in the classical limit the same mono-kinetic Bohmian or Wigner measure with p = 0. Note that for the free Schrödinger flow the condition (4.7) is easily seen to be propagated in time.

Proof. Let ϕ ∈ C ∞ 0 (R d x × R d p ) and write β ε , ϕ -ρ ε ⊗ δ p=0 , ϕ = R d ρ ε (x)ϕ x, J ε (x) ρ ε (x) dx - R d ρ ε (x)ϕ (x, 0) dx = Ω ∇ p ϕ (x, η ε ) • J ε (x) dx,
by using the mean value theorem. Using the fact that ϕ

∈ C ∞ 0 (R d x × R d p ), we can estimate | β ε , ϕ -ρ ε ⊗ δ p=0 , ϕ | C Ω |J ε (x)| dx C ψ ε L 2 (Ω) ε∇ψ ε L 2 (Ω) ,
and since, by assumption, ε∇ψ ε → 0 in L 2 loc (R d ) we conclude that the limiting Bohmian measure is of the form given above.

In order to prove the same statement for the Wigner function we again use the mean value theorem to write (4.8)

ψ ε x ± ε 2 y = ψ ε (x) ± ε 2 1 0 ∇ψ ε x ± εs 2 y • y ds,
and consider the Fourier transformation of w ε w.r.t. the variable p ∈ R d , i.e.

w ε (x, y) = ψ ε x + ε 2 y ψ ε x - ε 2 y ,
as computed in (4.2). Inserting (4.8) into w ε (x, y) we can write

| w ε , ϕ -ρ ε , ϕ | | R ε , ϕ |,
where for every ϕ ∈ C 0 (R d x × R d y ) the remainder R ε can be estimated using the Cauchy-Schwarz inequality:

R 2d R ε (x, y)ϕ(x, y) dx dy ε 2 R 2d ϕ(x, y) 1 -1 ∇ψ ε x + εs 2 y • y ds 2 dx dy ε 2 C R d ϕ(x, y) ∇ψ ε x + εs 2 y 2 dx dy ε 2 C ∇ψ ε 2 L 2 (Ω)
, where the last inequality follows from a simple change of variables. We therefore conclude w ε (x, y) ⇀ ρ(x), as ε → 0 + and an inverse Fourier transformation w.r.t. y then yields the desired result.

Remark 4.4. The proof given above, shows that the conclusion β = ρ(x) ⊗ δ(p) still holds, if (4.7) is replaced by the weaker assumption: J ε ε→0+ -→ 0, strongly in L 1 loc (R d ). 4.3. The case of mono-kinetic Wigner measures. In situations where we have concentrations or oscillation on the critical scale ε the connection between β and w is much more involved. The first problem we aim to analyze in more detail, is to find sufficient conditions under which the limiting Wigner measure is mono-kinetic. We remark that mono-kinetic Wigner measures correspond to semi-classical limits of Schrödinger flows before caustic onset time, see [START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF] and Section 6 of this paper.

The first result in this direction given in the following theorem, which can be seen as an analogue of Theorem 3.5 for β. Recall the representation formula (3.10), i.e.

ψ ε (x) = ρ ε (x)e iS ε (x)/ε , which we shall use frequently in the following.

Theorem 4.5. Let ψ ε be uniformly bounded in H 1 ε (R d ), and assume ρ ε ε→0+ -→ ρ strongly in L 1 (R d ). If in addition there exists an extension of S ε to be denoted by the same symbol and a function S ∈ C 1 (Ω), such that

lim ε→0+ ∇S ε -∇S L ∞ (Ω) ,
where Ω ⊆ R d is an open set containing supp ρ, then it holds

w(x, p) = β(x, p) ≡ ρ(x) ⊗ δ(p -∇S(x)).
In view of Theorem 3.5, the above given assumptions are of course far from optimal when one is only concerned with the limit of β.

Proof. The assertion for β follows immediately from the definition of β ε , by using that J ε /ρ ε = ∇S ε ε→0+ -→ ∇S uniformly on supp ρ ⊂ Ω. In order to prove the assertion for w, we use the p-Fourier transformed Wigner function and the representation (3.10), which yields

w ε (x, y) = ρ ε x + εs 2 y ρ ε x - εs 2 y exp (iδS ε (x, y)) ,
where we denote the difference quotient

δS ε (x, y) := 1 ε S ε x + ε 2 y -S ε x - ε 2 y .
We aim to show that w ε converges weakly to w(x, y) = ρ(x) exp (iy • ∇S(x)) .

