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Abstract

Cryptographic protocols are small programs which involve a high level of concurrency
and which are difficult to analyze by hand. The most successful methods to verify
such protocols are based on rewriting techniques and automated deduction in order
to implement or mimic the process calculus describing the execution of a protocol.
We are interested in the intruder deduction problem, that is vulnerability to passive
attacks in presence of equational theories which model the protocol specification and
properties of the cryptographic operators.

In the present paper we consider the case where the encryption distributes over
the operator of an Abelian group or over an exclusive-or operator. We prove decid-
ability of the intruder deduction problem in both cases. We obtain a PTIME decision
procedure in a restricted case, the so-called binary case.

These decision procedures are based on a careful analysis of the proof system
modeling the deductive power of the intruder, taking into account the algebraic
properties of the equational theories under consideration. The analysis of the de-
duction rules interacting with the equational theory relies on the manipulation of
Z-modules in the general case, and on results from prefix rewriting in the binary
case.

1 Introduction

Cryptographic protocols are ubiquitous in distributed computing applications.
They are employed for instance in internet banking, video on demand services,
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wireless communication, or secure UNIX services like ssh or scp. Crypto-
graphic protocols can be described as relatively simple programs which are
executed in an untrusted environment.

Verifying protocols is notoriously difficult, and even very simple protocols
which look completely harmless may have serious security holes, as it was
demonstrated by the flaw of the Needham-Schroeder protocol found by Lowe [1]
using a model-checking tool. It took 17 years since the protocol was published
to find an attack, a so-called man in the middle attack. An overview of au-
thentication protocols known a decade ago can be found in [2], more recent
data bases of protocols and known flaws are [3,4].

There are different approaches to modeling cryptographic protocols and an-
alyzing their security properties: process calculi like the spi-calculus [5], so-
called cryptographic proofs (see, for instance, [6]), and the approach of Dolev
and Yao [7| which consists in modeling an attacker by a deduction system.
This deduction system specifies how the attacker can obtain new informa-
tion from previous knowledge, which he has either obtained by eavesdropping
the communication between honest protocol participants (in case of a passive
attacker), or by eavesdropping and fraudulently emitting messages, thus pro-
voking honest protocol participants to reply according to the protocol rules
(this is the case of a so-called active attacker). We call intruder deduction
problem the question whether a passive eavesdropper can obtain a certain
information from messages that he observes on the network.

Algebraic properties. Classically, the verification of cryptographic proto-
cols was based on the so-called perfect cryptography assumption which states
that it is impossible to obtain any information about an encrypted message
without knowing the exact key necessary to decrypt this message. Unfortu-
nately, this perfect cryptography assumption has been proved too idealistic:
There are protocols which can be proved secure under the perfect cryptography
assumption, but which are in reality insecure since an attacker can use prop-
erties of the cryptographic primitives in combination with the protocol rules
to learn some secret informations. These properties are typically expressed as
equational axioms (so-called algebraic properties). Algebraic properties which
are not used explicitly in the protocol can still be exploited by an attacker to
mount an attack; see [8] for an overview of the verification of cryptographic
protocols in presence of algebraic properties. For instance, many cryptographic
protocols manipulate data and operations that actually use an Abelian group.
The Wired Equivalent Privacy protocol [9], Gong’s protocol [10], and Bull’s
protocol [11] use explicitly in their specification the ezclusive-or operation
(which has, in addition to being an Abelian group, the nilpotence property
x + x = 0). Moreover, the cryptographic DES algorithm and the more recent
AES rely on the algebraic property of the ezclusive-or. These two properties



employed with properties of the encryption algorithms are the most commonly
used, hence the most important ones.

