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Introduction

In this paper we study the semiclassical limit of the Schrödinger equation. Under mild regularity assumptions on the potential U which include Born-Oppenheimer potential energy surfaces in molecular dynamics, we establish asymptotic validity of classical dynamics globally in space and time for almost all initial data, with respect to an appropriate reference measure on the space of initial data. In order to achieve this goal we study the ow in the space of measures induced by the continuity equation: we prove existence, uniqueness and stability properties of the ow in this innite-dimensional space, in the same spirit of the theory developed in the case when the state space is Euclidean, starting from the seminal paper [START_REF] Diperna | Ordinary dierential equations, transport theory and Sobolev spaces[END_REF] (see also [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF] and the Lecture Notes [START_REF] Ambrosio | Transport equation and Cauchy problem for non-smooth vector elds[END_REF], [START_REF] Ambrosio | Existence, uniqueness, stability and dierentiability properties of the ow associated to weakly dierentiable vector elds[END_REF]).

As we said, we are concerned with the derivation of classical mechanics from quantum mechanics, corresponding to the study of the asymptotic behaviour of solutions ψ ε (t, x) = ψ ε t (x) to the Schrödinger equation

   iε∂ t ψ ε t = -ε 2 2 ∆ψ ε t + U ψ ε t = H ε ψ ε t , ψ ε 0 = ψ 0,ε , (1) 
as ε → 0. This problem has a long history (see e.g. [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]) and has been considered from a transport equation point of view in [START_REF] Lions | Sur les mesures de Wigner[END_REF] and [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] and more recently in [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF], in the context of molecular dynamics. In that context the standing assumptions on the initial conditions ψ 0,ε ∈ H 2 (R n ; C) are:

R n |ψ 0,ε | 2 dx = 1, (2) 
sup ε>0 R n |H ε ψ 0,ε | 2 dx < ∞. (3) 
The potential U in (1) is assumed to satisfy the standard Kato conditions U = U b + U s with

U s (x) = 1≤α<β≤M V αβ (x α -x β ), V αβ ∈ L 2 (R 3 ) + L ∞ (R 3 ) (4) 
and

U b ∈ L ∞ (R n ), (5) 
∇U b ∈ L ∞ (R n ; R n ). (6) 
Here n = 3M , x = (x 1 , . . . , x M ) ∈ (R 3 ) M represent the positions of atomic nuclei. Under assumptions (4), [START_REF] Ambrosio | On ows associated to Sobolev vector elds in Wiener spaces: an approach à la DiPerna-Lions[END_REF] 

V αβ (x α -x β ) = Z α Z β |x α -x β | -1 , Z α , Z β ∈ N, U b (x) = inf spec H e (x)
, where

H e (x) = N i=1 (- 1 2 ∆ r i - M α=1 Z α |r i -x α | -1 ) + 1≤i<j≤N |r i -r j | -1
is the electronic Hamiltonian acting on the antisymmetric subspace of L 2 ((R 3 × Z 2 ) N ; C) and the r i ∈ R 3 are electronic position coordinates. For neutral or positively charged molecules (N ≤ M α=1 Z α ), Zhislin's theorem (see [START_REF] Friesecke | The Multiconguration Equations for Atoms and Molecules: Charge quantization and existence of solutions[END_REF] for a short proof ) states that for all x, U b (x) is an isolated eigenvalue of nite multiplicity of H e (x).

In the study of this semiclassical limit diculties arise on the one hand from the fact that ∇U is unbounded (because of Coulomb singularities) and on the other hand from the fact that ∇U might be discontinuous even out of Coulomb singularities (because of possible eigenvalue crossings of the electronic Hamiltonian H e ). Fortunately, it turns out that these two diculties can be dealt with separately.

If we denote by b : R 2n → R 2n the autonomous divergence-free vector eld b(x, p) := p, -∇U (x) , the Liouville equation describing classical dynamics is

∂ t µ t + p • ∇ x µ t -∇U (x) • ∇ p µ t = 0. (7) 
If we denote by W ε : L 2 (R n ; C) → L ∞ (R n

x × R n p ) the Wigner transform, namely

W ε ψ(x, p) := 1 (2π) n R n ψ(x + ε 2 y)ψ(x - ε 2 
y)e -ipy dy,

a calculation going back to Wigner himself (see for instance [START_REF] Lions | Sur les mesures de Wigner[END_REF] or [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF] for a detailed derivation)

shows that W ε ψ ε t solves in the sense of distributions the equation

∂ t W ε ψ ε t + p • ∇ x W ε ψ ε t = E ε (U, ψ ε t ), (9) 
where E ε (U, ψ)(x, p) is given by

E ε (U, ψ)(x, p) := - i (2π) n R n U (x + ε 2 y) -U (x -ε 2 y) ε ψ(x + ε 2 y)ψ(x - ε 2 
y)e -ipy dy.

(
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Adding and subtracting ∇U (x) • y in the term in square brackets and using ye -ip•y = i∇ p e -ip•y , an integration by parts gives E ε (U, ψ) = ∇U (x)

• ∇ p W ε ψ + E ε (U, ψ), where E ε (U, ψ)(x, p) is given by E ε (U, ψ)(x, p) := - i (2π) n R n U (x + ε 2 y) -U (x -ε 2 y) ε -∇U (x), y ψ(x+ ε 2 y)ψ(x - ε 2 
y)e -ipy dy.

Hence, W ε ψ ε t solves (7) with an error term:

∂ t W ε ψ ε t + ∇ x,p • bW ε ψ ε t = E ε (U, ψ ε t ). (12) 
Heuristically, since the term in square brackets in [START_REF] Bogachev | Measure Theory, Voll. I and II[END_REF] tends to 0 when U is dierentiable, this suggests that the limit of W ε ψ ε t should satisfy (7), and a rst rigorous proof of this fact was given in [START_REF] Lions | Sur les mesures de Wigner[END_REF] and [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] (see also [START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF]): basically, ignoring other global conditions on U , these results state that:

(a) C 1 regularity of U ensures that limit points of W ε ψ ε t as ε ↓ 0 exist and satisfy [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF]; (b) C 2 regularity of U ensures uniqueness of the limit, i.e. full convergence as ε → 0. In (a), convergence of the Wigner transforms is understood in a natural dual space A (see (43) for the denition of A).

In [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF] we were able to achieve the existence of limit points even when Coulomb singularities and crossings are present, namely assuming only that U b satises ( 5), [START_REF] Ambrosio | Almost everywhere well-posedness of continuity equations with measure initial data[END_REF], and (a) when Coulomb singularities but no crossings are present, namely assuming that U b ∈ C 1 . If one wishes to improve (a) and (b), trying to prove a full convergence result as ε ↓ 0 under weaker regularity assumptions on b (say ∇U ∈ W 1,p or ∇U ∈ BV out of Coulomb singularities), one faces the diculty that the continuity equation ( 7) is well posed only in good functional spaces like [START_REF] Diperna | Ordinary dierential equations, transport theory and Sobolev spaces[END_REF], [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF], [START_REF] Bouchut | Renormalized solutions to the Vlasov equation with coecients of bounded variation[END_REF]). On the other hand, in the study of semiclassical limits it is natural to consider families of wavefunctions ψ 0,ε in [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF] whose Wigner transforms do concentrate as ε ↓ 0, for instance the semiclassical wave packets

L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) (see
ψ 0,ε (x) = ε -nα/2 φ 0 x -x 0 ε α e i(x•p 0 )/ε φ 0 ∈ C 2 c (R n ), 0 < α < 1 (13) 
which satisfy lim ε W ε ψ 0,ε = φ 0 2 L 2 δ (x 0 ,p 0 ) . Here the limiting case α = 1 corresponds to concentration in position only, lim ε W ε ψ 0,ε = δ x 0 × (2π) -n |Fφ 0 | 2 (• -p 0 )L n , and the case α = 0 yields concentration in momentum only, lim ε W ε ψ 0,ε = |φ 0 (• -x 0 )| 2 × δ p 0 . Here and below, (Fφ 0 )(p) = R n e -ip•x φ 0 (x) dx denotes the (standard, not scaled) Fourier transform. But, even in these cases there is a considerable diculty in the analysis of [START_REF] Athanassoulis | Regularization of certain ill-posed semiclassical limits[END_REF], since the dierence quotients of U have a limit only at L n -a.e. point.

For these initial conditions there is presumably no hope to achieve full convergence as ε → 0 for all (x 0 , p 0 ), since the limit problem is not well posed. However, in the same spirit of the theory of ows that we shall illustrate in the second part of the introduction, one may look at the family of solutions, indexed in the case of the initial conditions ( 13) by (x 0 , p 0 ), as a whole. More generally, we are considering a family of solutions ψ ε t,w to (1) indexed by a random parameter w ∈ W running in a probability space (W, F, P), and achieve convergence with probability one, using the theory developed in the rst part of the paper, under the no-concentration in mean assumptions

sup ε>0 sup t∈R W W ε ψ ε t,w * G (2n) ε dP(w) L ∞ (R 2n ) < ∞, (14) 
sup ε>0 sup t∈R W |ψ ε t,w * G (2n) λε 2 | 2 dP(w) L ∞ (R n ) ≤ C(λ) < ∞ ∀λ > 0. ( 15 
)
Here G (2n) ε is the Gaussian kernel in R 2n with variance ε/2. Under these assumptions and those on U given in Section 7.2, our full convergence result reads as follows:

lim ε↓0 W sup t∈[-T,T ] d A W ε ψ ε t,w , µ(t, µ w ) dP(w) = 0 ∀ T > 0 (16) 
(here d A is any bounded distance inducing the weak * topology in the unit ball of A ) where µ(t, µ w ) is the ow in the space of probability measures at time t starting from µ w , and µ w = lim ε W ε ψ ε 0,w depends only on the initial conditions. For instance, in the case of the initial conditions (13) with φ 0 2 = 1, indexed by w = (x 0 , p 0 ), µ w = δ w and µ(t, µ w ) = δ X(t,w) , where X(t, w) is the ow in R 2n induced by (p, -∇U ). So, we may say that the ow of Wigner measures, thought of as elements of A , induced by the Schrödinger equation converges as ε → 0 to the ow in P R 2n ⊂ A induced by the Liouville equation, provided the initial conditions ensure ( 14) and ( 15).

Of course one can question about the conditions ( 14) and ( 15); we show that both are implied by the uniform operator inequality (here ρ ψ is the orthogonal projection on ψ)

1 ε n W ρ ψ ε t,w dP(w) ≤ CId with C independent of t, ε.
In turn, this latter property is propagated in time (i.e. if the inequality holds at t = 0 it holds for all times), and it has a natural quantum mechanical interpretation. In addition, the uniform operator inequality is fullled by the classical family of initial data [START_REF] Diperna | Ordinary dierential equations, transport theory and Sobolev spaces[END_REF] when P is a bounded probability density on R 2n . These results indicate also that the no-concentration in mean conditions are not only technically convenient, but somehow natural.