To this end we shall first show that

√ ρ ε ε→0+ -→ √ ρ strongly in L 2 (R d ). Since, by assumption R d ρ ε (x) 2 dx ≡ R d ρ ε (x) dx ε→0+ -→ R d ρ(x) dx = R d ρ(x) 2 dx, it suffices to show √ ρ ε ⇀ √ ρ in L 2 (R d )
weakly. This, in turn, follows from a Young measure argument based on Proposition 4.2 and Proposition 4.3 of [START_REF]Optimization, relaxation and Young measures[END_REF].

With the strong L 2 convergence at hand, we can write

w ε (x, y) -w(x, y) = ρ ε x + ε 2 y ρ ε x - ε 2 y -ρ(x) e iδS ε (x) + ρ(x) e iδS ε (x,y) -e iy•∇S(x) .
Due to the strong convergence of √ ρ ε and the strong continuity of the shift-operator on L 2 (R d ), the first term on the right hand becomes zero in the weak limit as ε → 0 + , i.e. after localizing with a compactly supported test-function. It remains to estimate the third term, for which we use

e iδS ε (x,y) -e iy•∇S(x) |δS ε -∇S • y| |∇S ε -δS| + |δS -∇S|,
by the mean-value theorem. Here, we first note that |δS -∇S| ε→0+ -→ 0, due to the assumed continuity of ∇S. For the other term we again invoke the mean-value theorem and write

|∇S ε -δS| ε 2 1 -1 y • ∇(S ε -S) x + εs 2 y ds.
It is then easily seen that the this term likewise goes to zero, as ε → 0 + , by assumption on (the gradient of) S ε .

Alternatively, we can also show the following variant of Theorem 4.5.

Corollary 4.6. Let Ω ε ⊆ R d be an open set containing supp ρ ε . Then the assertion of Theorem 4.5 also holds true, if there exists an extension S ε defined on Ω ε and a function

S ∈ C 1 ε 1 Ω ε such that lim ε→0+ ∇S ε -∇S L ∞ (Ω ε ) .
In comparison Theorem 4.5 we hereby impose a slightly stronger assumption on the limiting phase function S. In turn, the assumption on the extension S ε is slightly weaker than before.

Proof. The only difference from the proof given above is, that this time we write

w ε (x, y) -w(x, y) = ρ ε x + ε 2 y ρ ε x - ε 2 y e iy•∇S(x) -ρ(x)e iy•∇S(x) + ρ ε x + ε 2 y ρ ε x - ε 2 y e iδS ε (x,y) -e iy•∇S(x) .
Due to the strong convergence of √ ρ ε and the strong continuity of the shift-operator on L 2 (R d ), the first two terms on the right hand side cancel each other in the limit ε → 0 (see also Example III.1 in [START_REF] Lions | Sur les measures de Wigner[END_REF]). The second term is then treated similarly as before using the mean-value theorem.

4.4. The general case. As we have seen, we cannot expect w or β to be monokinetic in general. It is therefore natural to study the connection between the two measures under more general circumstances.

Theorem 4.7. Let ψ ε be uniformly bounded in

H 1 ε (R d ) with corresponding densities ρ ε , J ε ∈ L 1 . If ε∇ √ ρ ε ε→0+ -→ 0, in L 2 loc (R d ) and if there exists an extension of S ε , such that ε sup x∈Ω ε ∂ 2 S ε ∂x ℓ ∂x j ε→0+ -→ 0, ∀ ℓ, j ∈ 1, . . . , d,
where

Ω ε is an open set containing supp ρ ε , then it holds lim ε→0+ | w ε , ϕ -β ε , ϕ | = 0, ∀ ϕ ∈ C 0 (R d x × R d p ).
Proof. We again consider ψ ε to be given via (3.10), and the corresponding p-Fourier transformed Wigner function

w ε (x, y) = ρ ε x + εs 2 y ρ ε x - εs 2 y exp (iδS ε (x, y)) ,
which we want to compare with the p-Fourier transformed representation of β ε , which, in view of (2.10), is given by

β ε (x, y) = ρ ε (x) exp (iy • ∇S ε (x)) .
To this end, we rewrite

w ε (x, y) = ρ ε x + εs 2 y ρ ε x - εs 2 y -ρ ε (x) + ρ ε (x) exp (iδS ε (x, y)) ,
and also