Finally, note that the well-known cryptosystem RSA has the property {a *
b} = {a}r * {b}r, where {z}, denotes the encryption of message = with
key k, if we abstract from the modulus used in the RSA encryption operation.
This property of RSA is the distributivity of the encryption operation over
the multiplication of non-null integers modulo n = pq where p, q are large
prime numbers. Strictly speaking, this structure is not an Abelian group but
a commutative semigroup since some of the elements do not have an inverse. In
fact, the only elements without inverse are the multiples of p (i.e p,2p, ..., (¢—
1)p) and of ¢ (ie. ¢,2¢q,...,(p — 1)q), totaling p + ¢ — 2 = O(y/n) elements
without inverse, while the total number of elements is pg — 1 = O(n). Hence,
this structure is “mostly” an Abelian group since the vast majority of elements
does have an inverse. Besides, the assumption of an Abelian group leads to
an over-approximation of the intruder capabilities (since we assume that the
intruder can inverse all elements, where in reality this is not true). This may
lead to false positives (claiming that there is an attack when none exists), but
is safe for proving non-existence of an attack.

The state of the art. The first step in deciding protocol (in)security is
usually to prove that the intruder deduction problem is decidable, therefore
this question can be seen as a prerequisite to solving the more general prob-
lem of an active intruder. Both problems are decidable® for the ezclusive-or
and for Abelian groups [12,13], as well as for modular exponentiation [14,15]
which is modeled by a restricted axiomatization. Therefore, the intruder de-
duction problem is decidable in all these cases, usually with a polynomial time
complexity. The intruder deduction problem is decidable in polynomial time
in the case of the equational theory of a homomorphism [16], and in both
the case of exclusive or combined with a homomorphism and Abelian groups
combined with a homomorphism [17]|. Protocol security has been shown de-
cidable in case of a homomorphism that distributes over the ezclusive-or [18],
and undecidable in case of a homomorphism that distributes over an Abelian
group [19].

Several works [20,21,22,23] have been done to characterize classes of equa-
tional theories for which a generic algorithm could apply. These theories are
presented by a rewrite system, and the required property is that the right-
hand side of a rewrite rule is a strict subterm of the left-hand side. Another
trend [24] is to devise a combination algorithm which allows us to combine de-
cision algorithms that have been defined for independent equational theories,
yielding a solution for the union of the theories (in the active case). Finally, a

I Protocol security is considered in these papers for a fixed number of sessions.



recent approach [25] is to try to have a general resolution technique that relies
on narrowing, but this has not yet succeeded to come up with a satisfactory
solution.

On passive and active attacks Proving security of a protocol against
passive attacks is in itself an important problem. In fact, there are many
situations in which an intruder cannot interact with the legitimate protocol
participants, be it due to physical restrictions of the communication channel,
or due to the fact that an intruder only gets hold of a log of a protocol session
after the communication channel is closed. In general, however, one usually
wishes in the end to obtain a guarantee of security against active attacks,
that is security even in a scenario where an attacker completely controls the
network.

Security against passive attacks is obviously a sub-problem of security against
active attacks, since any active attacker can of course try to obtain a se-
cret by purely passive means. Security against active attacks is undecidable if
the number of parallel protocol sessions is unbounded [26], even without any
equational theory. In case of a bounded number of sessions, finding decision
algorithms for proving security against active attacks is still a difficult prob-
lem. One important technique for obtaining such decision procedures is based
on the technique of symbolic constraint solving, where a single constraint ex-
presses that the intruder can deduce a term from some finite set of terms. In
contrast to the intruder deduction problem considered here, the terms used
in the constraints may contain variables, and we are interested in knowing
whether these variables can be instantiated in such a way that the constraint
holds. In the special case where the constraint does not contain any variables,
solving a constraint amounts to solving an intruder deduction problem.

There are different ways to solve the constraints. One way consists in showing
that any solvable constraint system has a “small solution”. Thus, one obtains
a non-deterministic procedure which guesses a small solution, and then uses
a decidability result of the intruder deduction problem in order to verify that
the guess is correct. This is the approach of for instance [15] for the theory of
Diffie-Hellman exponentiation with products occurring in exponents, or [13]
for the equational theory of exclusive-or.

