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Abstract Move-to-front rule is a heuristic updating a list of n items according to re-

quests. Items are required with unknown probabilities (or popularities). The induced

Markov chain is known to be ergodic [4]. One main problem is the study of the dis-

tribution of the search cost defined as the position of the required item. Here we first

establish the link between two recent papers [3,8] that both extend results proved by

Kingman [7] on the expected stationary search cost. Combining results contained in

these papers, we obtain the limiting behavior for any moments of the stationary seach

cost as n tends to infinity.
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1 Introduction

The heaps problem was first considered, in independent works, by Tsetlin [11] and

McCabe [9]. Its basic description can be given as follows. Consider a collection of n

items stored into a list or heap and each of them is identified by a label. Hence, the
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objects can be described by the set I = {1, . . . , n}. The probability that the i–th item

is requested by a user is denoted by pi, for i = 1, . . . , n. Hence pi > 0, for any i, and
∑n

i=1 pi = 1. At each unit of time, an item is requested and it is searched for through

the heap, starting at the top. Once it is found, it is moved to the top of the heap.

The search cost is the position of the requested item in the heap or, equivalently, the

number of items to be removed from the heap in order to find the requested one. In

this setting, it might be of interest to determine the distribution of the search cost

when the underlying Markov chain is at equilibrium.

Kingman [7] first studied the case of random request probabilities, or random popular-

ities. His paper develops two important cases where request probabilities are defined

in terms of: (a) the normalized increments of a γ-stable subordinator; (b) the Dirichlet

distribution on the simplex. The results contained therein provide an exact analytic

evaluation of the expected search cost either for any finite n or in the limit, as the

number of items n tends to infinity. In particular, in the case of normalized γ-stable

request probabilities, it is found that the limiting expected search cost is finite if and

only if γ < 1/2.

These results have been recently extended in two independent papers. In [8] Lijoi and

Prünster studied the case of request probabilities derived from a normalized random

measures with independent increments, which generalizes the result obtained by King-

man [7]. In [3] Barrera and Paroissin studied the case of request probabilities based on

exchangeable random partitions.

It is to be emphasized that all previous contributions on the subject is confined to the

determination of the first moment of the stationary search cost. Here we wish to extend

earlier work and determine the expression of the limiting moments of any order in the

γ–stable case. In particular, it will be shown that the k–th moment exists if and only if

γ < 1/(k + 1) which reduces to the condition provided by [7] when k = 1. See also [8].

The outline of the paper is as follows. In Section 2 we provide a concise introduction

to some basic tools and notions that will be relevant for achieving the main result in

Section 3.

2 The γ-stable model

Before stating and proving our result, it might be worth recalling the main ingredients

that define the model we are going to use. As mentioned in the previous section, the

request probabilities pi, for i = 1, . . . , n, are going to be random. Indeed, if (wi)i≥1

is a sequence of positive independent random variables and Wn =
∑n

i=1 wi, one can

define

pi =
wi

Wn
i = 1, . . . , n

Hence, (p1, . . . , pn) is an exchangeable random partition of the unit interval. A possible

choice is wi := ξti − ξti−1 where 0 = t0 < t1 < · · · < tn = 1 and ξ = {ξt : t ∈

[0, 1]} is a subordinator that is a process with almost surely increasing paths and with

independents increments. In this case, one can express the the Laplace transform of wi

in terms of the Lévy intensity ν of ξ. In other words

φi(s) := E

[

e−swi

]

= exp

{

−(ti − ti−1)

∫ ∞

0

[

1− e−sy
]

ν(dy)

}

(1)
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with ν such that
∫∞
0

min{1, y} ν(dy) < ∞. According to the terminology set forth in

[10], (p1, . . . , pn) defines a normalized random measure with independent increments

(NRMI).