δS ε (x, y) = 1 2 1 -1 ∇S ε x ± εs 2 y • y ds = ∇S ε (x) • y + ε 2 2 τ 0 1 -1 y ⊤ D 2 S ε x ± εsτ 2 y y dτ ds,
where D 2 S ε denotes the Hessian matrix of S ε . In other words, we have δS ε (x, y) = ∇S ε (x) • y + Φ ε (x, y) and thus we obtain

w ε (x, y) -β ε (x, y) = ρ ε (x)e i∇S ε (x)•y e iΦ ε (x,y) -1 + ρ ε x + εs 2 y ρ ε x - εs 2 y -ρ ε (x) e i∇S ε (x)•y .
In view of the assumption on S ε the first term on the right hand side goes to zero, as ε → 0 + and we therefore only need to take care of the second term. Using again the mean-value theorem we can rewrite

ρ ε x + εs 2 y ρ ε x - εs 2 y = ε 2 1 0 y • ∇ z ρ ε (x + z) ρ ε (x -z) z=εy/2 ds + ε 2 1 0 ρ ε (x + z) y • ∇ z ρ ε (x -z) z=εy/2 ds + ρ ε (x). Now, let ϕ ∈ C 0 (R 2d ) with |supp ϕ| R < ∞.
Then, we can estimate, using the Cauchy-Schwarz inequality several times

ε 2 R 2d 1 0 ϕ(x, y) ρ ε (x ∓ z) y • ∇ z ρ ε (x ± z) z=εy/2
ds dx dy

C(ϕ) R d ρ ε (x) dx 1/2 |x|<2R |ε∇ ρ ε (x)| 2 dx 1/2
, where C(ϕ) > 0 depends on the supp ϕ. By assumption, this bound goes to zero as ε → 0 + , which yields the assertion of the theorem.

Note that the ε∇ √ ρ ε ε→0+ -→ 0 in L 2 loc (R d ), implies that the one part the quantum mechanical kinetic energy (2.11) which is not captured by the second moment of β ε has to converge to zero (at least locally in x). In fact, it is shown in the following corollary, that this assumption is "almost necessary" (i.e. at least for wave functions which are slightly more regular) to infer β = w. Corollary 4.8. Assume ψ ε ∈ H 1 ε (R d ) uniformly bounded, ε∇ψ ε compact at infinity and that there exists a κ > 0, such that:

(4.9) |εξ| κ+1 ψ ε (ξ) ∈ L 2 (R d ), uniformly, as ε → 0 + , and let w = β. Then ε∇ √ ρ ε ε→0+ -→ 0 in L 2 (R d ).
In combination with Theorem 4.7 we conclude that for wave functions ψ ε which are uniformly bounded in any ε-scaled Sobolev space of higher order than H 1 ε (R d ) and for which ε∇ψ ε is compact at infinity, the fact that ε∇ √ ρ ε ε→0+ -→ 0 in L 2 loc (R d ), is indeed a necessity to obtain w = β.

Proof. Recall that (for u ε = J ε /ρ e ) we have

R 2d |p| 2 w ε (x, p) dx dp = R d |u ε (x)| 2 ρ ε (x) dx + ε 2 R d |∇ ρ ε (x)| 2 dx = R 2d |p| 2 β ε (x, p) dx dp + ε 2 R d |∇ ρ ε (x)| 2 dx, (4.10)
in view of (2.10) and (2.11). Thus

R 2d |p| 2 β(x, p) dx dp lim ε→0+ R 2d |p| 2 β ε (x, p) dx dp lim ε→0+ R 2d |p| 2 w ε (x, p) dx dp = lim ε→0+ R 2d |p| 2 n ε (p) dp,
where n ε denotes the momentum density, i.e.

n ε (p) := R d w ε (x, p) dx = ε -d ψ ε p ε 2 .
Now, using the results given in [START_REF] Lions | Sur les measures de Wigner[END_REF]Proposition 1.7], it is easy to show that lim ε→0+ R 2d We therefore conclude from (4.10) that ε∇ √ ρ ε ε→0+ -→ 0 in L 2 (R d ).

In Subsection 5.1 we shall show that an ε-oscillatory velocity field ∇S ε may cause the limiting Bohmian measure to be different from the Wigner measure.