Another approach to constraint solving consists in successively simplifying
the constraints, possibly combined with non-deterministic guessing steps [27].
This is the approach of for instance [12] for the theory of exclusive-or, or of [1§]
for the theory of exclusive-or with one homomorphism. In fact, the technical
core of the decision procedure for the intruder deduction problem given in the
present paper is a locality result, stating that if the intruder can deduce a cer-
tain knowledge w from an initial knowledge 1" then there is a deduction using



only terms already contained (in a sense which we will make precise along this
paper) in T or w. An important first step in solving constraints consists in
lifting this locality lemma to the general case of constraints containing vari-
ables, yielding that if there is a solution to a constraint then there is a “simple”
solution (Lemma 2 in [18]), and that for this simple solution there is a “simple”
proof (Lemma 3 in [18]). These lemmas justify a first non-deterministic step
in constraints solving which consists in reducing constraints to sequences of
one-step deduction constraints.

Our contribution. In this paper we consider protocols that use the Abelian
group axioms together with an encryption algorithm which distributes over
the binary operator of an Abelian group denoted by +, i.e. {z+y}r = {z}r +
{y}x- This property is used in several protocols, like for instance the TMN
protocol [28], which use the distributivity of the RSA cryptosystem over the
Abelian group operator (see [8] for details). It is related to the homomorphism
property h(z +vy) = h(x) + h(y) if we consider encryption by a fixed key as a
homomorphic operator. However, our theory is more general than the theory
of one (or finitely many) homomorphic operator since distributivity holds for
all keys, that means that we have an infinite number of homomorphisms to
deal with. Actually, a homomorphism A can be simulated by a public key that
is known by all participants (but where the owner of the associated private
key does not play any role in the protocol).

We show that the intruder deduction problem for an encryption algorithm
which distributes over the operator of an Abelian group is decidable. More-
over, we give a polynomial complexity bound in the binary case. Since the
theory of homomorphism with Abelian groups is undecidable for an active
intruder [19] and since this theory can be simulated in our framework, our
result is the strongest possible one (with respect to decidability questions).
The decision procedure relies first on a careful analysis of the proof system
modeling the intruder deduction abilities, allowing us to state the existence of
proofs that have good syntactical properties. This can be seen as the analog
of proof normalization techniques which are widely used in logic to show that
proof systems have good properties (like the subformula property for Gentzen
sequent calculus, see e.g. [29]). A second step is to use algebraic properties of
the equational theory to decide the deducibility of a term using a restricted
subset of the rules. This is done easily for the exclusive-or case but it uses
more complex properties of Z-modules for the Abelian group case. Finally,
we combine these results to state a locality theorem generalizing McAllester’s
locality method explained in Section 5. For the sake of simplicity we present
our result in the symmetric encryption framework, but it can be lifted to the
public key encryption framework.

The theory of Abelian groups with a distributive encryption can not be treated



by the general approaches that have been devised so far. The subterm property
required in the general approach of [22| does not hold here since {x}; is not
a subterm of {x + y},, and there is no way to adapt this technique to our
case. Furthermore, the combination result of [24] can’t be used neither since
the theory that we consider cannot be split into disjoint simpler equational
theories which is the starting point in the combination approach, and the finite
variant property required in [25] is not satisfied. Actually, we believe that the
theory that we consider falls into a class that requires another approach than
what these works propose.

Plan of the paper: In the next section we give an example of a protocol on
which there exists a passive attack exploiting the distributivity of encryption
over ezxclusive-or or an Abelian group operator. We present in Section 3 the
usual notions needed in the rest of the paper. In Section 4 we introduce the
Dolev-Yao model of intruder capacities extended by a rewrite system modulo
AC to model the distributivity of the encryption symbol over the Abelian
group operator. In Section 5 we explain the generalization of McAllester’s
proof technique. In the following sections we provide the two main ingredients
which allow us to obtain a decision procedure: We show in Section 6 a syntactic
locality result considering the rules of encryption, decryption and addition in
a macro rule and we demonstrate in Section 7 and 8 the decidability for this
macro rule using Z-modules. We sum up in Section 9 our main results and
discuss in Section 10 the restriction to the binary case and give a decision
procedure in PTIME using prefix rewrite systems. Finally, we conclude in
Section 11.

