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Strong phase-space semiclassical asymptotics

Agissilaos G. ATHANASSOULIS∗, Thierry PAUL †

Abstract

Wigner and Husimi transforms have long been used for the phase-
space reformulation of Schrödinger-type equations, and the study of the
corresponding semiclassical limits. Most of the existing results provide
approximations in appropriate weak topologies. In this work we are con-
cerned with semiclassical limits in the strong topology, i.e. approxima-
tion of Wigner functions by solutions of the Liouville equation in L2 and
Sobolev norms. The results obtained improve the state of the art, and
highlight the role of potential regularity, especially through the regularity
of the Wigner equation. It must be mentioned that the strong conver-
gence can be shown up to O(log 1

ε
) time-scales, which is well known to be,

in general, the limit of validity of semiclassical asymptotics.
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∗CMLS, École polytechnique, 91128 Palaiseau, athanas@math.polytechnique.fr
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B On the initial data of the Wigner equation 45

1 Introduction and main results

Consider a wavefunction uε(x, t) satisfying the Schrödinger equation,

iε ∂
∂tu

ε =
(
− ε2

2 ∆ + V (x)
)

uε,

uε(t = 0) = uε
0(x).

(1)

The Wigner transform (WT) W ε(x, k, t) of the wavefunction u is defined in
the standard semiclassical scaling,

W (x, k, t) =
∫

y∈Rn

e−2πiykuε(x + ε
y

2
, t)ūε(x− ε

y

2
, t)dy. (2)

In that case W corresponds to a pure state. A Wigner function W need not be
the Wigner transform of a wavefunction u; when working with mixed states the
Wigner function can be

W ε(x, k, t) =
∫

y∈Rn

e−2πiykρε(x + ε
y

2
, x− ε

y

2
, t)dy (3)

for the density matrix ρε(x, y), which satisfies the von Neumann-Heisenberg
equation

iερε
t + ε2

2 (∆x −∆y)ρε − (V (x)− V (y))ρε = 0,

ρε(t = 0) = ρε
0.

(4)

(ρε
0 corresponds to a pure state if there is a uε

0(x) ∈ L2 such that ρε
0(x, y) =

uε
0(x)uε

0(y)).
Now denote by Φ the ε-dependent smoothing operator

Φ : f(x, k) 7→
(

2
εσxσk

)n ∫
e
− 2π

ε

[
|x−x′|2

σ2
x

+
|k−k′|2

σ2
k

]

f(x′, k′)dx′dk′. (5)

σx and σk are ε-independent parameters that can be used for fine tuning. As a
matter of notation we will use f̃ = Φf .

Whether we deal with pure or mixed states, the smoothed Wigner transform
(SWT) is defined as

W̃ = ΦW. (6)

The WT and SWT satisfy equations associated with (1), (4). As was shown
in [3], the equation for the SWT W̃ ε(x, k, t) is

∂tW̃
ε +

(
2πk · ∂x + εσ2

x

2 ∂x · ∂k

)
W̃ ε+

+ 2
εRe

[
i
∫

e2πiSx− επ
2 σ2

xS2
V̂ (S)W̃ ε(x + iεσ2

xS
2 , k − εS

2 )dS
]

= 0,

W̃ (t = 0) = W̃ ε
0 .

(7)
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In accordance with the meaning of σx, σk, the well-known equation for W ε can
be recovered by setting σx = σk = 0 in (7).

It is well known that given a family of problems as in (1), studying the
limit ε � 0 presents difficulties, both in terms of analysis (e.g. the appearence
of caustics; also worth mentioning that typically uε doesn’t have a meaningful
limit in ε) as well as computation (the complexity of solving numerically problem
(1) blows up as ε � 0). That’s the reason why several asymptotic techniques
have been developed to treat semiclassical (also called high-frequency, or short-
wavelength in some contexts) problems – one approach being based on Wigner
measures (WMs).

WMs are a very powerful and elegant tool, which under minimal assumptions
in many cases allows a simple and elegant description of the semiclassical limit.
On a mathematical level, the idea is that (in an appropriate sense) lim

ε�0
W ε is

a natural object (even when lim
ε�0

uε is not), and evolves in time under simple
asymptotic dynamics.

A very simple way to state the core result is that, if the potential V is smooth
enough then (up to the extraction of a subsequence)

W ε(t) ⇀ W 0(t)

in an appropriate weak-∗ sense, where

∂tW
0 + 2πk · ∂kW 0 − 1

2π ∂xV · ∂kW 0 = 0,

W 0(t = 0) = lim
ε�0

W ε
0 ,

see e.g. [12]. The Liouville equation can then be solved with the method of
characteristics, i.e. is effectively reduced to an ODE problem.

WMs have been also used to derive asymptotic models in problems featuring
systems of equations, nonlinearities, stochastic or periodic coefficients, inverse
problems etc; see for example [12, 7, 8, 10, 13, 14, 15, 16, 18, 20] and the
references therein. However, there are intrinsic limitations to the WM approach,
that have only recently started to attract systematic attention – see e.g. [6],
section 1.2.3.

The motivation of the present work is threefold, and can be summarized as
follows:

On a technical-mathematical level, we show results that improve upon the
state of the art on strong-topology semiclassical limits. See section 1.2.1 for
more details. It must be noted that the application (and extension) of the
machinery developed in [3] is crucial to the proofs here. Moreover, all the error
estimates are constructive, most of the constants are computed explicitly – in
fact all of them are computable, including in particular the time dependence.

On a numerical level, our results justify the use of the SWT for fast coarse-
scale simulations; see e.g. [1, 2], and section 1.2.2.
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Finally, on a more qualitative level, the ideas developed here can be used as
an intermediate step to work out problems in which the semiclassical limit is
not effectively known; see section 1.2.3.

1.1 Statement of the assumptions

Let r ∈ N ∪ {0} be fixed. The main assumption will be
Assumption A1(r) There is a M0 > 0 such that

∫ |V̂ (S)|(1 + |S|r+2)dS = M0. (8)

Now denote the auxiliary potentials V1(x), Ṽ1(x) to be

V1(x) =
(

π
η

)n
2 ∫

e−
π2
η |x−x′|2V (x′)dx′,

Ṽ1(x) =
(

2
εσ2

x

)n
2 ∫

e
− 2π

εσ2
x
|x−x′|2

V1(x′)dx′.

(9)

The parameter η is set to be

η =
(

π

2
·max

(
(4n− 1)σ2

x ,
4n

σ2
k

− σ2
x

)
+ 1

)
ε

(see equation (101) and above for the rationale behind this scaling).

There are C,D, R > 0, θ ∈ (r + 1, r + 2) such that ∀A ∈ (N ∪ {0})n

|A| 6 1 + θ ⇒ ||∂A
x Ṽ1(x)||L∞ 6 C, (10)

|A| > 1 + θ ⇒ ||∂A
x Ṽ1(x)||L∞ 6 (11)

6 (2π)|A|M0 + D (2π)|A|

2 (η + επ
2 σ2

x)−
|A|−1−θ

2 Γ
(
|A|−1−θ

2

)
.

In addition, ∀m = 0, 1, .., r

||(1− e−(η+ε π
2 σ2

x)S2
)|S|m+1V̂ (S)||L1(Rn) 6 C(ε

θ−m
2 + ε) (12)

There is a somewhat stronger version of this assumption which is much
simpler:
Assumption A1’(r) There is a M0 > 0 such that

∫ |V̂ (S)|dS = M0, (13)

and ∃R, D > 0, θ ∈ (r + 1, r + 2) such that

∀|S| > R : |V̂ (S)| 6 D|S|−(n+1+θ). (14)

We mentioned that A1′(r) ⇒ A1(r). Indeed,
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Lemma 1.1 Equations (13) and (14) imply (8), (10), (11), (12).

Proof: The proof is given at the beginning of section 4.4.

In some cases we will use
Assumption A2 A1(r=0) holds, and moreover ||W ε

0 ||H1 = o(ε−
1
2 ||W ε

0 ||L2).

Remarks:

• The reason we use the more complicated (but weaker) Assumption A1(r)
instead of A1’(r) is that there are relevant examples not covered by it; a simple
example is given by a lower-dimensional potential: consider V∗(x1, ..., xn) =
V∗(x1, ..., xd) with d < n; if V∗ satisfies

∀|S| > R : |V̂∗(S1, ..., Sd)| 6 D




√√√√
d∑

j=1

S2
j



−(d+1+θ)

it is easy to check that A1 follows – although in general A1’ does not.
• Following assumption A1(r=0), V (x) ∈ L∞. This suffices to imply that the
Schrödinger operators − 1

2∆ + V (x), − 1
2∆ + V1(x), − 1

2∆ + Ṽ1(x) are essentially
self-adjoint on L2(Rn). This is something that we will use, e.g. in applying
theorem 2.1 (and the reason why we introduce V1 here).

We will not comment on this explicitly any more.

• It is clear that if A1(r) is true, then ∀r′ ∈ [0, r] ∩ Z A1(r′) is also true.

1.2 Formulation of the main results

Theorem 1.2 (L2 semiclassical asymptotics) Consider a potential V (x) and
an initial Wigner function W ε

0 , such that (A2) is satisfied.
Denote by W ε(x, k, t) the solution of the corresponding Wigner equation with

initial data W ε
0 as in (A2), W̃ ε(t) = ΦW ε(t) the corresponding SWT, ρ(x, k, t)

the solution of the Liouville equation

∂tρ + 2πk · ∂kρ− 1
2π ∂xV · ∂kρ = 0,

ρ(t = 0) = W ε
0 ,

(15)

and by ρε
1(x, k, t) the solution of

∂tρ
ε
1 + 2πk · ∂kρε

1 − 1
2π ∂xṼ1 · ∂kρε

1 = 0,

ρε
1(t = 0) = W̃ ε

0 .

(16)

Then there is an O(1) explicit constant C, depending only on n, σx, σk,M0

such that, for all t ∈ [0, T ], m ∈ N,

||ρε
1(t)− W̃ ε(t)||L2 6

6 √
εCTeTnπ max{1,||V̂ (S)|S|2||L1}||W ε

0 ||H1 ,

(17)
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||ρε
1(t)−W̃ ε(t)||L2

||W̃ ε
0 ||L2

6 C
√

εTeTnπ max{1,||V̂ (S)|S|2||L1} ||W ε
0 ||H1

||W ε
0 ||L2

=

= o
(
TeTnπ max{1,||V̂ (S)|S|2||L1}

)
,

(18)

||ρ(t)−W ε(t)||L2 6

6 C (
√

ε(T + 1)||W ε
0 ||H1 + Tε||W ε

0 ||L2) eTnπ max{1,||V̂ (S)|S|2||L1},
(19)

||ρ(t)−W ε(t)||L2

||W ε
0 ||L2

6 C
√

ε(1 + T )eTnπ max{1,||V̂ (S)|S|2||L1} ||W ε
0 ||H1

||W ε
0 ||L2

=

= o
(
(1 + T )eTnπ max{1,||V̂ (S)|S|2||L1}

)
.

(20)

Remarks:

• Observe that the result can be extended beyond time-scales T = O(1), up to
T = O(−log(ε)). As is well known, semiclassical asymptotics in general cannot
be extended for longer time-scales [5, 17]. It is worth noting that we can go to
such time scales with A1(r=0), which amounts to 2 derivatives on the potential,
as opposed to analytic potentials (in [4]) or C∞ potentials (in [5]).

• Similar approximations hold e.g. between W ε(t) ≈ ρε
1(t), etc; see the proof.

• One can see in the proof that all constants are (or can easily be) computed
explicitly. Although of course they will be pessimistic, given a problem (i.e.
potential and initial data) they provide one with an a priori estimation of all
the errors involved. This is true for the following theorems as well.

• Pure states, i.e. W ε
0 = W ε[uε], typically give ||W ε

0 ||H1

||W ε
0 ||L2

= O(ε−
n
2 ) – see lemma

B.1. Therefore this result does not yield a significant estimate for pure states
(i.e. the relative error bound obtained is not o(1)). See corollary 1.6 and the
remark thereafter for pure states.

Theorem 1.3 (Negative-index Sobolev spaces) Consider some r ∈ N. As-
sume that A1(r) is satisfied, and W ε

0 ∈ H1−r.
Then, for all t ∈ [0, T ]

||ρε(t)−W ε(t)||H−r 6 CT ||W ε
0 ||H−1−reTD(r+1,n)(

√
ε + ε

θ
2 )+

+C(eTD(r,n) + eT [D(r,n)+D(r−1,n)])
√

ε||W ε
0 ||H1−r+

+(ε + ε
θ
2 )CTeT [D(r+1,n)+D(r,n)]||W ε

0 ||H−1−r .

(21)

As long as there is a constant C1, independent of ε, so that ||W ε(t)||H−r >
C1, equation (21) yields a relative error estimate in a straightforward manner.
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Remark: As long as the assumtpions of [12] are satisfied, it can be used to
bound from below ||W ε(t)||H−r . Take φ ∈ S, ||φ||Hr 6 1; [12] assures that
〈W ε, φ〉 � 〈W 0, φ〉. So a sufficient condition is that there is a φ0(t) so that, for
t ∈ [0, T ], |〈W 0(t), φ0(t)〉| > 2C1 > 0.

If that’s true, then it follows automatically that

∃ε0 : ∀ε ∈ (0, ε0) : |〈W 0(t)−W ε(t), φ0(t)〉| < C1.

Of course this is mostly a technical point; we are not aware of any meaningful
example where ||W ε

0 ||H−r = O(1), and later ||W ε(t)||H−r = o(1).

Theorem 1.4 (Positive-index Sobolev spaces) Consider some r ∈ N. As-
sume that A1(r) is satisfied, and W ε

0 ∈ H1+r.
Then, for all t ∈ [0, T ]

||ρε(t)−W ε(t)||Hr 6 C||W ε
0 ||H1+r

[
TeTD(r+1,n)(

√
ε + ε

θ
2 )+

+TeT [D(r+1,n)+D(r,n)](ε + ε
θ−r
2 ) + eTD(r,n)

√
ε
] (22)

Moreover, if in addition

||W ε
0 ||H1+r

||W ε(t)||Hr+1
= o(ε−

1
2 ), (23)

equation (22) yields directly a relative error estimate as well.