An alternative approach to the ow viewpoint advocated here for validating classical dynamics [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF] from quantum dynamics (1) would be to work with deterministic initial data, but restrict them to those giving rise to suitable bounds, in mean, on the projection operators ρ ψ 0,ε . The problem of nding sucient conditions to ensure these uniform bounds is studied in [17]. Another related research direction is a ner analysis of the behaviour of solutions, in the spirit of [START_REF] Fermanian-Kammerer | Mesures semi-classiques et croisement de modes[END_REF], [START_REF] Fermanian-Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF].

However, this analyis is presently possible only for very particular cases of eigenvalue crossings.

It is likely that our results can be applied to many more families of initial conditions, but this is not the goal of this paper. The proof of ( 16) relies on several apriori and ne estimates and on the theoretical tools described in the second part of the introduction and announced in [START_REF] Ambrosio | Almost everywhere well-posedness of continuity equations with measure initial data[END_REF].

In particular we apply the stability properties of the ν-RLF in P R 2n , see Theorem 5.2, to the Husimi transforms of ψ ε t,w , namely W ε ψ ε t,w * G (2n) ε

. Indeed, w * -convergence in A of the Wigner transforms is equivalent, under extra tightness assumptions, to weak convergence in P R 2n of the Husimi transforms.

We leave aside further extensions analogous to those considered in [START_REF] Lions | Sur les mesures de Wigner[END_REF], namely the convergence of density matrices ρ ε , whose dynamics is described by iε∂ t ρ ε = [H ε , ρ ε ], and the nonlinear case when U = U 0 * µ, µ being the position density of ψ (i.e. |ψ| 2 ). In connection with the rst extension, notice that the action of the Wigner/Husimi transforms becomes linear, when seen at this level.

Let us now describe the ow viewpoint rst in nite-dimensional spaces, where by now the theory is well understood. Denoting by b t : R d → R d , t ∈ [0, T ], the possibly time-dependent velocity eld, the rst basic idea is not to look for pointwise uniqueness statements, but rather to the family of solutions to the ODE as a whole. This leads to the concept of ow map X(t, x) associated to b, i.e. a map satisfying X(0, x) = x and X(t, x) = γ(t), where γ(0) = x and γ(t) = b t (γ(t))

for L 1 -a.e. t ∈ (0, T ).

(
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for L d -a.e. x ∈ R d . It is easily seen that this is not an invariant concept, under modication of b in negligible sets, while many applications of the theory to uid dynamics (see for instance [START_REF] Lions | I: incompressible models[END_REF], [START_REF] Lions | compressible models[END_REF]) and conservation laws need this invariance property. This leads to the concept of regular Lagrangian ow (RLF in short): one may ask that, for all t ∈ [0, T ], with probability one with respect to a reference measure on the space of initial data. Notice that already in the nite-dimensional theory dierent reference measures (e.g. Gaussian, see [START_REF] Ambrosio | On ows associated to Sobolev vector elds in Wiener spaces: an approach à la DiPerna-Lions[END_REF]) could be considered as well.

To establish such existence and uniqueness, one uses that the concept of ow is directly linked, via the theory of characteristics, to the transport equation

d ds f (s, x) + b s (x), ∇ x f (s, x) = 0 (18) 
and to the continuity equation

d dt µ t + ∇ • (b t µ t ) = 0. ( 19 
)
The rst equation has been exploited in [START_REF] Diperna | Ordinary dierential equations, transport theory and Sobolev spaces[END_REF] to transfer well-posedness results from the transport equation to the ODE, getting uniqueness of RLF (with respect to Lebesgue measure) in R d . This is possible because the ow maps (s, x) → X(t, s, x) (here we made also explicit the dependence on the initial time s, previously set to 0) solve [START_REF] Friesecke | The Multiconguration Equations for Atoms and Molecules: Charge quantization and existence of solutions[END_REF] for all t ∈ [0, T ]. In the present article, in analogy with the approach initiated in [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF] (see also [START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coecients[END_REF] for a stochastic counterpart of it, where [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] becomes the forward Kolmogorov equation), we prefer rather to deal with the continuity equation, which seems to be more natural in a probabilistic framework. The link between the ODE (17) and the continuity equation ( 19) can be made precise as follows: any positive nite measure η on initial values and paths, η ∈ P R d × C [0, T ]; R d , concentrated on solutions (x, γ) to the ODE with initial condition x = γ(0), gives rise to a (distributional) solution to [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF], with µ t given by the marginals of η at time t: indeed, [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] describes the evolution of a probability density under the action of the velocity eld b. We shall call these measures η generalized ows, see Denition 3.4. These facts lead to the existence, the uniqueness (up to L d -negligible sets)

and the stability of the RLF X(t,

x) in R d provided (19) is well-posed in L ∞ + [0, T ]; L 1 ∩L ∞ (R d ) .
Roughly speaking, this should be thought of as a regularity assumption on b. See Remark 3.2 and Section 6 for explicit conditions on b ensuring well-posedness.

We shall extend all these results to ows on P R d , the space of probability measures on R d . The heuristic idea is that [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] can be viewed as a (constant coecients) ODE in the innitedimensional space P R d , and that we can achieve uniqueness results for [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] for almost every measure initial condition. We need, however, a suitable reference measure on P R d , that we shall denote by ν. Our theory works for many choices of ν (in agreement with the fact that no canonical choice of ν seems to exist), provided ν satises the regularity condition

P(R d )
µ dν(µ) ≤ CL d , see Denition 3.5. (See also Example 3.6 for some natural examples of regular measures ν.) Given ν as reference measure, and assuming that [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] 

is well-posed in L ∞ + [0, T ]; L 1 ∩ L ∞ (R d
) , we prove existence, uniqueness (up to ν-negligible sets) and stability of the regular Lagrangian ow of measures µ. Since this assumption is precisely the one needed to have existence and uniqueness of the RLF X(t, x) in R d , it turns out that the RLF µ(t, µ) in P R d is given by

µ(t, µ) = R d δ X(t,x) dµ(x) ∀ t ∈ [0, T ], µ ∈ P R d , (20) 
which makes the existence part of our results rather easy whenever an underlying ow X in R d exists. On the other hand, even in this situation, it turns out that uniqueness and stability results are much stronger when stated at the P R d level.

In our proofs, which follow by an innite-dimensional adaptation of [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF], [START_REF] Ambrosio | Transport equation and Cauchy problem for non-smooth vector elds[END_REF], we use also the concept of generalized ow in P R d , i.e. measures η on P R d ×C [0, T ]; P R d concentrated on initial data/solution pairs (µ, ω) to [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] with ω(0) = µ, see Denition 3.9.
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Notation and preliminary results

Let X be a Polish space (i.e. a separable topological space whose topology is induced by a complete distance). We shall denote by B(X) the σ-algebra of Borel sets of X, by P X (resp. M X , M + X ) the space of Borel probability (resp. nite Borel, nite Borel nonnegative) measures on X. For A ∈ B(X) and ν ∈ M X , we denote by ν A ∈ M X the restricted measure, namely ν A(B) = ν(A ∩ B). Given f : X → Y Borel and µ ∈ M X , we denote by f µ ∈ M Y the push-forward measure on Y , i.e. f µ(A) = µ(f -1 (A)) (if µ is a probability measure, f µ is the law of f under µ) and we recall the basic integration rule Y φ df µ = X φ • f dµ φ bounded and Borel.

We denote by χ A the characteristic function of a set A, equal to 1 on A, and equal to 0 on its complement. Balls in Euclidean spaces will be denoted by B R (x 0 ), and by B R if x 0 = 0.

We shall endow P X with the metrizable topology induced by the duality with C b (X), the space of continuous bounded functions on X: this makes P X itself a Polish space (see for instance [START_REF] Ambrosio | Gradient ows in metric spaces and in the Wasserstein space of probability measures[END_REF]Remark 5.1.1]), and we shall also consider measures ν ∈ M + P X .

Typically we shall use greek letters to denote measures, boldface greek letters to denote measures on the space of measures, and we occasionally use d P for a bounded distance in P X inducing the weak topology induced by the duality with C b (X) (no specic choice of d P will be relevant for us). We recall that weak convergence of µ n to µ implies lim n→∞ X f dµ n = X f dµ for all f bounded Borel, with a µ-negligible discontinuity set.

(
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Also, in the case X = R d , recall that a sequence (µ n ) ⊂ P R d weakly converges to a probability measure µ in the duality with C b (R d ) if and only if it converges in the duality with (a dense subspace of ) C c (R d ).

We shall consider the space C [0, T ]; P R d , whose generic element will be denoted by ω, endowed with the sup norm; for this space we use the compact notation Ω T (P(R d )). We also use e t as a notation for the evaluation map at time t, so that e t (ω) = ω(t). Again, we shall consider measures η ∈ M + Ω T (P(R d )) and the basic criterion we shall use is the following: Proposition 2.1 (Tightness). Let (η n ) ⊂ M + Ω T (P(R d )) be a bounded family satisfying:

(i) (space tightness) for all ε > 0, sup n η n ω : sup

t∈[0,T ] ω(t)(R d \ B R ) > ε → 0 as R → ∞; (ii) (time tightness) for all φ ∈ C ∞ c (R d ), n ≥ 1, the map t → R d φ dω(t) is absolutely continu- ous in [0, T ] for η n -a.e. ω and lim M ↑∞ sup n η n ω : T 0 R d φ dω(t) dt > M = 0. Then (η n ) is tight. Proof. For all φ ∈ C ∞ c (R d ) we shall denote by I φ : Ω T (P(R d )) → C [0, T ] the time-dependent integral w.r.t. φ. Since the sets f ∈ W 1,1 (0, T ) : sup |f | ≤ C, T 0 |f (t)| dt ≤ M are compact in C [0, T ] , by assumption (ii) the sequence ((I φ ) η n ) is tight in M + C [0, T ] for all φ ∈ C ∞ c (R d ). Hence, if we x a countable dense set (φ k ) ⊂ C ∞ c (R d ) and ε > 0, we can nd for k ≥ 1 compact sets K ε k ⊂ C [0, T ] such that sup n η n Ω T (P(R d )) \ I -1 φ k (K ε k ) < ε2 -k . Thus, if K ε denotes the intersection of all sets I -1 φ k (K ε k ), we get sup n η n Ω T (P(R d )) \ K ε ) < ε.
Analogously, using assumption (i) we can build another compact set

L ε ⊂ Ω T (P(R d )) such that sup n η n Ω T (P(R d )) \ L ε ) < ε and, for all integers k ≥ 1, there exists R = R k such that ω(t)(R d \ B R ) < 1/k for all ω ∈ L ε and t ∈ [0, T ]. In order to conclude, it suces to show that K ε ∩ L ε is compact in Ω T (P(R d )): if (ω p ) ⊂ K ε ∩ L ε we can use the inclusion in I -1 φ k (K ε k
) and a diagonal argument to extract a subsequence (ω p( ) ) such that φ k dω p( ) (t) has a limit for all t ∈ [0, T ] and all k ≥ 1 and the limit is continuous in time. By the space tightness given by the inclusion (ω p ) ⊂ L ε , ω p( ) (t) converges to ω(t) in P R d for all t ∈ [0, T ], and t → ω(t) is continuous.

The next lemma is a renement of [2, Lemma 22] and [START_REF] Villani | Optimal transport: old and new[END_REF]Corollary 5.23], and allows to obtain convergence in probability from weak convergence of the measures induced on the graphs.