2 An Introductory Example

Figure 1 gives an example of a simple protocol which is designed to distribute
a symmetric key K to two principals A, B using a service provider S. The
principals A, B already share a weak secret ¢ that states their right to share a
common symmetric key (for instance, ¢ is some item that proves subscription
to the service). The value of ¢ is also known to the server. The server has
a public key K¢ which is known to A and B. In the following, the pair of
messages m, m’ is denoted by (m,m’) and the encryption of a message m by a
key K is denoted by {m} k. For sake of readability, we denote in the following
example the pair (m,m’) by m,m/.

The first message of A signals to S that she wants to establish a connection
with B. The server S can compute the nonce N, since she can decrypt the
message encrypted by K¢ and subtract A from this message. The server S then
computes c¢ in the same way. Then, S informs B that A wants to start the



A— S:ABA{A+ Natiy, {Na+ c}i,
S—B:AB,S

B — S: B, A{B+ Ng}iy, {Np + c}rs
S — A: K+ {Na}rg

S — B: K+ {Np}xk,

Figure 1. A protocol for key distribution.

protocol with him, and a similar connection is established with B allowing S to
check that A and B both know ¢ and are hence allowed get the same symmetric
key K. Then, the server sends the key K to A, using the Vernam encryption
scheme with {/N4}x, to protect the key. The agent A can compute {N4}x,
and retrieve K. The use of the nonce N4 provides a (weak) authentication in
this last step. The agent B performs the same operation and obtains the same
key K. A property of the protocol is that all encryptions by Kg use different
terms, which is useful in preventing replay attacks.

The question of whether there exists an attack (passive or active) against this
protocol depends on the algebraic theory taken into account. First, we have
checked with the AVISPA tool that there exists no active attack against this
protocol for three principals A, B,C' and two parallel sessions without any
equational theory. This means in particular that there exists no passive attack
against the protocol in the empty equational theory.

Second, we have used the tools OFMC [30] and Cl-Atse |31] from the AVISPA
project in order to check for existence of active attacks when taking into
account the algebraic theory of ezxclusive or. For this equational theory, there
still is no active attack in the sense that the intruder cannot obtain the secret
key K generated by the server. As a consequence, there is no passive attack
for the equational theory of exclusive or.

However, there is a (passive) attack if we take into account the full equational
theory of exclusive or with distributive encryption, and also for the equational
theory of Abelian groups with distribute encryption. The attack goes as fol-
lows. By intercepting the first message, the intruder can compute {N4}x,
using the distributivity of encryption since A is public, hence {A}, is too.
Therefore, the intruder can retrieve K from the last message by subtract-
ing { N4}k, from it. If we modify the protocol by distributing all encryptions
over +, for instance replacing the term {A+ N4}k, by {A}rs +{Na}ks, then
the tools OFMC and Cl-Atse find the passive attack described previously.

The results of this paper allow to detect these attacks automatically on the
unmodified protocol.



3 Preliminaries

We summarize some basic notations used in this paper, see [32,33] for an
overview of rewriting.

Let ¥ be a signature. T'(X, X') denotes the set of terms over the signature ¥
and the set of variables X, that is the smallest set such that:

(1) X CT(%,X);
(2) ifty,...,t, € T(X,X), and f € ¥ has arity n > 0, then f(ty,...,t,) €
(2, X).

We abbreviate T'(X, 1) as T'(X); elements of T'(X) are called X-ground terms.
The set of variables occurring in a term ¢ is denoted by V(t).

The set of occurrences of a term ¢ is defined recursively as O(f(t1,...,t,)) =
{e} UUjz1..ni - O(t;). For instance, O(f(a,g(b,x))) = {¢,1,2,21,22}. The
size |t| of a term ¢ is defined as its number of occurrences, that is |t| =
cardinality(O(t)). We extend the notion of size to a set of terms 7" by |T'| =
Yier|T|. If o € O(t) then the subterm of t at position o is defined recursively

ot|
o f(ti, . tn) [jo=15 lo

We call a term r a subterm of a term t if r is a subterm of ¢ at some position
of t. If t and s are terms and o € O(t) then the grafting of s onto t at position
o0 is defined recursively as:

o tle—s|=s
L] f(tl,,tn)[j * 0 < S] = f(tla---atj—latj[0<_ 8],tj+1,...,tn)

For instance, f(a, g(b, x))[22 < h(c)] = f(a, g(b, h(c))).