Remark: A sufficient condition for equation (23) is given by ||W ε
0 ||Hr+1

||W ε
0 ||L2

=

o(ε−
1
2 ). Indeed, to see that, apply

||W ε(t)||Hr+1 > ||W ε(t)||L2 ⇒ 1
||W ε(t)||Hr+1

6 1
||W ε(t)||L2

=
1

||W ε
0 ||L2

to estimate 1
||W ε(t)||Hr+1

in the lhs of equation (23).

It is interesting to look at some corollaries:

Corollary 1.5 (L2 limit) Assume that (A2) holds, and ∃W 0
0 ∈ L2(R2n) such

that
lim
ε�0

||W 0
0 −W ε

0 ||L2 = 0.

Denote ρ0(x, k, t) the solution of

∂tρ
0 + 2πk · ∂kρ0 − 1

2π ∂xV · ∂kρ0 = 0,

ρ0(t = 0) = W 0
0 .

(24)

Then, ∀t ∈ [0, T ],
lim
ε�0

||ρ0(t)−W ε(t)||L2 = 0.

7



Corollary 1.6 (Strong limit with concentration) Assume that ∃s ∈ N,W 0
0 ∈

H1−s such that
lim
ε�0

||W 0
0 −W ε

0 ||H−s = 0.

Assume moreover that assumption A1(s) is satisfied, and recall the definition of
ρ0(x, k, t), in equation (24).

Then, ∀t ∈ [0, T ],

lim
ε�0

||ρ0(t)−W ε(t)||H−s = 0.

Remark: Pure states. It is important to note that this result can also be
applied to pure states: for example if the initial data is a coherent state, then
(provided the potential is smooth enough) the assumptions of corollary 1.6 are
satisfied for s = dn

2 e+ 2; see lemma B.2.

However, strong aproximation doesn’t have to mean strong limit:

Corollary 1.7 (Strong approximation with concentration) Assume (A2)
holds, and W ε

0 ⇀ W 0
0 /∈ L2 in weak-∗ sense (as in [12]).

Then
||W ε(t)− ρε(t)||L2

||W ε
0 ||L2

= o(1).

Remark: While neither ρε(t), nor W ε(t) have a limit in L2 as ε → 0, they are
asymptotically close to each other in L2 ∀ε > 0. The point here is that there are
situations where this might apply while corollary 1.6 not – for example when the
convergence to the Wigner measure isn’t known in norm, or when the potential
isn’t smooth enough.

Observe finally that an L2 approximation is much stronger than and H−s

limit. For example, the L2 approximation implies any oscillations that might
develop during the quantum evolution (i.e. absent from the initial data) are
necessarily small in L2 sense – while of course the H−(dn

2 e+2) limit tells us only
that eventually any oscillations will cancel out in weak sense.

Finally there are a couple of somewhat technical points worth mentioning:

• As long as σxσk > 1, the SWT “preserves positivity”, i.e. if W ε(x, k) is the
Weyl symbol of a positive operator, then W̃ ε(x, k) > 0. (This is well-known, and
is a property that the WT itself does not have; see lemma A.2). Our asymptotic
analysis here does not assume anything on the sign of W̃ ε(x, k). Still, it should
be noted that a strong approximation which preserves sign might be of particular
interest in more difficult (e.g. nonlinear) problems.

• It is also important to note that the basic limitations come from the break-
down of Sobolev regularity in ρε

1, W ε. Therefore, to understand where there
is an actual breakdown of the approximation, as opposed to a mere technical
limitation of our tools, it will be important to get sharper assumptions on the
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validitiy – and failure – of theorems such as 2.2. The weaker assumptions e.g.
of theorem 1.9 is one possible way forward.

1.2.1 State of the art

One reason for working out strong topology semiclassical approximations for the
Wigner function, is that there is an extremely limited literature on the subject.
Indeed, most results focus on weak-∗ limits.

From an analytical point of view, a norm could quantify a rate of convergence
– in contrast to the weak-∗ convergence, which depends on the choice of test
function. This could also be extremely important with respect to computational
applications (see next section), where it is important to quantify a priori (even
if on the pessimistic side) the errors involved. From a more qualitative point
of view, it could be the way to add ε-dependent corrections to the limit, thus
controlling in a more flexible way the information loss.

As long as we are working with norms, L2 norms are especially well suited
– in particular in view of theorem 2.1. The Hm generalizations also, in fact,
make use of theorem 2.1. (L1 approximations also make sense, in view of the
classical interpretation. We don’t work on that here, but it may be a direction
worth pursuing in the future).

To the best of our knowledge [19] comprises the state of the art for strong
semiclassical approximations. Other existing works (e.g. [4]) often use regularity
assumptions stronger than [19], and, to our knowledge, do not treat Hm norms.
It is therefore natural that our results here should be compared to those of [19].

In our notation, Theorem 5.1 of [19] states (or rather implies, since it also
treats higher order approximations):
Statement If

||W ε
0 ||H2 < ∞,

∫
|V̂ (S)|(1 + |S|2)dS < ∞, (25)

then
||ρ(t)−W ε(t)||L2 6 O

(
ε2||W ε

0 ||H2eCt(1+
∫ |V̂ (S)| |S|2dS)

)
. (26)

However, there is a misprint in [19]; the statement of the theorem should
read

Theorem 1.8 If

||W ε
0 ||H2 < ∞,

∫
|V̂ (S)|(1 + |S|3)dS < ∞, (27)

then
||ρ(t)−W ε(t)||L2 6 O

(
ε2||W ε

0 ||H2eCt(1+
∫ |V̂ (S)| |S|3dS)

)
. (28)

9



(The problem in Theorem 5.1 of [19] originally comes from from a typo in
Theorem 4.1 in that same paper. See section 2, theorem 2.2 for a detailed
treatment of the point in question).

In that light, the use of the SWT in Theorem 1.2, allows one to gain one
derivative in each of the initial data and the potential. (For example V̂ (S) =

1

(1+|S|)n+ 5
2

satisfies (A2), while
∫ |V̂ (S)| |S|3dS = ∞).

The price one has to pay for these weaker regularity assumptions, is a larger
size of the error: for example, if θ > 2 and ||W ε

0 ||H2 = O(1), theorem 1.2 gives
||ρ(t)−W ε(t)||L2 6 O(

√
ε), as opposed to an O(ε2) error from Theorem 5.1 of

[19].
It must also be noted that neither result applies to pure states. [19] contains

a result in H−m developed with pure states in mind, Theorem 5.2; our approach
here also yields an H−m approximation result applicable to pure states, corollary
1.6 which follows from theorem 1.3. (Note that theorem 1.3 also improves on
the regularity assumptions of Theorem 5.2 in [19]; we don’t do the exhaustive
comparison here).

1.2.2 Numerical applications

Part of the motivation for this work has been its potential for numerical ap-
plications. Indeed, a numerical scheme using the SWT for the fast recovery of
coarse-scale observables was formulated in [1, 2], and proof-of-concept numerical
experiments showed that it is a competitive option in the semiclassical regime.
This work serves as a rigorous justification for the method.

In this regard it is worth highlighting one point in particular: it is well known
that keeping track of the WM allows one to approximate quadratic observables
of interest, with famous example

|uε(x, t)|2 ≈
∫

W 0(x, k, t)dk.

In addition, WMs don’t break down – or even require any special treatment –
when caustic appear. However, although a WM stays well defined on phase-
space, its marginals need not exist, especially when a caustic appears. That is,
while

∀ε > 0 |uε(x, t)|2 =
∫

W ε[uε(t)](x, k, t)dk,

∫
W 0(x, k, t)dk may not be well defined, even if lim

ε�0
|uε(t)|2 is1. See [9] for more

details. This means that, if we are inetersted in an approximation of |uε(x, t)|2,
and not the WM W 0 itself, the WM technique does, in fact, have problems on
caustics. These problems can be overcome using the SWT.

1lim
ε�0

|uε(t)|2 = +∞ is still considered well defined;
∫

W 0(x, k, t)dk may give rise to expres-

sions that have no value, finite or otherwise

10



This raises a more general question: can we build ε-dependent corrections
of some sort into a phase-space asymptotic technique – in a computable way?
Recall that W 0 does not depend on ε, i.e. any WM-based technique cannot
offer any kind of ε-dependent information.

This is the motivation for constructing, in theorem 1.2, the approxima-
tion ρε

1 ≈ W̃ ε, in addition to ρ ≈ W ε. From a mathematical point of view,
ρ(t) = W ε(φt(x, k), t = 0) is a good approximate solution. From a numerical
point of view however, the oscillations that W ε(x, k, t = 0) in general contains
could make even its propagation along characteristics as difficult as the direct
solution of the original problem (1) – keep in mind that this is in twice the space
dimensions than (1). On the other hand, the oscillations of W̃ ε

0 are controlled
by the smoothing, making the propagation ρ1(t) = W̃ ε(φ̃t(x, k), t = 0) signifi-
cantly easier. (The fact that the flow comes from a smoothed potential also can
simplify a number of things, e.g. in setting up a solver for the trajectories). So
finally smoothing gives a practical way to incorporate ε-dependent information
in a phase-space asymptotic technique.

One should keep in mind that in general the complexity of simulating semi-
classical problems explodes as ε � 0, so apart from documenting the convergence
and limitations of any mumerical scheme, a key question is to understand the
rate at which complexity (computation time, memory used) grow in ε. See [1, 2]
for more details on the use of the SWT in semiclassical simuation, including in
particular a study of computational behavior in 1-dimensional problems, of the
approximation of observables (with main example |uε(x, t)|2), and examples of
calibrating the smoothing with respect to intrinsic scales of the initial data.

Finally, the fact that all the errors in this work are computed explicitly (in
contrast e.g. with weak-∗ results, where the errors depend, in a non-explicit way,
on the test function) can be very helpful in setting up numerical simulations.

1.2.3 Further work

To conclude this long introduction, some words are in order for the more indirect
motivations and implications. It has become more and more clear that there are
problems where WMs, in their more straightfoward application, fundamentally
fail. (For example, when there can be constructed two (ε-families of) problems
whose WMs are identical at one point in time, but not at a later one).

Examples include nonlinear problems, systems with crossing eigenvalues etc
– see [6] for a survey and a plethora of references. Another example, triggered
by low smoothness in the potential, is presented already in [12], Rem. IV 3.
Loosely speaking, in all these cases the information lost in the limit to W 0 is
“too much”; it is worth wondering if some modified, augmented version can still
be made to work. In some cases this has already been done; see e.g. [6].

The following is a version of theorem 1.2 under weaker assumptions (one can
easily check that the proof still applies):

Theorem 1.9 Assume that (A1) holds for some θ ∈ (0, +∞)\N (i.e. θ possibly
smaller than 1), and in addition that there is a constant M1 such that for all
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t ∈ [0, T ]

n∑

i=1

||∂kiW
ε
1 (t)||L2 6 M1 = o

(
(ε−

θ
2 + ε−

1
2 )||W̃ ε(t)||L2

)
. (29)

See equation (77) and thereafter for the precise definition of W ε
1 (t).

Then there is an O(1) explicit constant C0 such that for t ∈ [0, T ]

||ρε
1(t)− W̃ ε(t)||L2 6 T M1 C0

(
ε

θ
2 +

√
ε
)

, (30)

and
||ρε

1(t)− W̃ ε(t)||L2

||W̃ ε(t)||L2

= o(1). (31)

By modifying this kind of result (with nontrivial differences), we are able
to prove a result applicable to problems with potentials satisfying (A1), but
for some appropriate θ ∈ (0, 1). It must be noted that θ < 1 vs. θ > 1 is a
nontrivial dichotomy: θ ∈ (0, 1) includes C1\C1,1 potentials, for which there are
some results, see [12], but they show convergence to an ill-posed semiclassical
limit. In other words, there are situations with θ < 1 where we can show
that (an appropriate version of) condition (29) holds, which finally allows the
regularization of the known, but ill-posed, limit problem [work in preparation].
A lot of the ideas and tools that had to be developed for that are in fact in this
paper.

That is, apart from an end in themselves, the results shown here (including
in particular the regularity results, section 2) are necessary in studying other,
more challenging problems as well.

The rest of the paper is organised as follows; below we define some notation
we will use; in section 2 we will present a family of results concerning the
regularity of quantum (Wigner) and classical (Liouville) equations, trying to
be as thorough as possible. The proofs can be found in section 3. Section
4 is devoted to the proofs of the theorems 1.2, 1.3 and 1.4. The corollaries
stated earlier are straightforward applcations of these theorems, and theorem
1.9 follows readily by retracing the proof of theorem 1.2.

1.3 Notations

The Fourier transform is defined as

f̂(k) = Fx�k [f(x)] =
∫

x∈Rn

e−2πikxf(x)dx. (32)
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Inversion is given by

f̌(k) = F−1
x�k [f(x)] =

∫

x∈Rn

e2πikxf(x)dx, (33)

Fb�x

[F−1
a�b [f(a)]

]
= F−1

b�x [Fa�b [f(a)]] = f(x). (34)

The Sobolev norm of order m on phase-space will be defined as follows:

||f ||Hm(R2n) =
∑

|a|+|b|6m

||∂a
x∂b

kf ||L2(R2n), (35)

where of course a and b are multi-indices of length n each. More generally we
have

||f ||Hm(Rd) =
∑

|a|6m

||∂a
xf ||L2(Rd). (36)

H−m will be the dual of Hm. This definition is equivalent to the more usual
ones, e.g. based on ||f̂(x)(1 + |x|)m||L2 , or

√ ∑
|a|6m

||∂a
xf ||2L2(R2n).

A more general family of Sobolev-type spaces that we will use are Xm,p,
with norm defined as

||f(x, k)||Xm,p = ||(|X|2 + |K|2)m
2 f̂(X, K)||Lp . (37)

Moreover, denote for future reference

||f̂ ||FHs := ||f ||Hs .