Lijoi and Prünster in [8] considered this general construction to determine an expression

of the expected value of the search cost Sn. In the special case where

ν(dy) =
γ

Γ (1− γ)
y−1−γ dy γ ∈ (0, 1) (2)

they recovered an expression of the limiting expected search cost, as n tends to infinity,

thus recovering a result proved by [7]. Note that if ν is as in (2), then φi(s) = exp{−(ti−

ti−1)s
γ} for any s ≥ 0.

Barrera and Paroissin [3] have been able to determine an integral representation for

the Laplace transform φSn
of the search cost Sn in terms of the Laplace transforms

φi of the single random weights wi. In doing so they rely on results proved by Fill and

Holst [5]. The expression they obtain is, then, used to derive a formula for the first

two moments. From these formulas, they get an asymptotic equivalent for the Laplace

transform of Sn and the limit of the two first moments. Only this last point needs

the assumption that the expectation of Sn is finite. Two examples are studied: the

case of deterministic weight and the case of gamma weight, which corresponds to the

Dirichlet partition. Notice that, for this case, some limiting results were proved with

an alternative way in [1]. The limiting distribution has been also derived in the general

iid case provided that the expectation µi of wi is finite [2].

In the following section we will undertake the approach developed in [3] and determine

the k–th moment of Sn by working directly on φSn
.

3 Moments of the stationary search cost

The main tool we are relying on for the evaluation of E[Sk
n] is the Laplace transform

of Sn as displayed in theorem 2.2 of [3] and recalled here below.

Theorem 1 For a sequence (wi)i≥1 of independent random variables

φSn
(s) =

n
∑

i=1

∫ ∞

0





∫ ∞

t

φ′′
i (r)

∏

j 6=i

ht,s,j(r) dr



 dt , (3)

for all s > 0, where for all j ∈ {1, . . . , n},

ht,s,j(r) = φj(r) + e−s(φj(r − t)− φj(r)) , t > 0, r > 0 .

Using (3), we are able to compute moments of any order of the search cost Sn.

Before doing so we need to introduce the quantity

Mk,n(s) := e−ks
∑

i6=i1 6= ··· 6=ik

∫ ∞

0

dt

∫ ∞

t

dr φ′′
i (r)

k
∏

l=1

(φil(r − t)− φil (r))

×
∏

j 6∈{i,i1,...ik}

[φj(r) + e−s(φj(r − t)− φj(r))] (4)

whose values, at s = 0, will determine the moments of Sn.
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Proposition 1 If the (p1, . . . , pn) are determined by normalizing the increments of a

γ-stable subordinator with ti − ti−1 = 1/n in (1) for each i ∈ {1, . . . , n}, then

lim
n→∞

Mk,n(0) =







(k!)2

( 1
γ
−k−1)k

if γ < 1
k+1

∞ otherwise

where (a)k = Γ (a+ k)/Γ (a) is the k–th ascending factorial of a.

Proof Note first that φi(s) = exp{−sγ/n} for any s ≥ 0. Moreover

Mk,n(0) =
∑

i6=i1 6=···6=ik

∫ ∞

0

∫ ∞

t

φ′′
i (r)

k
∏

l=1

(φil (r − t)− φil(r))
∏

j 6∈{i,i1,...ik}

φj(r − t) dr dt

=
∑

i6=i1 6=···6=ik

∫ ∞

0

∫ ∞

0

φ′′
i (r + t)

k
∏

l=1

(φil(r)− φil(r + t))
∏

j 6∈{i,i1,...ik}

φj(r) dr dt

=
∑

i6=i1 6=···6=ik

∫ ∞

0

∏

j 6∈{i,i1,...ik}

φj(r)

∫ ∞

0

φ′
i(r + t)

k
∑

l=1

φ′
il (r + t)

×

k
∏

m=1
m 6=l

(φim (r)− φim(r + t))dtdr

Taking into account the form of φi in the γ–stable case, one has

k
∏

m=1
m 6=l

(φim(r)− φim (r + t)) =
∑

al∈{0,1}k−1

k
∏

m=1
m 6=l

(−1)amφam

im
(r + t)φ1−am

im
(r)