Lemma 2.2. Let f n : X → Y , f : X → Y be Borel maps, ν n , ν ∈ P X and assume that (Id × f n ) ν n weakly converge to (Id × f ) ν in X × Y .
Assume in addition that we have the Skorokhod representations ν n = (i n ) P, ν = i P, with (W, F, P) probability measure space, i n , i : W → X measurable, and i n → i P-almost everywhere. Then

f n • i n → f • i in P-probability. Proof. Let d Y denote the distance in Y . Up to replacing d Y by min{d Y , 1}, with no loss of generality we can assume that the distance in Y does not exceed 1. Fix ε > 0 and g ∈ C b (X; Y ) with X d Y (g, f ) dν ≤ ε 2 . We have that {d Y (f n • i n , f • i) > 3ε} is contained in {d Y (f n • i n , g • i n ) > ε} ∪ {d Y (g • i n , g • i) > ε} ∪ {d Y (g • i, f • i) > ε}.
The second set has innitesimal P-probability, since g is continuous and i n → i P-a.e.; the third set, by Markov inequality, has P-probability less than ε; to estimate the P-probability of the rst set we notice that

P({d Y (f n • i n , g • i n ) > ε}) = ν n ({d Y (f n , g) > ε}) ≤ 1 ε X×Y χ d(Id × f n ) ν n with χ(x, y) := d Y (g(x), y). The weak convergence of (Id × f n ) ν n yields lim sup n→∞ P({d Y (f n • i n , g • i n ) > ε}) ≤ 1 ε X×Y χ d(Id × f ) ν = 1 ε X d Y (g(x), f (x)) dν(x) ≤ ε.

Continuity equations and ows

In this section we shall specify the basic assumptions on b used throughout this paper, and the conventions about [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] concerning locally bounded respectively measure-valued solutions. We shall also collect the basic denitions of regular ows we shall work with, recalling rst those used when the state space is R d and then extending these concepts to P R d .

Continuity equations

We consider a Borel vector eld b : involves possibly singular measures. Also, we shall not make any integrability assumption on

[0, T ] × R d → R d ,
b besides L 1 loc [0, T ] × R d (namely, the Lebesgue integral of |b| is nite on [0, T ] × B R for all R > 0)
; the latter is needed in order to give a distributional sense to the functional version of [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF], namely

d dt w t + ∇ • (b t w t ) = 0 (22) 
coupled with an initial condition w 0 = w ∈ L ∞ loc (R d ), when w t is locally bounded in space-time. It is well-known and easy to check that any distributional solution w(t, x) = w t (x) to ( 22) with w t locally bounded in R d uniformly in time, can be modied in a L 1 -negligible set of times in such a way that t → w t is continuous w.r.t. the duality with C c (R d ), and well-dened limits exist at t = 0, t = T (see for instance [START_REF] Ambrosio | Gradient ows in metric spaces and in the Wasserstein space of probability measures[END_REF]Lemma 8.1.2] for a detailed proof ). In particular the initial condition w 0 = w is then well dened, and we shall always work with this weakly continuous representative.

In the sequel, we shall say that the continuity equation ( 22) has uniqueness in the cone of

functions L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) if, for any w ∈ L 1 ∩ L ∞ (R d ) nonnegative, there exists at most one nonnegative solution w t to (22) in L ∞ [0, T ]; L 1 ∩ L ∞ (R d ) satisfying the condition w 0 = w. (23) 
Coming to measure-valued solutions to [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF], we say that t ∈

[0, T ] → µ t ∈ M + (R d ) solves (19) if |b| ∈ L 1 loc (0, T ) × R d ; µ t dt , the equation holds in the sense of distributions and t → φ dµ t is continuous in [0, T ] for all φ ∈ C c (R d ).

Flows in

R d Denition 3.1 (ν-RLF in R d ). Let X : [0, T ] × R d → R d and ν ∈ M + (R d ) with ν L d and with bounded density. We say that X is a ν-RLF in R d (relative to b ∈ L 1 loc (0, T ) × R d )
if the following two conditions are fullled:

(i) for ν-a.e. x, the function t → X(t, x) is an absolutely continuous integral solution to the ODE (17) 

in [0, T ] with X(0, x) = x; (ii) X(t, •) ν ≤ CL d for all t ∈ [0, T ],
for some constant C independent of t.

Notice that, in view of condition (ii), the assumption of bounded density of ν is necessary for the existence of the ν-RLF, as X(0, •) ν = ν.

In this context, since all admissible initial measures ν are bounded above by CL d , uniqueness of the ν-RLF can and will be understood in the following stronger sense

: if f, g ∈ L 1 (R d ) ∩ L ∞ (R d ) are nonnegative and X and Y are respectively a f L d -RLF and a gL d -RLF, then X(•, x) = Y (•, x) for L d -a.e. x ∈ {f > 0} ∩ {g > 0}.
Remark 3.2 (BV vector elds). We shall use in particular the fact that the ν-RLF exists for all ν ≤ CL d , and is unique, in the strong sense described above, under the following assumptions on b:

|b| is uniformly bounded, b t ∈ BV loc (R d ; R d ) and ∇ • b t = g t L d L d for L 1 -a.e. t ∈ (0, T ), with g t L ∞ (R d ) ∈ L 1 (0, T ), |Db t |(B R ) ∈ L 1 (0, T ) for all R > 0,
where |Db t | denotes the total variation of the distributional derivative of b t . See [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF] or [START_REF] Ambrosio | Transport equation and Cauchy problem for non-smooth vector elds[END_REF] and the paper [START_REF] Bouchut | Renormalized solutions to the Vlasov equation with coecients of bounded variation[END_REF] for Hamiltonian vector elds.

Remark 3.3 (L d -RLF). In all situations where the ν-RLF exists and is unique, one can also dene by an exhaustion procedure a L d -RLF X, uniquely determined (and well dened) by the property

X(•, x) = X f (•, x) L d -a.e. on {f > 0} for all f ∈ L ∞ ∩ L 1 (R d ) nonnegative
, where X f is the f L d -ow. Also, it turns out that if [START_REF] Lions | Sur les mesures de Wigner[END_REF] has backward uniqueness, and if the constant C in Denition 3.1(ii) can be chosen independently

of ν ≤ L d , then X(t, •) L d ≤ CL d .
We don't prove this last statement here, since it will not be needed in the rest of the paper, and we mention this just for completeness.

In the proof of stability and uniqueness results it is actually more convenient to consider a generalized concept of ow, see [START_REF] Ambrosio | Transport equation and Cauchy problem for non-smooth vector elds[END_REF] for a more complete discussion. We denote the evaluation

map (x, ω) ∈ R d × C([0, T ]; R d ) → ω(t) ∈ R d again with e t . Denition 3.4 (Generalized ν-RLF in R d ). Let ν ∈ M + (R d ) and η ∈ P R d × C [0, T ]; R d . We say that η is a generalized ν-RLF in R d (relative to b) if: (i) (e 0 ) η = ν;
(ii) η is concentrated on the set of pairs (x, γ), with γ absolutely continuous solution to (17), and γ(0) = x;

(iii) (e t ) η ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.

Flows in P R d

Given a nonnegative σ-nite measure ν ∈ M + P R d , we denote by Eν ∈ M + R d its expectation, namely 

R d φ dEν = P(R d ) R d φ dµ
x → δ x , with ρ ∈ L 1 (R d ) ∩ L ∞ (R d ) nonnegative.
Actually, one can even consider the law under L d , and in this case ν would be σ-nite instead of a nite nonnegative measure.

(2) If d = 2n and z = (x, p) ∈ R n × R n (this factorization corresponds for instance to ows in a phase space), one may consider the law under ρL n of the map x → δ

x × γ, with ρ ∈ L 1 (R n x ) ∩ L ∞ (R n x )
nonnegative and γ ∈ P R n p with γ ≤ CL n ; one can also choose γ dependent on x, provided x → γ x is measurable and γ x ≤ CL n for some constant C independent of x.

(3) We also expect that the entropic measures built in [START_REF] Sturm | Entropic measure and Wasserstein diusion[END_REF], [START_REF] Sturm | Entropic measure on multidimensional spaces[END_REF] are regular, see also the references therein for more examples of natural reference measures on the space of measures.

As we explained in the introduction, Denition 3.1 has a natural (but not perfect) transposition to ows in P R d :

Denition 3.7 (ν -RLF in P R d ). Let µ : [0, T ] × P R d → P R d and ν ∈ M + P R d . We say that µ is a ν-RLF in P R d (relative to b with |b| ∈ L 1 loc (0, T ) × R d ; µ t dt ) if (i) for ν-a.e. µ, t → µ t := µ(t, µ) is (weakly) continuous from [0, T ] to P R d with µ(0, µ) =
µ and µ t solves [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] in the sense of distributions;

(ii) E(µ(t, •) ν) ≤ CL d for all t ∈ [0, T ],
for some constant C independent of t.

Notice that no ν-RLF can exist if ν is not regular, as µ(0, •) ν = ν. Notice also that condition (ii) is in some sense weaker than µ(t, •) ν ≤ Cν (which would be the analogue of (ii) in Denition 3.1 if we were allowed to choose ν = L d , see also Remark 3.3), but it is sucient for our purposes. As a matter of fact, because of innite-dimensionality, the requirement of quasiinvariance of ν under the action of the ow µ (namely the condition µ(t, •) ν ν) would be a quite strong condition: for instance, if the state space is a separable Banach space V , the reference measure γ is a nondegenerate Gaussian measure, and b(t, x) = v, then X(t, x) = x + tv, and the quasi-invariance occurs only if v belongs to the Cameron-Martin subspace H of V , a dense but γ-negligible subspace. In our framework, Example 3.6(2) provides a natural measure ν that is not invariant, because its support is not invariant, under the ow: to realize that invariance may fail, it suces to choose autonomous vector elds of the form b(x, p) := (p, -∇U (x)).

Remark 3.8 (Invariance of ν-RLF). Assume that µ(t, µ) is a ν-RLF relative to b and b is a modication of b, i.e., for L 1 -a.e. t ∈ (0, T ) the set N t := {b t = bt } is L d -negligible. Then, because of condition (ii) we know that, for all t ∈ (0, T ), µ(t, µ)(N t ) = 0 for ν-a.e. µ. By Fubini's theorem, we obtain that, for ν-a.e. µ, the set of times t such that µ(t, µ)(N t ) > 0 is L 1 -negligible in (0, T ). As a consequence t → µ(t, µ) is a solution to [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] with bt in place of b t , and µ is a ν-RLF relative to b as well.

In the next denition, as in Denition 3.4, we are going to consider measures on P R d × Ω T (P(R d )), the rst factor being a convenient label for the initial position of the path (an equivalent description could be given using just measures on Ω T (P(R d )), at the price of an heavier use of conditional probabilities, see [START_REF] Ambrosio | Transport equation and Cauchy problem for non-smooth vector elds[END_REF]Remark 11] for a more precise discussion). We keep using the notation e t for the evaluation map, so that e t (µ, ω) = ω(t).