Finally, we must mention an abuse of notation that we will do: sometimes
we will suppress the ε dependence of certain functions for economy, using e.g.
W (t) instead of W ε(t), ρ1(t) instead of ρε

1(t) etc.

2 Quantum and classical regularity results

The following theorem is a direct consequence of Theorem 2.1 of [13]:

Theorem 2.1 (L2 regularity of the Wigner equation) If the Schrödinger
operator − 1

2∆+V (x) is essentially self-adjoint on L2(Rn), then the correspond-
ing Wigner equation preserves the L2 norm, i.e. for W ε

0 ∈ L2(R2n) there is a
unique solution of

∂tW
ε + 2πk · ∂xW ε + 2

εRe
[
i
∫

e2πiSxV̂ (S)W ε(x, k − εS
2 )dS

]
= 0,

W ε(t = 0) = W ε
0 ,

(38)

and ||W ε(t)||L2(R2n) = ||W ε
0 ||L2(R2n) ∀t ∈ R.
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The following estimation is quoted from [19], where it appears as Theorem
4.1 (with a different but equivalent definition for Hm):
Statement (Hm regularity of the Wigner equation) For each m ∈ N
denote

Cm =
∫

Rn

|V̂ (S)| |S|mdX.

Denote by W ε(t) the solution of the Wigner equation (38), with initial data
W ε(t = 0) = W ε

0 . Then, if Cm < ∞, there is a constant C independent of ε
such that

||W ε(t)||Hm 6 eCt||W ε
0 ||Hm . (39)

However it contains a typo. We prove a weaker result:

Theorem 2.2 (Hm regularity of the Wigner equation) Denote by W ε(t)
the solution of the Wigner equation (38), with initial data W ε(t = 0) = W ε

0 .
Then, for each m ∈ N, the following estimate holds for time-scales t ∈ [0, T ],
T = O(1): if ∫

Rn

|V̂ (S)| (|S|+ |S|m+1)dS < ∞,

then there is a constant D = D(m,n) such that

||W ε(t)||Hm 6 etD(m,n)||W ε
0 ||Hm . (40)

Remark: See equation (62) for an estimate of the constant D(m, n).

The same strategy as in the proof of theorem 2.2 works for the Liouville
equation as well:

Theorem 2.3 (Hm regularity for the Liouville equation) Denote by ρ(t)
the solution of the Liouville equation

ρt + 2πk · ∂xρ− 1
2π

∂xV (x) · ∂kρ = 0 (41)

with initial data ρ(t = 0) = ρ0.
Assume that

||V̂ (S)|S|m+1||L1 < ∞,

and that, ∀t ∈ [0, T ]
∣∣〈∂A

x ∂B
k ρ(t), k · ∂x ∂A

x ∂B
k ρ(t)〉∣∣ < +∞,

∣∣〈∂A
x ∂B

k ρ(t), ∂xV · ∂k ∂A
x ∂B

k ρ(t)〉
∣∣ < +∞.

(42)
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Then the following estimate holds for t ∈ [0, T ]: there is a constant C > 0
such that

||ρ(t)||Hm 6 etC ||ρ0||Hm (43)

A sufficient condition for equation (42) to hold is the following:
The flow associated with (41) will be assumed to be complete, i.e. any bounded
ball is mapped within some bounded ball for all times (trajectories do not reach
infinity in finite time). Moreover that ρ0 is of compact support and, for every
multi-index a with |a| 6 m + 2

∂a
xV (x) ∈ L∞loc(Rn). (44)

Another sufficient condition is that for every multi-index a with |a| 6 m + 2

∂a
xV (x) ∈ L∞(Rn). (45)

Remark: Our sufficient condition involves one more derivative in the potential
(up to order m + 2), but the estimate itself involves only derivatives of order
m + 1. This will be important for example in situations where the derivatives
exist but become asymptotically large (e.g. if V was a mollified version of a
non-smooth function).

There are some more regularity results for the Wigner equation in section
3.3. We don’t discuss theme explicitly because we don’t use them directly in
the proof of our main results here. However it must be noted that in other
situations they might be very useful.

3 Proof of regularity results

3.1 Proof of Theorem 2.2

The Fourier transform of the Wigner equation (38) is

Ŵt − 2πX · ∂KŴ + 2
∫

V̂ (S)Ŵ (X − S,K)
sin(πεS ·K)

ε
dS = 0 (46)

For future reference denote by Û(t) the propagator of this equation. Theorem
2.1 essentially tells us that, under the self-adjointness assumption,

∀t ∈ R ||Û(t)||L2(R2n)�L2(R2n) = 1. (47)

Denote
vA,B(X, K) = XAKBŴ (X, K) (48)

in the usual multi-index notation. By elementary computations, it follows that

XAKBX · ∂KŴ = X · ∂K (vA,B)− ∑
Bj>0

BjvA+ej ,B−ej (49)
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and
XAKB

∫
V̂ (S)Ŵ (X − S,K) sin(πεS·K)

ε dS =

=
∫

V̂ (S)vA,B(X − S,K) sin(πεS·K)
ε dS+

+
∑

0<l6A

n∏
i=1

(
Ai

li

) ∫
V̂ (S)SlvA−l,B(X − S, K) sin(πεS·K)

ε dS.

(50)

To see that, it suffices to observe that

XA = (S + (X − S))A =
A∑

l=0

(
A
l

)
Sl(X − S)A−l ⇒

⇒ XA = (X − S)A +
∑

l∈L(A)

(
A
l

)
Sl(X − S)A−l

where for brevity we use the notation

(
A

l

)
:=

n∏

i=1

(
Ai

li

)
,

and
L(A) := {l ∈ Nn|l 6 A, |l| > 0}}. (51)

(Remark on notation: l 6 A ⇔ ∀i ∈ {1, ..., n} : li 6 Ai, and |l| =
n∑

i=1

li). We

will use these notations freely in the sequel.
Two things should be noted: obviously if Ai = 0 then there is no contribution

from the i coordinate; and l ∈ L(A) ⇒ 0 < |l| 6 |A|.
So multiplying equation (46) with XAKB yields

d
dtvA,B − 2πX · ∂KvA,B + 2

∫
V̂ (S)vA,B(X − S, K) sin(πεS·K)

ε dS =

= −2π
∑

Bj>0

BjvA+ej ,B−ej−

−2
∑

l∈L(A)

(
A
l

) ∫
V̂ (S)SlvA−l,B(X − S,K) sin(πεS·K)

ε dS,

(52)

which, for any m ∈ N, is a closed system for vA,B with |A + B| 6 m. (For
A = 0, we just forget the last term).

Moreover, observe that

d

dt
||vA,B(t)||2L2 = 2||vA,B(t)||L2

d

dt
||vA,B(t)||L2 (53)
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while at the same time, using equation (52),

d
dt ||vA,B(t)||2L2 = 〈vA,B , ∂tvA,B〉+ 〈∂tvA,B , vA,B〉 =

= 2Re [〈vA,B(t), 2πX · ∂KvA,B〉−

−〈vA,B(t), 2
∫

V̂ (S)vA,B(X − S,K) sin(πεS·K)
ε dS〉+

+〈vA,B , 2π
∑

Bj>0

BjvA+ej ,B−ej
〉−

−〈vA,B ,
∑

l∈L(A)

(
A
l

)
2

∫
V̂ (S)SlvA−l,B(X − S,K) sin(πεS·K)

ε dS〉
]

(54)

Assuming for a moment that the integrals exist, we observe that

Re [〈vA,B(t), 2πX · ∂KvA,B〉] = 0, (55)

and

Re

[
〈vA,B(t), 2

∫
V̂ (S)vA,B(X − S, K)

sin(πεS ·K)
ε

dS〉
]

= 0 (56)

by anti-symmetry.
Equation (55) is completely obvious; for (56) observe that

Re
[∫

f(X, K)2
∫

V̂ (S)f(X − S, K) sin(πεS·K)
ε dSdXdK

]
=

=
∫

f(X, K)V̂ (S)f(X − S, K) sin(πεS·K)
ε dSdXdK+

+
∫

f(X, K)V̂ (S)f(X − S,K) sin(πεS·K)
ε dSdXdK =

=
∫

f(X, K)V̂ (S)f(X − S, K) sin(πεS·K)
ε dSdXdK+

+
∫

f(X, K)V̂ (−S)f(X − S, K) sin(πεS·K)
ε dSdXdK =

=
∫

f(X, K)V̂ (S)f(X − S, K) sin(πεS·K)
ε dSdXdK−

− ∫
f(X, K)V̂ (S)f(X + S,K) sin(πεS·K)

ε dSdXdK =

=
∫

f(X, K)V̂ (S)f(X − S, K) sin(πεS·K)
ε dSdXdK−

− ∫
f(X − S, K)V̂ (S)f(X, K) sin(πεS·K)

ε dSdXdK = 0

Of course for these considerations to be valid the integrals must exist; they
do, thanks to the following lemma:

Lemma 3.1 (Hm
ε regularity of the Wigner equation) Denote by W (t) the

solution of the Wigner equation like earlier. Assume that
∫

Rn

|V̂ (S)| (|S|+ |S|m)dS < ∞, ||W ε
0 ||Hm < ε−c (57)

17



for some c > 0.
Then, for each m ∈ N, T > 0, there exist constants C, µ > 0 such that

||W ε(t)||Hm 6 Cε−µ, (58)

and
∀|A + B| 6 m− 1, i ∈ {1, ..., n}, ||ki∂

A
x ∂B

k W (t)||L2 6 Cε−µ. (59)

(For our purposes it is obvious the explicit computation of C, µ is not im-
portant – it is possible, as one can readily see in the proof of lemma 3.1, in
section 3.3. Observe moreover that the requirement V̂ (S)|S| ∈ L1, which allows
for weaker possible blowup at 0 than V̂ (S)|S|m+1 ∈ L1, originally comes from
lemma 3.1).

Now, by combining equations (53) and (54) and discarding the terms (55),
(56) that vanish identically, it follows that2

d
dt ||vA,B(t)||L2 6 π

∑
Bj>0

Bj ||vA+ej ,B−ej (t)||L2+

+π
∑

l∈L(A)

(
A
l

) n∑
j=1

||V̂ (S)Sl+ej ||L1 ||vA−l,B+ej (t)||L2 .

(60)

Now we sum up all the equations for |A|+ |B| 6 m to get

d
dt

∑
|A+B|6m

||vA,B(t)||L2 6

6 nm+1πm! ·max{1, ||V̂ (S)|S|m+1||L1} ∑
|A+B|6m

||vA,B(t)||L2 .

(61)

With the help of Gronwall’s lemma the result follows. For brevity, in the
sequel we will denote

D(m,n) := (1 + nm+1m!)π ·max{1, ||V̂ (S)(|S|+ |S|m+1)||L1}. (62)

Remark: For m = 1 it is very easy to see that we can have a slightly better
constant, namely:

d
dt

∑
|A+B|61

||vA,B(t)||L2 6

6 nπ max{1, ||V̂ (S)|S|2||L1} ∑
|A+B|61

||vA,B(t)||L2 ,

(63)

i.e. D(1, n) = nπ max{1, ||V̂ (S)|S|2||L1}.
2We also used the obvious estimate

∣∣∣V̂ (S)SlvA−l,B(X − S, K)
sin(πεS·K)

ε

∣∣∣ 6∣∣∣V̂ (S)SlvA−l,B(X − S, K)πS ·K
∣∣∣ in equation (54).
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3.2 Proof of Theorem 2.3

Proof: The proof is essentially the same as for theorem 2.2: we have

π

∫
V̂ (S)ρ(X − S,K)S ·KdS

instead of ∫
V̂ (S)Ŵ (X − S, K)

sin(πεS ·K)
ε

dS

in equation (46), and then the proof follows along similar lines. The counterparts
of the terms equations (55), (56) are

Re
[〈∂A

x ∂B
k ρ, k · ∂x ∂A

x ∂B
k ρ〉] ,

Re
[〈∂A

x ∂B
k ρ, ∂xV · ∂k ∂A

x ∂B
k ρ〉] .

(64)

It is clear that, if the integrals exist, these terms vanish identically by anti-
symmetry.

Now we will work out our sufficient condition for the existence of the integrals
of equation (64): it follows easily, using the method of characteristics, that if

sup
|a| 6 m + 2

x ∈ Rn

|∂a
xV (x)| < ∞,

and the flow is complete (see the statement of the theorem), then, for initial
data of compact support such that

∂x∂A
x ∂B

k ρ(0), ∂x∂A
x ∂B

k ρ(0), k∂x∂A
x ∂B

k ρ(0) ∈ L2, (65)

we have ∀t > 0

∂x∂A
x ∂B

k ρ(t), ∂x∂A
x ∂B

k ρ(t), k∂x∂A
x ∂B

k ρ(t) ∈ L2, (66)

and hence the integrals in question exist.
The second sufficient condition follows clearly.
The proof is complete.

3.3 Auxiliary lemmata

It is more convenient to prove lemma 3.1 first for m = 1 and then for m ∈ N:

Lemma 3.2 (H1
ε regularity of the Wigner equation) Denote by W ε(t) the

solution of the Wigner equation (38), with initial data W ε(t = 0) = W ε
0 . Then

the following estimate holds for t ∈ [0, T ]: if
∫

Rn

|V̂ (S)| |S|dS < ∞,
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then we have

||ε∂xi
W ε(t)||L2 6 ||ε∂xi

W ε
0 ||L2 + 2t||V̂ (S)|S| ||L1 ||W ε

0 ||L2

||ε∂kiW
ε(t)||L2 6 ||ε∂kiW

ε
0 ||L2+

+2πt
(
||∂xiW

ε
0 ||L2 + 2 t

ε ||V̂ (S)|S| ||L1 ||W ε
0 ||L2

)
,

||εkiW
ε(t)||L2 6 ||εkiW

ε
0 ||L2 + 2πt||V̂ (S)|S| ||L1 ||W ε

0 ||L2 .