Case studies

In this section we shall study the case of oscillations and concentration effects on the (critical) scale ε and compare the corresponding Bohmian and Wigner measure.

Oscillatory functions

. Let ψ ε (x) = f (x)g x ε , where f ∈ C ∞ 0 (R d ; C) and g ∈ C ∞ (R d , C
) is assumed to be periodic w.r.t. some lattice L ≃ Z d , i.e. g(y + ℓ) = g(y) for any y ∈ R d and ℓ ∈ L. In other words, ψ ε is a slowly modulated highfrequency oscillation. Computing the corresponding Bohmian measure we find

β ε (x, p) = |f (x)| 2 g x ε 2 ⊗ δ p -Im ∇g x ε g x ε + ε ∇f (x) f (x) .
Taking ϕ ∈ C 0 (R d x ×R d p ) we conclude by invoking the theory of two-scale convergence (see e.g. [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]), that

β ε , ϕ ε→0+ -→ 1 |Y | R d Y |f (x)| 2 |g(y)| 2 ϕ x, Im ∇g(y) g(y) dy dx,
where Y ⊂ L is the fundamental domain of the lattice L. We thus find, that the limiting Bohmian measure is given by (5.1)

β(x, p) = |f (x)| 2 ⊗ 1 |Y | Y |g(y)| 2 δ p -Im ∇g(y) g(y)
dy.

On the other hand, let g(y) = ℓ * ∈L *

ĝℓ * e -iy•ℓ * , be the Fourier series of g(y), where L * denotes the corresponding dual lattice, and consider the Wigner function of ψ ε , after Fourier transformation w.r.t. the variable p ∈ R d , i.e.

w ε (x, y) = f x + ε 2 y f x - ε 2 y ℓ * ,m * ĝℓ * ĝm * e -i((x/ε+y/2)•ℓ * -(x/ε-y/2)•m * )) .
Then it is easy to see that, as ε → 0 + :

w ε (x, y) ⇀ |f (x)| 2 ℓ * ∈L * |ĝ ℓ * | 2 e iy•ℓ * .
More precisely we find that

w ε , ϕ ε→0+ -→ ℓ * ∈L * |ĝ ℓ * | 2 R d |f (x)| 2 ϕ(x, ℓ * )dx,
and hence the Wigner measure associated to the L-oscillatory function ψ ε is given by

(5.2) w(x, p) = |f (x)| 2 ⊗ ℓ * ∈L * |ĝ ℓ * | 2 δ(p -ℓ * ),
which should be compared to (5.1). Proof. In order to show that β = w it is enough to prove that their respective second moments do not coincide. To this end, we compute

R d |p| 2 β ε (x, dp) = |Y | -1 |f (x)| 2 Y |g(y)| 2 Im ∇g(y) g(y) 2 dy and R d |p| 2 w ε (x, dp) = |f (x)| 2 ℓ * ∈L * |ℓ * | 2 |ĝ ℓ * | 2 ≡ |Y | -1 |f (x)| 2 Y |∇g(y)| 2 dy.
Using the polar decomposition g(y) = r(y)e iθ(y) these integrals can be rewritten as Obviously these two integrals can only coincide, if |∇r(y)| = 0, which implies g(y) = ce iθ(y) , with c 0 and θ(y) ∈ R. In this case the support of the xprojection of β is the closure of the range of ∇θ, i.e. bounded in R d p . On the other hand, the support of the x-projection of w is L * . Hence, for a smooth function g the two supports can only be equal if θ(y) = y • ℓ * for some ℓ * ∈ L * , in which case w = β.

Assume now that f is real-valued and let g(y) = e iθ(y) . Then, the sequence ψ ε is obviously uniformly bounded in H 1 ε (R d ) and the phase

S ε (x) = εθ(x/ε) is such that ε ∂ 2 S ε ∂x ℓ ∂x j = ∂ 2 θ ∂y ℓ ∂y j x ε , ℓ, j = 1, . . . , d.
Therefore the first assumption of Theorem 4.7 is satisfied, but the second is not, unless θ = 0. As stated above, β = w.

Concentrating functions.