Denition 3.9 (Generalized ν-RLF in P R d ). Let ν ∈ M + P R d and η ∈ M + P R d × Ω T (P(R d )) . We say that η is a generalized ν-RLF in P R d (relative to b with |b| ∈ L 1 loc (0, T ) × R d ; µ t dt ) if: (i) (e 0 ) η = ν;
(ii) η is concentrated on the set of pairs (µ, ω), with ω solving [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF], ω(0) = µ;

(iii) E((e t ) η) ≤ CL d for all t ∈ [0, T ], for some constant C independent of t. Again, by conditions (i) and (iii), no generalized ν-RLF can exist if ν is not regular. Of course any ν-RLF µ induces a generalized ν-RLF η: it suces to dene η := (Ψ µ ) ν, [START_REF] Lions | compressible models[END_REF] where

Ψ µ : P R d → P R d × Ω T (P(R d )), Ψ µ (µ) := (µ, µ(•, µ)). (25) 
It turns out that existence results are stronger at the RLF level, while results concerning uniqueness are stronger at the generalized RLF level.

The transfer mechanisms between generalized and classical ows, and between ows in P R d and ows in R d are illustrated by the next proposition. Proposition 3.10. Let η be a generalized ν-RLF in P R d relative to b. Then:

(i) Eη is a generalized Eν-RLF in R d relative to b; (ii) the measures µ t := E((e t ) η) = (e t ) Eη ∈ M + (R d ) satisfy (19).
In addition,

µ t = w t L d with w ∈ L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) .
Proof. Statement (i) is easy to prove, since the continuity equation is linear. Statement (ii), namely that (single) time marginals of generalized ows in R d solve [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF], is proved in detail in [2, Page 8]. The nal statement follows by the regularity condition on η.

Existence and uniqueness of regular Lagrangian ows

In this section we recall the main existence and uniqueness results of the ν-RLF in R d , and see their extensions to ν-RLF in P R d . It turns out that existence and uniqueness of solutions to [START_REF] Lions | Sur les mesures de Wigner[END_REF] 

in L ∞ + [0, T ]; L 1 ∩ L ∞ (R d
) yields existence and uniqueness of the ν-RLF, and existence of this ow implies existence of the ν-RLF when ν is regular. Also, the (apparently stronger) uniqueness of the ν-RLF is still implied by the uniqueness of solutions to [START_REF] Lions | Sur les mesures de Wigner[END_REF] 

in L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) .
The following result is proved in [2, Theorem 19] for the part concerning existence and in [2, Theorem 16, Remark 17] for the part concerning uniqueness. Theorem 4.1 (Existence and uniqueness of the ν-RLF in R d ). Assume that [START_REF] Lions | Sur les mesures de Wigner[END_REF] has existence and uniqueness in

L ∞ + [0, T ]; L 1 ∩L ∞ (R d ) .
Then, for all ν ∈ M (R d ) with ν L d and bounded density the ν-RLF in R d exists and is unique. Now we can easily show that existence of the ν-RLF implies existence of the ν-RLF, by a superposition principle. However, one might speculate that, for very rough vector elds, a ν-RLF might exist in P R d , not induced by any ν-RLF in R d . Theorem 4.2 (Existence of the ν-RLF in P R d ). Let ν ∈ M (R d ) with ν L d and bounded density, and assume that a ν-RLF X in R d exists. Then, for all ν ∈ M + P R d with Eν = ν, a ν-RLF µ in P R d exists, and it is given by

µ(t, µ) := R d δ X(t,x) dµ(x). ( 26 
)
Proof. The rst part of property (i) in Denition 3.7 is obviously satised, since the fact that t → X(t, x) solves the ODE for some x corresponds to the fact that t → δ X(t,x) solves [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF]. On the other hand, since ν is regular and X is a RLF, we know that X(•, x) solves the ODE for Eν-a.e. x; it follows that, for ν-a.e. µ, X(•, x) solves the ODE for µ-almost every x, hence µ(t, µ) solves ( 19) for ν-a.e. µ. This proves (i).

Property (ii) follows by

R d φ(x) dE(µ(t, •) ν)(x) = P(R d ) R d φdµ(t, µ) dν(µ) = P(R d ) R d φ(X(t, x)) dµ(x) dν(µ) = R d φ(X(t, x)) dν(x) ≤ CL R d φ(z) dz
where C is the same constant in Denition 3.1(ii) and L satises ν ≤ LL d .

The following lemma (a slight renement of [1, Theorem 5.1] and of [START_REF] Ambrosio | On ows associated to Sobolev vector elds in Wiener spaces: an approach à la DiPerna-Lions[END_REF]Lemma 4.6]) provides a simple characterization of Dirac masses for measures on C w [0, T ]; E and for families of measures on E. Here E is a closed, convex and bounded subset of the dual of a separable Banach space, endowed with a distance d E inducing the weak * topology, so that (E, d E ) is a compact metric space; C w ([0, T ]; E) denotes the space of continuous maps with values in (E, d E ), endowed with sup norm (so that these maps are continuous with respect to the weak * topology). We shall apply this result in the proof of Theorem 4.4 with If (F, F, λ) is a measure space, and a Borel family {ν z } z∈F of probability measures on E (i.e. z → ν z (A) is F-measurable in F for all A ⊂ E Borel) is given, then ν z are Dirac masses for λ-a.e. z ∈ F if and only if for all y ∈ G and c ∈ R there holds ν z ({x ∈ E : x, y ≤ c})ν z ({x ∈ E : x, y > c}) = 0 for λ-a.e. z ∈ F . [START_REF] Sturm | Entropic measure and Wasserstein diusion[END_REF] Proof. The rst statement is a direct consequence of the fact that all elements of C w [0, T ]; E are weakly * continuous maps, which are uniquely determined on Q ∩ [0, T ]. In order to prove the second statement, let us consider the sets A ij := {x ∈ E : x, y i ≤ c j }, where y i vary in a countable dense set of G and c j are an enumeration of the rational numbers. By [START_REF] Sturm | Entropic measure and Wasserstein diusion[END_REF] 

E := µ ∈ M R d : |µ|(R d ) ≤ 1 ⊃ P R d , (27) 
we obtain a λ-negligible set N ij ∈ F satisfying ν z (A ij )ν z (E \ A ij ) = 0 for all z ∈ F \ N ij .
As a consequence, each measure ν z , as z varies in F \ N ij , is either concentrated on A ij or on its complement. For z ∈ F \ ∪ j N ij it follows that the function x → x, y i is equivalent to a constant, up to ν z -negligible sets. Since the functions x → x, y i separate points of E, ν z is a Dirac mass for all z ∈ F \ ∪ i,j N ij as desired.

The next result shows that uniqueness of [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] 

in L ∞ + [0, T ]; L 1 ∩ L ∞ (R d
) and existence of a generalized ν-RLF imply existence of the ν-RLF and uniqueness of both, the ν-RLF and the generalized ν-RLF.

Theorem 4.4 (Existence and uniqueness of the ν-RLF in P R d ). Assume that [START_REF] Lions | Sur les mesures de Wigner[END_REF] has uniqueness in

L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) .
If a generalized ν-RLF in P R d η exists, then the ν-RLF µ in P R d exists. Moreover they are both unique, and related as in [START_REF] Lions | compressible models[END_REF], [START_REF] Lions | Sur les équations diérentielles ordinaires et les équations de transport[END_REF]. Proof. We x a generalized ν-RLF η and we show rst that η is induced by a ν-RLF (this will prove in particular the existence of the ν-RLF). To this end, denoting by π : P R d × Ω T (P(R d )) → P R d the projection on the rst factor, we dene by

η µ := E(η|π = µ) ∈ P Ω T (P(R d ))
the induced conditional probabilities, so that dη(µ, ω) = dη µ (ω)dν(µ). Taking into account the rst statement in Lemma 4.3, it suces to show that, for t ∈ Q ∩ [0, T ] xed, the measures

θ µ := E((et) η|ω(0) = µ) = (et) η µ ∈ M + P R d
are Dirac masses for ν-a.e. µ ∈ P R d . Still using Lemma 4.3, we will check the validity of ( 28) with λ = ν. Since θ µ = δ µ when t = 0, we shall assume that t > 0.

Let us argue by contradiction, assuming the existence of L ∈ B(P

R d ) with ν(L) > 0, φ ∈ C 0 (R d ), c ∈ R such that both θ µ (A) and θ µ P R d \ A are strictly positive for all µ ∈ L, with A := ρ ∈ P R d : R d φ dρ ≤ c .
We will get a contradiction with the assumption that the equation ( 22) is well-posed in L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) , building two distinct nonnegative solutions of the continuity equation with the same initial condition w ∈ L 1 ∩ L ∞ (R d ). With no loss of generality, possibly passing to a smaller set L still with positive ν-measure, we can assume that the quotient g(µ) := θ µ (A)/θ µ P R d \ A is uniformly bounded in L. Let Ω 1 ⊂ Ω T (P(R d )) be the set of trajectories ω which belong to A at time t, and let Ω 2 be its complement; we can dene positive nite measures η

i , i = 1, 2, in P R d × Ω T (P(R d )) by dη 1 (µ, ω) := d(χ Ω 1 η µ )(ω)d(χ L ν)(µ), dη 2 (µ, ω) := d(χ Ω 2 η µ )(ω)d(χ L gν)(µ).
By Proposition 3.10, both η 1 and η 2 induce solutions w 1 t , w 2 t to the continuity equation which are uniformly bounded (just by comparison with the one induced by η) in space and time. Moreover, since

(e 0 ) η 1 = θ µ (A)χ L (µ)ν
and analogously

(e 0 ) η 2 = θ µ P R d \ A χ L (µ)g(µ)ν,
our denition of g gives that (e 0 ) η 1 = (e 0 ) η 2 . Hence, both solutions w 1 t , w 2 t start from the same initial condition w(x), namely the density of E(θ µ (A)χ L (µ)ν) with respect to L d . On the other hand, it turns out that

R d φw 1 t dx = L Ω 1 R d φ dω( t) dη µ (ω) dν(µ) = L Ω T (P(R d )) χ A (ω( t)) R d φ dω( t) dη µ (ω) dν(µ) = L A R d φ dρ dθ µ (ρ) dν(µ) ≤ c L θ µ (A)dν(µ).
Analogously, we have

R d φw 2 t dx > c L θ µ P R d \ A g(µ) dν(µ) = c L θ µ (A) dν(µ).
Therefore w 1 t = w 2 t and uniqueness of the continuity equation is violated. Now we can prove uniqueness: if σ is any other generalized ν-RLF, we know σ is induced by a ν-RLF, hence for ν-a.e. µ also the measures E(σ|ω(0) = µ) are Dirac masses; but, since the property of being a generalized ow is stable under convex combinations, also the measures (corresponding to the generalized ν-RLF (η + σ)/2)

1 2 E(η|ω(0) = µ) + 1 2 E(σ|ω(0) = µ) = E η + σ 2 |ω(0) = µ
must be Dirac masses for ν-a.e. µ. This can happen only if E(η|ω(0) = µ) = E(σ|ω(0) = µ) for ν-a.e. µ, hence σ = η. Finally, since distinct ν-RLF µ and µ induce distinct generalized ν-RLF η and η , uniqueness is proved also for ν-RLF.