A Y-equation is a pair (I,7) € T(X, X), commonly written as [ = r. The
relation =g generated by a set of 3 equations F is the smallest congruence
on T'(Y) that contains all ground instances of all equations in FE.

A Y-rewriting system R is a finite set of so-called rewriting rules [ — r where
leT(X, X)and r € T(3,V(l)). A term t € T'(X, X) rewrites to s in one step
by R if there is a rewriting rule [ — r in R, an occurrence o and a substitution
o such that ¢ |[,= lo and s = t[o < ro]. If the occurrence o is the empty string,
that is if rewriting takes places at the root of the tree, then t prefiz-rewrites
in one step to s, written ¢t — s. We write —* for the reflexive and transitive
closure of —, and —* for the reflexive and transitive closure of —. A term ¢



is in normal form if there is no term s with ¢ — s. If £t —* s and s is a normal
form then we say that s is a normal form of t, and write s =1 .

A term rewriting system is called convergent if it is:

e strongly terminating, that is if there is no infinite sequence of the form
ty —ty —t3 — .-

e locally confluent, that is if ¢ — s; and ¢ — s, then there exists a term r
with s; —* r and sy —* r.

By a well known result (see, e.g., [32]), every convergent rewrite system is
confluent, that is if ¢ —* s; and t —* sy then there exists a term r with
s1 —* r and sy —* r. As a consequence, in a convergent rewrite system every
term has a unique normal form.

By R/S we denote the so-called class rewrite system composed of a set R =
{l; — r;} of rewrite rules and a set S of equations. Generalizing the notion
of term rewriting, we say that s rewrites to ¢ modulo S, denoted s —g/s t, if
s =g ullo], and u[ro], =g t, for some context u, position p in u, rule [ — r in
R, and substitution o.

Let T be a set of terms, the mapping S : T — T is idempotent if for every
X CT: S(S(X)) = S(X). The mapping S is monotone if for all X, Y C T" if
X CY then S(X) C S(Y). S is transitive if for all X, Y, Z C T, X C S(Y)
and Y C S(Z) implies X C S(Z).

Proposition 1 Let S be a mapping from sets of terms to sets of terms. If the
mapping S s idempotent and monotone then it is transitive.

Proof: straightforward. O

4 Our Model

We use the classic model of deduction rules [7] introduced by Dolev and Yao
in order to model the deductive capacities of a passive intruder. We present
here an extension of this model which takes into account an equational theory.

4.1 FEquational Theory

We consider the equational theory where encryption, denoted by {.}, dis-
tributes over the binary operator of an Abelian group. The Abelian group is
modeled by the operator 4, a neutral element 0 and the inversion operator —.



The equational theory E consists of the following axioms:

(x+y)+z=a+(y+2) Associativity

r+y=y+z Commutativity
r+0=z Neutral Element
r+(—x)=0 Inversion

{r+y}e = {z}r +{v}s Distributivity 1
{—z}r = —{z}& Distributivity 2

This equational theory is represented by a convergent rewrite system R modulo
AC, that is R is terminating and confluent modulo associativity and commu-
tativity of +, and for all terms ¢, s € T'(X) we have that t =g s if and only if
t lr/ac =ac s lrjac. Note that {0}, = 0 is a consequence of the equational
axioms. The convergent rewrite system R consists of the following rules:

r+0—ux
r+(—z) =0
—-0—0
—(—z) = x
—(z+y) = (—=2) + (-y)
o +yhe — {ok +{y)

{2t — —{z}x
{O}Z — 0

The complete signature is X = {(-,-),{-}.,0, 4+, —} & 3y, where ¥, is a set of
free constant symbols. The symbols not pertaining to the Abelian group come
from the Dolev-Yao model. The first one (-,-) is used to build a pair of two
messages and the second one {-}. is used to encrypt a message by a key. For
the sake of simplicity we here only consider symmetric encryption.

This equational theory can be extended to model the ezclusive-or operation
by adding the axioms 2

(—x) ==z

z+x =0

2 The second axiom is a logical consequence of the other axioms but it is convenient
to have the associated rewrite rule.

