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1 Introduction

In this paper we study the semiclassical limit of the Schrödinger equation. Under mild regularity
assumptions on the potential U which include Born-Oppenheimer potential energy surfaces in
molecular dynamics, we establish asymptotic validity of classical dynamics globally in space and
time for �almost all� initial data, with respect to an appropriate reference measure on the space
of initial data. In order to achieve this goal we study the �ow in the space of measures induced
by the continuity equation: we prove existence, uniqueness and stability properties of the �ow
in this in�nite-dimensional space, in the same spirit of the theory developed in the case when
the state space is Euclidean, starting from the seminal paper [13] (see also [1] and the Lecture
Notes [2], [3]).

As we said, we are concerned with the derivation of classical mechanics from quantum me-
chanics, corresponding to the study of the asymptotic behaviour of solutions ψε(t, x) = ψεt (x) to
the Schrödinger equation  iε∂tψ

ε
t = − ε2

2 ∆ψεt + Uψεt = Hεψ
ε
t ,

ψε0 = ψ0,ε,

(1)

as ε→ 0. This problem has a long history (see e.g. [26]) and has been considered from a transport
equation point of view in [22] and [19] and more recently in [7], in the context of molecular
dynamics. In that context the standing assumptions on the initial conditions ψ0,ε ∈ H2(Rn; C)
are: ∫

Rn

|ψ0,ε|2 dx = 1, (2)

sup
ε>0

∫
Rn

|Hεψ0,ε|2 dx <∞. (3)

The potential U in (1) is assumed to satisfy the standard Kato conditions U = Ub + Us with

Us(x) =
∑

1≤α<β≤M
Vαβ(xα − xβ), Vαβ ∈ L2(R3) + L∞(R3) (4)

and
Ub ∈ L∞(Rn), (5)

∇Ub ∈ L∞(Rn; Rn). (6)

Here n = 3M , x = (x1, . . . , xM ) ∈ (R3)M represent the positions of atomic nuclei. Under
assumptions (4), (5) the operator Hε is selfadjoint on L2(Rn; C) with domain H2(Rn; C) and
generates a unitary group in L2(Rn; C); hence

∫
Rn |ψεt |2 dx = 1 for all t ∈ R, t 7→ ψεt is continuous

with values inH2(Rn; C) and continuously di�erentiable with values in L2(Rn; C). Prototypically,
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U is the Born-Oppenheimer ground state potential energy surface of the molecule, that is to say
Vαβ(xα − xβ) = ZαZβ|xα − xβ|−1, Zα, Zβ ∈ N, Ub(x) = inf specHe`(x), where

He`(x) =
N∑
i=1

(−1
2
∆ri −

M∑
α=1

Zα|ri − xα|−1) +
∑

1≤i<j≤N
|ri − rj |−1

is the electronic Hamiltonian acting on the antisymmetric subspace of L2((R3 × Z2)N ; C) and
the ri ∈ R3 are electronic position coordinates. For neutral or positively charged molecules
(N ≤

∑M
α=1 Zα), Zhislin's theorem (see [18] for a short proof) states that for all x, Ub(x) is an

isolated eigenvalue of �nite multiplicity of He`(x).
In the study of this semiclassical limit di�culties arise on the one hand from the fact that

∇U is unbounded (because of Coulomb singularities) and on the other hand from the fact that
∇U might be discontinuous even out of Coulomb singularities (because of possible eigenvalue
crossings of the electronic Hamiltonian He`). Fortunately, it turns out that these two di�culties
can be dealt with separately.

If we denote by b : R2n → R2n the autonomous divergence-free vector �eld b(x, p) :=(
p,−∇U(x)

)
, the Liouville equation describing classical dynamics is

∂tµt + p · ∇xµt −∇U(x) · ∇pµt = 0. (7)

If we denote by Wε : L2(Rn; C) → L∞(Rn
x × Rn

p ) the Wigner transform, namely

Wεψ(x, p) :=
1

(2π)n

∫
Rn

ψ(x+
ε

2
y)ψ(x− ε

2
y)e−ipydy, (8)

a calculation going back to Wigner himself (see for instance [22] or [7] for a detailed derivation)
shows that Wεψ

ε
t solves in the sense of distributions the equation

∂tWεψ
ε
t + p · ∇xWεψ

ε
t = Eε(U,ψεt ), (9)

where Eε(U,ψ)(x, p) is given by

Eε(U,ψ)(x, p) := − i

(2π)n

∫
Rn

[
U(x+ ε

2y)− U(x− ε
2y)

ε

]
ψ(x+

ε

2
y)ψ(x− ε

2
y)e−ipydy. (10)

Adding and subtracting ∇U(x) · y in the term in square brackets and using ye−ip·y = i∇pe
−ip·y,

an integration by parts gives Eε(U,ψ) = ∇U(x) ·∇pWεψ+E ′
ε(U,ψ), where E ′

ε(U,ψ)(x, p) is given
by

E ′
ε(U,ψ)(x, p) := − i

(2π)n

∫
Rn

[
U(x+ ε

2y)− U(x− ε
2y)

ε
−〈∇U(x), y〉

]
ψ(x+

ε

2
y)ψ(x− ε

2
y)e−ipydy.

(11)
Hence, Wεψ

ε
t solves (7) with an error term:

∂tWεψ
ε
t +∇x,p ·

(
bWεψ

ε
t

)
= E ′

ε(U,ψ
ε
t ). (12)
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Heuristically, since the term in square brackets in (11) tends to 0 when U is di�erentiable, this
suggests that the limit ofWεψ

ε
t should satisfy (7), and a �rst rigorous proof of this fact was given

in [22] and [19] (see also [20]): basically, ignoring other global conditions on U , these results state
that:
(a) C1 regularity of U ensures that limit points of Wεψ

ε
t as ε ↓ 0 exist and satisfy (7);

(b) C2 regularity of U ensures uniqueness of the limit, i.e. full convergence as ε→ 0.
In (a), convergence of the Wigner transforms is understood in a natural dual space A′ (see (43)
for the de�nition of A).

In [7] we were able to achieve the existence of limit points even when Coulomb singularities
and crossings are present, namely assuming only that Ub satis�es (5), (6), and (a) when Coulomb
singularities but no crossings are present, namely assuming that Ub ∈ C1. If one wishes to
improve (a) and (b), trying to prove a full convergence result as ε ↓ 0 under weaker regularity
assumptions on b (say ∇U ∈ W 1,p or ∇U ∈ BV out of Coulomb singularities), one faces
the di�culty that the continuity equation (7) is well posed only in good functional spaces like
L∞+

(
[0, T ];L1 ∩ L∞(Rd)

)
(see [13], [1], [12]). On the other hand, in the study of semiclassical

limits it is natural to consider families of wavefunctions ψ0,ε in (1) whose Wigner transforms do
concentrate as ε ↓ 0, for instance the semiclassical wave packets

ψ0,ε(x) = ε−nα/2φ0

(x− x0

εα

)
ei(x·p0)/ε φ0 ∈ C2

c (Rn), 0 < α < 1 (13)

which satisfy limεWεψ0,ε = ‖φ0‖2
L2δ(x0,p0). Here the limiting case α = 1 corresponds to con-

centration in position only, limεWεψ0,ε = δx0 × (2π)−n|Fφ0|2(· − p0)L n, and the case α = 0
yields concentration in momentum only, limεWεψ0,ε = |φ0(· − x0)|2 × δp0 . Here and below,
(Fφ0)(p) =

∫
Rn e

−ip·xφ0(x) dx denotes the (standard, not scaled) Fourier transform. But, even
in these cases there is a considerable di�culty in the analysis of (10), since the di�erence quotients
of U have a limit only at L n-a.e. point.

For these initial conditions there is presumably no hope to achieve full convergence as ε→ 0
for all (x0, p0), since the limit problem is not well posed. However, in the same spirit of the
theory of �ows that we shall illustrate in the second part of the introduction, one may look at the
family of solutions, indexed in the case of the initial conditions (13) by (x0, p0), as a whole. More
generally, we are considering a family of solutions ψεt,w to (1) indexed by a �random� parameter
w ∈W running in a probability space (W,F ,P), and achieve convergence �with probability one�,
using the theory developed in the �rst part of the paper, under the no-concentration in mean
assumptions

sup
ε>0

sup
t∈R

∥∥∥∥∫
W
Wεψ

ε
t,w ∗G(2n)

ε dP(w)
∥∥∥∥
L∞(R2n)

<∞, (14)

sup
ε>0

sup
t∈R

∥∥∥∥∫
W
|ψεt,w ∗G

(2n)
λε2

|2 dP(w)
∥∥∥∥
L∞(Rn)

≤ C(λ) <∞ ∀λ > 0. (15)

Here G(2n)
ε is the Gaussian kernel in R2n with variance ε/2. Under these assumptions and those

on U given in Section 7.2, our full convergence result reads as follows:

lim
ε↓0

∫
W

sup
t∈[−T,T ]

dA′
(
Wεψ

ε
t,w,µ(t, µw)

)
dP(w) = 0 ∀T > 0 (16)
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(here dA′ is any bounded distance inducing the weak∗ topology in the unit ball of A′) where
µ(t, µw) is the �ow in the space of probability measures at time t starting from µw, and µw =
limεWεψ

ε
0,w depends only on the initial conditions. For instance, in the case of the initial

conditions (13) with ‖φ0‖2 = 1, indexed by w = (x0, p0), µw = δw and µ(t, µw) = δX(t,w),
where X(t, w) is the �ow in R2n induced by (p,−∇U). So, we may say that the �ow of Wigner
measures, thought of as elements of A′, induced by the Schrödinger equation converges as ε→ 0
to the �ow in P

(
R2n

)
⊂ A′ induced by the Liouville equation, provided the initial conditions

ensure (14) and (15).
Of course one can question about the conditions (14) and (15); we show that both are implied

by the uniform operator inequality (here ρψ is the orthogonal projection on ψ)

1
εn

∫
W
ρψ

ε
t,w dP(w) ≤ CId with C independent of t, ε.

In turn, this latter property is propagated in time (i.e. if the inequality holds at t = 0 it
holds for all times), and it has a natural quantum mechanical interpretation. In addition, the
uniform operator inequality is ful�lled by the classical family of initial data (13) when P is a
bounded probability density on R2n. These results indicate also that the no-concentration in
mean conditions are not only technically convenient, but somehow natural.

An alternative approach to the �ow viewpoint advocated here for validating classical dynamics
(7) from quantum dynamics (1) would be to work with deterministic initial data, but restrict
them to those giving rise to suitable bounds, in mean, on the projection operators ρψ0,ε . The
problem of �nding su�cient conditions to ensure these uniform bounds is studied in [17]. Another
related research direction is a �ner analysis of the behaviour of solutions, in the spirit of [14], [15].
However, this analyis is presently possible only for very particular cases of eigenvalue crossings.

It is likely that our results can be applied to many more families of initial conditions, but this
is not the goal of this paper. The proof of (16) relies on several apriori and �ne estimates and
on the theoretical tools described in the second part of the introduction and announced in [6].
In particular we apply the stability properties of the ν-RLF in P

(
R2n

)
, see Theorem 5.2, to the

Husimi transforms of ψεt,w, namely Wεψ
ε
t,w ∗G

(2n)
ε . Indeed, w∗-convergence in A′ of the Wigner

transforms is equivalent, under extra tightness assumptions, to weak convergence in P
(
R2n

)
of

the Husimi transforms.
We leave aside further extensions analogous to those considered in [22], namely the conver-

gence of density matrices ρε, whose dynamics is described by iε∂tρε = [Hε, ρ
ε], and the nonlinear

case when U = U0 ∗ µ, µ being the position density of ψ (i.e. |ψ|2). In connection with the �rst
extension, notice that the action of the Wigner/Husimi transforms becomes linear, when seen at
this level.