=
∑

al∈{0,1}k−1

(−1)|al|e−
(r+t)γ

n
|al| e−

rγ

n
(k−1−|al|)

where al = (a1, . . . , al−1, al+1, . . . , ak) and |al| =
∑

m 6=l am. Summing up, in the

γ–stable case one has

Mk,n(0) =
γ2

n2

∑

i6=i1 6=···6=ik

k
∑

l=1

∑

al∈{0,1}k−1

(−1)|al|
∫ ∞

0

e−rγ(1− 1
n
− k

n
)

×

∫ ∞

0

(r + t)2γ−2 e−
(r+t)γ

n
(2+|al|) e−

rγ

n
(k−1−|al|) dt dr

=
γ2

n2

∑

i6=i1 6=···6=ik

k
∑

l=1

∑

al∈{0,1}k−1

(−1)|al|
∫ ∞

0

e−rγ(1− 2
n
−

|al|

n
)

×

∫ ∞

0

(r + t)2γ−2e−
(r+t)γ

n
(|al|+2) dtdr
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The change of variable (x, y) = ((r + t)γ , rγ) yields

Mk,n(0) =
1

n2

∑

i6=i1 6=···6=ik

k
∑

l=1

∑

al∈{0,1}k−1

(−1)|al|
∫ ∞

0

y
1
γ
−1e−y(1− 2

n
− 1

n
|al|)

×

∫ ∞

y

x1−
1
γ e−

x
n
(2+|al|) dxdy

Using formulae (3.381.6) and (7.621.3) in [6], one finds out that

Mk,n(0) =
1

n2

∑

i6=i1 6=···6=ik

k
∑

l=1

∑

al∈{0,1}k−1

(−1)|al|
∫ ∞

0

y
1
2γ − 1

2 (n−1(|al|+ 2))−
3
2+

1
2γ

× e−y(1− 1
n
− 1

2n |al|) W 1
2−

1
2γ ,1− 1

2γ

(

y
|al|+ 2

n

)

dy

=
γ

n2

∑

i6=i1 6=···6=ik

k
∑

l=1

∑

al∈{0,1}k−1

(−1)|al|
2F1

(

2, 1;
1

γ
+ 1; 1−

2 + |al|

n

)

=
γ

n2

∑

i6=i1 6=···6=ik

k
∑

l=1

k−1
∑

r=0

(−1)r

(

k − 1

r

)

2F1

(

2, 1;
1

γ
+ 1; 1−

2 + r

n

)

=
γk(n− 1)(n− 2) · · · (n− k)

n

k−1
∑

r=0

(−1)r

(

k − 1

r

)

2F1

(

2, 1;
1

γ
+ 1; 1−

2 + r

n

)

Since the Gauss hypergeometric function 2F1 can be rewritten as

2F1

(

2, 1;
1

γ
+ 1; 1−

2 + r

n

)

=

∞
∑

l=0

(2)l(1)l

l!(1 + 1
γ )l

l
∑

j=0

(−1)j

(

l

j

)

(

2 + r

n

)j

the expression of Mk,n(0) can be further simplified as follows

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

k−1
∑

r=0

(−1)r

(

k − 1

r

)

×

∞
∑

j=0

∞
∑

l=j

(2)l(1)l

l!(1 + 1
γ )l

(−1)j

(

l

j

)

(

2 + r

n

)j

=
γk(n− 1)(n− 2) · · · (n− k)

n

k−1
∑

r=0

(−1)r

(

k − 1

r

)

∞
∑

j=0

(−1)jaj

(

2 + r

n

)j

where

aj =

∞
∑

l=j

(2)l(1)l
l!(1 + 1

γ )l

(

l

j

)
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A simple change of variable m = l − j leads to write aj as

aj =

∞
∑

m=0

(2)m+j(1)m+j

(m+ j)!(1 + 1
γ )m+j

(

m+ j

j

)

=

∞
∑

m=0

(m+ j + 1)!(m+ j)!

j!(1 + 1
γ )m+j

1

m!