10



(A uweT T+ (u,v)

T+ ulr/ac L=
(P)Tl—u THwv (UR)Tl_<u’U>
T+ (u,v) TF v
(C)TF“ o (D)Tl_{u}le/AC Truo
T+ {u}v lR/AC T+ ulR/AC
Tk TFu,
(GX) o “ where ay, ..., a, € Z\ {0}.

TF (apuy + ... + ayuy) Lr/ac

Figure 2. A Dolev-Yao proof system working on normal forms by the rewrite system
R modulo AC.

which are oriented as rewrite rules

(—z) —

r+z—0
to get a convergent rewrite system R modulo AC.

In the rest of the paper, we use an abbreviation for sums of terms in Abelian
groups: Given an integer o € Z and a term ¢, we denote by at the sum of «
times the term ¢ if @ > 0, and the sum of |a| times the term —¢ when o < 0.

4.2  An Extended Dolev-Yao Model for our Equational Theory

We assume that the intruder can exploit the equational theory given above to
mount an attack. The knowledge of the intruder is represented by terms built
over the signature > defined previously. Let 7" be a finite set of ground terms
and v be a ground term, a sequent 7' F u denotes the fact that the intruder
can deduce u from the initial knowledge 7. The deduction system describing
the deductive capacities of an intruder is given in Figure 2.

This deduction system is composed of the following rules: (A) the intruder
may use any term which is in his initial knowledge, (P) the intruder can build
a pair of two messages, (UL) and (UR) he can extract each member of a pair,
(C') he can encrypt a message u with a key v, (D) if he knows a key v he
can decrypt a message encrypted by v. Sometimes, we shall annotate the rules
(C) and (D) by the key that they use, yielding rules (C,) and (D,). Finally,
there is a family (GX) of rules which allow the intruder to construct a sum of

11



terms, possibly using the same term several times.

Note that for all sequents 7' u derivable by the inference system the term
is in normal form by the rewrite system R/AC. This is obvious for the rule (A)
by definition. For the rules (UL), (UR) and (P) it holds by induction since
the rewrite system does not concern the pairing symbol. The rules (C), (GX)
and (D) explicitly state normalization of the resulting term. An example of
an instance of rule (D) is

(D 2a + 3{b}

since 2{a}, + 3{{b},}« is the normal form of {2a + 3{b}}+.

It is easy to see that this deductive system is equivalent in deductive power
to a variant of the system in which terms are not automatically normalized,
but in which arbitrary equational proofs are allowed at any moment of the
deduction. The equivalence of the two proof systems has been shown in [16]
without AC axioms; in [34] this has been extended to the case of a rewrite
system modulo AC.

From now on we will omit the index R/AC and write |. We assume that the
set 1" consists only of terms in normal form.

In the case of exclusive-or, the same deduction system works, but we may
assume that all terms wu; in the premises of the (GX) rule are different and
that all coefficients «; in the conclusion are equal to 1.

5 Generalization of Locality and Complexity of the Intruder De-
duction Problem

Our starting point is the locality technique introduced by McAllester [35].
He considers deduction systems that are represented by finite sets of Horn
clauses. He shows that there exists a polynomial-time algorithm to decide the
deducibility of a term w from a finite set of terms 7" if the deduction system has
the so-called locality property. A deduction system has the locality property if
any proof can be transformed into a local proof, that is a proof where all nodes
are syntactic subterms of T"U{w}. The idea of the proof is to check existence of
a local proof by a saturation algorithm which computes all syntactic subterms
of T'U {w} that are deducible from T.

An abstract version of this algorithm is presented in Figure 3 where S is a

function which maps any set of terms to its set of subterms (the set of syntactic
subterms in McAllester’s original algorithm). In this algorithm we denote the

12



Input: T, w

Sub — S(T,w);

repeat
T, « T;
foreach ¢t € Sub do

ifT,-='tthen T — TU{t} fi

od

until 7, =T

return weT

Figure 3. Checking existence of an S-local proof.

one-step deduction relation by ="', where we say that w is one-step deducible
from T if we can obtain w from 7" with only one application of a rule of the
proof system.