(67)

Proof of lemma 3.2:
Denote ui(X,K) = XiŴ (X, K), vi(X,K) = KiŴ (X,K), zi = ∂Ki

Ŵ (X, K).
Then one checks that equation (46) implies

∂tui − 2πX · ∂Kui + 2
∫

V̂ (S)ui(X − S, K) sin(πεS·K)
ε dS =

= −2
∫

V̂ (S)SiŴ (X − S, K) sin(πεSK)
ε dS,

∂tvi − 2πX · ∂Kvi + 2
∫

V̂ (S)vi(X − S, K) sin(πεS·K)
ε dS =

= 2πui,

∂tzi − 2πX · ∂Kzi + 2
∫

V̂ (S)zi(X − S, K) sin(πεS·K)
ε dS =

= −2π
∫

V̂ (S)SiŴ (X − S, K) cos(πεS·K)
ε dS.

(68)

Making use of the second part of lemma 4.2 (equation (151)), it follows that
an equivalent reformulation of equation (68) in terms of the propagator Û(t) is

ui(t) = Û(t)ui(0) + 2
t∫

τ=0

Û(t− τ)
∫

V̂ (S)SiŴ (X − S, K, τ) sin(πεSK)
ε dSdτ,

vi(t) = Û(t)vi(0)−
t∫

τ=0

Û(t− τ)2πui(τ)dτ,

zi(t) = Û(t)zi(0) + 2π
t∫

τ=0

Û(t− τ)
∫

V̂ (S)SiŴ (X − S, K, τ) cos(πεS·K)
ε dSdτ.

(69)
Now, making use of theorem 2.1, the obvious bounds |sin(πεSK)|, cos(πεSK)| 6
1), and lemma 4.1, we readily deduce from equation (69) that

||ui(t)||L2 6 ||ui(0)||L2 + 2 t
ε ||V̂ (S)|S| ||L1 ||W ε

0 ||L2

||vi(t)||L2 6 ||vi(0)||L2 + 2πt sup
τ∈(0,t)

||ui(τ)||L2 6

6 ||vi(0)||L2 + 2πt
(
||ui(0)||L2 + 2 t

ε ||V̂ (S)|S| ||L1 ||W ε
0 ||L2

)
,

||zi(t)||L2 6 ||zi(0)||L2 + 2πt
ε ||V̂ (S)|S| ||L1 ||W ε

0 ||L2 .

(70)
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The proof is complete.

Now we are ready for the general case.
Proof of lemma 3.1:

System (52) can equivalently be recast as

vA,B(t) = Û(t)vA,B(0)−
t∫

τ=0

Û(t− τ)

(
2π

∑
Bj>0

BjvA+ej ,B−ej
(τ)+

+2
∑

l∈L(A)

(
A
l

) ∫
V̂ (S)SlvA−l,B(X − S, K, τ) sin(πεS·K)

ε dS

)
dτ.

(71)

The point to repeating the idea of the previous proof, is to go through the
multiindices (A, B) so that we always have on the right-hand-side a quantity
that we have already estimated.

This is easy to check; for example let us prove the result for m > 1 assuming
it holds for m − 1. First work with all the indices such that |A| + |B| = m,
|B| = 0. It is clear that, for those terms equation (71) is just

vA,0(t) = Û(t)vA,0(0)+

+2
t∫

τ=0

∑
l∈L(A)

(
A
l

) ∫
V̂ (S)SlvA−l,0(X − S,K, τ) sin(πεS·K)

ε dSdτ.
(72)

But |l| > 0 (recall the definition of L(A), equation (51)) means that all the
terms of the form vA−l,0 in the right-hand-side are of order at most m − 1,
and therefore bounded by assumption. By using once again lemma 4.1, and
integrating in time, we get

||vA,0(t)||L2 6 ||vA,0(t)||L2+
+2 t

ε

∑
l∈L(A)

(
A
l

)||V̂ (S)Sl||L1 sup
τ ∈ (0, t)

||vA−l,0(τ)||L2 6

6 ||vA,0(t)||L2+
+2 t

ε ||V̂ (S)|S|m||L1
∑

l∈L(A)

(
A
l

)
sup

τ ∈ (0, t)

||vA−l,0(τ)||L2 .

(73)

Now we can allow |A| + |B| = m, |B| = 1, and observe that the rhs contains
only terms of the form |A| + |B| = m, |B| = 0, which we just estimated. To
conclude we just proceed inductively until |B| = m.

The second inequality in (58) follows similarly, by a straightforward adap-
tation of the previous proof.

The result now follows.
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Lemma 3.3 (H−m regularity of the Wigner equation) Under the assump-
tions of theorem 2.2,

||W ε(t)||H−m 6 etD(m,n)||W ε
0 ||H−m .

Proof of lemma 3.3: The result follows directly by noting that

sup
||g||Hm61

|〈U(t)f, g〉| = sup
||g||Hm61

|〈f, U(−t)g〉| 6 ||U(−t)||Hm�Hm ||f ||H−m .

Finally, the following regularity result can be shown with minimal assump-
tions on the potential:

Lemma 3.4 Assume there is a C∗ > 0 such that V (x) > −C∗, and the Schrödinger
operator ε2

2 ∆− V (x) is self adjoint.
Moreover, consider a mixed state as follows3: denote λ ∈ Λ an appropriate

index set, and

ρε
0(x, y) =

∫
uε

λ(x)uε
λ(y)dµ(λ), (74)

where ||uε
λ(t = 0)||L2 = 1, and

|〈V (x)uε
λ(t = 0), uε

λ(t = 0)〉|+
n∑

i=1

(||∂xiu
ε
λ(t = 0)||L2 + ||xiu

ε
λ(t = 0)||L2) 6 Cλ.

Moreover, assume (1 + Cλ) ∈ L1(dµ(λ), Λ). (In particular no assumption is
made for the behaviour of Cλ in ε).

Naturally the relation between ρε and the Wigner function is as in equation
(3).

Then there are C ′, c > 0 such that for all i = 1, ..., n, t ∈ [0, T ],

||∂xiW
ε(t)||L2 6 C ′ε−c,

||∂kiW
ε(t)||L2 6 C ′(1 + T )ε−c.

Proof: First of all, if uε
λ(x, t) is the solution of (1) with initial data uε

λ(x), it is
straightforward to check that

ρε(x, y, t) =
∫

uε
λ(x, t)uε

λ(y, t)dµ(λ),

i.e. the measure dµ(λ) doesn’t depend on time.

3A possible example would be of the form
∑

m∈N
λmuε

m(x)uε
m(y), with appropriate decay of

λm, regularity of uε
m of course.
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Now recall the energy conservation for equation (1):

〈 ε2

2 ∆uε(t)− V (x)uε(t), uε(t)〉 = 〈 ε2

2 ∆uε
0 − V (x)uε

0, u
ε
0〉 ⇒

⇒ ||∇uε(t)||2L2 = 〈−∆uε(t), uε(t)〉 = 2 〈−
ε2
2 ∆uε

0+V (x)uε
0,uε

0〉−〈V uε(t),uε(t)〉
ε2 ⇒

⇒ ||∇uε(t)||L2 6 2

√
〈− ε2

2 ∆uε
0+V (x)uε

0,uε
0〉+C∗||uε

0||L2

ε .
(75)

Applying that to uε
λ, it follows that there is a B > 0 independent of λ, ε so

that
||uε

λ(t)||H1 6 B
Cλ + C∗

ε
(76)

for all t ∈ R. Now observe that (in the notations of lemma B.1) in general

∂xi
W ε = Q [(∂xi

+ ∂yi
)ρε]

(i.e. not only for pure states). Therefore (using equation (166))

||∂xiW
ε(t)||L2 = ε−

n
2 2π||(∂xi + ∂yi)ρ

ε(t)||L2 6

6 ε−
n
2 2π

∫ ||(∂xi + ∂yi)u
ε
λ(x, t)uε

λ(y, t)||L2dµ(λ) 6

6 ε−
n
2−14π

∫
(Cλ + C∗)dµ(λ) 6 B′ε−c

for some B′, c > 0. (We used the joint constraint on Cλ, dµ(λ) to interchange
norms and derivatives with the integration).

Now for the ∂ki derivatives, recall

||∂kiW
ε(t)||L2 6 ||∂kiW

ε(0)||L2 + 2πt sup
τ∈(0,t)

||∂xiW
ε(τ)||L2 ;

see equation (70) for the derivation. The proof is complete.

4 Proof of the main results

4.1 Proof of Theorem 1.2

The proof will be broken down to several steps. Denote be W̃ ε
1 the the SWT

corresponding to the problem with the potential V1, i.e. the solution to

∂tW̃
ε
1 +

(
2πk · ∂x + εσ2

x

2 ∂x · ∂k

)
W̃ ε

1 +

+ 2
εRe

[
i
∫

e2πiSx− επ
2 σ2

xS2
V̂1(S)W̃ ε

1 (x + iεσ2
xS

2 , k − εS
2 )dS

]
= 0,

W̃1(x, k, 0) = W̃ ε
0 .

(77)
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See equation (9) for the definition of V1. Naturally the corresponding Wigner
function will be denoted by W ε

1 (t) = Φ−1W̃ ε
1 (t). Moreover denote by W̃ ε(t)

the exact SWT satisfying equation (7), W̃ ε(t) = ΦW ε(t). Finally, recall the
definition of ρε

1, equation (16), and denote for further use

M1 =
n∑

i=1

sup
t∈[0,T ]

|| |2πKi|Ŵ1(X,K, t)||L2 . (78)

• Proof of equations (17), (19):

There is a constant C, depending only on n, σx, σk, such that

||W̃ ε
1 − ρε

1||L2 6 CT (ε
θ
2 M1 +

√
εM1), (79)

||W̃ ε
1 − W̃ ε||L2 6 CT (ε

θ
2 M1 + εM1), (80)

||W̃ ε(t)−W ε(t)||L2 6 CetD(1,n)
√

ε||W ε
0 ||H1 , (81)

and
||ρε

1(t)− ρ(t)||L2 6 CT (ε + ε
θ
2 )eTD(1,n)||W ε

0 ||H1 . (82)

(In the process of this last proof we will have to use that θ > 1). Recall that
D(1, n) was estimated in equation (63).

The conclusion then follows by estimating

M1 6 ||W ε
1 (t)||H1 6 etD(1,n)||W ε

0 ||H1 , (83)

where theorem 2.2 was used for the last inequality – making use of A1(r=0).
• Proof of equations (18), (20):
It suffices to combine equations (17), (19), theorem 2.1, and to use once

again equation (81), to get

||W̃ ε(t)||L2 = ||W ε
0 ||L2 +

√
ε ζeTD(1,n)||W ε

0 ||H1 (84)

with |ζ| 6 C.

Now we proceed to the proofs of the building blocks:
Proof of equation (79):

One can Taylor expand W̃ ε
1 into a power series 4 to recast equation (77) as

∂tW̃
ε
1 + 2πk · ∂xW̃ ε

1 − 1
2π ∂xṼ1(x) · ∂kW̃ ε

1 = FW̃ ε
1 (85)

where

F = − εσ2
x

2 ∂x · ∂k−

−2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

il−m+1σ2l
x (−1)m−l

∑
|A| = l

|B| = m− l

∂A+B
x Ṽ1(x)

A!B! ∂A
x ∂B

k

(86)
4because W̃ ε is an entire analytic function; see [3] for proof and more details. This is in

contrast to the formal expansion often used for the Wigner transform.
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and A,B ∈ (N∪{0})n are multi-indices. See lemma 4.3 for the full justification
of this step (i.e. of interchanging the summation of the Taylor expansion and
the dS integration).

It is clear now that the SWT equation (77) can be seen as a perturbation
of the modified Liouville equation (16). We will use lemma 4.2; however before
that some remarks are in order:

Denote Ẽ1(t) the propagator of equation (16), i.e. ρε
1(t) = Ẽ1(t)W̃ ε

0 , and
Ũ1(t) the propagator of equation (77), W̃ ε

1 (t) = Ũ1(t)W̃ ε
0 . The Liouville equa-

tion (16) can be solved with the method of characteristics for any ε, η > 0 and
its propagator has L2 norm equal to 1, i.e.

||Ẽ1(t)||L2�L2 = 1.

Moreover, it is clear that Ũ1(t) = ΦU1(t)Φ−1, where U1(t) is te propagator
for the corresponding Wigner equation, U1(t)W ε

0 = Φ−1Ũ1(t)W̃ ε
0 . Following

Theorem 2.1, U1(t) is an isometry in L2 ∀t ∈ R. (Obviously a similar statement
is true for Ũ(t) : W̃ ε

0 7→ W̃ ε(t)).
Now by applying lemma 4.2 it follows that, ∀0 6 t 6 T ,

||ρε
1(t)− W̃ ε

1 (t)||L2 6 T sup
τ∈[0,T ]

||Ẽ1(t− τ)FŨ1(τ)W̃ ε
0 ||L2 6

6 T sup
τ∈[0,T ]

||FW̃ ε
1 (τ)||L2 .

(87)

Recalling equation (86), we are called to estimate

|| εσ2
x

2 ∂x · ∂kW̃ ε
1 (τ)+

+2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

il−m+1σ2l
x (−1)m−l

∑
|A| = l

|B| = m − l

∂A+B
x Ṽ1(x)

A!B! ∂A
x ∂B

k W̃ ε
1 (τ)||L2 6

6 εσ2
x

2 ||∂x · ∂kW̃ ε
1 (τ)||L2+

+2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

σ2l
x

∑
|A| = l

|B| = m− l

||∂A+B
x Ṽ1(x)

A!B! ∂A
x ∂B

k W̃ ε
1 (τ)||L2 6

(88)
6 εσ2

x

2 ||∂x · ∂kW̃ ε
1 (τ)||L2+

+2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

σ2l
x

∑
|A| = l

|B| = m− l

||∂A+B
x Ṽ1(x)||L∞

A!B! ||∂A
x ∂B

k W̃ ε
1 (τ)||L2 .