Let us now describe the ��ow� viewpoint �rst in �nite-dimensional spaces, where by now the
theory is well understood. Denoting by bt : Rd → Rd, t ∈ [0, T ], the possibly time-dependent
velocity �eld, the �rst basic idea is not to look for pointwise uniqueness statements, but rather
to the family of solutions to the ODE as a whole. This leads to the concept of �ow map X(t, x)
associated to b, i.e. a map satisfying X(0, x) = x and X(t, x) = γ(t), where γ(0) = x and

γ̇(t) = bt(γ(t)) for L 1-a.e. t ∈ (0, T ). (17)
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for L d-a.e. x ∈ Rd. It is easily seen that this is not an invariant concept, under modi�cation of b
in negligible sets, while many applications of the theory to �uid dynamics (see for instance [23],
[24]) and conservation laws need this invariance property. This leads to the concept of regular
Lagrangian �ow (RLF in short): one may ask that, for all t ∈ [0, T ], the image of the Lebesgue
measure L d under the �ow map x 7→ X(t, x) is still controlled by L d (see De�nition 3.1).
It is not hard to show that, because of the additional regularity condition imposed on X, this
concept is indeed invariant under modi�cations of b in Lebesgue negligible sets (see Remark 3.8).
Hence RLF's are appropriate to deal with vector �elds belonging to Lebesgue Lp spaces. On the
other hand, since this regularity condition involves all trajectories X(·, x) up to L d-negligible
sets of initial data, the best we can hope for using this concept is existence and uniqueness of
X(·, x) up to L d-negligible sets. Intuitively, this can be viewed as existence and uniqueness
�with probability one� with respect to a reference measure on the space of initial data. Notice
that already in the �nite-dimensional theory di�erent reference measures (e.g. Gaussian, see [5])
could be considered as well.

To establish such existence and uniqueness, one uses that the concept of �ow is directly
linked, via the theory of characteristics, to the transport equation

d

ds
f(s, x) + 〈bs(x),∇xf(s, x)〉 = 0 (18)

and to the continuity equation
d

dt
µt +∇ · (btµt) = 0. (19)

The �rst equation has been exploited in [13] to transfer well-posedness results from the transport
equation to the ODE, getting uniqueness of RLF (with respect to Lebesgue measure) in Rd. This
is possible because the �ow maps (s, x) 7→ X(t, s, x) (here we made also explicit the dependence
on the initial time s, previously set to 0) solve (18) for all t ∈ [0, T ]. In the present article, in
analogy with the approach initiated in [1] (see also [16] for a stochastic counterpart of it, where
(19) becomes the forward Kolmogorov equation), we prefer rather to deal with the continuity
equation, which seems to be more natural in a probabilistic framework. The link between the
ODE (17) and the continuity equation (19) can be made precise as follows: any positive �nite
measure η on initial values and paths, η ∈ P

(
Rd × C

(
[0, T ]; Rd

))
, concentrated on solutions

(x, γ) to the ODE with initial condition x = γ(0), gives rise to a (distributional) solution to (19),
with µt given by the marginals of η at time t: indeed, (19) describes the evolution of a probability
density under the action of the �velocity �eld� b. We shall call these measures η generalized �ows,
see De�nition 3.4. These facts lead to the existence, the uniqueness (up to L d-negligible sets)
and the stability of the RLF X(t, x) in Rd provided (19) is well-posed in L∞+

(
[0, T ];L1∩L∞(Rd)

)
.

Roughly speaking, this should be thought of as a regularity assumption on b. See Remark 3.2
and Section 6 for explicit conditions on b ensuring well-posedness.

We shall extend all these results to �ows on P
(
Rd

)
, the space of probability measures on

Rd. The heuristic idea is that (19) can be viewed as a (constant coe�cients) ODE in the in�nite-
dimensional space P

(
Rd

)
, and that we can achieve uniqueness results for (19) for �almost every�

measure initial condition. We need, however, a suitable reference measure on P
(
Rd

)
, that we

shall denote by ν. Our theory works for many choices of ν (in agreement with the fact that no
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canonical choice of ν seems to exist), provided ν satis�es the regularity condition∫
P(Rd)

µdν(µ) ≤ CL d,

see De�nition 3.5. (See also Example 3.6 for some natural examples of regular measures ν.)
Given ν as reference measure, and assuming that (19) is well-posed in L∞+

(
[0, T ];L1 ∩L∞(Rd)

)
,

we prove existence, uniqueness (up to ν-negligible sets) and stability of the regular Lagrangian
�ow of measures µ. Since this assumption is precisely the one needed to have existence and
uniqueness of the RLF X(t, x) in Rd, it turns out that the RLF µ(t, µ) in P

(
Rd

)
is given by

µ(t, µ) =
∫

Rd

δX(t,x) dµ(x) ∀ t ∈ [0, T ], µ ∈ P
(
Rd

)
, (20)

which makes the existence part of our results rather easy whenever an underlying �ow X in
Rd exists. On the other hand, even in this situation, it turns out that uniqueness and stability
results are much stronger when stated at the P

(
Rd

)
level.

In our proofs, which follow by an in�nite-dimensional adaptation of [1], [2], we use also the
concept of generalized �ow in P

(
Rd

)
, i.e. measures η on P

(
Rd

)
×C

(
[0, T ];P

(
Rd

))
concentrated

on initial data/solution pairs (µ, ω) to (19) with ω(0) = µ, see De�nition 3.9.

Acknowledgement. We thank Dr. Marilena Ligabó for pointing out a serious gap in a pre-
liminary version of Theorem 7.1. The �rst author was partially supported by ERC ADG Grant
GeMeThNES and the second author was partially supported by NSF Grant DMS-0969962.

2 Notation and preliminary results

Let X be a Polish space (i.e. a separable topological space whose topology is induced by a
complete distance). We shall denote by B(X) the σ-algebra of Borel sets of X, by P

(
X

)
(resp.

M
(
X

)
, M+

(
X

)
) the space of Borel probability (resp. �nite Borel, �nite Borel nonnegative)

measures on X. For A ∈ B(X) and ν ∈ M
(
X

)
, we denote by ν A ∈ M

(
X

)
the restricted

measure, namely ν A(B) = ν(A ∩ B). Given f : X → Y Borel and µ ∈ M
(
X

)
, we denote

by f]µ ∈ M
(
Y

)
the push-forward measure on Y , i.e. f]µ(A) = µ(f−1(A)) (if µ is a probability

measure, f]µ is the law of f under µ) and we recall the basic integration rule∫
Y
φdf]µ =

∫
X
φ ◦ f dµ φ bounded and Borel.

We denote by χA the characteristic function of a set A, equal to 1 on A, and equal to 0 on its
complement. Balls in Euclidean spaces will be denoted by BR(x0), and by BR if x0 = 0.

We shall endow P
(
X

)
with the metrizable topology induced by the duality with Cb(X), the

space of continuous bounded functions on X: this makes P
(
X

)
itself a Polish space (see for

instance [4, Remark 5.1.1]), and we shall also consider measures ν ∈ M+

(
P

(
X

))
.

Typically we shall use greek letters to denote measures, boldface greek letters to denote
measures on the space of measures, and we occasionally use dP for a bounded distance in P

(
X

)
7



inducing the weak topology induced by the duality with Cb(X) (no speci�c choice of dP will be
relevant for us). We recall that weak convergence of µn to µ implies

lim
n→∞

∫
X
f dµn =

∫
X
f dµ for all f bounded Borel, with a µ-negligible discontinuity set.

(21)
Also, in the case X = Rd, recall that a sequence (µn) ⊂ P

(
Rd

)
weakly converges to a probability

measure µ in the duality with Cb(Rd) if and only if it converges in the duality with (a dense
subspace of) Cc(Rd).

We shall consider the space C
(
[0, T ];P

(
Rd

))
, whose generic element will be denoted by ω,

endowed with the sup norm; for this space we use the compact notation ΩT (P(Rd)). We also
use et as a notation for the evaluation map at time t, so that et(ω) = ω(t). Again, we shall
consider measures η ∈ M+

(
ΩT (P(Rd))

)
and the basic criterion we shall use is the following:

Proposition 2.1 (Tightness). Let (ηn) ⊂ M+

(
ΩT (P(Rd))

)
be a bounded family satisfying:

(i) (space tightness) for all ε > 0, supn ηn

({
ω : sup

t∈[0,T ]
ω(t)(Rd \BR) > ε

})
→ 0 as R→∞;

(ii) (time tightness) for all φ ∈ C∞
c (Rd), n ≥ 1, the map t 7→

∫
Rd φdω(t) is absolutely continu-

ous in [0, T ] for ηn-a.e. ω and

lim
M↑∞

sup
n

ηn

({
ω :

∫ T

0

∣∣∣∣(∫
Rd

φdω(t)
)′∣∣∣∣ dt > M

})
= 0.

Then (ηn) is tight.

Proof. For all φ ∈ C∞
c (Rd) we shall denote by Iφ : ΩT (P(Rd)) → C

(
[0, T ]

)
the time-dependent

integral w.r.t. φ. Since the sets{
f ∈W 1,1(0, T ) : sup |f | ≤ C,

∫ T

0
|f ′(t)| dt ≤M

}
are compact in C

(
[0, T ]

)
, by assumption (ii) the sequence ((Iφ)]ηn) is tight in M+

(
C

(
[0, T ]

))
for all φ ∈ C∞

c (Rd). Hence, if we �x a countable dense set (φk) ⊂ C∞
c (Rd) and ε > 0, we can

�nd for k ≥ 1 compact sets Kε
k ⊂ C

(
[0, T ]

)
such that supn ηn

(
ΩT (P(Rd)) \ I−1

φk
(Kε

k)
)
< ε2−k.

Thus, if Kε denotes the intersection of all sets I−1
φk

(Kε
k), we get

sup
n

ηn
(
ΩT (P(Rd)) \Kε) < ε.

Analogously, using assumption (i) we can build another compact set Lε ⊂ ΩT (P(Rd)) such
that supn ηn

(
ΩT (P(Rd)) \ Lε) < ε and, for all integers k ≥ 1, there exists R = Rk such that

ω(t)(Rd \BR) < 1/k for all ω ∈ Lε and t ∈ [0, T ].
In order to conclude, it su�ces to show that Kε ∩ Lε is compact in ΩT (P(Rd)): if (ωp) ⊂

Kε ∩Lε we can use the inclusion in I−1
φk

(Kε
k) and a diagonal argument to extract a subsequence

(ωp(`)) such that
∫
φk dωp(`)(t) has a limit for all t ∈ [0, T ] and all k ≥ 1 and the limit is

continuous in time. By the space tightness given by the inclusion (ωp) ⊂ Lε, ωp(`)(t) converges
to ω(t) in P

(
Rd

)
for all t ∈ [0, T ], and t 7→ ω(t) is continuous.
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The next lemma is a re�nement of [2, Lemma 22] and [30, Corollary 5.23], and allows to
obtain convergence in probability from weak convergence of the measures induced on the graphs.

Lemma 2.2. Let fn : X → Y , f : X → Y be Borel maps, νn, ν ∈ P
(
X

)
and assume

that (Id × fn)]νn weakly converge to (Id × f)]ν in X × Y . Assume in addition that we have
the Skorokhod representations νn = (in)]P, ν = i]P, with (W,F ,P) probability measure space,
in, i : W → X measurable, and in → i P-almost everywhere.
Then fn ◦ in → f ◦ i in P-probability.

Proof. Let dY denote the distance in Y . Up to replacing dY by min{dY , 1}, with no loss of
generality we can assume that the distance in Y does not exceed 1. Fix ε > 0 and g ∈ Cb(X;Y )
with

∫
X dY (g, f) dν ≤ ε2. We have that {dY (fn ◦ in, f ◦ i) > 3ε} is contained in

{dY (fn ◦ in, g ◦ in) > ε} ∪ {dY (g ◦ in, g ◦ i) > ε} ∪ {dY (g ◦ i, f ◦ i) > ε}.