Stability of the ν-RLF in P R d

In the statement of the stability result we shall consider varying measures ν n ∈ P P R d , n ≥ 1, and a limit measure ν. (The assumption that all ν n are probability measures is made in order to avoid technicalities which would obscure the main ideas behind our stability result, and one can always reduce to this case by renormalizing the measures. Moreover, in the applications we have in mind, our measures ν n will always have unitary total mass.) We shall assume that the ν n are generated as (i n ) P, where (W, F, P) is a probability measure space and i n : W → P R d are measurable; accordingly, we shall also assume that ν = i P, with i n → i P-almost everywhere.

These assumptions are satised in the applications we have in mind, and in any case Skorokhod's theorem (see [11, 8.5, Vol. II]) could be used to show that weak convergence of ν n to ν always implies this sort of representation, even with W = [0, 1] endowed with the standard measure structure, for suitable i n , i. (c) the discontinuity set Σ of c is L n -negligible.

Lemma 5.1. Let S ⊂ R n closed, and assume that b is representable as in (a) above. Let µ t : [0, T ] → P R d be solving [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] in the sense of distributions in (R n \ S) × R n and assume that

T 0 B R 1 dist β (x, S) dµ t (x, p)dt < ∞ ∀ R > 0
for some β > 1 (with the convention 1/0 = +∞). Then [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] holds in the sense of distributions in R d .

Proof. First of all, the assumption implies that µ t (S × R n ) = 0 for L 1 -a.e. t ∈ (0, T ). If K is the support of φ, the integral above can be bounded by

2 max K |pφ| T 0 {x∈K:kdist(x,S)≤2} k dµ t (x, p)dt ≤ 2 β+1 max K |pφ| k β-1 T 0 K 1 dist β (x, S)
dµ t (x, p)dt and as β > 1 the right hand side is innitesimal as k → ∞.

The following stability result is adapted to the application we have in mind: we shall apply it to the case when µ n (t, µ) are Husimi transforms of wavefunctions.

Theorem 5.2 (Stability of the ν-RLF in P R d ). Let i n , i be as above and let µ n : [0, T ] × i n (W ) → P R d be satisfying µ n (0, i n (w)) = i n (w) and the following conditions:

(i) (asymptotic regularity)

lim sup n→∞ W R d φ dµ n (t, i n (w)) dP(w) ≤ C R d φ dx
for all φ ∈ C c (R d ) nonnegative, for some constant C independent of t;

(ii) (uniform decay away from the singularity) for some β > 1

sup δ>0 lim sup n→∞ W T 0 B R 1 dist β (x, S) + δ dµ n (t, i n (w)) dt dP(w) < ∞ ∀ R > 0; ( 29 
)
(iii) (space tightness) for all δ > 0, P w ∈ W : sup

t∈[0,T ] µ n (t, i n (w))(R d \ B R ) > δ → 0 as R → ∞ uniformly in n; (iv) (time tightness) for P-a.e. w ∈ W , for all n ≥ 1 and φ ∈ C ∞ c (R d ), t → R d φ dµ n (t, i n (w))
is absolutely continuous in [0, T ] and, uniformly in n, lim

M ↑∞ P w ∈ W : T 0 R d φ dµ n (t, i n (w)) dt > M = 0;
(v) (limit continuity equation)

lim n→∞ W T 0 ϕ (t) R d φ dµ n (t, i n (w)) + ϕ(t) R d b, ∇φ dµ n (t, i n (w)) dt dP(w) = 0 (30) for all φ ∈ C ∞ c R d \ (S × R n ) , ϕ ∈ C ∞ c (0, T ).
Assume, besides (a), (b), (c) above, that [START_REF] Lions | Sur les mesures de Wigner[END_REF] has uniqueness in

L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) .
Then the ν-RLF µ(t, µ) relative to b exists, is unique, and P(R d )) be induced by µ n pushing forward ν n = (i n ) P via the map µ → (µ, µ n (t, µ)). Conditions (iii) and (iv) correspond, respectively, to conditions (i) and (ii) of Proposition 2.1, hence the marginals of η n on Ω T (P(R d )) are tight; since the rst marginals, namely ν n , are tight as well, a simple tightness criterion in product spaces (see for instance [4, Lemma 5.2.2]) gives that (η n ) is tight. We consider a weak limit point η of (η n ) and prove that η is the unique generalized ν-RLF relative to b; this will give that the whole sequence (η n ) weakly converges to η. Just to simplify notation, we assume that the whole sequence (η n ) weakly converges to η.

lim n→∞ W sup t∈[0,T ] d P (µ n (t, i n (w)), µ(t, i(w))) dP(w) = 0. (31) Proof. Let (η n ) ⊂ M + P R d × Ω T (
We check conditions (i), (ii), (iii) of Denition 3.9. First, since µ n (0, µ) = µ ν n -a.e., we get (e 0 ) η n = ν n , hence (e 0 ) η = ν and condition (i) is satised. Second, we check condition (iii):

for φ ∈ C c (R d ) nonnegative we have R d φ dE((e t ) η n ) = R d φ dE(µ(t, •) ν n ) = W R d φ dµ n (t, i n (w)) dP(w)
and we can use assumption (i) to conclude that

R d φ dE((e t ) η) ≤ C R d φ dz ∀ t ∈ [0, T ], (32) 
so that condition (iii) is fullled.

Finally we check condition (ii). Since η n are concentrated on the closed set of pairs (µ, ω) with ω(0) = µ, the same is true for η; it remains to show that ω(t) solves ( 19) for η-a.e. (µ, ω). We shall denote by σ ∈ M + Ω T (P(R d )) the projection of η on the second factor and prove that ( 19) holds for σ-a.e. ω.

We

x φ ∈ C ∞ c R d \ (S × R n ) and ϕ ∈ C ∞ c (0, T ); we claim that the discontinuity set of the bounded map ω → T 0 ϕ (t) R d φ dω(t) + ϕ(t) R d b, ∇φ dω(t) dt (33) 
is σ-negligible. Indeed, using ( 21) with X = R d this discontinuity set is easily seen to be contained in

ω ∈ Ω T (P(R d )) : T 0 ω(t)(Σ × R n ) dt > 0 , ( 34 
)
where Σ is the discontinuity set of c. Since L d (Σ × R n ) = 0, by assumption (c), for all t ∈ [0, T ] the inequality (32) gives ω(t)(Σ×R n ) = 0 for σ-a.e. ω; by Fubini's theorem in [0, T ]×Ω T (P(R d ))

we obtain that the set in (34) is σ-negligible. Now we write assumption [START_REF] Sturm | Entropic measure on multidimensional spaces[END_REF] in terms of η n as sup δ>0 lim sup

n→∞ P(R d )×Ω T (P(R d )) T 0 B R 1 dist β (x, S) + δ dω(t) dt dη n (µ, ω) < ∞ ∀ R > 0,
and take the limit thanks to Fatou's Lemma and the Monotone Convergence Theorem to obtain

Ω T (P(R d )) T 0 B R 1 dist β (x, S) dω(t) dt dσ(ω) < ∞ ∀ R > 0. ( 35 
)
Next we write assumption (v) in terms of η n as

lim n→∞ P(R d )×Ω T (P(R d )) ζ T 0 ϕ (t) R d φ dω(t) + ϕ(t) R d b, ∇φ dω(t) dt dη n (µ, ω) = 0 with ζ ∈ C b P R d × Ω T (P(R d )
) nonnegative; then, the claim on the continuity of the map in ( 33) and ( 21) with X = P R d × Ω T (P(R d )) allow to conclude that

P(R d )×Ω T (P(R d )) ζ T 0 ϕ (t) R d φ dω(t) + ϕ(t) R d b, ∇φ dω(t) dt dη(µ, ω) = 0. Now we x A ⊂ C ∞ c R d \ (S × R n ) , B ⊂ C ∞ c (0, T ) countable dense, and use the fact that ζ is arbitrary to nd a σ-negligible set N ⊂ Ω T (P(R d )) such that T 0 ϕ (t) R d φ dω(t) + ϕ(t) R d b t , ∇φ dω(t) dt = 0 ∀ φ ∈ A, ∀ ϕ ∈ B
for all ω / ∈ N , and by a density argument we conclude that σ is concentrated on solutions to the continuity equation in R d \ (S × R n ). By Lemma 5.1 and (35) we obtain that σ-a.e. the continuity equation holds globally. By Theorem 4.4 we know that the ν-RLF µ(t, µ) in P R d exists, is unique, and related to the unique generalized ν-RLF η as in ( 24), [START_REF] Lions | Sur les équations diérentielles ordinaires et les équations de transport[END_REF]. This proves that we have convergence of the whole sequence (η n ) to η. By applying Lemma 2.2 with X = P R d and Y = Ω T (P(R d )) we conclude that (31) holds.

In the next remark we consider some extensions of this result to the case when b satises (a), (b) only, so that no information is available on the discontinuity set Σ of c. 

W R d φ dµ n (t, i n (w)) dP(w) ≤ C R d φ dx ∀ φ ∈ C c (R d ), φ ≥ 0, n ≥ 1
for some constant C independent of t. Indeed, assumption (c) was needed only to pass to the limit, in the weak convergence of η n to η, with test functions of the form (33). But, if the stronger regularity condition above holds, convergence always holds by a density argument: rst one checks this with b continuous and bounded on supp φ, and in this case the test function is continuous and bounded; then one approximates b in L 1 on supp φ by bounded continuous functions.

6 Well-posedness of the continuity equation with a singular potential

In this section we shall assume that d = 2n and consider a more particular class of autonomous and Hamiltonian vector elds b :

R d → R d of the form b(z) = p, -∇U (x) , z = (x, p) ∈ R n × R n .
Having in mind the application to the convergence of the Wigner/Husimi transforms in quantum molecular dynamics, we assume that:

(i) there exists a closed L n -negligible set S ⊂ R n such that U is locally Lipschitz in R n \ S and ∇U ∈ BV loc (R n \ S; R n ); (ii) U (x) → +∞ as x → S. (iii) U satises ess sup U (x)≤M |∇U (x)| 1 + |x| < ∞ ∀ M ≥ 0. ( 36 
)
Theorem 6.1. Under assumptions (i), (ii), (iii), the continuity equation [START_REF] Lions | Sur les mesures de Wigner[END_REF] has existence and uniqueness in

L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) . Proof. (Uniqueness) Let w t ∈ L ∞ + [0, T ]; L 1 ∩ L ∞ (R d
) be a solution to [START_REF] Lions | Sur les mesures de Wigner[END_REF], and consider a smooth compactly supported function φ : R → R + . Set E = E(x, p) := 1 2 |p| 2 + U (x). Then, since U is locally Lipschitz on sublevels {U ≤ } for any ∈ R (by (i)-(ii)), φ • E is uniformly bounded and locally Lipschitz in R d . Moreover

∇ φ • E (z), b(z) = φ (E(z)) ∇E(z), b(z) = 0 for L d -a.e. z ∈ R d ,
and we easily deduce that also (φ [START_REF] Lions | Sur les mesures de Wigner[END_REF]. Let M > 0 be large enough so that supp φ ⊂ [-M, M ], and let ψ : [START_REF] Lions | Sur les mesures de Wigner[END_REF] with the vector eld b := (ψ • E)b. Now, thanks to (i)-(iii), it is easily seen that the following