For a finite number of m’s, namely m − 2 − θ < −1, assumption A1(r=0)
implies that

||∂A+B
x Ṽ1(x)||L∞ 6 O(1). (89)

As will be clear soon, these don’t yield any intersting contribution.
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Now assume that m− 2− θ > −1; it suffices to recall that by A1(r=0)

||∂A+B
x Ṽ1(x)||L∞ 6 (2π)mM0 + D (2π)m

2 (η′)−
m−1−θ

2 Γ
(

m−1−θ
2

)
, (90)

where for brevity we denote

η′ = η + ε
π

2
σ2

x.

To estimate ||∂A
x ∂B

k W̃ ε
1 (τ)||L2 we need to remember that |B| > 1, therefore

for each m, l appearing in the sum of equation (88) there is a multi-index |b| = 1
such that b 6 B. At this point one should recall the definition of M1 (equation
(78)). With that in mind, we have

||∂A
x ∂B

k W̃ ε
1 (τ)||L2 = (2π)m||XAKBe−

επ
2 [σ2

x|X|2+σ2
k|K|2]Ŵ ε

1 (X, K, τ)||L2 6

6 (2π)m||XAKB−be−
επ
2 [σ2

x|X|2+σ2
k|K|2]||L∞ ||KbŴ ε

1 (X, K, τ)||L2 6
(91)

6 (2π)(m−1)

(
n∏

d=1

||XAd

d e−
επ
2 σ2

xX2
d ||L∞

)(
n∏

d=1

||K(B−b)d

d e−
επ
2 σ2

kK2
d ||L∞

)
M1 =

= (2π)(m−1)
n∏

d=1

(
Ad

eεπσ2
x

)Ad
2

(
(B−b)d

eεπσ2
k

) (B−b)d
2

M1 =

= M1 ( 4π
eε )

m−1
2 σ−l

x σ
−(m−l−1)
k

n∏
d=1

A
Ad
2

d (B − b)
(B−b)d

2
d .

Finally, with the same arguments as above, observe that

εσ2
x

2 ||∂x · ∂kW̃ ε
1 (τ)||L2 6 εσ2

k

2 2π
n∑

d=1

||Xde
− επ

2 σ2
xX2

d ||L∞ M1 =

=
√

ε
√

πσ2
kn

σx
√

e
M1

(92)

Plugging equations (140), (91) and (92) in (88) we get

||FW̃ ε
1 (τ)||L2 6 √

ε
√

πσxn√
e

M1 + Σ1+

+η′
θ
2 M1D

2

∞∑
m=d1+θe

(
ε
η′

π
e

)m−1
2

Γ
(

m−1−θ
2

)

∑
(m−l)mod2=1

σl
xσ−m+l+1

k

∑
|A| = l

|B| = m− l

n∏
d=1

A
Ad
2

d (B−b)
(B−b)d

2
d

A!B!

(93)

Σ1 stands for all the contributions from m − 2 − θ < −1 (see equations (89),

26



(90) ). Using our previous considerations it is easy to see that

Σ1 =
m∗∑

m=2

εm−1

(4π)m

∑
A,B

σ
2|A|
x ||∂A

x ∂B
k W̃ ε

1 ||L2 ||∂A+B
x Ṽ1(x)||L∞ 6

6 CM1

m∗∑
m=2

ε
m−1

2

(4π)m

∑
A,B

σ
2|A|
x CA,B = O(

√
εM1).

(94)

Since we already have a term of O(
√

εM1) – the one coming from εσ2
x

2 ||∂x ·
∂kW̃ ε

1 (τ)||L2 – we will not carry Σ1 explicitly in the sequel.
Moreover, it is clear that (eventually) (2π)mM0 6 (2π)m

2 (η′)−
m−1−θ

2 Γ
(

m−1−θ
2

)
,

so we don’t treat explicitly the contributions from the first term of the rhs of
(90) for any m.

Now, to proceed from equation (93) we have to understand better the inner
sum. To that end, note that without loss of generality (specifically for m large
enough)

A
A
2 ≈

√
eA√
2πA

√
A!,

Γ
(

m−1−θ
2

)
< (2π)

1
4 2

3+2θ
4

√
m!

2m m(m−1) .

(95)

The first statement is the Stirling approximation; if |A| = 0 it is clear that the
contribution of the term A

A
2 = 1 (this can be seen very clearly if one goes back

to equation (91) where it originates and check it. This point will always be
understood as explained here, with no further explicit mention). For the proof
of the second statement, see lemma 4.4. Now we have

∑
(m−l)mod2=1

σl
xσ−m+l+1

k

∑
|A| = l

|B| = m− l

n∏
d=1

A
Ad
2

d (B−b)
(B−b)d

2
d

A!B! Γ
(

m−1−θ
2

) ≈

≈ ∑
(m−l)mod2=1

σl
xσ−m+l+1

k

∑
|A| = l

|B| = m− l

n∏
d=1

e

Ad+(B−b)d
2√

2π
√

Ad(B−b)d

√
Ad!(B−b)d!

A!B! Γ
(

m−1−θ
2

)
<

< (2π)
1
4 2

3+2θ
4

(2π)
n
2

(
e
2

)m−1
2

m∑
l=0

σl
xσ−m+l+1

k√
m(m−1)

∑
|A| = l

|B| = m− l

√
m!

A!B!

(∏n
d=1

1
Ad(B−b)d

) 1
4 6

(96)

6 2
3+2θ

4
√

m

(2π)
2n−1

4
√

m(m−1)

(
e
2

)m−1
2

√√√√
m∑

l=0

σ2l
x σ

2(l−m+1)
k

∑
|A| = l

|B| = m− l

m!
A!B! 6

6 2
3+2θ

4 σk

(2π)
2n−1

4

(
e
2

)m−1
2

√
(nσ2

x + n
σ2

k
)m,
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where we used the observation that
m∑

d=1

xd 6 √
m

√
m∑

d=1

x2
d and the multinomial

expansion for the two last steps.
Going back to equation (93), we get

||FW̃ ε
1 (τ)||L2 6 √

ε
√

πσxn√
e

M1+

+η′
θ
2

M1D2
2θ−1

4
√

n(1+σ2
xσ2

k)

(2π)
2n−1

4

∞∑
m=d1+θe

(
ε
η′

nπ(σ2
x+ 1

σ2
k

)

2

)m−1
2

6

6 √
ε
√

πσxn√
e

M1+

+η′
θ
2

M1D2
2θ−1

4
√

n(1+σ2
xσ2

k)

(2π)
2n−1

4

∞∑
m=2

(
ε
η′

nπ(σ2
x+ 1

σ2
k

)

2

)m−1
2

=

(97)

=
√

ε
√

πσxn√
e

M1+

+η′
θ
2

M1D2
2θ−1

4
√

n(1+σ2
xσ2

k)

(2π)
2n−1

4

√
ε
η′

nπ(σ2
x+ 1

σ2
k

)

2

1−

√
ε
η′

nπ(σ2
x+ 1

σ2
k

)

2

.

It is now clear that the constraints on η (recall that η′ = η + επσ2
x

2 , and η is
specified in equation (101)) for this to work are

D1 = ε

η+
επσ2

x
2

nπ(σ2
x+ 1

σ2
k

)

2 < 1

D2 =
√

D1
1−√D1

6 O(1)

(98)

For example, by setting

η > ε
π

2
·max

(
(4n− 1)σ2

x ,
4n

σ2
k

− σ2
x

)
(99)

it follows that
D1 <

1
2
, D2 <

1√
2− 1

. (100)

In particular η can be

η = ε
(

π
2 ·max

(
(4n− 1)σ2

x , 4n
σ2

k
− σ2

x

)
+ 1

)
= O(ε). (101)

Equation (79) follows by combining equations (87), (97) and (101).

Proof of equation (80): It is obvious that ||W̃ ε
1 (t)−W̃ ε(t)||L2 = ||Φ(W ε(t)−

W ε
1 (t))||L2 6 ||W ε(t)−W ε

1 (t)||L2 .
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We will use again lemma 4.2. Recall the definitions of U(t), U1(t). It is
straightforward to compute that if

LW ε
1 = 2

εRe
[
i
∫

e2πiSx(1− e−η′S2
)V̂ (S)W ε

1 (x, k − εS
2 )dS

]
, (102)

it follows that

Fx,k�X,K [LW ε
1 ] =

= i
ε

∫
Ŵ ε

1 (X − S, K)(1− e−η′S2
)V̂ (S)

[
e−πiεS·K − eπiεS·K]

dS =

= 2π
∫

Ŵ ε
1 (X − S, K) (1− e−η′S2

)V̂ (S)S ·K sin(επS·K)
επS·K dS.

(103)

Using lemma 4.1 it follows that

||LW ε
1 ||L2(R2n) = ||F [LW ε

1 ] ||L2(R2n) 6

6 2
n∑

i=1

π||KiŴ
ε
1 (X, K)||L2(R2n) ||(1− e−η′S2

)V̂ (S)Si||L1(Rn) || sin(επS·K)
επS·K ||L∞ .

(104)
Obviously | sin(επS·K)

επS·K | 6 1. Moreover, recalling assumption (A3) we have

n∑

i=1

||KiŴ
ε
1 (X,K)||L2(R2n) 6 M1

1
2π

. (105)

Finally, recalling equation (12) of A1(r=0)

||(1− e−η′S2
)SiV̂ (S)||L1(Rn) 6 O(η′

θ
2 ) (106)

without loss of generality (i.e. θ < 2 without loss of generality).
Therefore summarizing equations (104), (105), (106) we finally get

||LW ε
1 ||L2(R2n) 6 M1Cη′

θ
2 . (107)

Now by applying lemma 4.2 we get

W ε
1 (t)−W ε(t) = −

t∫
τ=0

U(t− τ)LU1(τ)W ε
0 dτ ⇒

⇒ ||W ε
1 (t)−W ε(t)||L2 6

6 T sup
τ∈[0,T ]

||U(t)||L2�L2 sup
τ∈[0,T ]

||LW ε
1 (t)||L2 6

6 T
(
η′

θ
2 + η′

)
C ′ M1

(108)

for some O(1) constant C ′.
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Proof of equation (81): Assumption A1(r=0) allows us to use theorem 2.2,
for m = 1: there is an O(1) constant D(1, n) so that

||W ε(t)||H1 6 etD(1,n)||W ε
0 ||H1 . (109)

Now the conclusion follows by application of lemma A.1 – and more precisely
its corollary described in equation (161).

Proof of equation (82): For this we will introduce an auxiliary object. Denote
ρ2(x, k, t) as the solution of

∂tρ2 + 2πk · ∂kρ2 − 1
2π ∂xV · ∂kρ2 = 0,

ρ2(t = 0) = W̃ ε
0 ,

(110)

First of all observe that, using again equation (161), there is a constant C,
depending only on σx, σk, n, M0, such that

||ρ2(t)− ρ(t)||L2 = ||W ε
0 − W̃ ε

0 ||L2 6 C
√

ε||W ε
0 ||H1 . (111)

We will proceed in a way analogous to what we did earlier to show that ρ
and ρ1 are close.

By substracting equation (110) from (16) it follows that h = ρ1−ρ2 satisfies

∂th + 2πk · ∂kh− 1
2π ∂xṼ1 · ∂kh =

= F−1
X,K→x,k[2π

∫
(1− e−η′S2

)V̂ (S)ρ̂2(X − S, K)S ·KdS],

h(t = 0) = 0.

(112)

By using again lemma 4.2 – it is clear that Liouville equations with W 2,∞

potentials are well posed in L2 – it follows that, for t ∈ [0, T ],

||h(t)||L2 6 T ||(1− e−η′S2
)|S|V̂ (S)||L1M1 6 TM1C(ε + ε

θ
2 ). (113)

Recalling equations (106) and (83), equation (82) follows.

The proof of theorem 1.2 is complete.

4.2 Proof of Theorem 1.3

The proof is to a large extent analogous to that of theorem 1.2 (using the H−m

continuity of U(t), theorem 3.3, instead of the L2 continuity – theorem 2.1 –
which we used before). Therefore, we will not discuss in detail points that were
treated previously.

The main idea is that

||W ε(t)− ρ(t)||H−r 6 ||W̃ ε(t)−W ε(t)||H−r+

+||W̃ ε
1 − W̃ ε||H−r + ||W̃ ε

1 − ρε
1||H−r + ||ρε

1(t)− ρ(t)||H−r .
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It will be shown that there is a constant C such that

||W̃ ε
1 − ρε

1||H−r 6 CT ||W ε
0 ||H−1−reTD(r+1,n)(ε

θ
2 +

√
ε), (114)

||W̃ ε
1 − W̃ ε||H−r 6 CT (ε

θ
2 + ε)||W ε

0 ||H−1−reTD(r+1,n), (115)

||W̃ ε(t)−W ε(t)||H−r 6 C||W ε
0 ||H1−reTD(r−1,n)

√
ε, (116)

and
||ρε

1(t)− ρ(t)||H−r 6
6 (ε + ε

θ
2 )CTeT [D(r+1,n)+D(r,n)]||W ε

0 ||H−1−r+
+C

√
εeTD(r,n)||W ε

0 ||H1−r .

(117)

Now we proceed to the proofs of the building blocks:
Proof of equation (114):

Recall that Ẽ1(t) is the propagator of equation (16), i.e. ρε
1(t) = Ẽ1(t)W̃ ε

0 ,
and Ũ1(t) the propagator of equation (77), W̃ ε

1 (t) = Ũ1(t)W̃ ε
0 .

It follows from theorem 2.3 (applying the second sufficient condition), using
the assumption A1(r), that

||Ẽ1(t)||Hr�Hr 6 etD(r,n).

With respect to the sufficient condition, observe that

sup
|a|6r+2

||∂a
xV1||L∞ 6 ||V̂1(S)|S|r+2||L1 < ∞.

Therefore, it follows by duality (just as in lemma 3.3) that

||Ẽ1(t)||H−r�H−r 6 etD(r,n).

(Recall that D(r, n) was defined in equation (62), and can be estimated using
A1(r)).

Moreover, it follows from lemma 3.3 that U1(t), U(t) are bounded in H−r �
H−r.

Now by applying lemma 4.2 it follows that, ∀0 6 t 6 T ,

||ρε
1(t)− W̃ ε

1 (t)||H−r 6 T sup
τ∈[0,T ]

||Ẽ1(t− τ)FŨ1(τ)W̃ ε
0 ||H−r 6

6 TeTD(r,n) sup
τ∈[0,T ]

||FW̃ ε
1 (τ)||H−r .