The second set has in�nitesimal P-probability, since g is continuous and in → i P-a.e.; the third
set, by Markov inequality, has P-probability less than ε; to estimate the P-probability of the �rst
set we notice that

P({dY (fn ◦ in, g ◦ in) > ε}) = νn({dY (fn, g) > ε}) ≤ 1
ε

∫
X×Y

χd(Id× fn)]νn

with χ(x, y) := dY (g(x), y). The weak convergence of (Id× fn)]νn yields

lim sup
n→∞

P({dY (fn ◦ in, g ◦ in) > ε}) ≤ 1
ε

∫
X×Y

χd(Id× f)]ν

=
1
ε

∫
X
dY (g(x), f(x)) dν(x) ≤ ε.

3 Continuity equations and �ows

In this section we shall specify the basic assumptions on b used throughout this paper, and the
conventions about (19) concerning locally bounded respectively measure-valued solutions. We
shall also collect the basic de�nitions of regular �ows we shall work with, recalling �rst those
used when the state space is Rd and then extending these concepts to P

(
Rd

)
.

3.1 Continuity equations

We consider a Borel vector �eld b : [0, T ]× Rd → Rd, and set bt(·) := b(t, ·); we shall not work
with the Lebesgue equivalence class of b, although a posteriori our theory is independent of the
choice of the representative (see Remark 3.8); this is important in view of the fact that (19)
involves possibly singular measures. Also, we shall not make any integrability assumption on
b besides L1

loc

(
[0, T ] × Rd

)
(namely, the Lebesgue integral of |b| is �nite on [0, T ] × BR for all

9



R > 0); the latter is needed in order to give a distributional sense to the functional version of
(19), namely

d

dt
wt +∇ · (btwt) = 0 (22)

coupled with an initial condition w0 = w̄ ∈ L∞loc(Rd), when wt is locally bounded in space-time.
It is well-known and easy to check that any distributional solution w(t, x) = wt(x) to (22)

with wt locally bounded in Rd uniformly in time, can be modi�ed in a L 1-negligible set of times
in such a way that t 7→ wt is continuous w.r.t. the duality with Cc(Rd), and well-de�ned limits
exist at t = 0, t = T (see for instance [4, Lemma 8.1.2] for a detailed proof). In particular
the initial condition w0 = w̄ is then well de�ned, and we shall always work with this weakly
continuous representative.

In the sequel, we shall say that the continuity equation (22) has uniqueness in the cone of
functions L∞+

(
[0, T ];L1∩L∞(Rd)

)
if, for any w̄ ∈ L1∩L∞(Rd) nonnegative, there exists at most

one nonnegative solution wt to (22) in L∞
(
[0, T ];L1 ∩ L∞(Rd)

)
satisfying the condition

w0 = w̄. (23)

Coming to measure-valued solutions to (19), we say that t ∈ [0, T ] 7→ µt ∈ M+(Rd) solves (19)
if |b| ∈ L1

loc

(
(0, T ) × Rd;µtdt

)
, the equation holds in the sense of distributions and t 7→

∫
φdµt

is continuous in [0, T ] for all φ ∈ Cc(Rd).

3.2 Flows in Rd

De�nition 3.1 (ν-RLF in Rd). Let X : [0, T ] × Rd → Rd and ν ∈ M+(Rd) with ν � L d and
with bounded density. We say that X is a ν-RLF in Rd (relative to b ∈ L1

loc

(
(0, T )×Rd

)
) if the

following two conditions are ful�lled:

(i) for ν-a.e. x, the function t 7→ X(t, x) is an absolutely continuous integral solution to the
ODE (17) in [0, T ] with X(0, x) = x;

(ii) X(t, ·)]ν ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.

Notice that, in view of condition (ii), the assumption of bounded density of ν is necessary
for the existence of the ν-RLF, as X(0, ·)]ν = ν.

In this context, since all admissible initial measures ν are bounded above by CL d, uniqueness
of the ν-RLF can and will be understood in the following stronger sense: if f, g ∈ L1(Rd) ∩
L∞(Rd) are nonnegative and X and Y are respectively a fL d-RLF and a gL d-RLF, then
X(·, x) = Y (·, x) for L d-a.e. x ∈ {f > 0} ∩ {g > 0}.

Remark 3.2 (BV vector �elds). We shall use in particular the fact that the ν-RLF exists for all
ν ≤ CL d, and is unique, in the strong sense described above, under the following assumptions on
b: |b| is uniformly bounded, bt ∈ BVloc(Rd; Rd) and ∇ · bt = gtL d � L d for L 1-a.e. t ∈ (0, T ),
with

‖gt‖L∞(Rd) ∈ L1(0, T ), |Dbt|(BR) ∈ L1(0, T ) for all R > 0,

where |Dbt| denotes the total variation of the distributional derivative of bt. See [1] or [2] and
the paper [12] for Hamiltonian vector �elds.
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Remark 3.3 (L d-RLF). In all situations where the ν-RLF exists and is unique, one can also
de�ne by an exhaustion procedure a L d-RLF X, uniquely determined (and well de�ned) by the
property

X(·, x) = Xf (·, x) L d-a.e. on {f > 0}

for all f ∈ L∞ ∩ L1(Rd) nonnegative, where Xf is the fL d-�ow. Also, it turns out that if (22)
has backward uniqueness, and if the constant C in De�nition 3.1(ii) can be chosen independently
of ν ≤ L d, then X(t, ·)]L d ≤ CL d. We don't prove this last statement here, since it will not
be needed in the rest of the paper, and we mention this just for completeness.

In the proof of stability and uniqueness results it is actually more convenient to consider a
generalized concept of �ow, see [2] for a more complete discussion. We denote the evaluation
map (x, ω) ∈ Rd × C([0, T ]; Rd) 7→ ω(t) ∈ Rd again with et.

De�nition 3.4 (Generalized ν-RLF in Rd). Let ν ∈ M+(Rd) and η ∈ P
(
Rd × C

(
[0, T ]; Rd

))
.

We say that η is a generalized ν-RLF in Rd (relative to b) if:

(i) (e0)]η = ν;

(ii) η is concentrated on the set of pairs (x, γ), with γ absolutely continuous solution to (17),
and γ(0) = x;

(iii) (et)]η ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.

3.3 Flows in P
(
Rd

)
Given a nonnegative σ-�nite measure ν ∈ M+

(
P

(
Rd

))
, we denote by Eν ∈ M+

(
Rd

)
its expec-

tation, namely ∫
Rd

φdEν =
∫

P(Rd)

∫
Rd

φdµ dν(µ) for all φ bounded Borel.

De�nition 3.5 (Regular measures on M+

(
P

(
Rd

))
). Let ν ∈ M+

(
P

(
Rd

))
. We say that ν is

regular if Eν ≤ CL d for some constant C.

Example 3.6. (1) The �rst standard example of a regular measure ν is the law under ρL d of
the map x 7→ δx, with ρ ∈ L1(Rd) ∩ L∞(Rd) nonnegative. Actually, one can even consider the
law under L d, and in this case ν would be σ-�nite instead of a �nite nonnegative measure.

(2) If d = 2n and z = (x, p) ∈ Rn × Rn (this factorization corresponds for instance to
�ows in a phase space), one may consider the law under ρL n of the map x 7→ δx × γ, with
ρ ∈ L1(Rn

x) ∩ L∞(Rn
x) nonnegative and γ ∈ P

(
Rn
p

)
with γ ≤ CL n; one can also choose γ

dependent on x, provided x 7→ γx is measurable and γx ≤ CL n for some constant C independent
of x.

(3) We also expect that the entropic measures built in [28], [29] are regular, see also the
references therein for more examples of �natural� reference measures on the space of measures.
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As we explained in the introduction, De�nition 3.1 has a natural (but not perfect) transpo-
sition to �ows in P

(
Rd

)
:

De�nition 3.7 (ν-RLF in P
(
Rd

)
). Let µ : [0, T ]×P

(
Rd

)
→ P

(
Rd

)
and ν ∈ M+

(
P

(
Rd

))
.

We say that µ is a ν-RLF in P
(
Rd

)
(relative to b with |b| ∈ L1

loc

(
(0, T )× Rd;µtdt

)
) if

(i) for ν-a.e. µ, t 7→ µt := µ(t, µ) is (weakly) continuous from [0, T ] to P
(
Rd

)
with µ(0, µ) =

µ and µt solves (19) in the sense of distributions;

(ii) E(µ(t, ·)]ν) ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.

Notice that no ν-RLF can exist if ν is not regular, as µ(0, ·)]ν = ν. Notice also that
condition (ii) is in some sense weaker than µ(t, ·)]ν ≤ Cν (which would be the analogue of (ii) in
De�nition 3.1 if we were allowed to choose ν = L d, see also Remark 3.3), but it is su�cient for
our purposes. As a matter of fact, because of in�nite-dimensionality, the requirement of quasi-
invariance of ν under the action of the �ow µ (namely the condition µ(t, ·)]ν � ν) would be a
quite strong condition: for instance, if the state space is a separable Banach space V , the reference
measure γ is a nondegenerate Gaussian measure, and b(t, x) = v, then X(t, x) = x + tv, and
the quasi-invariance occurs only if v belongs to the Cameron-Martin subspace H of V , a dense
but γ-negligible subspace. In our framework, Example 3.6(2) provides a natural measure ν that
is not invariant, because its support is not invariant, under the �ow: to realize that invariance
may fail, it su�ces to choose autonomous vector �elds of the form b(x, p) := (p,−∇U(x)).

Remark 3.8 (Invariance of ν-RLF). Assume that µ(t, µ) is a ν-RLF relative to b and b̃ is a
modi�cation of b, i.e., for L 1-a.e. t ∈ (0, T ) the set Nt := {bt 6= b̃t} is L d-negligible. Then,
because of condition (ii) we know that, for all t ∈ (0, T ), µ(t, µ)(Nt) = 0 for ν-a.e. µ. By
Fubini's theorem, we obtain that, for ν-a.e. µ, the set of times t such that µ(t, µ)(Nt) > 0 is
L 1-negligible in (0, T ). As a consequence t 7→ µ(t, µ) is a solution to (19) with b̃t in place of bt,
and µ is a ν-RLF relative to b̃ as well.

In the next de�nition, as in De�nition 3.4, we are going to consider measures on P
(
Rd

)
×

ΩT (P(Rd)), the �rst factor being a convenient label for the initial position of the path (an
equivalent description could be given using just measures on ΩT (P(Rd)), at the price of an
heavier use of conditional probabilities, see [2, Remark 11] for a more precise discussion). We
keep using the notation et for the evaluation map, so that et(µ, ω) = ω(t).

De�nition 3.9 (Generalized ν-RLF in P
(
Rd

)
). Let ν ∈ M+

(
P

(
Rd

))
and η ∈ M+

(
P

(
Rd

)
×

ΩT (P(Rd))
)
. We say that η is a generalized ν-RLF in P

(
Rd

)
(relative to b with |b| ∈

L1
loc

(
(0, T )× Rd;µtdt

)
) if:

(i) (e0)]η = ν;

(ii) η is concentrated on the set of pairs (µ, ω), with ω solving (19), ω(0) = µ;

(iii) E((et)]η) ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.
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Again, by conditions (i) and (iii), no generalized ν-RLF can exist if ν is not regular. Of
course any ν-RLF µ induces a generalized ν-RLF η: it su�ces to de�ne

η := (Ψµ)]ν, (24)

where
Ψµ : P

(
Rd

)
→ P

(
Rd

)
× ΩT (P(Rd)), Ψµ(µ) := (µ,µ(·, µ)). (25)

It turns out that existence results are stronger at the RLF level, while results concerning unique-
ness are stronger at the generalized RLF level.