• E)w t ∈ L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) solves
R → R + be a smooth cut-o function such that ψ ≡ 1 on [-M, M ]. Then φ • E = (ψ • E)(φ • E), which implies that (φ • E)w t solves
properties hold: b ∈ BV loc (R d ; R d ), ess sup | b|(z) 1 + |z| < ∞. (37) 
Indeed, the rst one is a direct consequence of (i)-(ii), while the second one follows from (ii)-(

and the simple estimate ess sup

E(z)≤M |b(z)| 1 + |z| ≤ sup |p| 1 + |p| + ess sup U (x)≤M |∇U (x)| 1 + |x| < ∞ ∀ M > 0.
Thanks to (37), we can apply [2, Theorems 34 and 26] to deduce that (φ • E)w t is unique, given the initial condition µ 0 = (φ • E)w 0 L d . Since E(z) is nite for L d -a.e. z, by the arbitrariness of φ we easily obtain that w t is unique, given the initial condition w 0 . (Existence) We now want to prove existence of solutions in 

L ∞ + [0, T ]; L 1 ∩L ∞ (R d ) . Let w ∈ L 1 ∩ L ∞ (R d
k := (p, -∇V k ) with w k 0 = w, R d w k t dx dp = R d w k 0 dx dp and with w k t ∞ ≤ w k 0 ∞ (they are the push forward of w k 0 under the ow map of b k ). Since φ → R d w k t φ dx dp are equi-continuous for all φ ∈ C 1 c (R d ), we can assume the existence of w ∈ L ∞ + [0, T ]; L 1 ∩ L ∞ (R d ) with w k t → w t weakly, in the duality with C 1 c (R d )
, for all t ≥ 0. Taking the limit as k → ∞ immediately gives that w t is a solution to [START_REF] Lions | Sur les mesures de Wigner[END_REF]. Theorem 6.2. Under assumptions (i), (ii), (iii), the ν-RLF x(t, x, p), p(t, x, p) in R 2n and the ν-RLF µ(t, µ) in P R 2n relative to b(x, p) := (p, -∇U (x)) exist and are unique. They are related by

µ(t, µ) = R 2d
δ (x(t,x,p),p(t,x,p)) dµ(x, p). 7 Estimates on solutions to [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF] and on error terms

In this section we collect some a-priori estimates on solutions to (1) and on the error terms E ε (U, ψ), E ε (U, ψ), appearing respectively in ( 9) and [START_REF] Bouchut | Renormalized solutions to the Vlasov equation with coecients of bounded variation[END_REF].

We recall that the Husimi transform ψ → Wε ψ can be dened in terms of convolution of the Wigner transform with the 2n-dimensional Gaussian kernel with variance ε/2

G (2n) ε (x, p) := e -(|x| 2 +|p| 2 )/ε (πε) n = G (n) ε (x)G (n) ε (p), (39) 
namely Wε ψ = (W ε ψ) * G (2n) ε 
. It turns out that the asymptotic behaviour as ε → 0 is the same for the Wigner and the Husimi transform (see also (45) below for a more precise statement).

For later use, we recall that the x marginal of W ε ψ is the position density |ψ| 2 L n . Also, the change of variables

x + ε 2 y = u x -ε 2 y = u (40) 
and a simple computation show that the p marginal of W ε ψ is the momentum density, namely (2πε) -n |Fψ| 2 (p/ε)L n (strictly speaking these identities are only true in the sense of principal values, since W ε ψ, despite tending to zero as |(x, p)| → ∞, does not in general belong to L 1 ).

Since the Gaussian kernel G

has a product structure, it turns out that

R n Wε ψ(x, p) dp = R n |ψ| 2 (x -x )G (n) ε (x ) dx , (41) 
R n Wε ψ(x, p) dx = 1 2πε n R n |Fψ| 2 p -p ε G (n) ε (p ) dp . (42) 
Since Wε ψ is nonnegative (see Section 8 for details) the two identities above hold in the standard sense.

As in [START_REF] Lions | Sur les mesures de Wigner[END_REF] we shall consider the completion A of C ∞ c (R 2n ) with respect to the norm

ϕ A := R n sup x∈R n |F p ϕ|(x, y) dy ϕ ∈ C ∞ c (R 2n ), (43) 
where F p denotes the partial Fourier transform with respect to p.

It is easily seen that sup |ϕ| ≤ φ A , hence A is contained in C b (R 2n ) and M (R 2n ) canonically embeds into A (the embedding is injective by the density of C ∞ c (R 2n )). The norm of A is technically convenient because of the simple estimate R 2n ϕW ε ψ dxdp ≤ 1 (2π) n ϕ A ψ 2 2 . ( 44 
) Since for all ϕ ∈ C ∞ c (R 2n ) one has ϕ * G (2n) ε → ϕ in A as ε ↓ 0, it follows that lim ε↓0 R d ϕW ε ψ dx dp - R d ϕ Wε ψ dx dp = 0 uniformly on bounded subsets of L 2 (R d ; C). (45) 
This will obviously be an ingredient in transferring the dynamical properties from the Wigner to the Husimi transforms.

The PDE satised by the Husimi transforms

In this short section we see how ( 9) is modied in passing from the Wigner to the Husimi transform. Denoting by τ (y,q) the translation in phase space induced by (y,

q) ∈ R n × R n , from (9) 
we get

∂ t τ (y,q) W ε ψ ε t + (p -q) • ∇ x τ (y,q) W ε ψ ε t = τ (y,q) E ε (U, ψ ε t )
in the sense of distributions. Since Wε ψ ε t is an average of translates of W ε ψ ε t , we get (still in the sense of distributions)

∂ t Wε ψ ε t + p • ∇ x Wε ψ ε t = E ε (U, ψ ε t ) * G (2n) ε + √ ε∇ x • [W ε ψ ε t * Ḡ(2n) ε ], (46) 
where

Ḡ(2n) ε (y, q) := q √ ε G (2n) ε (y, q). (47) 
Indeed, we have -

R 2n q • ∇ x τ (y,q) W ε ψ ε t G (2n) ε (y, q) dydq = - √ ε∇ x • [W ε ψ ε t * Ḡ( 2n) ε ] 
.

Although we will not use it here, let us mention that it is possible to derive a closed equation (i.e. not involving W ε ψ ε t ) for Wε ψ ε t (see [8] and [9], [10] for applications to the semiclassical limit in strong topology).

Assumptions on U

We assume that n = 3M , x = (x 1 , . . . , x M ) ∈ (R 3 ) M and U = U s + U b , with U s the (repulsive)

Coulomb potential U s (x) = 1≤i<j≤M Z i Z j |x i -x j | , (48) 
with Z i > 0, and U b globally bounded and Lipschitz, with ∇U b ∈ BV loc (R n ; R n ).

In this context the singular set S of Section 5 and Section 6 is given by

S = 1≤i<j≤M S ij with S ij := {x ∈ R n : x i = x j } and therefore U s (x) ≥ c dist (x, S) (49) 
with c > 0 depending only on the numbers Z i in (48).

The vector eld b = (p, -∇U ) satises the assumptions (a)-(b) of Section 5 and the assumptions (i)-(iii) of Section 6, so that the ν-RLF in R 2n and the ν-RLF in P R 2n relative to b exists and are unique, and the stability result of Section 5 can be applied, as we will show in Section 9.

7.3 Estimates on solutions to [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF] Conserved quantities.

R n 1 2 |ε∇ψ ε t | 2 + U |ψ ε t | 2 dx = R n 1 2 |ε∇ψ ε 0 | 2 + U |ψ ε 0 | 2 dx ∀ t ∈ R, (50) 
R n |H ε ψ ε t | 2 dx = R n |H ε ψ ε 0 | 2 dx ∀ t ∈ R. (51) 
A priori estimate. [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF]Lemma 5.1].

sup t∈R R n U 2 s |ψ ε t | 2 dx ≤ R n |H ε ψ ε 0 | 2 dx + 2 sup |U b | ψ ε 0 , H ε ψ ε 0 dx + sup |U b | . (52) 
Tightness in space. [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF]Lemma 3.3].

sup

t∈[-T,T ] R n \B 2R |ψ ε t | 2 dx ≤ R n \B R |ψ ε 0 | 2 (x) dx + cT 1 + ψ ε 0 , H ε ψ ε 0 dx R (53)
with c depending only on n.

Estimates and convergence of E ε (U b , ψ)

In this section we prove estimates and convergence of the term E ε (U b , ψ), as dened in [START_REF] Athanassoulis | Regularization of certain ill-posed semiclassical limits[END_REF]. In particular we use averaging with respect to the random parameter w to derive new estimates on E ε (V, ψ ε w ), with V Lipschitz only, so that the estimates are applicable to V = U b . The rst basic estimate on E ε (V, ψ), for ψ with unit L 2 norm, can be obtained, when V is Lipschitz, by estimating the dierence quotient in the square brackets in [START_REF] Athanassoulis | Regularization of certain ill-posed semiclassical limits[END_REF] with the Lipschitz constant:

R 2n E ε (V, ψ)φ dx dp ≤ 1 (2π) n ∇V ∞ R n |y| sup x∈R n |F p φ|(x, y) dy. (54) 
In order to derive a more rened estimate we consider families ψ ε w indexed by a parameter w ∈ W , with (W, F, P) probability space, satisfying:

sup ε>0 sup (x,p)∈R 2n W Wε ψ ε w (x, p) dP(w) < ∞, (55) 
sup ε>0 sup x∈R n W |ψ ε w * G (n) λε 2 | 2 (x) dP(w) ≤ C(λ) < ∞ ∀λ > 0. (56) 
Under these assumptions, our rst convergence result reads as follows:

Theorem 7.1 (Convergence of error term, I). Let ψ ε w ∈ L 2 (R n ; C) be normalized wavefunctions satisfying (55), (56) and let V : R n → R be Lipschitz. Then

lim ε→0 W R 2n E ε (V, ψ ε w )φ dxdp + R 2n ∇V, ∇ p φ Wε ψ ε w dxdp dP(w) = 0 ∀φ ∈ C ∞ c (R 2n ). (57)
Proof. The proof is achieved by a density argument. The rst remark is that linear combinations of tensor functions φ(x, p) = φ 1 (x)φ 2 (p), with φ i ∈ C ∞ c (R n ), are dense for the norm considered in (54). In this way, we are led to prove convergence in the case when φ(x, p) = φ 1 (x)φ 2 (p). The second remark is that convergence surely holds if V is of class C 2 (by the arguments in [START_REF] Lions | Sur les mesures de Wigner[END_REF], [START_REF] Ambrosio | Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions[END_REF], see also the splitting argument in the y space in the proof of Theorem 7.3). Hence, combining the two remarks and using the linearity of the error term with respect to the potential V , we can prove convergence by a density argument, by approximating V uniformly and in W 1,2 topology on the support of φ 1 by potentials V k ∈ C 2 (R n ) with uniformly Lipschitz constants; then, setting A k = (V -V k )φ 1 and choosing a sequence λ k in Proposition 7.2 converging slowly to 0, in such a way that ∇A k 2 → 0 much faster than 1/C(λ k ), we obtain

lim k→∞ sup ε>0 W R 2n E ε (V -V k , ψ ε w )(x, p)φ 1 (x)φ 2 (p) dxdp dP(w) = 0.
As for the term in (57) involving the Wigner transforms, we can use (55) to obtain that lim sup

k→∞ sup ε>0 W R 2n Wε ψ ε w ∇(V -V k ), ∇φ 2 φ 1 dxdp dP(w)
can be estimated from above with a constant multiple of

lim sup k→∞ R n |φ 1 ||∇V -∇V k | dx R n |∇φ 2 |(p) dp = 0.
We shall actually use the conclusion of Theorem 7.1 in the form

lim ε→0 W R 2n E ε (V, ψ ε w )φ * G (2n) ε dxdp + R 2n ∇V, ∇ p φ Wε ψ ε w dxdp dP(w) = 0 ∀φ ∈ C ∞ c (R 2n ) (58) 
with φ replaced by φ * G (2n) ε in the rst summand, in the factor of E ε (V, ψ ε w ); this formulation is equivalent thanks to (54).