(118)
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Recalling equation (86), we are called to estimate

|| εσ2
x

2 ∂x · ∂kW̃ ε
1 (τ)+

+2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

il−m+1σ2l
x (−1)m−l

∑
|A| = l

|B| = m − l

∂A+B
x Ṽ1(x)

A!B! ∂A
x ∂B

k W̃ ε
1 (τ)||H−r 6

6 εσ2
x

2 ||∂x · ∂kW̃ ε
1 (τ)||H−r+

+2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

σ2l
x

∑
|A| = l

|B| = m− l

||∂A+B
x Ṽ1(x)

A!B! ∂A
x ∂B

k W̃ ε
1 (τ)||H−r 6

6 εσ2
x

2 ||∂x · ∂kW̃ ε
1 (τ)||H−r+

+2
∞∑

m=2

εm−1

(4π)m

∑
(m−l)mod2=1

σ2l
x

∑
|A| = l

|B| = m− l

||∂A+B
x Ṽ1(x)||L∞

A!B! ||∂A
x ∂B

k W̃ ε
1 (τ)||H−r .

(119)
Now we proceed to estimate ||∂A

x ∂B
k W̃ ε

1 (τ)||H−r :

||∂A
x ∂B

k W̃ ε
1 (τ)||H−r =

= (2π)m||XAKBe−
επ
2 [σ2

x|X|2+σ2
k|K|2]Ŵ ε

1 (X,K, τ)||FH−r 6

6 (2π)m||XAKB−be−
επ
2 [σ2

x|X|2+σ2
k|K|2]||L∞ ||KbŴ ε

1 (X, K, τ)||FH−r 6

6 (2π)(m−1)

(
n∏

d=1

||XAd

d e−
επ
2 σ2

xX2
d ||L∞

)

(
n∏

d=1

||K(B−b)d

d e−
επ
2 σ2

kK2
d ||L∞

)
||Ŵ ε

1 (X, K, τ)||FH−1−r =

= (2π)(m−1)
n∏

d=1

(
Ad

eεπσ2
x

)Ad
2

(
(B−b)d

eεπσ2
k

) (B−b)d
2 ||Ŵ ε

0 ||FH−1−retD(r+1,n) =

= ||W ε
0 ||H−1−retD(r+1,n) ( 4π

eε )
m−1

2 σ−l
x σ

−(m−l−1)
k

n∏
d=1

A
Ad
2

d (B − b)
(B−b)d

2
d .

(120)
Finally, with the same arguments as above, observe that

εσ2
x

2 ||∂x · ∂kW̃ ε
1 (τ)||H−r 6

6 εσ2
k

2 2π
n∑

d=1

||Xde
− επ

2 σ2
xX2

d ||L∞ ||W ε
0 ||H−1−retD(r+1,n) =

=
√

ε
√

πσ2
kn

σx
√

e
||W ε

0 ||H−1−retD(r+1,n)

(121)
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Plugging equations (11), (120) and (121) in (119) we get

||FW̃ ε
1 (τ)||H−r 6 √

ε
√

πσxn√
e
||W ε

0 ||H−1−reTD(r+1,n) + Σ1+

+η′
θ
2
||W ε

0 ||H−1−r eT D(r+1,n)D

2

∞∑
m=d1+θe

(
ε
η′

π
e

)m−1
2

Γ
(

m−1−θ
2

)

∑
(m−l)mod2=1

σl
xσ−m+l+1

k

∑
|A| = l

|B| = m− l

n∏
d=1

A
Ad
2

d (B−b)
(B−b)d

2
d

A!B!

(122)

Σ1 stands for all the contributions from m < θ + 1, and behaves simlarly to√
ε||W ε

0 ||H−1−reTD(r+1,n) (see e.g. equation (94) ).
By working in complete analogy to the proof of equation (79), (114) follows.

Proof of equation (115): It is obvious that

||W̃ ε
1 (t)− W̃ ε(t)||H−r 6 ||W ε

1 (t)−W ε(t)||H−r .

We will use again lemma 4.2 to estimate ||W ε
1 (t) −W ε(t)||H−r . It is straight-

forward to compute that if

LW ε
1 = 2

εRe
[
i
∫

e2πiSx(1− e−η′S2
)V̂ (S)W ε

1 (x, k − εS
2 )dS

]
, (123)

it follows that

||LW ε
1 ||H−r = ||F [LW ε

1 ] ||FH−r 6

6 2
n∑

i=1

π||KiŴ
ε
1 (X, K, t)||FH−r ||(1− e−η′S2

)V̂ (S)Si||L1 || sin(επS·K)
επS·K ||L∞ 6

6 2nπ||W ε
0 ||H−1−reTD(r+1,n) M3.

(124)
Recalling equation (12) of A1(r=0), ||(1 − e−η′S2

)V̂ (S)Si||L1 = O(ε + ε
θ
2 );

equation (115) now follows.

Proof of equation (116): It follows readily by application of lemma A.1 for
p = 2, m = −r, s = 2.

Proof of equation (117): Recall the definition of ρ2(x, k, t), equation (110).
First of all observe that, using again lemma A.1, there is a constant C,

depending only on σx, σk, n, M0, such that

||ρ2(t)−ρ(t)||H−r 6 eTD(r,n)||W ε
0 − W̃ ε

0 ||H−r 6 C
√

εeTD(r,n)||W ε
0 ||H1−r . (125)
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By substracting equation (110) from (16) it follows that h = ρ1−ρ2 satisfies

∂th + 2πk · ∂kh− 1
2π ∂xṼ1 · ∂kh =

= F−1
X,K→x,k[2π

∫
(1− e−η′S2

)V̂ (S)ρ̂2(X − S, K)S ·KdS],

h(t = 0) = 0.

(126)

By using again lemmata 4.2, 4.1 it follows that, for t ∈ [0, T ],

||h(t)||H−r 6 CTeTD(r,n)||(1− e−η′S2
)|S|V̂ (S)||L1 ||ρ2(t)||H−1−r 6

6 (ε + ε
θ
2 )C ′TeT [D(r+1,n)+D(r,n)]||W ε

0 ||H−1−r .

(127)

for some constant C ′ depending only on n, σx, σk,M0. (We also used theorem
2.3 to estimate the rhs of ||h(t)||H−r 6 ||ρ1(t)||H−r + ||ρ2(t)||H−r ).

Using the triangle inequality, equation (117) follows.

The proof of theorem 1.3 is complete.

4.3 Proof of Theorem 1.4

The proof is very similar to that of theorem 1.3. We will only discuss explicitly
the points where differences arise.

Of course the main idea is that

||W ε(t)− ρ(t)||Hr 6 ||W̃ ε(t)−W ε(t)||Hr+

+||W̃ ε
1 − W̃ ε||Hr + ||W̃ ε

1 − ρε
1||Hr + ||ρε

1(t)− ρ(t)||Hr .

It will be shown that there is a constant C such that

||W̃ ε
1 − ρε

1||Hr 6 CT ||W ε
0 ||H1+reTD(r+1,n)(ε

θ
2 +

√
ε), (128)

||W̃ ε
1 − W̃ ε||Hr 6 CT (ε + ε

θ−r
2 )||W ε

0 ||H1+reT [D(r+1,n)+D(r,n)], (129)

||W̃ ε(t)−W ε(t)||Hr 6 C||W ε
0 ||H1+reTD(r+1,n)

√
ε, (130)

and
||ρε

1(t)− ρ(t)||Hr 6 C
√

εeTD(r,n)||W ε
0 ||H1+r+

+CTeT [D(r,n)+D(r+1,n)]||W ε
0 ||Hr+1(ε + ε

θ−r
2 ).

(131)

Now we proceed to the proofs of the building blocks:
Proof of equation (128): It is entirely analogous with the proof of equation
(114), in the proof of theorem 1.3 (section 4.2) – it is not necessary to replicate
it here.
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Proof of equation (129): It is obvious that

||W̃ ε
1 (t)− W̃ ε(t)||Hr 6 ||W ε

1 (t)−W ε(t)||Hr .

We will use again lemma 4.2 to estimate ||W ε
1 (t)−W ε(t)||Hr . Using lemma 4.1

it follows that, if L is defined as in equation (123), then

||LW ε
1 ||Hr = ||F [LW ε

1 ] ||FHr 6

6 C|| |K|Ŵ ε
1 (X, K, t)||FHr ||(1− e−η′S2

)(|S|r+1 + |S|)V̂ (S)||L1 || sin(επS·K)
επS·K ||L∞ 6

6 C||W ε
0 ||H1+reTD(r+1,n) ||(1− e−η′S2

)(|S|r+1 + |S|)V̂ (S)||L1 .
(132)

Now recall assumption A1(r) to see that

||(1− e−η′S2
)|S|r+1V̂ (S)||L1(Rn) 6 C(ε + ε

θ−r
2 ) (133)

Therefore
||LW ε

1 ||Hr 6 C(ε + ε
θ−r
2 )||W ε

0 ||H1+reTD(r+1,n) (134)

Equation (129) follows by applying lemma 4.2.

Proof of equation (130): It follows readily by application of lemma A.1 for
p = 2, m = −r, s = 2.

Proof of equation (131): Recall the definition of ρ2(x, k, t), equation (110).
First of all observe that, using again lemma A.1, there is a constant C,

depending only on σx, σkn,M0, such that

||ρ2(t)− ρ(t)||Hr 6 eTD(r,n)||W ε
0 − W̃ ε

0 ||Hr 6 C
√

εeTD(r,n)||W ε
0 ||H1+r . (135)

Applying lemma 4.1 to equation (126) once more (and using again A1(r) ),
it follows that for t ∈ [0, T ]

||h(t)||Hr 6 C||(1− e−η′S2
)(|S|+ |S|r+1)V̂ (S)||L1 ||ρ2(t)||Hr+1 6

6 CeTD(r+1,n)||W ε
0 ||Hr+1(ε + ε

θ−r
2 ).

(136)

Using the triangle inequality and lemma 4.2, equation (131) follows.

The proof of theorem 1.4 is complete.

4.4 Auxiliary lemmata

Proof of lemma 1.1:
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First of all
∫ |V̂ (S)| |S|r+2dS 6

∫
|S|<1

|V̂ (S)|dS +
∫

|S|>1

|V̂ (S)| |S|r+2dS 6

6 M0 + D
∞∫

s=1

sr+2+n−1−n−1−θds < ∞

because r − θ < −1. This, together with equation (13), implies equation (8).

Now denote for convenience

η′ = η +
επσ2

x

2
. (137)

One observes that

||∂A+B
x Ṽ1(x)||L∞ 6 (2π)m

∫ |V̂ (S)
(

n∏
d=1

S
(A+B)d

d

)
e−η′|S|2 |dS 6

6 (2π)m
∫ |V̂ (S)||S|me−η′|S|2dS 6

6 (2π)m

(
∫

|S|61

|V̂ (S)||S|mdS + D
∞∫

r=1

r(m−2)−θe−η′r2
dr

)
.

(138)

For a finite number of m’s, m− 2− θ < −1, in which case, using equation (138)
and equation (8), for |A|+ |B| 6 m we have

||∂A+B
x Ṽ1(x)||L∞ 6 (2π)m


M0 + D

∞∫

r=1

r(m−2)−θdr


 = O(1) (139)

Now assume that m− 2− θ > −1;5 then equation (138) leads to

||∂A+B
x Ṽ1(x)||L∞ < (2π)mM0 + D(2π)m

∞∫
r=0

r(m−2)−θe−η′S2
dS =

= (2π)mM0 + D (2π)m

2 (η′)−
m−1−θ

2 Γ
(

m−1−θ
2

)
.

(140)

This concludes the proof of equations (10) and (11).

5We don’t have to worry about m− 2− θ = −1 because we have restricted θ /∈ N.
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Now observe that

||(1− e−η′S2
)|S|r+1V̂ (S)||L1(Rn) 6

6
∫

|S|61

(1− e−η′S2
)|S|r+1|V̂ (S)|dS + D

∫
|S|>1

|S|r+1 1−e−η′|S|2

|S|n+1+θ dS 6

6 η′M0 + D
∞∫

s=1

sr+1 1−e−η′s2

sn+1+θ sn−1ds 6

6 η′M0 + D

[
A∫
1

sr−1−θη′s2ds +
∞∫

s=A

sr−1−θds

]
=

= η′M0 + D
(
η′A

r+2−θ−1
r+2−θ + Ar−θ

θ−r

)
=: M3.

(141)

By selecting A = η′−
1
2 , we get

M3(r) = η′M0 + D

(
η′ (η

′− 1
2 )r+2−θ−1
r+2−θ + (η′−

1
2 )r−θ

θ−r

)
=

= η′M0 + D η′
θ−r
2 −η′

r+2−θ + η′
θ−r
2

θ−r .

(142)

By recalling our assumption that θ > r + 1 it is easy to see that

M3(r) 6 C(ε
θ−r
2 + ε) = o(1). (143)

This concludes the proof of lemma 1.1.

Lemma 4.1 (A version of the Young inequality) Let f ∈ L1(Rn). Then,
if g ∈ L2(R2n),

||
∫

f(s)g(x− s, k)ds||L2(R2n) 6 ||f ||L1(Rn)||g||L2(R2n); (144)

if ĝ ∈ H−m(R2n),

||
∫

f(s)g(x− s, k)ds||FH−m(R2n) 6 ||f ||L1(Rn)||g||FH−m(R2n); (145)

and if ĝ ∈ Hm(R2n), f(s)(1 + |s|m) ∈ L1(Rn),

||
∫

f(s)g(x− s, k)ds||FHm(R2n) 6 C||g||FHm(R2n)

m∑

l=0

||f(s)|s|l||L1(Rn). (146)
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Proof of equation (144):

|| ∫ f(s)g(x− s, k)ds||2L2(R2n) =
∫

f(s)g(x− s, k)f̄(y)ḡ(x− y, k)dxdk =
=

∫ ∫
g(x− s, k)ḡ(x− y, k)dxdkf(s)f̄(y)dsdy 6 ||f ||2L1(Rn)||g||2L2(R2n).