The transfer mechanisms between generalized and classical �ows, and between �ows in P
(
Rd

)
and �ows in Rd are illustrated by the next proposition.

Proposition 3.10. Let η be a generalized ν-RLF in P
(
Rd

)
relative to b. Then:

(i) Eη is a generalized Eν-RLF in Rd relative to b;

(ii) the measures µt := E((et)]η) = (et)]Eη ∈ M+(Rd) satisfy (19).

In addition, µt = wtL d with w ∈ L∞+
(
[0, T ];L1 ∩ L∞(Rd)

)
.

Proof. Statement (i) is easy to prove, since the continuity equation is linear. Statement (ii),
namely that (single) time marginals of generalized �ows in Rd solve (19), is proved in detail in
[2, Page 8]. The �nal statement follows by the regularity condition on η.

4 Existence and uniqueness of regular Lagrangian �ows

In this section we recall the main existence and uniqueness results of the ν-RLF in Rd, and see
their extensions to ν-RLF in P

(
Rd

)
. It turns out that existence and uniqueness of solutions

to (22) in L∞+
(
[0, T ];L1 ∩L∞(Rd)

)
yields existence and uniqueness of the ν-RLF, and existence

of this �ow implies existence of the ν-RLF when ν is regular. Also, the (apparently stronger)
uniqueness of the ν-RLF is still implied by the uniqueness of solutions to (22) in L∞+

(
[0, T ];L1 ∩

L∞(Rd)
)
.

The following result is proved in [2, Theorem 19] for the part concerning existence and in [2,
Theorem 16, Remark 17] for the part concerning uniqueness.

Theorem 4.1 (Existence and uniqueness of the ν-RLF in Rd). Assume that (22) has existence
and uniqueness in L∞+

(
[0, T ];L1∩L∞(Rd)

)
. Then, for all ν ∈ M (Rd) with ν � L d and bounded

density the ν-RLF in Rd exists and is unique.

Now we can easily show that existence of the ν-RLF implies existence of the ν-RLF, by a
superposition principle. However, one might speculate that, for very rough vector �elds, a ν-RLF
might exist in P

(
Rd

)
, not induced by any ν-RLF in Rd.
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Theorem 4.2 (Existence of the ν-RLF in P
(
Rd

)
). Let ν ∈ M (Rd) with ν � L d and bounded

density, and assume that a ν-RLF X in Rd exists. Then, for all ν ∈ M+

(
P

(
Rd

))
with Eν = ν,

a ν-RLF µ in P
(
Rd

)
exists, and it is given by

µ(t, µ) :=
∫

Rd

δX(t,x) dµ(x). (26)

Proof. The �rst part of property (i) in De�nition 3.7 is obviously satis�ed, since the fact that
t 7→ X(t, x) solves the ODE for some x corresponds to the fact that t 7→ δX(t,x) solves (19).
On the other hand, since ν is regular and X is a RLF, we know that X(·, x) solves the ODE
for Eν-a.e. x; it follows that, for ν-a.e. µ, X(·, x) solves the ODE for µ-almost every x, hence
µ(t, µ) solves (19) for ν-a.e. µ. This proves (i).

Property (ii) follows by∫
Rd

φ(x) dE(µ(t, ·)]ν)(x) =
∫

P(Rd)

∫
Rd

φdµ(t, µ) dν(µ)

=
∫

P(Rd)

∫
Rd

φ(X(t, x)) dµ(x) dν(µ)

=
∫

Rd

φ(X(t, x)) dν(x) ≤ CL

∫
Rd

φ(z) dz

where C is the same constant in De�nition 3.1(ii) and L satis�es ν ≤ LL d.

The following lemma (a slight re�nement of [1, Theorem 5.1] and of [5, Lemma 4.6]) provides a
simple characterization of Dirac masses for measures on Cw

(
[0, T ];E

)
and for families of measures

on E. Here E is a closed, convex and bounded subset of the dual of a separable Banach space,
endowed with a distance dE inducing the weak∗ topology, so that (E, dE) is a compact metric
space; Cw([0, T ];E) denotes the space of continuous maps with values in (E, dE), endowed with
sup norm (so that these maps are continuous with respect to the weak∗ topology). We shall
apply this result in the proof of Theorem 4.4 with

E :=
{
µ ∈ M

(
Rd

)
: |µ|(Rd) ≤ 1

}
⊃ P

(
Rd

)
, (27)

thought as a subset of
(
C0(Rd)

)∗
, where C0(Rd) denotes the set of continuous functions vanishing

at in�nity (i.e. the closure of Cc(Rd) with respect to the uniform convergence).

Lemma 4.3. Let E ⊂ G∗, with G separable Banach space, be closed, convex and bounded, and
let σ be a positive �nite measure on Cw

(
[0, T ];E

)
. Then σ is a Dirac mass if and only if (et)]σ

is a Dirac mass for all t ∈ Q ∩ [0, T ].
If (F,F , λ) is a measure space, and a Borel family {νz}z∈F of probability measures on E (i.e.
z 7→ νz(A) is F-measurable in F for all A ⊂ E Borel) is given, then νz are Dirac masses for
λ-a.e. z ∈ F if and only if for all y ∈ G and c ∈ R there holds

νz({x ∈ E : 〈x, y〉 ≤ c})νz({x ∈ E : 〈x, y〉 > c}) = 0 for λ-a.e. z ∈ F . (28)
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Proof. The �rst statement is a direct consequence of the fact that all elements of Cw
(
[0, T ];E

)
are weakly∗ continuous maps, which are uniquely determined on Q ∩ [0, T ]. In order to prove
the second statement, let us consider the sets Aij := {x ∈ E : 〈x, yi〉 ≤ cj}, where yi vary in a
countable dense set of G and cj are an enumeration of the rational numbers. By (28) we obtain
a λ-negligible set Nij ∈ F satisfying νz(Aij)νz(E \Aij) = 0 for all z ∈ F \Nij . As a consequence,
each measure νz, as z varies in F \ Nij , is either concentrated on Aij or on its complement.
For z ∈ F \ ∪jNij it follows that the function x 7→ 〈x, yi〉 is equivalent to a constant, up to
νz-negligible sets. Since the functions x 7→ 〈x, yi〉 separate points of E, νz is a Dirac mass for all
z ∈ F \ ∪i,jNij as desired.

The next result shows that uniqueness of (19) in L∞+
(
[0, T ];L1 ∩ L∞(Rd)

)
and existence of

a generalized ν-RLF imply existence of the ν-RLF and uniqueness of both, the ν-RLF and the
generalized ν-RLF.

Theorem 4.4 (Existence and uniqueness of the ν-RLF in P
(
Rd

)
). Assume that (22) has

uniqueness in L∞+
(
[0, T ];L1 ∩ L∞(Rd)

)
. If a generalized ν-RLF in P

(
Rd

)
η exists, then the

ν-RLF µ in P
(
Rd

)
exists. Moreover they are both unique, and related as in (24), (25).

Proof. We �x a generalized ν-RLF η and we show �rst that η is induced by a ν-RLF (this
will prove in particular the existence of the ν-RLF). To this end, denoting by π : P

(
Rd

)
×

ΩT (P(Rd)) → P
(
Rd

)
the projection on the �rst factor, we de�ne by

ηµ := E(η|π = µ) ∈ P
(
ΩT (P(Rd))

)
the induced conditional probabilities, so that dη(µ, ω) = dηµ(ω)dν(µ). Taking into account the
�rst statement in Lemma 4.3, it su�ces to show that, for t̄ ∈ Q ∩ [0, T ] �xed, the measures

θµ := E((et̄)]η|ω(0) = µ) = (et̄)]ηµ ∈ M+

(
P

(
Rd

))
are Dirac masses for ν-a.e. µ ∈ P

(
Rd

)
. Still using Lemma 4.3, we will check the validity of (28)

with λ = ν. Since θµ = δµ when t̄ = 0, we shall assume that t̄ > 0.
Let us argue by contradiction, assuming the existence of L ∈ B(P

(
Rd

)
) with ν(L) > 0,

φ ∈ C0(Rd), c ∈ R such that both θµ(A) and θµ
(
P

(
Rd

)
\ A

)
are strictly positive for all µ ∈ L,

with

A :=
{
ρ ∈ P

(
Rd

)
:

∫
Rd

φdρ ≤ c

}
.

We will get a contradiction with the assumption that the equation (22) is well-posed in L∞+
(
[0, T ];L1∩

L∞(Rd)
)
, building two distinct nonnegative solutions of the continuity equation with the same

initial condition w̄ ∈ L1 ∩ L∞(Rd). With no loss of generality, possibly passing to a smaller set
L still with positive ν-measure, we can assume that the quotient g(µ) := θµ(A)/θµ

(
P

(
Rd

)
\A

)
is uniformly bounded in L. Let Ω1 ⊂ ΩT (P(Rd)) be the set of trajectories ω which belong to A
at time t̄, and let Ω2 be its complement; we can de�ne positive �nite measures ηi, i = 1, 2, in
P

(
Rd

)
× ΩT (P(Rd)) by

dη1(µ, ω) := d(χΩ1ηµ)(ω)d(χLν)(µ), dη2(µ, ω) := d(χΩ2ηµ)(ω)d(χLgν)(µ).
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By Proposition 3.10, both η1 and η2 induce solutions w1
t , w

2
t to the continuity equation which are

uniformly bounded (just by comparison with the one induced by η) in space and time. Moreover,
since

(e0)]η1 = θµ(A)χL(µ)ν

and analogously
(e0)]η2 = θµ

(
P

(
Rd

)
\A

)
χL(µ)g(µ)ν,

our de�nition of g gives that (e0)]η1 = (e0)]η2. Hence, both solutions w1
t , w

2
t start from the

same initial condition w̄(x), namely the density of E(θµ(A)χL(µ)ν) with respect to L d. On the
other hand, it turns out that∫

Rd

φw1
t̄ dx =

∫
L

∫
Ω1

∫
Rd

φdω(t̄) dηµ(ω) dν(µ)

=
∫
L

∫
ΩT (P(Rd))

χA(ω(t̄))
∫

Rd

φdω(t̄) dηµ(ω) dν(µ)

=
∫
L

∫
A

∫
Rd

φdρ dθµ(ρ) dν(µ) ≤ c

∫
L
θµ(A)dν(µ).

Analogously, we have∫
Rd

φw2
t̄ dx > c

∫
L
θµ

(
P

(
Rd

)
\A

)
g(µ) dν(µ) = c

∫
L
θµ(A) dν(µ).

Therefore w1
t̄ 6= w2

t̄ and uniqueness of the continuity equation is violated.
Now we can prove uniqueness: if σ is any other generalized ν-RLF, we know σ is induced

by a ν-RLF, hence for ν-a.e. µ also the measures E(σ|ω(0) = µ) are Dirac masses; but, since
the property of being a generalized �ow is stable under convex combinations, also the measures
(corresponding to the generalized ν-RLF (η + σ)/2)

1
2

E(η|ω(0) = µ) +
1
2

E(σ|ω(0) = µ) = E
(

η + σ

2
|ω(0) = µ

)
must be Dirac masses for ν-a.e. µ. This can happen only if E(η|ω(0) = µ) = E(σ|ω(0) = µ)
for ν-a.e. µ, hence σ = η. Finally, since distinct ν-RLF µ and µ′ induce distinct generalized
ν-RLF η and η′, uniqueness is proved also for ν-RLF.