We consider wave function ψ ε which concentrate at a single point. To this end, let, for some

x 0 ∈ R d , ψ ε (x) = ε -d/2 f x-x0 ε with f ∈ C ∞ 0 (R d ; C). Thus |ψ ε (x)| 2 ⇀ δ(x -x 0 )
, as ε → 0 + . The corresponding Wigner measure has been already computed in [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Lions | Sur les measures de Wigner[END_REF] as

(5.3) w(x, p) = (2π) -d | f (p)| 2 ⊗ δ(x -x 0 ),
where f denotes the Fourier transform of f . On the other hand, we easily compute

β ε (x, p) = ε -d f x ε 2 ⊗ δ p -Im ∇f x-x0 ε f x-x0 ε ,
and thus

β ε , ϕ = ε -d R d f x ε 2 ϕ x, Im ∇f x-x0 ε f x-x0 ε dx = R d |f (p)| 2 ϕ εp + x 0 , Im ∇f (y) f (p) dp,
by a simple change of variables. We therefore conclude

β ε , ϕ ε→0+ -→ R d |f (p)| 2 ϕ x 0 , Im ∇f (p) f (p) dp.
In other words, (5.4)

β(x, p) = δ(x -x 0 ) ⊗ R d |f (y)| 2 δ p -Im ∇f (y) f (y) dy,
Again we see that the Wigner measure (5.3) and the classical limit of the Bohmian measure (5.4) are rather different in this case.

Lemma 5.2. The limiting measures (5.4) and (5.3) do not coincide, unless f = 0.

Proof. Again, it is enough to prove that the second moments of β and w do not coincide. By the same arguments as in the proof of Lemma 5.1, we conclude that the second moments can only coincide if f (y) = ce iθ(y) , c 0, which is in contradiction to the fact that f ∈ L 2 (R d ), unless c = 0.

5.3.

Examples from quantum physics. As a possible application we shall now consider some important examples of quantum mechanical wave functions, which incorporate oscillatory and concentrating effects in their classical limit.

Example (Semi-classical wave packets). In this example we consider so-called semiclassical wave packets (or coherent states), which incorporate, both, oscillations and concentrations, i.e.

ψ ε (x) = ε -d/4 f x -x 0 √ ε e ip0•x/ε , x 0 , p 0 ∈ R d ,
for some given profile f ∈ C ∞ 0 (R d ; C). Similarly as before, we compute

β ε , ϕ = ε -d/2 R d f x -x 0 √ ε 2 ϕ   x, p 0 + √ ε Im   ∇u x-x0 √ ε u x-x0 √ ε     dx, which in the limit ε → 0 + yields β(x, p) = R d |f (x)| 2 dx δ(x -x 0 ) ⊗ δ(p -p 0 ).
On the other hand, the Wigner measure of a coherent state is found in [START_REF] Lions | Sur les measures de Wigner[END_REF] to be

w(x, p) = R d |f (x)| 2 dx δ(x -x 0 ) ⊗ δ(p -p 0 ).
Thus, β = w in this case, a fact which makes coherent states particularly attractive for the study of the classical limit of Bohmian mechanics, cf. [START_REF] Bowman | On the classical limit in Bohm's theory[END_REF]. Note that for p 0 = 0 this can be seen as a particular case of Theorem 4.3, since coherent states concentrate on the scale √ ε.

Example (Eigenfunctions). Let us consider a Hamiltonian operator

H ε = - ε 2 2 ∆ + V (x),
with (real-valued) smooth confining potential V (x) → +∞ as |x| → ∞. The corresponding spectrum is known to be discrete and the associated spectral problem reads -→ ρ(x) = 0, weakly in measure. Since H ε is self-adjoint the eigenfunctions ψ ε n can be chosen real-valued and we therefore conclude β(x, p) = ρ(x) ⊗ δ(p).

H ε ψ ε n = λ ε n ψ ε n , n ∈ N, with normalized eigenstates ψ ε n ∈ L 2 (R d )
For the particular case of the harmonic oscillator V (x) = 1 2 |x| 2 the Wigner measure w, as computed in [START_REF] Lions | Sur les measures de Wigner[END_REF], is w(x, p) = δ(|x| 2 + |p| 2 -Λ), i.e. a uniform distribution on the energy sphere. Thus, w = β, unless Λ = 0 and ρ(x) = δ(x), which corresponds to a classical particle at rest, sitting at the minimum of V (x) = 1 2 |x| 2 . In more generality, the fact that w = β can be concluded by invoking results from quantum ergodicity, see e.g. [START_REF] Helffer | Ergodicité et limite semi-classique[END_REF] or microlocal analysis, which shows that supp w ⊆ { 1 2 |p| 2 + V (x) = Λ}.