Proposition 7.2 (A priori estimate). Let ψ ε w ∈ L 2 (R n ; C) be unitary wavefunctions satisfying (56) and let

φ 1 , φ 2 ∈ C ∞ c (R n ).
Then, for all V : R n → R Lipschitz and all λ > 0, we have that

W R 2n E ε (V, ψ ε w )(x, p)φ 1 (x)φ 2 (p) dxdp dP(w) (59) 
can be estimated from above with

φ 1 ∞ ∇V ∞ R n |y||F p φ 2 (y) -F p φ 2 * G (n) λ (y)| dy + √ λ ∇A ∞ F p φ 2 1 R n |u|G (n) 1 (u) du + C(λ) ∇A 2 R n |z||F p φ 2 |(z) dz + V ∞ ∇φ 1 ∞ R n |y||F p φ 2 * G (n) λ |(y) dy. ( 60 
)
where A := V φ 1 and C(λ) is given in (56).

Proof. Set φ2 = F p φ 2 ; since (54) gives that

R 2n E ε (V, ψ ε w )φ 1 (x)φ 2 (p) dxdp - R 2n E ε (V, ψ ε w )φ 1 (x)φ 2 (p)e -|p| 2 λ/4 dxdp can be estimated from above with φ 1 ∞ ∇V ∞ |y|| φ2 (y) -φ2 * G (n)
λ (y)| dy we recognize the rst error term in (60) and we will estimate the integral of E ε (V,

ψ ε w ) against φ 1 (x)φ 2 (p)e -|p| 2 λ/4 , namely W R 2n V (x + ε 2 y) -V (x -ε 2 y) ε φ 1 (x) φ2 * G (n) λ (y)ψ ε w (x + ε 2 y)ψ ε w (x - ε 2 y)dxdydP(w).
In addition, we split this expression as the sum of three terms, namely

I := W R 2n A(x + ε 2 y) -A(x -ε 2 y) ε φ2 * G (n) λ (y)ψ ε w (x + ε 2 y)ψ ε w (x - ε 2 y) dxdydP(w), (61) 
II := W R 2n V (x+ ε 2 y) φ 1 (x) -φ 1 (x + ε 2 y) ε φ2 * G (n) λ (y)ψ ε w (x+ ε 2 y)ψ ε w (x - ε 2 y) dxdydP(w), (62) 
III := - W R 2n V (x - ε 2 y) φ 1 (x) -φ 1 (x -ε 2 y) ε φ2 * G (n) λ (y)ψ ε w (x + ε 2 y)ψ ε w (x - ε 2 y) dxdydP(w). (63) 
The most dicult term to estimate is (61), since both (62) and (63) can be easily estimated from above with

1 2 V ∞ ∇φ 1 ∞ R n |y|| φ2 * G (n)
λ |(y) dy. We rst perform some manipulations of this expression, omitting for simplicity the integration w.r.t. w; then we will estimate the resulting terms taking (56) into account.

We expand the convolution product and make the change of variables (40) to get

1 (πλ) n/2 ε n R n R 2n A(u) -A(u ) ε e -|εz-(u-u )| 2 ε 2 λ ψ ε w (u)ψ ε w (u ) φ2 (z)dudu dz. (64) 
Now, the term containing A(u) is equal to

1 ε R 2n (Aψ ε w ) * G (n) λε 2 (u + εz)ψ ε w (u ) φ2 (z)du dz (65) 
and the term containing A(u ) is equal to

1 ε R 2n A(u )ψ ε w * G (n) λε 2 (u + εz)ψ ε w (u ) φ2 (z)du dz. (66) 
Now, subtract (66) from (65) to get that (64

) equals R ε w,1 + R ε w,2 , where R ε w,1 := 1 ε R 2n (Aψ ε w ) * G (n) λε 2 (u + εz) -A(u + εz)ψ ε w * G (n) λε 2 (u + εz) ψ ε w (u ) φ2 (z)du dz and R ε w,2 := 1 ε R 2n [A(u + εz) -A(u )]ψ ε w * G (n) λε 2 (u + εz)ψ ε w (u ) φ2 (z)du dz.
Thus, the apriori estimate on the expression in (61) can be achieved by estimating the integrals of the error terms R ε w,i w.r.t. w.

Writing R ε w,1 in the form R n φ2 (z) R n ×R n A(u + εz -u) -A(u + εz) ε G (n) λε 2 (u)ψ ε w (u )ψ ε w (u + εz -u) dudu dz we can estimate from above W |R ε w,1 | dP(w) by ∇A ∞ W R n | φ2 |(z) R n ×R n |u| ε G (n) λε 2 (u)|ψ ε w |(u )|ψ ε w |(u + εz -u) dudu dzdP(w)
and then by 

√ λ ∇A ∞ W R n | φ2 |(z) R n ×R n η ε (u)|ψ ε w |(u )|ψ ε w |(u + εz -u) dudu dzdP(w) where η ε (u) := G (n) λε 2 (u)|u|/( √ 
C(λ) R n | φ2 |(z) R n |A(u + εz) -A(u )| ε W |ψ ε w | 2 (u ) dP(w) du dz.
Then we can use the standard L 2 estimate on dierence quotients of W 1,2 functions to bound this last expression with

C(λ) ∇A 2 R n |z|| φ2 |(z) dz.
This completes the estimate of the term in (61) and the proof.

Estimates and convergence of

E ε (U s , ψ)
In the case of the Coulomb potential we follow a specic argument borrowed from [7, proof of Theorem 1.1(ii)]), based on the inequality

1 |z + w/2| - 1 |z -w/2| ≤ |w| |z + w/2||z -w/2| (67) with z = (x i -x j ) ∈ R 3 , w = ε(y i -y j ) ∈ R 3
. By estimating the dierence quotients of U s as in (67) we obtain:

R d E ε (U s , ψ)φ dx dp ≤ C * R n |y| sup x |F p φ|(x , y) dy R n U 2 s |ψ| 2 dx, (68) 
with C * depending only on the numbers Z i in (48). Now we can state the convergence of E ε (U s , ψ ε ); the particular form of the statement, with convolution on φ on one side and convolution on W ε ψ ε on the other side (namely the Husimi transform), is motivated by the goal we have in mind, namely the fact that the Husimi transforms asymptotically satisfy the Liouville equation. Theorem 7.3 (Convergence of error term, II). Let ψ ε ∈ L 2 (R n ; C) be unitary wavefunctions satisfying

sup ε>0 R n U 2 s |ψ ε | 2 dx < ∞. (69) 
Then

lim ε→0 R 2n E ε (U s , ψ ε )φ * G (n) ε dxdp + R 2n ∇U s , ∇ p φ Wε ψ ε dxdp = 0 ∀φ ∈ C ∞ c (R 2n \ (S × R n ) . (70) 
Proof. First of all, we see that we can apply (45) with ϕ = ∇U s , ∇ p φ to replace the integrals R 2n ∇U s , ∇ p φ Wε ψ ε dxdp with R 2n ∇U s , ∇ p φ W ε ψ ε dxdp in the verication of (70).

Analogously, using (69) and ( 68) we see that we can replace

R 2n E ε (U s , ψ ε )φ * G (n) ε dxdp with R 2n E ε (U s , ψ ε )φ dxdp.
Thus, we are led to show the convergence 

lim ε→0 R 2n E ε (U s , ψ ε )φ dxdp + R 2n ∇U s , ∇ p φ W ε ψ ε dxdp = 0 ∀φ ∈ C ∞ c (R 2n \ (S × R n ) . (71) Since R 2n E ε (U s , ψ ε )φ dxdp = - i (2π) n R 2n U s (x + ε 2 y) -U s (x -ε 2 y) ε ψ ε (x+ ε 2 y)ψ(x - ε 2 
U s (x + ε 2 y) -U s (x -ε 2 y) ε → ∇U s (x), y
uniformly as √ ε|y| ≤ 1 and x belongs to a compact subset of R n \ S, the contribution of the second part is the same as that of

- i (2π) n R 2n ∇U s (x), y ψ ε (x + ε 2 y)ψ(x - ε 2 y)F p φ(x, y) dxdy which coincides with - R 2n ∇U s , ∇ p φ W ε ψ ε (x, p) dxdp.
8 L ∞ -estimates on averages of ψ

In this section we consider a family of solutions ψ ε t,w to the Schrödinger equation ( 1) indexed by a parameter w, and derive new estimates on their averages. In particular we obtain pointwise upper bounds on Husimi transforms.

One of the main advantages of the Husimi transform is that it is non-negative: indeed, with the change of variables (40) and simple computations (see [START_REF] Lions | Sur les mesures de Wigner[END_REF] for more details), it can be written as

Wε ψ(y, p) = 1 (2π) n ρ ψ φ ε y,p , φ ε y,p = 1 (2π) n | ψ, φ ε y,p | 2 , (72) 
where •, • is the scalar product on L 2 (R n ; C),

φ ε y,p (x) := 1 ε n/2 1 (πε) n/4 e -|x-y| 2 /(2ε) e i(p•x)/ε ∈ L 2 (R n ; C), (73) and ρ ψ : L 2 (R n ; C) → L 2 (R n ; C) is the orthogonal projector onto ψ ∈ L 2 (R n ; C): [ρ ψ φ](x) := R n φ(x )ψ(x ) dx ψ(x). Proposition 8.1 (L ∞ estimates). Let ψ ε w ∈ L 2 (R n ; C) be satisfying the operator inequalities 1 ε n W ρ ψ ε w dP(w) ≤ CId ∀ε > 0.
Then:

(a) for all y ∈ R n and ε, λ > 0 we have

W |ψ ε w * G (n) 2λε 2 | 2 (y) dP(w) ≤ C λ n/2 ;
(b) for all (y, p) ∈ R 2n and ε > 0 we have

W Wε ψ ε w (y, p) dP(w) ≤ C.
Proof. The proof of (a) follows by applying the uniform operator inequality to the functions

(2ε) n/2 (πλ) n/4 G (n) 2λε 2 (• -y), whose L 2 norm is 1, to get ε n λ n/2 W |ψ ε w * G (n) 2λε 2 | 2 (y) dP(w) ≤ Cε n .
The proof of (b) is analogous, it is based on (72) and on the insertion of the functions φ ε y,p in (73) in the operator inequality, taking into account that φ ε y,p 2 = ε -n/2 .