5 Stability of the ν-RLF in P
(
Rd

)
In the statement of the stability result we shall consider varying measures νn ∈ P

(
P

(
Rd

))
,

n ≥ 1, and a limit measure ν. (The assumption that all νn are probability measures is made in
order to avoid technicalities which would obscure the main ideas behind our stability result, and
one can always reduce to this case by renormalizing the measures. Moreover, in the applications
we have in mind, our measures νn will always have unitary total mass.) We shall assume that the
νn are generated as (in)]P, where (W,F ,P) is a probability measure space and in : W → P

(
Rd

)
16



are measurable; accordingly, we shall also assume that ν = i]P, with in → i P-almost everywhere.
These assumptions are satis�ed in the applications we have in mind, and in any case Skorokhod's
theorem (see [11, �8.5, Vol. II]) could be used to show that weak convergence of νn to ν always
implies this sort of representation, even with W = [0, 1] endowed with the standard measure
structure, for suitable in, i.

Many formulations of the stability result are indeed possible and we have chosen one speci�c
for the application we have in mind. Henceforth we �x an autonomous vector �eld b : Rd → Rd

satisfying the following regularity conditions:

(a) d = 2n and b(x, p) = (p, c(x)), (x, p) ∈ Rd, c : Rn → Rn Borel and locally integrable;

(b) there exists a closed L n-negligible set S such that c is locally bounded on Rn \ S;

(c) the discontinuity set Σ of c is L n-negligible.

Lemma 5.1. Let S ⊂ Rn closed, and assume that b is representable as in (a) above. Let
µt : [0, T ] → P

(
Rd

)
be solving (19) in the sense of distributions in (Rn \ S) × Rn and assume

that ∫ T

0

∫
BR

1
distβ(x, S)

dµt(x, p)dt <∞ ∀R > 0

for some β > 1 (with the convention 1/0 = +∞). Then (19) holds in the sense of distributions
in Rd.

Proof. First of all, the assumption implies that µt(S×Rn) = 0 for L 1-a.e. t ∈ (0, T ). The proof
of the global validity of the continuity equation uses the classical argument of removing the
singularity by multiplying any test function φ ∈ C∞

c (Rd) by χk, where χk(x) = χ(kdist(x, S))
and χ is a smooth cut-o� function equal to 0 on [0, 1] and equal to 1 on [2,+∞), with 0 ≤ χ′ ≤ 2.
If we use φχk as a test function, since χk depends on x only, we can use the particular structure
(a) of b to write the term depending on the derivatives of χk as

k

∫ T

0

∫
Rd

φχ′(kdist(x, S))〈p,∇dist(x, S)〉 dµt(x, p)dt.

If K is the support of φ, the integral above can be bounded by

2 max
K

|pφ|
∫ T

0

∫
{x∈K:kdist(x,S)≤2}

k dµt(x, p)dt ≤
2β+1 maxK |pφ|

kβ−1

∫ T

0

∫
K

1
distβ(x, S)

dµt(x, p)dt

and as β > 1 the right hand side is in�nitesimal as k →∞.

The following stability result is adapted to the application we have in mind: we shall apply
it to the case when µn(t, µ) are Husimi transforms of wavefunctions.

Theorem 5.2 (Stability of the ν-RLF in P
(
Rd

)
). Let in, i be as above and let µn : [0, T ] ×

in(W ) → P
(
Rd

)
be satisfying µn(0, in(w)) = in(w) and the following conditions:

17



(i) (asymptotic regularity)

lim sup
n→∞

∫
W

∫
Rd

φdµn(t, in(w)) dP(w) ≤ C

∫
Rd

φdx

for all φ ∈ Cc(Rd) nonnegative, for some constant C independent of t;

(ii) (uniform decay away from the singularity) for some β > 1

sup
δ>0

lim sup
n→∞

∫
W

∫ T

0

∫
BR

1
distβ(x, S) + δ

dµn(t, in(w)) dt dP(w) <∞ ∀R > 0; (29)

(iii) (space tightness) for all δ > 0, P
({
w ∈ W : sup

t∈[0,T ]
µn(t, in(w))(Rd \ BR) > δ

})
→ 0 as

R→∞ uniformly in n;

(iv) (time tightness) for P-a.e. w ∈W , for all n ≥ 1 and φ ∈ C∞
c (Rd), t 7→

∫
Rd φdµn(t, in(w))

is absolutely continuous in [0, T ] and, uniformly in n,

lim
M↑∞

P
({

w ∈W :
∫ T

0

∣∣∣∣( ∫
Rd

φdµn(t, in(w))
)′∣∣∣∣ dt > M

})
= 0;

(v) (limit continuity equation)

lim
n→∞

∫
W

∣∣∣∣∫ T

0

[
ϕ′(t)

∫
Rd

φdµn(t, in(w)) + ϕ(t)
∫

Rd

〈b,∇φ〉 dµn(t, in(w))
]
dt

∣∣∣∣ dP(w) = 0

(30)
for all φ ∈ C∞

c

(
Rd \ (S × Rn)

)
, ϕ ∈ C∞

c (0, T ).

Assume, besides (a), (b), (c) above, that (22) has uniqueness in L∞+
(
[0, T ];L1 ∩L∞(Rd)

)
. Then

the ν-RLF µ(t, µ) relative to b exists, is unique, and

lim
n→∞

∫
W

sup
t∈[0,T ]

dP(µn(t, in(w)),µ(t, i(w))) dP(w) = 0. (31)

Proof. Let (ηn) ⊂ M+

(
P

(
Rd

)
× ΩT (P(Rd))

)
be induced by µn pushing forward νn = (in)]P

via the map µ 7→ (µ,µn(t, µ)). Conditions (iii) and (iv) correspond, respectively, to conditions
(i) and (ii) of Proposition 2.1, hence the marginals of ηn on ΩT (P(Rd)) are tight; since the �rst
marginals, namely νn, are tight as well, a simple tightness criterion in product spaces (see for
instance [4, Lemma 5.2.2]) gives that (ηn) is tight. We consider a weak limit point η of (ηn) and
prove that η is the unique generalized ν-RLF relative to b; this will give that the whole sequence
(ηn) weakly converges to η. Just to simplify notation, we assume that the whole sequence (ηn)
weakly converges to η.

We check conditions (i), (ii), (iii) of De�nition 3.9. First, since µn(0, µ) = µ νn-a.e., we get
(e0)]ηn = νn, hence (e0)]η = ν and condition (i) is satis�ed. Second, we check condition (iii):
for φ ∈ Cc(Rd) nonnegative we have∫

Rd

φdE((et)]ηn) =
∫

Rd

φdE(µ(t, ·)]νn) =
∫
W

∫
Rd

φdµn(t, in(w)) dP(w)

18



and we can use assumption (i) to conclude that∫
Rd

φdE((et)]η) ≤ C

∫
Rd

φdz ∀ t ∈ [0, T ], (32)

so that condition (iii) is ful�lled.
Finally we check condition (ii). Since ηn are concentrated on the closed set of pairs (µ, ω)

with ω(0) = µ, the same is true for η; it remains to show that ω(t) solves (19) for η-a.e. (µ, ω).
We shall denote by σ ∈ M+

(
ΩT (P(Rd))

)
the projection of η on the second factor and prove

that (19) holds for σ-a.e. ω.
We �x φ ∈ C∞

c

(
Rd \ (S ×Rn)

)
and ϕ ∈ C∞

c (0, T ); we claim that the discontinuity set of the
bounded map

ω 7→
∫ T

0

[
ϕ′(t)

∫
Rd

φdω(t) + ϕ(t)
∫

Rd

〈b,∇φ〉 dω(t)
]
dt (33)

is σ-negligible. Indeed, using (21) with X = Rd this discontinuity set is easily seen to be
contained in {

ω ∈ ΩT (P(Rd)) :
∫ T

0
ω(t)(Σ× Rn) dt > 0

}
, (34)

where Σ is the discontinuity set of c. Since L d(Σ×Rn) = 0, by assumption (c), for all t ∈ [0, T ]
the inequality (32) gives ω(t)(Σ×Rn) = 0 for σ-a.e. ω; by Fubini's theorem in [0, T ]×ΩT (P(Rd))
we obtain that the set in (34) is σ-negligible.

Now we write assumption (29) in terms of ηn as

sup
δ>0

lim sup
n→∞

∫
P(Rd)×ΩT (P(Rd))

∫ T

0

∫
BR

1
distβ(x, S) + δ

dω(t) dt dηn(µ, ω) <∞ ∀R > 0,

and take the limit thanks to Fatou's Lemma and the Monotone Convergence Theorem to obtain∫
ΩT (P(Rd))

∫ T

0

∫
BR

1
distβ(x, S)

dω(t) dt dσ(ω) <∞ ∀R > 0. (35)

Next we write assumption (v) in terms of ηn as

lim
n→∞

∫
P(Rd)×ΩT (P(Rd))

ζ

∣∣∣∣∫ T

0

[
ϕ′(t)

∫
Rd

φdω(t) + ϕ(t)
∫

Rd

〈b,∇φ〉 dω(t)
]
dt

∣∣∣∣ dηn(µ, ω) = 0

with ζ ∈ Cb
(
P

(
Rd

)
× ΩT (P(Rd))

)
nonnegative; then, the claim on the continuity of the map

in (33) and (21) with X = P
(
Rd

)
× ΩT (P(Rd)) allow to conclude that∫

P(Rd)×ΩT (P(Rd))
ζ

∣∣∣∣∫ T

0

[
ϕ′(t)

∫
Rd

φdω(t) + ϕ(t)
∫

Rd

〈b,∇φ〉 dω(t)
]
dt

∣∣∣∣ dη(µ, ω) = 0.

Now we �x A ⊂ C∞
c

(
Rd \ (S × Rn)

)
, B ⊂ C∞

c (0, T ) countable dense, and use the fact that ζ is
arbitrary to �nd a σ-negligible set N ⊂ ΩT (P(Rd)) such that∫ T

0

[
ϕ′(t)

∫
Rd

φdω(t) + ϕ(t)
∫

Rd

〈bt,∇φ〉 dω(t)
]
dt = 0 ∀φ ∈ A, ∀ϕ ∈ B
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for all ω /∈ N , and by a density argument we conclude that σ is concentrated on solutions to
the continuity equation in Rd \ (S × Rn). By Lemma 5.1 and (35) we obtain that σ-a.e. the
continuity equation holds globally.

By Theorem 4.4 we know that the ν-RLF µ(t, µ) in P
(
Rd

)
exists, is unique, and related to

the unique generalized ν-RLF η as in (24), (25). This proves that we have convergence of the
whole sequence (ηn) to η. By applying Lemma 2.2 with X = P

(
Rd

)
and Y = ΩT (P(Rd)) we

conclude that (31) holds.

In the next remark we consider some extensions of this result to the case when b satis�es (a),
(b) only, so that no information is available on the discontinuity set Σ of c.

Remark 5.3. Assume that b satis�es (a), (b) only. Then the conclusion of Theorem 5.2 is still
valid, provided the asymptotic regularity condition (i) holds in a stronger form, namely∫

W

∫
Rd

φdµn(t, in(w)) dP(w) ≤ C

∫
Rd

φdx ∀φ ∈ Cc(Rd), φ ≥ 0, n ≥ 1

for some constant C independent of t. Indeed, assumption (c) was needed only to pass to the
limit, in the weak convergence of ηn to η, with test functions of the form (33). But, if the
stronger regularity condition above holds, convergence always holds by a density argument: �rst
one checks this with b continuous and bounded on suppφ, and in this case the test function
is continuous and bounded; then one approximates b in L1 on suppφ by bounded continuous
functions.

6 Well-posedness of the continuity equation with a singular po-

tential

In this section we shall assume that d = 2n and consider a more particular class of autonomous
and Hamiltonian vector �elds b : Rd → Rd of the form

b(z) =
(
p,−∇U(x)

)
, z = (x, p) ∈ Rn × Rn.