Proof of equation (145): Denote B = {φ| ||φ||FHm 6 1}. Then

|| ∫ f(s)g(x− s, k)ds||H−m(R2n) = sup
φ∈B

∫
f(s)g(x− s, k)dsφ(x, k)dxdk 6

6 ||f ||L1(Rn) sup
φ∈B,s

∫
g(x− s, k)φ(x, k)dxdk 6 ||f ||L1(Rn)||g||H−m(R2n).

Proof of equation (146): Recall that

|| ∫ f(s)g(x− s, k)ds||FHm(R2n) =
=

∑
|A|+|B|6m

||(2πx)A(2πk)B
∫

f(s)g(x− s, k)ds||L2(R2n),

therefore it suffices to work for one choice of A, B with |A|+ |B| 6 m:

|| ∫ f(s)g(x− s, k)dsxAkB ||L2(R2n) =
= || ∫ f(s)g(x− s, k)ds(s + (x− s))AkB ||L2(R2n) 6

6
A∑

l=0

(
A
l

)||f(s)|s|A−l||L1(Rn)||g(x, k)xlkB ||L2(R2n) 6

6 ||g||Hm(R2n)

A∑
l=0

(
A
l

)||f(s)|s||A−l|||L1(Rn).

Lemma 4.2 (An observation on perturbations) Consider two equations,

vt + Tv = 0,
v(t = 0) = w0,

(147)

and
ut + Tu = Lu,
u(t = 0) = w0.

(148)

Denote E and U their propagators respectively, i.e. v(t) = E(t)w0, u(t) =
U(t)w0. Then the difference of the solutions can be cast as

u(t)− v(t) = −
t∫

τ=0

E(t− τ)LU(τ)w0dτ =

t∫

τ=0

U(t− τ)LE(τ)w0dτ (149)

Moreover, if
rt + Tr = f(t),
r(t = 0) = w0,

(150)

then

r(t)− v(t) = −
t∫

τ=0

E(t− τ)f(τ)dτ. (151)
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Remark: The considerations here are formal; questions of well-posedness of
the equations etc should be considered each time the lemma is applied.
Proof of equation (149): Set

ψ(t) = U(−t)(u(t)− v(t)). (152)

Then

U(t)ψ(t) = u(t)− v(t) ⇒ U̇(t)ψ(t) + U(t)ψ̇(t) = u̇(t)− v̇(t) ⇒
⇒ −(T + L)U(t)ψ(t) + U(t)ψ̇(t) = −Tu(t)− Lu(t) + Tv(t) ⇒

⇒ −(T + L)(u(t)− v(t)) + U(t)ψ̇(t) = −Tu(t)− Lu(t) + Tv(t) ⇒
⇒ ψ̇(t) = −U(−t)Lv(t) ⇒ U(t)ψ(t) = −U(t)

t∫
τ=0

U(−τ)LE(τ)w0dτ ⇒

⇒ u(t)− v(t) = −
t∫

τ=0

U(t− τ)LE(τ)w0dτ.

(153)
The other equality of equation (149) follows essentially in the same way. The

proof is complete.

Proof of equation (151): Set r′(t) = v(t)−
t∫

τ=0

E(t− τ)f(τ)dτ ; by straight-

forward computation it follows that ∂tr
′ + Tr′ = f(t).

The proof is complete.

Lemma 4.3 (Interchanging summation and integration) We will show that
∫

e2πiSx− επ
2 σ2

xS2
V̂1(S)W̃ ε

1 (x + iεσ2
xS

2 , k − εS
2 )dS =

=
∫

e2πiSx−(η+ επ
2 σ2

x)S2
V̂ (S)

+∞∑
m=0

εm

m!2m [
n∑

d=1

Sd(iσ2
x∂xd

− ∂kd
)]mW̃ ε

1 (x, k)dS =

=
+∞∑
m=0

∫
e2πiSx−(η+ επ

2 σ2
x)S2

V̂ (S) εm

m!2m [
n∑

d=1

Sd(iσ2
x∂xd

− ∂kd
)]mW̃ ε

1 (x, k)dS,

i.e. that interchanging summation and integration is justified.

Proof: Denote

g(S) = e−
επ
2 σ2

xS2
W̃ ε

1 (x +
iεσ2

xS

2
, k − εS

2
),

gm(S) = e−(η+ επ
2 σ2

x)S2
+∞∑
m=0

εm

m!2m
[

n∑

d=1

Sd(iσ2
x∂xd

− ∂kd
)]mW̃ ε

1 (x, k).

We know that
∑
m

gm(S) = g(S) pointwise (even uniformly on compacts),

since it is the Taylor expansion of an entire analytic function.
Observe that since the potential always satisfies A1(r=0),

V̂ (S) ∈ L1; (154)
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therefore, it suffices to show that
∑
m

|gm(S)| 6 C,

the result then follows by dominated convergence. Indeed,

|gm(S)| 6

6 e−(η+ επ
2 σ2

x)S2 +∞∑
m=0

εm

m!2m

∑
|A|=m

m!
A1!...An!

∣∣∣∣
n∏

d=1

[
Sd(iσ2

x∂xd
− ∂kd

)
]Ad W̃ ε

1 (x, k)
∣∣∣∣ 6

6 e−(η+ επ
2 σ2

x)S2 +∞∑
m=0

εm

m!2m

∑
|A|=m

(
m
A

)
SA

n∏
d=1

Ad∑
l=0

(
Ad

l

) ∣∣∣(iσ2
x∂xd

)l(−∂kd
)Ad−lW̃ ε

1 (x, k)
∣∣∣ .
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Here observe that ∣∣∣(iσ2

x∂xd
)l(−∂kd

)Ad−lW̃ ε
1 (x, k)

∣∣∣ 6

6 max{1, σ2l
x }(2π)m

∫
X l

dK
Ad−l
d e−

επ
2 (σ2

x|X|2+σ2
k|K|2)|Ŵ1(X, K)|dXdK 6

6 max{1, σ2l
x }(2π)m||X l

de
− επ

2 σ2
x|X|2 ||L2 ||KAd−l

d e−
επ
2 σ2

k|K|2 ||L2 ||Ŵ1||L2 .

Moreover,

||X l
de
− επ

2 σ2
x|X|2 ||2L2 = (

∫
e−επσ2

xx2
dx)n−1

∫
x2le−επσ2

xx2
dx =

= (εσ2
x)

1−n
2

Γ( 2l−1
2 )

(πεσ2
x)

2l−1
2

,

and similarly

||KAd−l
d e−

επ
2 σ2

k|K|2 ||2L2 = (εσ2
k)

1−n
2

Γ
(

2(Ad−l)−1
2

)

(πεσ2
k)

2(Ad−l)−1
2

,

and therefore ∣∣∣(iσ2
x∂xd

)l(−∂kd
)Ad−lW̃ ε

1 (x, k)
∣∣∣ 6

6 max{1, σ2l
x }(2π)m(εσxσk)

1−n
2 (επ)

1−m
2 σ

1−2l
2

x σ
1−2(Ad−l)

2
k√

Γ
(

2l−1
2

)
Γ

(
2(Ad−l)−1

2

)
||Ŵ1||L2 6

6 Cmax{1, σ2l
x }max{1, σ

1−2l
2

x }max{1, σ
1−2(Ad−l)

2
k }

(2π)m(επ)
1−m

2

√
Γ

(
2l−1

2

)
Γ

(
2(Ad−l)−1

2

)
6

6 CBmε
1−m

2

√
Γ

(
2l−1

2

)
Γ

(
2(Ad−l)−1

2

)
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where C,B < ∞ are independent of m. Plugging this back into equation (155),
there are (possibly new) constants C, B < ∞ such that

|gm(S)| 6 Ce−(η+ επ
2 σ2

x)S2 +∞∑
m=0

Bm εm

m!

∑
|A|=m

(
m
A

)
SA

n∏
d=1

Ad∑
l=0

(
Ad

l

)
ε

1−m
2

√
Γ

(
2l−1

2

)
Γ

(
2(Ad−l)−1

2

)
6

6 C ′e−(η+ επ
2 σ2

x)S2 +∞∑
m=0

Bmε
m
2

∑
|A|=m

SA
n∏

d=1

Ad∑
ld=0

√
Γ

(
2ld−1

2

)
Γ

(
2(Ad−ld)−1

2

)

ld!(Ad−ld)! <

< C ′e−(η+ επ
2 σ2

x)S2 +∞∑
m=0

Bmε
m
2

∑
|A|=m

SA
n∏

d=1

Ad∑
ld=0

√
(ld−1)!(Ad−ld−1)!

ld!(Ad−ld)! .

(156)
At this point, using the Cauchy-Schwarz inequality one observes that

n∏
d=1

Ad∑
ld=0

√
(ld−1)!(Ad−ld−1)!

ld!(Ad−ld)! =
n∏

d=1

√
Ad∑

ld=0

Ad!
ld!(Ad−ld)!

1√
Ad!

√
Ad−1∑
ld=1

1
ld(Ad−ld) 6

6
n∏

d=1

√
Ad

Ad!(Ad−1)

√
Ad∑

ld=0

Ad!
ld!(Ad−ld)! ≈

√
2Ad

Ad! .

Finally, observe that
∣∣∣e−(η+ επ

2 σ2
x)S2

SA
∣∣∣ 6 Bm(η +

επ

2
σ2

x)−
m
2 .

so altogether (possibly for new constants C,B)

|gm(S)| < C
+∞∑
m=0

Bmε
m
2 (η + επ

2 σ2
x)−

m
2

∑
|A|=m

1√
A!

6

6 C
+∞∑
m=0

Bmε
m
2 (η + επ

2 σ2
x)−

m
2

∑
|A|=m

√
m!√

A!m!
6

6 C
+∞∑
m=0

Bmε
m
2 (η + επ

2 σ2
x)−

m
2

√ ∑
|A|=m

(
m
A

)
√ ∑

|A|=m

1

m! 6

6 C
+∞∑
m=0

Bmε
m
2 (η + επ

2 σ2
x)−

m
2
√

nm
√

nm

m! 6 C ′
+∞∑
m=0

(B′)m

√
m!

.

(157)

(For the last step it is important to recall that finally η is fixed η = B0ε for
an appropriate constant B0, see equation (101)).
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This justifies the interchanging of the integral and series. To proceed to
equation (86) then we carry out the (inverse) Fourier transforms in

∫
e2πiSx−(η+ επ

2 σ2
x)S2

V̂ (S) εm

m!2m [
n∑

d=1

Sd(iσ2
x∂xd

− ∂kd
)]mW̃ ε

1 (x, k)dS =

= F−1
S�x

[
e−(η+ επ

2 σ2
x)S2

V̂ (S) εm

m!2m [
n∑

d=1

Sd(iσ2
x∂xd

− ∂kd
)]mW̃ ε

1 (x, k)
]

The proof is complete.

Lemma 4.4 (An observation on the Gamma function) For m large enough

Γ
(

m− 1− θ

2

)
< (2π)

1
4 2

3+2θ
4

√
m!

2mm(m− 1)

Proof: The Gamma function satisfies the duplication formula,

Γ(z)Γ(z +
1
2
) = 2

1
2−2z

√
2πΓ(2z).

Keeping in mind that Γ(m − 1 − θ) < Γ(m − 1) = (m − 2)! = m!
m(m−1) (we’re

working for m large enough), and setting z = m−1−θ
2 it follows that

Γ(m−1−θ
2 )Γ(m−θ

2 ) = 2
1
2−m+1+θ

√
2πΓ(m− 1− θ)

(
Γ(m−1−θ

2 )
)2

< Γ(m−1−θ
2 )Γ(m−θ

2 ) = 2
3
2−m+θ

√
2πΓ(m− 1− θ) <

< 2
3
2+θ

√
2π m!

2mm(m−1)

The proof is complete.

Lemma 4.5 (Sobolev norms of delta functions) Let z0 ∈ R2n. Then

2m > n ⇒ δ(z − z0) ∈ H−m(R2n)

Proof: Take f ∈ Hm(R2n). Then

|〈δ(z − z0), f(z)〉| 6 ∫ |f̂(x, k)|dxdk =

=
∫ |f̂(x, k)|(1 + |x|)m(1 + |k|)m(1 + |x|)−m(1 + |k|)−mdk 6

6
√∫ |f̂(k)|2(1 + |x|)2m(1 + |k|)2mdk

√∫
(1 + |k|)−2mdk

∫
(1 + |x|)−2mdk 6

6 C||f ||Hm

(
1 +

+∞∫
ρ=1

ρn−1−2mdρ

)

The proof is complete.
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A Two useful properties of the SWT

Lemma A.1 Recall the definition of the spaces Xm,p, equation (37). Then, for
any m ∈ R, p ∈ [1,∞], s > 1, the following estimate holds

||W − W̃ ||Xm,p 6 (1 +
π

2
max{σ2

x, σ2
k}) ε

1
s ||W ||Xm+ 2

s
,p (158)

Remark: The statement and the proof are optimized for σx, σk = O(1). When
that is not the case, fundamentally the same approach can still be made to work.
We don’t treat that here explicitly.