There are two main restrictions in McAllester’s approach: the deduction sys-
tem must be finite and the notion of locality is restricted to syntactic subterms.
These restrictions raise a serious problem when we are working modulo AC,
as it is already pointed out in [12]. Therefore we use a rule (GX) with an ar-
bitrary number of hypotheses because we need to collapse several applications
of this rule into a single one to establish commutation properties. However,
we are now stuck with an infinite number of rules. Fortunately, we can imple-
ment the test of one-step deducibility in the loop of McAllester’s algorithm in
a clever way that allows us to get a more efficient procedure.

In the rest of the paper we denote T'U {w} by T, w.

Definition 1 Let S be a function which maps a set of terms to a set of terms.
A proof P of T F w is S-local if all nodes are labeled by some T F v with
v € S(T,w). A proof system is S-local if whenever there is a proof of T F w
then there also is an S-local proof of T+ w.

The following theorem generalizes McAllester’s result.

Theorem 1 Let S be a function mapping a set of terms to a set of terms,
and P a proof system. Let T' be a set of terms, let w be a term and let n be
T, w|. If:

(1) one-step deducibility of S F=' u in P is decidable in time g(|S,u|) for
any term u and set of terms S,

(2) the set S(T,w) can be constructed in time f(n),

(8) P is S-local,

then provability of T + w in the proof system P is decidable in time f(n) +
f(n)xf(n)xg(f(n)) (non-deterministic if one of (2), (1) is non-deterministic).
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Proof: By S-locality of the proof system, provability of 7' w is equivalent
to existence of an S-local proof for T' F w. Existence of an S-local proof of
T F w is checked by the algorithm of Figure 3, and the computation of Sub
takes time f(n). As a consequence, the cardinality of Sub is bounded by f(n).
Hence, the number of iterations of the outer loop is bounded by f(n), and for
each iteration of the outer loop the number of iterations of the inner loop is
also bounded by f(n). Since the size of T' is bounded by f(n) the conditional
instruction can be performed in time g(f(n)). O

Therefore the road map to prove deducibility in our more general setting is:

(i) show that one-step deducibility can be tested in time g(n), for some
complexity measure g,

(i) define a notion of subterms which can be computed in time f(n), for
some complexity measure f,

(iii) show locality with respect to this notion of subterms.

We first notice that one-step deducibility is decidable in polynomial time for all
the rules except the rule (GX), since these rules have a fixed, bounded number
of hypotheses. One-step deducibility of the rule (G X) for the equational theory
of exclusive-or and Abelian group with a distributive encryption is analyzed
in Section 8.

In Section 6, we adapt the definition of syntactic subterms to our case (Def-
inition 3) and we establish several properties of the proof system that allow
us to get a locality result for a modified system consisting of the rules (A),
(UR), (UL), (P) and (GXCD), the last one representing combinations of
the (GX), (C), (D) rules (Section 7). The applicability of this last rule is es-
tablished in Section 8. All these results yield the decidability of the intruder
deduction problem for the case of exclusive-or with distributive encryption
and for the case of Abelian groups with distributive encryption (Section 9).
In Section 10 we shall define a polynomial notion of subterms in the binary
case, which allows us to get a polynomial-time complexity in this case.

6 Syntactic Locality

We first define the notion of syntactic subterms. Second we characterize the
kind of proofs which allows us to demonstrate some technical lemmas. Finally
we prove in Lemma 5 a partial locality result for a modified proof system
called Saxep.

14



6.1 Subterms

We need first to characterize when a term is a sum of terms or a negative
term.

Definition 2 Let u be a term in normal form, u is headed with + if u s of
the form uy + ...+ u, with n > 1. Otherwise u is not headed with +. Let u
be a term in normal form, u is headed with — if u is of the form —v where v
is a term not headed with +. Otherwise u is not headed with —.

Example 1 t; = —2u+ 3(v,w) is headed with + and not headed with —, and
to = {(Bv,w) } is headed neither with + nor with —. Notice that according to
our notations —3u = (—u) + (—u) + (—u) is headed with + and that —a is
headed with — and not with +.