Having in mind the application to the convergence of the Wigner/Husimi transforms in quantum
molecular dynamics, we assume that:

(i) there exists a closed L n-negligible set S ⊂ Rn such that U is locally Lipschitz in Rn \ S
and ∇U ∈ BVloc(Rn \ S; Rn);

(ii) U(x) → +∞ as x→ S.

(iii) U satis�es

ess sup
U(x)≤M

|∇U(x)|
1 + |x|

<∞ ∀M ≥ 0. (36)

Theorem 6.1. Under assumptions (i), (ii), (iii), the continuity equation (22) has existence and
uniqueness in L∞+

(
[0, T ];L1 ∩ L∞(Rd)

)
.
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Proof. (Uniqueness) Let wt ∈ L∞+
(
[0, T ];L1 ∩ L∞(Rd)

)
be a solution to (22), and consider a

smooth compactly supported function φ : R → R+. Set E = E(x, p) := 1
2 |p|

2 + U(x). Then,
since U is locally Lipschitz on sublevels {U ≤ `} for any ` ∈ R (by (i)-(ii)), φ ◦ E is uniformly
bounded and locally Lipschitz in Rd. Moreover

〈∇
(
φ ◦ E

)
(z), b(z)〉 = φ′(E(z))〈∇E(z), b(z)〉 = 0 for L d-a.e. z ∈ Rd,

and we easily deduce that also (φ ◦ E)wt ∈ L∞+
(
[0, T ];L1 ∩ L∞(Rd)

)
solves (22). Let M > 0 be

large enough so that suppφ ⊂ [−M,M ], and let ψ : R → R+ be a smooth cut-o� function such
that ψ ≡ 1 on [−M,M ]. Then φ ◦E = (ψ ◦E)(φ ◦E), which implies that (φ ◦E)wt solves (22)
with the vector �eld b̃ := (ψ ◦ E)b. Now, thanks to (i)-(iii), it is easily seen that the following
properties hold:

b̃ ∈ BVloc(Rd; Rd), ess sup
|b̃|(z)
1 + |z|

<∞. (37)

Indeed, the �rst one is a direct consequence of (i)-(ii), while the second one follows from (ii)-(iii)
and the simple estimate

ess sup
E(z)≤M ′

|b(z)|
1 + |z|

≤
(

sup
|p|

1 + |p|

)
+

(
ess sup
U(x)≤M ′

|∇U(x)|
1 + |x|

)
<∞ ∀M ′ > 0.

Thanks to (37), we can apply [2, Theorems 34 and 26] to deduce that (φ ◦E)wt is unique, given
the initial condition µ0 = (φ ◦ E)w0L d. Since E(z) is �nite for L d-a.e. z, by the arbitrariness
of φ we easily obtain that wt is unique, given the initial condition w0.
(Existence) We now want to prove existence of solutions in L∞+

(
[0, T ];L1∩L∞(Rd)

)
. Let w̄ ∈ L1∩

L∞(Rd) be nonnegative and let us consider a sequence of smooth globally Lipschitz functions Vk
with |∇Vk −∇U | → 0 in L1

loc(Rn); standard results imply the existence of nonnegative solutions
wk to the continuity equation with velocity bk := (p,−∇Vk) with wk0 = w̄,

∫
Rd w

k
t dx dp =∫

Rd w
k
0 dx dp and with ‖wkt ‖∞ ≤ ‖wk0‖∞ (they are the push forward of wk0 under the �ow map

of bk). Since φ 7→
∫

Rd w
k
t φdx dp are equi-continuous for all φ ∈ C1

c (Rd), we can assume the
existence of w ∈ L∞+

(
[0, T ];L1 ∩L∞(Rd)

)
with wkt → wt weakly, in the duality with C1

c (Rd), for
all t ≥ 0. Taking the limit as k →∞ immediately gives that wt is a solution to (22).

Theorem 6.2. Under assumptions (i), (ii), (iii), the ν-RLF
(
x(t, x, p),p(t, x, p)

)
in R2n and

the ν-RLF µ(t, µ) in P
(
R2n

)
relative to b(x, p) := (p,−∇U(x)) exist and are unique. They are

related by

µ(t, µ) =
∫

R2d

δ(x(t,x,p),p(t,x,p)) dµ(x, p). (38)

Proof. Existence and uniqueness of the ν-RLF in Rd follow by Theorem 6.1 and Theorem 4.1.
The uniqueness of the ν-RLF in P

(
Rd

)
and its relation with the ν-RLF are a consequence

respectively of Theorem 4.4 and Theorem 4.2.
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7 Estimates on solutions to (1) and on error terms

In this section we collect some a-priori estimates on solutions to (1) and on the error terms
Eε(U,ψ), E ′

ε(U,ψ), appearing respectively in (9) and (12).
We recall that the Husimi transform ψ 7→ W̃εψ can be de�ned in terms of convolution of the

Wigner transform with the 2n-dimensional Gaussian kernel with variance ε/2

G(2n)
ε (x, p) :=

e−(|x|2+|p|2)/ε

(πε)n
= G(n)

ε (x)G(n)
ε (p), (39)

namely W̃εψ = (Wεψ) ∗G(2n)
ε . It turns out that the asymptotic behaviour as ε→ 0 is the same

for the Wigner and the Husimi transform (see also (45) below for a more precise statement).
For later use, we recall that the x marginal of Wεψ is the position density |ψ|2L n. Also, the

change of variables {
x+ ε

2y = u

x− ε
2y = u′

(40)

and a simple computation show that the p marginal of Wεψ is the momentum density, namely
(2πε)−n|Fψ|2(p/ε)L n (strictly speaking these identities are only true in the sense of principal
values, since Wεψ, despite tending to zero as |(x, p)| → ∞, does not in general belong to L1).

Since the Gaussian kernel G(2n)
ε (x, p) in (39) has a product structure, it turns out that∫

Rn

W̃εψ(x, p) dp =
∫

Rn

|ψ|2(x− x′)G(n)
ε (x′) dx′, (41)∫

Rn

W̃εψ(x, p) dx =
( 1

2πε

)n ∫
Rn

|Fψ|2
(p− p′

ε

)
G(n)
ε (p′) dp′. (42)

Since W̃εψ is nonnegative (see Section 8 for details) the two identities above hold in the standard
sense.

As in [22] we shall consider the completion A of C∞
c (R2n) with respect to the norm

‖ϕ‖A :=
∫

Rn

sup
x∈Rn

|Fpϕ|(x, y) dy ϕ ∈ C∞
c (R2n), (43)

where Fp denotes the partial Fourier transform with respect to p. It is easily seen that sup |ϕ| ≤
‖φ‖A, hence A is contained in Cb(R2n) and M (R2n) canonically embeds into A′ (the embedding
is injective by the density of C∞

c (R2n)). The norm of A is technically convenient because of the
simple estimate ∣∣∣∣∫

R2n

ϕWεψ dxdp

∣∣∣∣ ≤ 1
(2π)n

‖ϕ‖A‖ψ‖2
2. (44)

Since for all ϕ ∈ C∞
c (R2n) one has ϕ ∗G(2n)

ε → ϕ in A as ε ↓ 0, it follows that

lim
ε↓0

∫
Rd

ϕWεψ dx dp−
∫

Rd

ϕW̃εψ dx dp = 0 uniformly on bounded subsets of L2(Rd; C).

(45)
This will obviously be an ingredient in transferring the dynamical properties from the Wigner
to the Husimi transforms.
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7.1 The PDE satis�ed by the Husimi transforms

In this short section we see how (9) is modi�ed in passing from the Wigner to the Husimi
transform. Denoting by τ(y,q) the translation in phase space induced by (y, q) ∈ Rn × Rn, from
(9) we get

∂tτ(y,q)Wεψ
ε
t + (p− q) · ∇xτ(y,q)Wεψ

ε
t = τ(y,q)Eε(U,ψ

ε
t )

in the sense of distributions. Since W̃εψ
ε
t is an average of translates of Wεψ

ε
t , we get (still in the

sense of distributions)

∂tW̃εψ
ε
t + p · ∇xW̃εψ

ε
t = Eε(U,ψεt ) ∗G(2n)

ε +
√
ε∇x · [Wεψ

ε
t ∗ Ḡ(2n)

ε ], (46)

where
Ḡ(2n)
ε (y, q) :=

q√
ε
G(2n)
ε (y, q). (47)

Indeed, we have

−
∫

R2n

q · ∇xτ(y,q)Wεψ
ε
tG

(2n)
ε (y, q) dydq = −

√
ε∇x · [Wεψ

ε
t ∗ Ḡ(2n)

ε ].

Although we will not use it here, let us mention that it is possible to derive a closed equation
(i.e. not involving Wεψ

ε
t ) for W̃εψ

ε
t (see [8] and [9], [10] for applications to the semiclassical limit

in strong topology).

7.2 Assumptions on U

We assume that n = 3M , x = (x1, . . . , xM ) ∈ (R3)M and U = Us + Ub, with Us the (repulsive)
Coulomb potential

Us(x) =
∑

1≤i<j≤M

ZiZj
|xi − xj |

, (48)

with Zi > 0, and Ub globally bounded and Lipschitz, with ∇Ub ∈ BVloc(Rn; Rn).
In this context the singular set S of Section 5 and Section 6 is given by

S =
⋃

1≤i<j≤M
Sij with Sij := {x ∈ Rn : xi = xj}

and therefore
Us(x) ≥

c

dist (x, S)
(49)

with c > 0 depending only on the numbers Zi in (48).
The vector �eld b = (p,−∇U) satis�es the assumptions (a)-(b) of Section 5 and the assump-

tions (i)-(iii) of Section 6, so that the ν-RLF in R2n and the ν-RLF in P
(
R2n

)
relative to b

exists and are unique, and the stability result of Section 5 can be applied, as we will show in
Section 9.
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7.3 Estimates on solutions to (1)

Conserved quantities.∫
Rn

1
2
|ε∇ψεt |2 + U |ψεt |2 dx =

∫
Rn

1
2
|ε∇ψε0|2 + U |ψε0|2 dx ∀ t ∈ R, (50)∫

Rn

|Hεψ
ε
t |2 dx =

∫
Rn

|Hεψ
ε
0|2 dx ∀ t ∈ R. (51)

A priori estimate. [7, Lemma 5.1].

sup
t∈R

∫
Rn

U2
s |ψεt |2 dx ≤

∫
Rn

|Hεψ
ε
0|2 dx+ 2 sup |Ub|

(∫
〈ψε0,Hεψ

ε
0〉 dx+ sup |Ub|

)
. (52)

Tightness in space. [7, Lemma 3.3].

sup
t∈[−T,T ]

∫
Rn\B2R

|ψεt |2 dx ≤
∫

Rn\BR

|ψε0|2(x) dx+ cT
1 +

∫
〈ψε0,Hεψ

ε
0〉 dx

R
(53)

with c depending only on n.

7.4 Estimates and convergence of Eε(Ub, ψ)

In this section we prove estimates and convergence of the term Eε(Ub, ψ), as de�ned in (10). In
particular we use averaging with respect to the �random� parameter w to derive new estimates
on Eε(V, ψεw), with V Lipschitz only, so that the estimates are applicable to V = Ub.