Connection to WKB approximations

WKB expansions are a standard approach in semi-classical approximation of quantum mechanics (see e.g. [START_REF] Carles | Semi-classical analysis for nonlinear Schrödinger equations[END_REF][START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF] and the references given therein). To this end one seeks an approximation of the exact solution ψ ε (t, x) to (1.1), in the following form (6.1) ψ ε wkb (x) = a ε (t, x)e iS(t,x)/ε , where S(t, x) ∈ R is some ε-independent (real-valued) phase function and a ε (x) a slowly varying amplitude (not necessarily real-valued), which admits an asymptotic expansion a ε ∼ a + εa 1 + ε 2 a 2 + . . . . Note that the ansatz (6.1) specifies a certain ε-oscillatory structure of ψ ε (due to the fact that the phase S(x) is assumed to be ε-independent). In particular, it should not be confused with the representation (3.10), which is much more general. Obviously, we find that the Bohmian measure in this case is which can formally be seen as the classical limit of (2.7).

The main problem of the WKB approach arises from the fact that (6.2), or equivalently (6.4), in general does not admit global smooth solutions. In general S(t, •) ∈ C ∞ (R d ) only for t ∈ [0, T * ), for some (typically small) finite time T * > 0, which marks the appearance of the the first caustic, or, equivalently, the appearance of the first shock in (6.4), cf. [START_REF] Carles | Semi-classical analysis for nonlinear Schrödinger equations[END_REF][START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF]. Caustics reflect the fact that new ε-scales are generated in the exact solution ψ ε (t, x), which are no longer captured by the simple ansatz (6.1). Nevertheless, at least locally in-time the WKB approximation yields a simple representation for ψ ε (t, x). In addition is was shown to be robust enough to be extended to nonlinear Schrödinger equations, see [START_REF] Carles | Semi-classical analysis for nonlinear Schrödinger equations[END_REF][START_REF] Carles | WKB analysis for nonlinear Schrödinger equations with potential[END_REF]. Its connection to Wigner measures has been extensively studied in [START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF]. The connection to Bohmian measures is given in the following result. Proof. The statement for the Wigner measure has been proven in [START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF] and (in more generality also in [START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF]). In order to prove that β is mono-kinetic before caustics we refer to [START_REF] Alazard | Supercritical geometric optics for nonlinear Schrödinger equations[END_REF], where it is shown that for T ∈ [0, T * ):

ρ ε ε→0+
-→ |a| 2 , J ε ε→0+ -→ |a| 2 ∇S, strongly in C([0, T ]; L 1 (R d )). Thus, recalling Theorem 3.5, we directly conclude the desired result.

In other words, as long as the WKB approximation is valid (i.e. locally in-time before caustics) the classical limit of the Bohmian measure of the true solution ψ ε (t) to the Schrödinger equation is mono-kinetic and the same holds for the Wigner measure. For the latter it has been shown in [START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF] that locally away from caustics the Wigner measure can always be written as a sum of mono-kinetic terms. The proof requires the use of the Hamiltonian flow (4.6) governing w(t). Unfortunately, such a limiting phase space flow is not available for β. All we can conclude from above is that for t ∈ [0, T * ), the dynamics of β is governed by (6.5) Ẋ = P, X(0, x) = x, Ṗ = -∇V (X), P (0, x) = ∇S(0, x). This is the characteristic flow associated to (6.2). Since it breaks down at caustics no information for t T * can be obtained by following this approach. A possible way to overcome this problem could be a Young measure analysis of the Bohmian trajectories themselves along the lines of [START_REF] Artstein | Slow observables of singularly perturbed differential equations[END_REF], which, however, is beyond the scope of this work.

Remark 6.2. In order to give an intuition on the limiting behavior of the Bohmian measure after caustics, we recall that by stationary phase arguments (see e.g. [START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF]) the wave function after caustics can be approximated by a superposition of WKB states. To illustrate the kind of phenomena which can happen in this situation, we consider here a sum of two WKB states, i.e.

ψ ε (x) = a 1 e iS1(x)/ε + a 2 e iS2(x)/ε , with real-valued a 1 , a 2 ∈ C ∞ 0 (R d ), S 1 , S 2 ∈ C ∞ (R d ), such that, for all x ∈ R d it holds: ∇S 1 (x) = ∇S 2 (x) and a 1 (x) > a 2 (x).