=
(j + 1)!

(1 + 1
γ )j

∞
∑

m=0

(j + 2)m(j + 1)m

(j + 1 + 1
γ )m

(1)m

m!

=
(j + 1)!

(1 + 1
γ )j

2F1(j + 2, j + 1, j + 1 +
1

γ
, 1)

and, consequently,

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

k−1
∑

r=0

(−1)r

(

k − 1

r

)

∞
∑

j=0

(−1)j
(j + 1)!

(1 + 1
γ )j

× 2F1(j + 2, j + 1, j + 1 +
1

γ
, 1)
(

2 + r

n

)j

If one resorts to identity (0.154.6) in [6], it follows that

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

∞
∑

j=k−1

(−1)j
(j + 1)!

(1 + 1
γ )j

× 2F1(j + 2, j + 1, j + 1 +
1

γ
, 1)

k−1
∑

r=0

(−1)r

(

k − 1

r

)

(

2 + r

n

)j

Finally, using formula (0.154.5) in [6] one has

Mk,n(0) =
γk(n− 1)(n− 2) · · · (n− k)

n

[

1

nk−1

k!(k − 1)!

(1 + 1
γ )k−1

2F1(k + 1, k, k +
1

γ
, 1)

+o(
1

nk−1
)
]

as n → ∞. If γ < 1
k+1 then 2F1(k + 1, k, k+ 1

γ , 1) =
Γ (k+ 1

γ
)Γ ( 1

γ
−k−1)

Γ ( 1
γ
−1)Γ ( 1

γ
)

. Otherwise the

Gauss hypergeometric function diverges (see paragraph 9.102 in [6]). After some little

algebra the results is proved. �

The study of the limiting behavior of Mk,n(0) is crucial for understanding the

limiting behavior of the moments. Indeed,

E(Sk
n) = (−1)k φ

(k)
Sn

(s)
∣

∣

∣

s=0
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In particular, we have:

E(Sn) = M1,n(0)

E(S2
n) = M1,n(0) +M2,n(0)

E(S3
n) = M1,n(0) + 3M2,n(0) +M3,n(0)

E(S4
n) = M1,n(0) + 7M2,n(0) + 6M3,n(0) +M4,n(0)

E(S5
n) = M1,n(0) + 15M2,n(0) + 25M3,n(0) + 10M4,n(0) +M5,n(0)

· · ·

In general

E(Sk
n) = a

(k)
1 M1,n(0) + · · ·+ a

(k)
k

Mk,n(0) (5)

where

a
(k)
1 = 1

a
(k)
l

= a
(k−1)
l−1 + la

(k−1)
l

l = 2, . . . , k − 1

a
(k)
k

= 1

(6)

The last recursion follows from the fact that

M ′
k,n(s) = −kMk,n(s)−Mk+1,n(s)

From proposition 1 and equation (5), we have the following theorem.

Theorem 2 If the (p1, . . . , pn) are determined by normalizing the increments of a

γ-stable subordinator with ti − ti−1 = 1/n in (1) for each i ∈ {1, . . . , n}, then

lim
n→∞

E(Sk
n) =

{

∑k
l=1

(l!)2

( 1
γ
−l−1)l

a
(k)
l

if γ < 1
k+1

∞ otherwise

The previous theorem allows to calculate all the moments of the limiting search cost

distribution in the stable case. For example the second moment is

lim
n→∞

E(S2
n) =

{

γ(1+γ)
(1−3γ)(1−2γ)

if γ < 1
3

∞ otherwise

and the third moment

lim
n→∞

E(S3
n) =

{

γ(1+5γ)
(1−4γ)(1−3γ)(1−2γ)

if γ < 1
4

∞ otherwise
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