The �rst basic estimate on Eε(V, ψ), for ψ with unit L2 norm, can be obtained, when V is
Lipschitz, by estimating the di�erence quotient in the square brackets in (10) with the Lipschitz
constant: ∣∣∣∣∫

R2n

Eε(V, ψ)φdx dp
∣∣∣∣ ≤ 1

(2π)n
‖∇V ‖∞

∫
Rn

|y| sup
x∈Rn

|Fpφ|(x, y) dy. (54)

In order to derive a more re�ned estimate we consider families ψεw indexed by a parameter
w ∈W , with (W,F ,P) probability space, satisfying:

sup
ε>0

sup
(x,p)∈R2n

∫
W
W̃εψ

ε
w(x, p) dP(w) <∞, (55)

sup
ε>0

sup
x∈Rn

∫
W
|ψεw ∗G

(n)
λε2
|2(x) dP(w) ≤ C(λ) <∞ ∀λ > 0. (56)

Under these assumptions, our �rst convergence result reads as follows:

Theorem 7.1 (Convergence of error term, I). Let ψεw ∈ L2(Rn; C) be normalized wavefunctions
satisfying (55), (56) and let V : Rn → R be Lipschitz. Then

lim
ε→0

∫
W

∣∣∣∣∫
R2n

Eε(V, ψεw)φdxdp+
∫

R2n

〈∇V,∇pφ〉W̃εψ
ε
wdxdp

∣∣∣∣dP(w) = 0 ∀φ ∈ C∞
c (R2n). (57)
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Proof. The proof is achieved by a density argument. The �rst remark is that linear combinations
of tensor functions φ(x, p) = φ1(x)φ2(p), with φi ∈ C∞

c (Rn), are dense for the norm considered
in (54). In this way, we are led to prove convergence in the case when φ(x, p) = φ1(x)φ2(p). The
second remark is that convergence surely holds if V is of class C2 (by the arguments in [22], [7],
see also the splitting argument in the y space in the proof of Theorem 7.3). Hence, combining
the two remarks and using the linearity of the error term with respect to the potential V , we can
prove convergence by a density argument, by approximating V uniformly and in W 1,2 topology
on the support of φ1 by potentials Vk ∈ C2(Rn) with uniformly Lipschitz constants; then, setting
Ak = (V − Vk)φ1 and choosing a sequence λk in Proposition 7.2 converging slowly to 0, in such
a way that ‖∇Ak‖2 → 0 much faster than 1/C(λk), we obtain

lim
k→∞

sup
ε>0

∫
W

∣∣∣∣∫
R2n

Eε(V − Vk, ψ
ε
w)(x, p)φ1(x)φ2(p) dxdp

∣∣∣∣ dP(w) = 0.

As for the term in (57) involving the Wigner transforms, we can use (55) to obtain that

lim sup
k→∞

sup
ε>0

∫
W

∣∣∣∣∫
R2n

W̃εψ
ε
w〈∇(V − Vk),∇φ2〉φ1 dxdp

∣∣∣∣ dP(w)

can be estimated from above with a constant multiple of

lim sup
k→∞

∫
Rn

|φ1||∇V −∇Vk| dx
∫

Rn

|∇φ2|(p) dp = 0.

We shall actually use the conclusion of Theorem 7.1 in the form

lim
ε→0

∫
W

∣∣∣∣∫
R2n

Eε(V, ψεw)φ ∗G(2n)
ε dxdp+

∫
R2n

〈∇V,∇pφ〉W̃εψ
ε
wdxdp

∣∣∣∣dP(w) = 0 ∀φ ∈ C∞
c (R2n)

(58)

with φ replaced by φ ∗G(2n)
ε in the �rst summand, in the factor of Eε(V, ψεw); this formulation is

equivalent thanks to (54).

Proposition 7.2 (A priori estimate). Let ψεw ∈ L2(Rn; C) be unitary wavefunctions satisfying
(56) and let φ1, φ2 ∈ C∞

c (Rn). Then, for all V : Rn → R Lipschitz and all λ > 0, we have that∫
W

∣∣∣∣∫
R2n

Eε(V, ψεw)(x, p)φ1(x)φ2(p) dxdp
∣∣∣∣ dP(w) (59)

can be estimated from above with

‖φ1‖∞‖∇V ‖∞
∫

Rn

|y||Fpφ2(y)−Fpφ2 ∗G(n)
λ (y)| dy +

√
λ‖∇A‖∞‖Fpφ2‖1

∫
Rn

|u|G(n)
1 (u) du

+
√
C(λ)‖∇A‖2

∫
Rn

|z||Fpφ2|(z) dz + ‖V ‖∞‖∇φ1‖∞
∫

Rn

|y||Fpφ2 ∗G(n)
λ |(y) dy. (60)

where A := V φ1 and C(λ) is given in (56).
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Proof. Set φ̂2 = Fpφ2; since (54) gives that∣∣∣∣∫
R2n

Eε(V, ψεw)φ1(x)φ2(p) dxdp−
∫

R2n

Eε(V, ψεw)φ1(x)φ2(p)e−|p|
2λ/4 dxdp

∣∣∣∣
can be estimated from above with ‖φ1‖∞‖∇V ‖∞

∫
|y||φ̂2(y)− φ̂2 ∗G(n)

λ (y)| dy we recognize the
�rst error term in (60) and we will estimate the integral of Eε(V, ψεw) against φ1(x)φ2(p)e−|p|

2λ/4,
namely∫

W

∫
R2n

V (x+ ε
2y)− V (x− ε

2y)
ε

φ1(x)φ̂2 ∗G(n)
λ (y)ψεw(x+

ε

2
y)ψεw(x− ε

2
y)dxdydP(w).

In addition, we split this expression as the sum of three terms, namely

I :=
∫
W

∫
R2n

A(x+ ε
2y)−A(x− ε

2y)
ε

φ̂2 ∗G(n)
λ (y)ψεw(x+

ε

2
y)ψεw(x− ε

2
y) dxdydP(w), (61)

II :=
∫
W

∫
R2n

V (x+
ε

2
y)
φ1(x)− φ1(x+ ε

2y)
ε

φ̂2∗G(n)
λ (y)ψεw(x+

ε

2
y)ψεw(x− ε

2
y) dxdydP(w), (62)

III := −
∫
W

∫
R2n

V (x− ε

2
y)
φ1(x)− φ1(x− ε

2y)
ε

φ̂2 ∗G(n)
λ (y)ψεw(x+

ε

2
y)ψεw(x− ε

2
y) dxdydP(w).

(63)
The most di�cult term to estimate is (61), since both (62) and (63) can be easily estimated from

above with 1
2‖V ‖∞‖∇φ1‖∞

∫
Rn |y||φ̂2 ∗G(n)

λ |(y) dy. We �rst perform some manipulations of this
expression, omitting for simplicity the integration w.r.t. w; then we will estimate the resulting
terms taking (56) into account.

We expand the convolution product and make the change of variables (40) to get

1
(πλ)n/2εn

∫
Rn

∫
R2n

A(u)−A(u′)
ε

e−
|εz−(u−u′)|2

ε2λ ψεw(u)ψεw(u′)φ̂2(z)dudu′dz. (64)

Now, the term containing A(u) is equal to

1
ε

∫
R2n

(Aψεw) ∗G(n)
λε2

(u′ + εz)ψεw(u′)φ̂2(z)du′dz (65)

and the term containing A(u′) is equal to

1
ε

∫
R2n

A(u′)ψεw ∗G
(n)
λε2

(u′ + εz)ψεw(u′)φ̂2(z)du′dz. (66)

Now, subtract (66) from (65) to get that (64) equals Rεw,1 +Rεw,2, where

Rεw,1 :=
1
ε

∫
R2n

[
(Aψεw) ∗G(n)

λε2
(u′ + εz)−A(u′ + εz)ψεw ∗G

(n)
λε2

(u′ + εz)
]
ψ
ε
w(u′)φ̂2(z)du′dz
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and

Rεw,2 :=
1
ε

∫
R2n

[A(u′ + εz)−A(u′)]ψεw ∗G
(n)
λε2

(u′ + εz)ψεw(u′)φ̂2(z)du′dz.

Thus, the apriori estimate on the expression in (61) can be achieved by estimating the integrals
of the error terms Rεw,i w.r.t. w.

Writing Rεw,1 in the form∫
Rn

φ̂2(z)
∫

Rn×Rn

A(u′ + εz − u)−A(u′ + εz)
ε

G
(n)
λε2

(u)ψεw(u′)ψεw(u′ + εz − u) dudu′dz

we can estimate from above
∫
W |Rεw,1| dP(w) by

‖∇A‖∞
∫
W

∫
Rn

|φ̂2|(z)
∫

Rn×Rn

|u|
ε
G

(n)
λε2

(u)|ψεw|(u′)|ψεw|(u′ + εz − u) dudu′dzdP(w)

and then by

√
λ‖∇A‖∞

∫
W

∫
Rn

|φ̂2|(z)
∫

Rn×Rn

ηε(u)|ψεw|(u′)|ψεw|(u′ + εz − u) dudu′dzdP(w)

where ηε(u) := G
(n)
λε2

(u)|u|/(
√
λε) is a family of convolution kernels uniformly bounded in L1 by∫

|u|G(n)
1 (u) du. Using the convolution estimate ‖a ∗ ηε‖2 ≤ ‖a‖2‖ηε‖1 we can �nally bound this

term with
√
λ‖∇A‖∞‖φ̂2‖1

∫
|u|G(n)

1 (u) du.
We can estimate from above

∫
W |Rεw,2| dP(w) using (56) to get

√
C(λ)

∫
Rn

|φ̂2|(z)
∫

Rn

|A(u′ + εz)−A(u′)|
ε

√∫
W
|ψεw|2(u′) dP(w) du′dz.

Then we can use the standard L2 estimate on di�erence quotients of W 1,2 functions to bound
this last expression with √

C(λ)‖∇A‖2

∫
Rn

|z||φ̂2|(z) dz.

This completes the estimate of the term in (61) and the proof.

7.5 Estimates and convergence of Eε(Us, ψ)

In the case of the Coulomb potential we follow a speci�c argument borrowed from [7, proof of
Theorem 1.1(ii)]), based on the inequality∣∣∣∣ 1

|z + w/2|
− 1
|z − w/2|

∣∣∣∣ ≤ |w|
|z + w/2||z − w/2|

(67)

with z = (xi − xj) ∈ R3, w = ε(yi − yj) ∈ R3. By estimating the di�erence quotients of Us as in
(67) we obtain:∣∣∣∣∫

Rd

Eε(Us, ψ)φdx dp
∣∣∣∣ ≤ C∗

∫
Rn

|y| sup
x′
|Fpφ|(x′, y) dy

∫
Rn

U2
s |ψ|2 dx, (68)
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with C∗ depending only on the numbers Zi in (48).
Now we can state the convergence of Eε(Us, ψε); the particular form of the statement, with

convolution on φ on one side and convolution on Wεψ
ε on the other side (namely the Husimi

transform), is motivated by the goal we have in mind, namely the fact that the Husimi transforms
asymptotically satisfy the Liouville equation.

Theorem 7.3 (Convergence of error term, II). Let ψε ∈ L2(Rn; C) be unitary wavefunctions
satisfying

sup
ε>0

∫
Rn

U2
s |ψε|2 dx <∞. (69)

Then

lim
ε→0

∫
R2n

Eε(Us, ψε)φ ∗G(n)
ε dxdp+

∫
R2n

〈∇Us,∇pφ〉W̃εψ
ε dxdp = 0 ∀φ ∈ C∞

c (R2n \ (S × Rn)
)
.

(70)

Proof. First of all, we see that we can apply (45) with ϕ = 〈∇Us,∇pφ〉 to replace the in-
tegrals

∫
R2n〈∇Us,∇pφ〉W̃εψ

ε dxdp with
∫

R2n〈∇Us,∇pφ〉Wεψ
ε dxdp in the veri�cation of (70).