One the one hand, we infer from [START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF], that, in this case the Wigner measure is given by w(x, p) = a 2 1 (x) ⊗ δ(p -∇S 1 (x)) + a 2 2 (x) ⊗ δ(p -∇S 2 (x)), i.e. the sum of two mono-kinetic measures. On the other hand, a lengthy but straightforward computation shows that the limiting Bohmian measure acts on test-function ϕ ∈ C 0 (R 2d ) as follows: 

4. 1 .

 1 Short review of Wigner measures. In order to obtain a phase space picture of quantum mechanics one usually considers the Wigner function (or Wigner transformation) w ε ≡ w ε [ψ ε ], as introduced in [30]: (4.1)

|p| 2 w

 2 ε (x, p) dx dp = R 2d |p| 2 w(x, p) dx dp, provided that ψ ε satisfies the assumptions stated above. Since β = w, by assumption, we obtain lim ε→0+ R 2d |p| 2 β ε (x, p) dx dp = R 2d |p| 2 w(x, p) dx dp = R 2d |p| 2 β(x, p) dx dp.

Lemma 5 . 1 .

 51 For g ∈ C ∞ (R d ) the limiting measures (5.1) and (5.2) coincide, if and only if carries only a single oscillation ℓ * ∈ L * .

  )| 2 |∇θ(y)| 2 dy and Y |∇g(y)| 2 dy = Y |∇r(y)| 2 + |r(y)| 2 |∇θ(y)| 2 dy.

2 |∇S| 2 +

 22 β ε [ψ ε wkb (t)] = |a ε (t, x)| 2 ⊗ δ(p -∇S(t, x)). By plugging (6.1) into the Schrödinger equation (1.1) and assuming sufficient smoothness, one obtains in leading order the following equation for the the phase (6.2)∂ t S + 1 V (x) = 0and the leading order amplitude(6.3) ∂ t a + ∇a • ∇S + a 2 ∆S = 0,which is easily rewritten as a conservation law for ρ = a 2 , i.e. ∂ t ρ + div(ρ∇S) = 0. Equation (6.2) is nothing but the classical Hamilton-Jacobi equation. If we set u = ∇S, then we clearly obtain from (6.2) the inviscid field-driven Burgers equation (6.4) ∂ t u + (u • ∇)u + ∇V (x) = 0,

Proposition 6 . 1 .

 61 Let Assumption A.1 and A.2 hold and let T * > 0 be the caustic onset time. Assume there exist smooth solutions a, S ∈ C∞ ([0, T * ) × R d ), with a(t, •) ∈ L 2 (R d ).Then, for the exact solution ψ ε (t) of the Schrödinger equation with WKB initial data, it holds β(t, x, p) = w(t, x, p) ≡ |a(t, x)| 2 ⊗ δ(p -∇S(t, x)), ∀ t ∈ [0, T * ).

  θ)ϕ (x, Φ(x, θ)) dθ dx, where n(x, θ) := a 2 1 (x) + a 2 2 (x) + 2a 1 (x)a 2 (x) cos θ,andΦ(x, θ) := 1 n(x, θ) a 2 1 (x)∇S 1 (x)+a 2 2 (x)∇S 2 (x)+a 1 (x)a 2 (x) cos θ(∇S 1 (x)+∇S 2 (x) .

  and eigenvalues λ n ∈ R. Now, let {ε n } n∈N be a sequence such that ε n

	n→∞ -→ 0 and λ εn n n is normalized) there exists a subsequence, which we denote by the n→∞ -→ Λ ∈ R. Since V (x) is confining (and since ψ εn
	same symbol, such that	
	n ψ εn	2 n→∞
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To this end, we note that the computation of the current vector field Im ∇ψ ε (x)

yields a smooth function which is periodic in θ(x) = (S 2 (x) -S 1 (x))/ε and thus admits a Fourier expansion w.r.t. θ. By standard two scale-convergence we infer that the limit as ε → 0 + is given by the zeroth order coefficient of this Fourier series, from which we deduce (6.6).

Finally, let us mention that multi-phase type WKB methods have been used recently, for the study of the "quantum hydrodynamic" regularisation of the Burgers equation [START_REF] Paul | Some remarks concerning the Burgers equation and quantum hydrodynamics[END_REF] (see also [START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF][START_REF] Sparber | Wigner functions vs. WKB methods in multivalued geometrical optics[END_REF]).