The assumption made in Proposition 8.1 is compatible with the families of wavefunctions given in [START_REF] Diperna | Ordinary dierential equations, transport theory and Sobolev spaces[END_REF], i.e.

ψ ε w (x) = ε -nα/2 φ 0 x -x 0 ε α e i(x•p 0 )/ε φ 0 ∈ C 2 c (R n ), 0 < α < 1 (74) 
with w = (x 0 , p 0 ). Indeed, in this case one can choose W = R 2n with the Borel σ-algebra and P = ρL 2n , with ρ ∈ L 1 ∩ L ∞ , see [17] for details. In the extreme case α = 1 no average w.r.t. p 0 is needed and one can x it and choose W = R n , obtaining convergence for almost all x 0 , so to speak. The other extreme case α = 0, corresponding to concentration in momentum, is analogous.

Main convergence result

In this section we combine the theory developed in Sections 26 with the estimates of the Section 7

and Section 8, to obtain convergence of the Wigner/Husimi transforms of solutions to [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector elds[END_REF]. In particular we shall apply Theorem 5.2.

We consider the assumptions on U stated in Section 7.2 and random initial data ψ ε 0,w ∈ H 2 (R n ; C) with unit L 2 norm in (1) indexed by w ∈ W , where (W, F, P) is a suitable probability space. Denoting by ψ ε t,w the corresponding Schrödinger evolutions, the basic assumptions we need for the initial data are (77)

As we discussed in Section 8, (75), (76), (77) are compatible with several natural families of initial conditions, for instance those described at the end of the introduction, see [START_REF] Diperna | Ordinary dierential equations, transport theory and Sobolev spaces[END_REF] or (74).

In addition, the unitary character of the Schrödinger evolution immediately gives

1 ε n W ρ ψ ε t,w dP(w) ≤ CId ∀ε > 0, t ≥ 0, ( 78 
)
where C is the same constant as in (76).

We state (79) below using the Husimi transforms, but (45) can be used to show convergence of Wigner transforms, in the form used in [START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coecients[END_REF] in the introduction.

Theorem 9.1. For U as in Section 7.2, and under assumptions (75), (76), (77), we have 

for all T > 0, where ν = i P ∈ P P R 2n and µ(t, µ) is the ν-RLF in (38).

Proof. Our goal is to apply Theorem 5.2 (with a continuous parameter ε) and Remark 5.3 with i ε (w) := Wε ψ ε 0,w L 2n and µ ε (t, i ε (w)) = Wε ψ ε t,w L 2n . The convergence (79) will be a direct consequence of (31). We shall work in the time interval [0, T ], the proof in the time interval [-T, 0] being the same, up to a time reversal. First of all we notice that (75) and ( 51 

In particular, by an integration by parts, we have also (82)

In particular we have uniform and not only asymptotic regularity, therefore Remark 5.3 applies.

(ii) (uniform decay away from the singularity). We check [START_REF] Sturm | Entropic measure on multidimensional spaces[END_REF] 

In turn, this inequality follows by ( 52) and (49), taking (75) into account.

(iii) (space tightness). We have to check that for all δ > 0 it holds: Considering the cube C R containing B R , this tightness property can be checked separately for the rst and the second marginals of Wε ψ ε t,w ; using (41), (42), it is not hard to see that it suces to check the analogous property for the marginals of the corresponding Wigner transforms; for the rst marginals, tightness is a direct consequence of (53) and (75). For the second marginals, . According to [START_REF] Athanassoulis | Strong phase-space semiclassical asymptotics[END_REF], the time derivative in the formula above consists of two terms, p, ∇ x φ ε W ε ψ ε t,w dx dp and E ε (U, ψ ε t,w )φ ε dx dp and we need only to show a property analogous to (86) for these two terms. Since φ ∈ C ∞ c (R 2n ), p, ∇ x φ ε A are easily seen to be uniformly bounded, hence the rst term can be estimated using (44). The second term can be estimated using (54) for U b and (68) for U s , taking (52) and (75) into account. Verication of (88). This is easy, taking into account the fact that 

R 2n W ε ψ ε t,w * Ḡ(2n) ε , ∇ x φ dxdp = - R 2n W ε ψ ε t,w ∇ x • [φ * Ḡ(2n)

  and set b t (•) := b(t, •); we shall not work with the Lebesgue equivalence class of b, although a posteriori our theory is independent of the choice of the representative (see Remark 3.8); this is important in view of the fact that[START_REF] Gérard | Mesures semi-classiques et ondes de Bloch. Seminaire sur les Équations aux Dérivées Partielles[END_REF] 

  thought as a subset of C 0 (R d ) *, where C 0 (R d ) denotes the set of continuous functions vanishing at innity (i.e. the closure of C c (R d ) with respect to the uniform convergence).

Lemma 4 . 3 .

 43 Let E ⊂ G * , with G separable Banach space, be closed, convex and bounded, and let σ be a positive nite measure on C w [0, T ]; E . Then σ is a Dirac mass if and only if (e t ) σ is a Dirac mass for all t ∈ Q ∩ [0, T ].

  Many formulations of the stability result are indeed possible and we have chosen one specic for the application we have in mind. Henceforth we x an autonomous vector eld b : R d → R d satisfying the following regularity conditions: (a) d = 2n and b(x, p) = (p, c(x)), (x, p) ∈ R d , c : R n → R n Borel and locally integrable; (b) there exists a closed L n -negligible set S such that c is locally bounded on R n \ S;

  The proof of the global validity of the continuity equation uses the classical argument of removing the singularity by multiplying any test function φ ∈ C ∞ c (R d ) by χ k , where χ k (x) = χ(kdist(x, S)) and χ is a smooth cut-o function equal to 0 on [0, 1] and equal to 1 on [2, +∞), with 0 ≤ χ ≤ 2. If we use φχ k as a test function, since χ k depends on x only, we can use the particular structure (a) of b to write the term depending on the derivatives of χ k as k T 0 R d φχ (kdist(x, S)) p, ∇dist(x, S) dµ t (x, p)dt.

Remark 5 . 3 .

 53 Assume that b satises (a), (b) only. Then the conclusion of Theorem 5.2 is still valid, provided the asymptotic regularity condition (i) holds in a stronger form, namely

  ) be nonnegative and let us consider a sequence of smooth globally Lipschitz functions V k with |∇V k -∇U | → 0 in L 1 loc (R n ); standard results imply the existence of nonnegative solutions w k to the continuity equation with velocity b

  and uniqueness of the ν-RLF in R d follow by Theorem 6.1 and Theorem 4.1. The uniqueness of the ν-RLF in P R d and its relation with the ν-RLF are a consequence respectively of Theorem 4.4 and Theorem 4.2.

  sup ε>0 W R n |H ε ψ ε 0,w | 2 dx dP(w) < ∞, lim R↑∞ sup ε>0 W R n \B R |ψ ε 0,w | 2 dx dP(w) = 0; dP(w) ≤ CId with C independent of ε;(76) i(w) := lim ε↓0 Wε ψ ε 0,w L d exists in P R d for P-a.e. w ∈ W .

  sup t∈[-T,T ] d P Wε ψ ε t,w , µ(t, i(w)) dP(w) = 0,

  ) give sup ε>0 sup t∈R W R n |H ε ψ ε t,w | 2 dx dP(w) < ∞.

  | 2 dx dP(w) < ∞. (81) (i) (asymptotic regularity). By (78) and Proposition 8.1(b) we have the uniform estimate (in ε, t and (x, p)) W Wε ψ ε t,w (x, p) dP(w) ≤ C.

2

 2 with β = 2 and S equal to the singular set of U s , namely (x, S) + δ Wε ψ ε t,w dx dp dt dP(w) < ∞.

2 2

 22 (x, S) + δ * G (n) ε ≤ 1 dist 2 (x, S) ,which holds in B R for ε < ε(δ, R) to deduce (83) from (x, S) |ψ ε t,w | 2 dx dt dP(w) < ∞.

  T ] R 2n \B R Wε ψ ε t,w dx dp > δ = 0.

  we use (81) and the identityR n ×R n |p| 2 W ε ψ dx dp = R n 1 (2πε) n/2 ψ(p/ε) 2 |p| 2 dp = R n |ε∇ψ| 2 dx (85) with ψ = ψ ε t,w .

(φ

  iv) (time tightness). We need to show that for all φ ∈ C ∞ c (R 2n ) it holds lim Wε ψ ε t,w dx dp dt > M = 0;uniformly in ε. Equivalently, we can consider the limit limM ↑∞ P w ∈ W : T 0 R 2n φ ε W ε ψ ε t,w dx dp dt > M = 0,(86)where φ ε = φ * G (2n) ε

φ

  (v) (limit continuity equation). We have to show that lim Wε ψ ε t,w dxdp + ϕ(t)R 2n b, ∇φ Wε ψ ε t,w dxdp dt dP(w) = 0 for all φ ∈ C ∞ c R 2n \ (S × R n ) , ϕ ∈ C ∞ c (0, T ).Taking (46) into account, this is implied by the validity of the limitslim ε↓0 sup t∈[0,T ] W R 2n E ε (U, ψ ε t,w )φ * G (2n) ε dxdp + R 2n ∇U, ∇ p φ Wε ψ ε t,w dxdp dP(w) = 0, (87) x • [W ε ψ ε t,w * Ḡ(2n) ε ] dxdp dtdP(w) = 0. (88)Verication of (87). We can consider separately the contributions of U b and U s . For the U b contribution we apply Theorem 7.1, in the form stated in (58); the assumptions (55) and (56) of that theorem are fullled in view of (76) and Proposition 8.1. For the U s contribution we apply (70) of Theorem 7.3; the assumption (69) of that theorem is fullled in view of assumption (75) on the initial data and (52), ensuring propagation in time.

  (47), are uniformly bounded in L 1 (R n ).

  the operator H ε is selfadjoint on L 2 (R n ; C) with domain H 2 (R n ; C) and generates a unitary group in L 2 (R U is the Born-Oppenheimer ground state potential energy surface of the molecule, that is to say

n ; C); hence R n |ψ ε t | 2 dx = 1 for all t ∈ R, t → ψ ε t is continuous

with values in H 2 (R n ; C) and continuously dierentiable with values in L 2 (R n ; C). Prototypically,

  the image of the Lebesgue measure L d under the ow map x → X(t, x) is still controlled by L d (see Denition 3.1). It is not hard to show that, because of the additional regularity condition imposed on X, this concept is indeed invariant under modications of b in Lebesgue negligible sets (see Remark 3.8). Hence RLF's are appropriate to deal with vector elds belonging to Lebesgue L p spaces. On the other hand, since this regularity condition involves all trajectories X(•, x) up to L d -negligible sets of initial data, the best we can hope for using this concept is existence and uniqueness of

X(•, x) up to L d -negligible sets. Intuitively, this can be viewed as existence and uniqueness