Analogously, using (69) and (68) we see that we can replace
∫

R2n Eε(Us, ψε)φ ∗ G(n)
ε dxdp with∫

R2n Eε(Us, ψε)φdxdp. Thus, we are led to show the convergence

lim
ε→0

∫
R2n

Eε(Us, ψε)φdxdp+
∫

R2n

〈∇Us,∇pφ〉Wεψ
ε dxdp = 0 ∀φ ∈ C∞

c (R2n \ (S × Rn)
)
. (71)

Since∫
R2n

Eε(Us, ψε)φdxdp = − i

(2π)n

∫
R2n

Us(x+ ε
2y)− Us(x− ε

2y)
ε

ψε(x+
ε

2
y)ψ(x− ε

2
y)Fpφ(x, y) dxdy

we can split the region of integration in two parts, where
√
ε|y| > 1 and where

√
ε|y| ≤ 1. The

contribution of the �rst region can be estimated as in (68), with

C∗

∫
{
√
ε|y|>1}

|y| sup
x′
|Fpφ|(x′, y) dy

∫
Rn

U2
s |ψε|2 dx,

which is in�nitesimal, using (69) again, as ε→ 0. Since

Us(x+ ε
2y)− Us(x− ε

2y)
ε

→ 〈∇Us(x), y〉

uniformly as
√
ε|y| ≤ 1 and x belongs to a compact subset of Rn \ S, the contribution of the

second part is the same as that of

− i

(2π)n

∫
R2n

〈∇Us(x), y〉ψε(x+
ε

2
y)ψ(x− ε

2
y)Fpφ(x, y) dxdy

which coincides with

−
∫

R2n

〈∇Us,∇pφ〉Wεψ
ε(x, p) dxdp.

28



8 L∞-estimates on averages of ψ

In this section we consider a family of solutions ψεt,w to the Schrödinger equation (1) indexed by
a parameter w, and derive new estimates on their averages. In particular we obtain pointwise
upper bounds on Husimi transforms.

One of the main advantages of the Husimi transform is that it is non-negative: indeed, with
the change of variables (40) and simple computations (see [22] for more details), it can be written
as

W̃εψ(y, p) =
1

(2π)n
〈ρψφεy,p, φεy,p〉 =

1
(2π)n

|〈ψ, φεy,p〉|2, (72)

where 〈·, ·〉 is the scalar product on L2(Rn; C),

φεy,p(x) :=
1
εn/2

1
(πε)n/4

e−|x−y|
2/(2ε)ei(p·x)/ε ∈ L2(Rn; C), (73)

and ρψ : L2(Rn; C) → L2(Rn; C) is the orthogonal projector onto ψ ∈ L2(Rn; C):

[ρψφ](x) :=
(∫

Rn

φ(x′)ψ(x′) dx′
)
ψ(x).

Proposition 8.1 (L∞ estimates). Let ψεw ∈ L2(Rn; C) be satisfying the operator inequalities

1
εn

∫
W
ρψ

ε
w dP(w) ≤ CId ∀ε > 0.

Then:

(a) for all y ∈ Rn and ε, λ > 0 we have∫
W
|ψεw ∗G

(n)
2λε2

|2(y) dP(w) ≤ C

λn/2
;

(b) for all (y, p) ∈ R2n and ε > 0 we have∫
W
W̃εψ

ε
w(y, p) dP(w) ≤ C.

Proof. The proof of (a) follows by applying the uniform operator inequality to the functions

(2ε)n/2(πλ)n/4G(n)
2λε2

(· − y), whose L2 norm is 1, to get

εnλn/2
∫
W
|ψεw ∗G

(n)
2λε2

|2(y) dP(w) ≤ Cεn.

The proof of (b) is analogous, it is based on (72) and on the insertion of the functions φεy,p in

(73) in the operator inequality, taking into account that ‖φεy,p‖2 = ε−n/2.
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The assumption made in Proposition 8.1 is compatible with the families of wavefunctions
given in (13), i.e.

ψεw(x) = ε−nα/2φ0

(x− x0

εα

)
ei(x·p0)/ε φ0 ∈ C2

c (Rn), 0 < α < 1 (74)

with w = (x0, p0). Indeed, in this case one can choose W = R2n with the Borel σ-algebra and
P = ρL 2n, with ρ ∈ L1 ∩ L∞, see [17] for details. In the extreme case α = 1 no average w.r.t.
p0 is needed and one can �x it and choose W = Rn, obtaining convergence for almost all x0,
so to speak. The other extreme case α = 0, corresponding to concentration in momentum, is
analogous.

9 Main convergence result

In this section we combine the theory developed in Sections 2�6 with the estimates of the Section 7
and Section 8, to obtain convergence of the Wigner/Husimi transforms of solutions to (1). In
particular we shall apply Theorem 5.2.

We consider the assumptions on U stated in Section 7.2 and �random� initial data ψε0,w ∈
H2(Rn; C) with unit L2 norm in (1) indexed by w ∈W , where (W,F ,P) is a suitable probability
space. Denoting by ψεt,w the corresponding Schrödinger evolutions, the basic assumptions we
need for the initial data are

sup
ε>0

∫
W

∫
Rn

|Hεψ
ε
0,w|2 dx dP(w) <∞, lim

R↑∞
sup
ε>0

∫
W

∫
Rn\BR

|ψε0,w|2 dx dP(w) = 0; (75)

1
εn

∫
W
ρψ

ε
0,w dP(w) ≤ CId with C independent of ε; (76)

i(w) := lim
ε↓0

W̃εψ
ε
0,wL d exists in P

(
Rd

)
for P-a.e. w ∈W . (77)

As we discussed in Section 8, (75), (76), (77) are compatible with several natural families of
initial conditions, for instance those described at the end of the introduction, see (13) or (74).
In addition, the unitary character of the Schrödinger evolution immediately gives

1
εn

∫
W
ρψ

ε
t,w dP(w) ≤ CId ∀ε > 0, t ≥ 0, (78)

where C is the same constant as in (76).
We state (79) below using the Husimi transforms, but (45) can be used to show convergence

of Wigner transforms, in the form used in (16) in the introduction.

Theorem 9.1. For U as in Section 7.2, and under assumptions (75), (76), (77), we have

lim
ε→0

∫
W

sup
t∈[−T,T ]

dP

(
W̃εψ

ε
t,w,µ(t, i(w))

)
dP(w) = 0, (79)

for all T > 0, where ν = i]P ∈ P
(
P

(
R2n

))
and µ(t, µ) is the ν-RLF in (38).
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Proof. Our goal is to apply Theorem 5.2 (with a continuous parameter ε) and Remark 5.3 with
iε(w) := W̃εψ

ε
0,wL 2n and µε(t, iε(w)) = W̃εψ

ε
t,wL 2n. The convergence (79) will be a direct

consequence of (31). We shall work in the time interval [0, T ], the proof in the time interval
[−T, 0] being the same, up to a time reversal. First of all we notice that (75) and (51) give

sup
ε>0

sup
t∈R

∫
W

∫
Rn

|Hεψ
ε
t,w|2 dx dP(w) <∞. (80)

In particular, by an integration by parts, we have also

sup
ε>0

sup
t∈R

∫
W

∫
Rn

|ε∇ψεt,w|2 dx dP(w) <∞. (81)

(i) (asymptotic regularity). By (78) and Proposition 8.1(b) we have the uniform estimate (in ε,
t and (x, p)) ∫

W
W̃εψ

ε
t,w(x, p) dP(w) ≤ C. (82)

In particular we have uniform and not only asymptotic regularity, therefore Remark 5.3 applies.

(ii) (uniform decay away from the singularity). We check (29) with β = 2 and S equal to the
singular set of Us, namely

sup
δ>0

lim sup
ε→0

∫
W

∫ T

0

∫
BR

1
dist2(x, S) + δ

W̃εψ
ε
t,w dx dp dt dP(w) <∞. (83)

We use (41) and the inequality

1
dist2(x, S) + δ

∗G(n)
ε ≤ 1

dist2(x, S)
,

which holds in BR for ε < ε(δ,R) to deduce (83) from

lim sup
ε→0

∫
W

∫ T

0

∫
Rn

1
dist2(x, S)

|ψεt,w|2 dx dt dP(w) <∞. (84)

In turn, this inequality follows by (52) and (49), taking (75) into account.
(iii) (space tightness). We have to check that for all δ > 0 it holds:

lim
R→∞

P
({

w ∈W : sup
ε>0

sup
t∈[0,T ]

∫
R2n\BR

W̃εψ
ε
t,w dx dp > δ

})
= 0.

Considering the cube CR containing BR, this tightness property can be checked separately for
the �rst and the second marginals of W̃εψ

ε
t,w; using (41), (42), it is not hard to see that it su�ces

to check the analogous property for the marginals of the corresponding Wigner transforms; for
the �rst marginals, tightness is a direct consequence of (53) and (75). For the second marginals,
we use (81) and the identity∫

Rn×Rn

|p|2Wεψ dx dp =
∫

Rn

∣∣∣∣ 1
(2πε)n/2

ψ̂(p/ε)
∣∣∣∣2|p|2 dp =

∫
Rn

|ε∇ψ|2 dx (85)
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with ψ = ψεt,w.
(iv) (time tightness). We need to show that for all φ ∈ C∞

c (R2n) it holds

lim
M↑∞

P
({

w ∈W :
∫ T

0

∣∣∣∣( ∫
R2n

φW̃εψ
ε
t,w dx dp

)′∣∣∣∣ dt > M
})

= 0;

uniformly in ε. Equivalently, we can consider the limit

lim
M↑∞

P
({

w ∈W :
∫ T

0

∣∣∣∣( ∫
R2n

φεWεψ
ε
t,w dx dp

)′∣∣∣∣ dt > M
})

= 0, (86)

where φε = φ ∗G(2n)
ε . According to (9), the time derivative in the formula above consists of two

terms,
∫
〈p,∇xφε〉Wεψ

ε
t,w dx dp and

∫
Eε(U,ψεt,w)φε dx dp and we need only to show a property

analogous to (86) for these two terms. Since φ ∈ C∞
c (R2n), ‖〈p,∇xφε〉‖A are easily seen to be

uniformly bounded, hence the �rst term can be estimated using (44). The second term can be
estimated using (54) for Ub and (68) for Us, taking (52) and (75) into account.
(v) (limit continuity equation). We have to show that

lim
ε↓0

∫
W

∣∣∣∣∫ T

0

[
ϕ′(t)

∫
R2n

φW̃εψ
ε
t,w dxdp+ ϕ(t)

∫
R2n

〈b,∇φ〉W̃εψ
ε
t,w dxdp

]
dt

∣∣∣∣ dP(w) = 0

for all φ ∈ C∞
c

(
R2n \ (S × Rn)

)
, ϕ ∈ C∞

c (0, T ). Taking (46) into account, this is implied by the
validity of the limits

lim
ε↓0

sup
t∈[0,T ]

∫
W

∣∣∣∣∫
R2n

Eε(U,ψεt,w)φ ∗G(2n)
ε dxdp+

∫
R2n

〈∇U,∇pφ〉W̃εψ
ε
t,w dxdp

∣∣∣∣ dP(w) = 0, (87)

lim
ε↓0

√
ε

∫
W

∫ T

0
|ϕ(t)|

∣∣∣∣∫
R2n

φ∇x · [Wεψ
ε
t,w ∗ Ḡ(2n)

ε ] dxdp
∣∣∣∣ dtdP(w) = 0. (88)

Veri�cation of (87). We can consider separately the contributions of Ub and Us. For the Ub
contribution we apply Theorem 7.1, in the form stated in (58); the assumptions (55) and (56) of
that theorem are ful�lled in view of (76) and Proposition 8.1. For the Us contribution we apply
(70) of Theorem 7.3; the assumption (69) of that theorem is ful�lled in view of assumption (75)
on the initial data and (52), ensuring propagation in time.
Veri�cation of (88). This is easy, taking into account the fact that∫

R2n

〈Wεψ
ε
t,w ∗ Ḡ(2n)

ε ,∇xφ〉 dxdp = −
∫

R2n

Wεψ
ε
t,w∇x · [φ ∗ Ḡ(2n)

ε ] dxdp

are uniformly bounded because Ḡ(2n)
ε , de�ned in (47), are uniformly bounded in L1(Rn).
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