Proof: For p ∈ [1,∞), we have

||W − ΦW ||pXm,p = ||Ŵ (X,K)(1− e−
επ
2 (σ2

xX2+σ2
kK2))|(X,K)|m||pLp =

=
∫ ∣∣∣(1− e−

επ
2 [σ2

xX2+σ2
kK2])|(X,K)|mŴ (X, K)

∣∣∣
p

dXdK =

=
∫

√
X2+K2< 1√

ε

∣∣∣(1− e−
επ
2 [σ2

xX2+σ2
kK2])|(X, K)|mŴ (X, K)

∣∣∣
p

dXdK+

+
∫

√
X2+K2> 1√

ε

∣∣∣(1− e−
επ
2 [σ2

xX2+σ2
kK2])|(X,K)|mŴ (X, K)

∣∣∣
p

dXdK 6

(159)

6
(

π
2 max{σ2

x, σ2
k}

)p
ε

p
s

∫
X2+K2< 1

ε

∣∣∣|(X, K)|m+ 2
s Ŵ (X, K)

∣∣∣
p

dXdK+

+
∫

√
X2+K2> 1√

ε

∣∣∣|(X, K)|mŴ (X,K)
∣∣∣
p

dXdK 6

6
(

π
2 max{σ2

x, σ2
k}

)p
ε

p
s ||W ||p

Xm+ 2
s

,p
+

∫

√
X2+K2> 1√

ε

∣∣∣|(X, K)|mŴ (X, K)
∣∣∣
p

dXdK

︸ ︷︷ ︸
I2

.

for any s > 1.
For I2 it suffices to observe that

||W ||p
Xm+ 2

s
,p

=
∫ |(X, K)|(m+ 2

s )p|Ŵ (X,K)|pdXdK >

> ε−
p
s

∫
√

X2+K2> 1√
ε

|(X,K)|mp|Ŵ (X,K)|pdXdK = ε−
p
s I2.

(160)

For p = ∞ it follows along similar lines (the only difference is technical, we
can’t raise to the p = ∞).

The proof is complete.
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It might be instructive to write down explicitly some corollaries of lemma
A.1:

||W − W̃ ||L2 6 (1 +
π

2
max{σ2

x, σ2
k}) ε

1
2 ||W ||H1 , (161)

||W − W̃ ||L2 6 (1 +
π

2
max{σ2

x, σ2
k}) ε ||W ||H2 , (162)

||W − W̃ ||H−1 6 (1 +
π

2
max{σ2

x, σ2
k}) ε

1
2 ||W ||L2 , (163)

||W − W̃ ||H−1 6 (1 +
π

2
max{σ2

x, σ2
k}) ε ||W ||H1 . (164)

Lemma A.2 (Critical smoothing) If σxσk = 1, then

W̃ ε(x, k) = 〈OpWeyl (W ε)φε
x,k, φε

x,k〉,

where

φε
x,k =

(
2

εσ2
x

)n
4

e
− 2πi

ε yk− π
εσ2

x
(x−y)2

.

If σxσk = 1 we will say that we have critical smoothing, and the SWT
coincides with the Husimi transform.

Moreover, if OpWeyl (W ε) is a nonnegative definite operator, and σxσk > 1,
then W̃ ε > 0.

Proof: Recall that

〈L(x, k),W ε[f, g]〉 =
∫

L(x, k)e2πikyf(x + εy
2 )g(x− εy

2 )dydxdk =

= ε−n
∫

L(X+Y
2 , k)e2πik

(X−Y )
ε dkg(X)dXf(Y )dY =

=
∫

L(X+Y
2 , εk)e2πik(X−Y )dkg(X)dXf(Y )dY = 〈OpWeyl(L)g, f〉.

Moreover, it is straightforward to see that, as long as σxσk = 1,

Fx0,k0(x, k) =
(

2
εσxσk

)n

e
− 2π

ε

[
|x−x0|2

σ2
x

+
|k−k0|2

σ2
k

]

= W ε[φε
x0,k0

](x, k).

Therefore

W̃ ε(x0, k0) = 〈W ε, Fx0,k0〉 = 〈OpWeyl (W ε)φε
x0,k0

, φε
x0,k0

〉.

For the second part of the theorem, it is obvious that if σxσk > 1, W̃ ε can be
cast as a Gaussian molification of a Husimi transform. But the nonnegativity of
the operator passes on to the Husimi transform, and any Gaussian smoothing
preserves it.
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B On the initial data of the Wigner equation

In the case of a pure state W ε[uε](x, k) =
∫

e−2πikyuε(x + εy
2 )uε(x− εy

2 )dy the
following identity holds:

∫
W ε(x, k)dxdk = ||uε||2L2 .

More generally, in the case of a mixed state W ε(x, k) =
∫

e−2πikyρ(x + εy
2 , x− εy

2 )dy
we can recover the trace of the operator with Weyl symbol W – equivalently,
with kernel ρ:

∫
W ε(x, k)dxdk =

∫
ρ(x, x)dx = tr (OpW W (x, k)) .

This means that the conservation of
∫

W ε(x, k)dxdk in time evolution re-
flects a significant physical fact; it emerges therefore as a reasonable normaliza-
tion to set ∫

W ε(x, k)dxdk = 1 (165)

for all ε > 0. This is the normalization consistent with the standard scaling of
the Schrödinger equation, and the concept of a Wigner measure [12],

W ε ⇀ W 0,

∫
W ε(x, k)dxdk =

∫
W 0(x, k)dxdk = 1.

At the same time, the L2 norm in also preserved (see theorem 2.1), and this
is also of physical significance,

||W ε[uε](x, k)||L2 = ε−
n
2 ||uε||2L2 .

In the case of mixed states it corresponds to the Hilber-Schmidt norm,

||W ε(x, k)||L2 = ε−
n
2 ||ρ(x, y)||L2 = ε−

n
2 ||OpW W (x, k)||HS .

Since we deal with linear homogeneous equations, switching between the
two is completely painless. The results here are formulated without any one
normalization being fixed, that is why the assumptions involve quantities of the
form ||W ε

0 ||Hm

||W ε
0 ||L2

.

It is instructive to look at pure states and how they scale:

Lemma B.1 For the Wigner transform of a pure state, W ε = W ε[uε], the
following holds:

||∂xiW
ε||L2 6 2ε−

n
2 ||∂xiu

ε||L2 ||uε||L2 ,

||∂kiW
ε||L2 6 4πε−

n
2 ||xi

ε uε||L2 ||uε||L2 .
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Proof: Denote by Q the mapping

Q : f(x, y) 7→
∫

e2πikyf(x +
εy

2
, x− εy

2
)dy.

For example, the Wigner transform of a pure state can be recast as

W ε[uε] = Q[uε(x)uε(y)].

It is easy to check that
||Qf ||L2 = ε−

n
2 ||f ||L2 . (166)

Moreover, it is easy to check that

∂xi
W ε[uε] = Q [(∂xi

+ ∂yi
)uε(x)uε(y)] ,

∂ki
W ε[uε] = Q

[−2πixi−yi

ε uε(x)uε(y)
]
.

The proof is complete.

The importance of the following lemma is that it assures us that for coherent
states the convergence to the Wigner measure is in fact in H−r norm, not just in
weak-∗ sense. This is in particular useful when working with strong semiclassical
limits for pure states.

Lemma B.2 (Wigner measure for coherent states) Assume uε
0(x) is a co-

herent state,

uε
0(x) = ε−

n
4 a(

x− x0√
ε

)e2πik0x, (167)

with a ∈ S.
Then, for φ ∈ S, and for all r ∈ N, 2r > n, there is a constant C depending

on a(x), r such that

|〈W ε[uε
0]− δ(x0, k0), φ〉| 6 C||φ||Hr+2

(
ε

2r−n
4n + ε

1
2n

)
.

Remark: Similar results can be shown for WKB initial data, i.e. uε(x) =
A(x)e

2πi
ε S(x).

Proof: It suffices to work for x0 = k0 = 0. Indeed,

〈W ε[uε
0], φ〉 = ε−

n
2

∫
e−2πikya(x+ εy

2√
ε

)a(x− εy
2√
ε

)φ(x, k)dydxdk =

=
∫

e−2πikya(x +
√

εy
2 )a(x−

√
εy
2 )φ(

√
εx, k)dydxdk =

=
∫

e−2πikya(x +
√

εy

2
)a(x−

√
εy

2
)φ(0, k)dydxdk

︸ ︷︷ ︸
I

+

+
∫

e−2πikya(x +
√

εy

2
)a(x−

√
εy

2
)R1dydxdk

︸ ︷︷ ︸
I1

,

46



where of course R1 is the remainder of the Taylor expansion. We will collect
and estimate all the errors in the end; in the meantime we have

∫
e−2πikya(x +

√
εy
2 )a(x−

√
εy
2 )φ(0, k)dydxdk =

=
∫

e−2πikyφ(0, k)dka(x +
√

εy
2 )a(x−

√
εy
2 )dydx =

=
∫

φ̂2(0, y)a(x +
√

εy
2 )a(x−

√
εy
2 )dydx =

∫
φ̂2(0, y)[a(x) + E1][a(x) + E′

1]dydx =

= φ(0, 0) +
∫

φ̂2(0, y)[a(x)E1 + a(x)E′
1 + E1E

′
1]dydx,

where of course E1, E′
1 are the Taylor remainders from Taylor expanding a(x±√

εy
2 ) around x, and φ̂2(x, y) =

∫
e−2πikyφ(x, k)dk.

Now, about the errors: |R1| 6 |x|√ε||∇φ||L∞ , and therefore

|I1| 6
√

ε||∇φ||L∞ |
∫

e−2πikya(x +
√

εy
2 )a(x−

√
εy
2 )|x|dydxdk| 6

6 √
ε||∇φ||L∞ |

∫
δ(y − 0)a(x +

√
εy
2 )a(x−

√
εy
2 )|x|dydx| 6 √

ε||∇φ||L∞
∫

a2(x)|x|dx.

Moreover, |E1|, |E′
1| 6 1

2 |y|
√

ε||∇a||L∞ . Therefore,

| ∫ φ̂2(0, y)a(x)E1dydx| 6
√

ε||∇a||L∞
2 | ∫ φ̂2(0, y)a(x)|y|dydx| =

=
√

ε||∇a||L∞
2

∫ |φ̂2(0, y)| |y|dy
∫ |a(x)|dx.

Finally, for the E1E
′
1 term, one observes that

∫
φ̂2(0, y)E1E

′
1dydx =

=
∫

φ̂2(0, y)[a(x +
√

εy
2 )a(x−

√
εy
2 )− a(x)E1 − a(x)E′

1 − a2(x)]dydx,

and since we can select a M > 1 such that
∫

|x|>M, y∈Rn

φ̂2(0, y)[a(x)E1 + a(x)E′
1 + a2(x)]dydx 6

√
ε

∫

y∈Rn

φ̂2(0, y)dy,

it follows that

| ∫ φ̂2(0, y)E1E
′
1dydx| 6 | ∫

|x|<M, y∈Rn

φ̂2(0, y)E1E
′
1dydx|+

+
√

ε
∫

y∈Rn

|φ̂2(0, y)|dy + | ∫
|x|>M, y∈Rn

φ̂2(0, y)a(x +
√

εy
2 )a(x−

√
εy
2 )dydx|.

Now we have

| ∫
|x|<M, y∈Rn

φ̂2(0, y)E1E
′
1dydx| 6 ε

4 ||∇a||2L∞
∫

|x|<M

dx
∫

φ̂2(0, y)|y|2dy,
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I2 := | ∫
|x|>M, y∈Rn

φ̂2(0, y)a(x +
√

εy
2 )a(x−

√
εy
2 )dydx| 6

6 | ∫
|x|>M, |y|>M

φ̂2(0, y)a(x +
√

εy
2 )a(x−

√
εy
2 )dydx|+

+| ∫
|x|>M, |y|<M

φ̂2(0, y)a(x +
√

εy
2 )a(x−

√
εy
2 )dydx| 6

6 | ∫
|y|>M

φ̂2(0, y)
(∫

a(x +
√

εy
2 )a(x−

√
εy
2 )dx

)
dy|+

+| ∫
|x|>M, |y|<M

φ̂2(0, y)a(x +
√

εy
2 )a(x−

√
εy
2 )dydx|.

At this point observe that6

|x| > M, |y| < M ⇒ 1
2
|x| 6 |x±

√
ε

2
y| 6 2|x|;

now making use of the fact that a ∈ S it follows that, as long as |x| > M, |y| <
M , there are C2 > 0, s1 > n such that

|a(x +
√

εy

2
)a(x−

√
εy

2
)| 6 C2

1
(1 + |x|)s1

so that finally

I2 6 ||a(x)||2L2

∫
|y|>M

|φ̂2(0, y)|dy + C2

∫
|y|<M

|φ̂2(0, y)|dy
∫

|x|>M

dx
(1+|x|)s1

To summarize (and keeping all the M dependencies explicit – that will be
important later),

|〈W ε[uε
0]− δ(x− 0, k − 0), φ〉| 6

6 ||a(x)||2L2

∫
|y|>M

|φ̂2(0, y)|dy + C2

∫
|y|<M

|φ̂2(0, y)|dy Mn−s1+

+Cε||∇a||2L∞Mn
∫

φ̂2(0, y)|y|2dy +
√

ε||∇a||L∞
2

∫ |φ̂2(0, y)| |y|dy
∫ |a(x)|dx.

(168)
Obviously ∫

|y|<M

|φ̂2(0, y)|dy 6
∫ |φ̂(x, y)|dxdy,

∫
φ̂2(0, y)|y|2dy 6

∫ |φ̂(x, y)| |y|2dxdy,

∫ |φ̂2(0, y)| |y|dy 6
∫ |φ̂(x, y)| |y|dxdy.

(169)

6by restricting, without loss of generality, ε ∈ (0, 1)
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Now it suffices to see that
∫ |φ̂(x, y)|(|1 + y|)2dxdy =

=
∫ |φ̂(x, y)|(|1 + y|)2 1

(|1+x|)r(|1+y|)r (|1 + x|)r(|1 + y|)rdxdy 6

6 C||φ||Hr+2 || 1
(|1+x|)r(|1+y|)r ||L2 = C ′||φ||Hr+2

(170)

for any 2r > n.
To complete the estimation, one observes that

∫
|y|>M

|φ̂2(0, y)|dy 6
∫

|y|>M

|φ̂(x, y)|dxdy =

=
∫

|y|>M

|φ̂(x, y)| 1
(|1+x|)r(|1+y|)r (|1 + x|)r(|1 + y|)rdxdy 6

6 C||φ||L2

√ ∫
|y|>M

1
(|1+x|)2r(|1+y|)2r dxdy 6

6 C ′||φ||L2

√
Mn−2r.

(171)

So by setting M = ε−
1
2n , s1 = n + 1 in equation (168), and applying the

estimations (169), (170), the result follows.
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