We define a notion of syntactic subterms.

Definition 3 The set of syntactic subterms of a term t in normal form is
the smallest set S(t) such that:

teSt).

If (u,v) € S(t) then u,v € S(t).

If {u}, € S(t) then u,v € S(t).

Ifu=wu+...+u,+ (—tps1) + ... + (—Upsm) € S(t) and u; not headed
with + and not headed with — then S(u;) C S(t).

S is extended to a set T" of terms in normal form by S(T") := Uer S().

Example 2 Fort = 2a+ (3b+ c¢,d) we have that
S(t) ={t,a,(3b+c,d),3b+ ¢, b,c,d}
Note that, by our definition, 2a and 3b are no syntactic subterms of t.

We demonstrate some properties of the syntactic subterms which will be used
implicitly many times in the rest of the paper.

Proposition 2 Let A and B be two sets of terms in normal form, the mapping
S of syntactic subterms has the following properties:

S(AUB) = S(A)US(B).

S is idempotent : S(S(A )) S(A).

S is monotone : if A C B then S(A) C S(B).
S 1is transitive.
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Proof: These properties are consequences of Definition 3 of syntactic sub-
terms and Proposition 1. O

Example 3 below demonstrates that the notion of syntactic subterm is not
sufficient to get the locality result. In this example, the first proof applies
the rule (GX) only once in the end, while in the second proof “partial sums”
are formed as early as possible. With this latter kind of proof, which we will
formally define in the next section, we can limit the number of encryption
symbols used in the terms of the proof. This point is an important ingredient
of our approach to demonstrate the decidability of the intruder deduction
problem.

Example 3 Consider the following proof with T' = {a — {b}x, {b}r — ¢, {c}r —
d,k} and w = {a}, — d where X9 = {a,b,c,d, k}. We compute

S(T,w) =TU{w}U{{a}k,a,{b}r,b,{c}x, c,d, k}

a—{b}preT keT {b}y —ceT keT
(C)(A)Tl—a—{b}k(A)Tl—k (C)(A)Tl—{b}k—c(A)T}—k {c}y—deT
©x) MUUTE {ad — {00 VUUTE (b — {che TH{ch —d
TF{a}k—d

This proof of T - w is not S-local since {{b}y}x is not in S(T,w).

a—{b}kET {b}k—CGT
(A)Tm—{b}k (A)Tk{b}k—c keT
(GX) (A)
(1) Tra-c THE (A){c}kfdeT
(CX)— T {a}x—{ch T+ {ch —d
Tl—{(l}kfd

In this second proof of T '+ w, the term a — ¢ is not in S(T,w), hence this
proof is not S-local.

6.2 Minimal, Stmple and Flat Proofs

We define several notions on proofs that we use in the remainder of the paper.
Definition 4 Let P be a proof of T' - w.

e A subproof P’ of P is a subtree of P.
e The size of a proof P, denoted by |P|, is the number of nodes in P.
o A proof P of T+ w is minimal if for all proofs P of T - w: |P| < |P'|.
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TEx TkFz,

GX
(GX)( )Tl—alxl—i-...—i—anxn TEwy TE ym
TE Bz + ...+ anxyn) + iyt + -+ Botym
U
(GX)TF% TkFx, Ty TFym

Tl_ﬁalxl+~--+ﬂanxn+ﬁ1yl+---+ﬁmym
Figure 4. Transformation of (GX)-(GX) into (GX).

e The proof P 1is simple if each node T' - v occurs at most once on each
branch and a node T + v occurs in every instance of (GX) at most once as
hypothesis of the rule (GX).

e The proof P is flat if there is no (GX) rule immediately above another
(GX) rule.

Since two successive (GX) rules can be merged into a single (GX) rule, each
proof can be transformed into an equivalent flat proof as it is described in
Figure 4.

To get a simple proof, we eliminate the part of the proof between two occur-
rences of the same node in a branch and in the hypothesis of a rule (GX).
This simplification terminates since it decreases |P)|.

Proposition 3 Let P be a simple proof then :

(1) there is no rule (D,) just after a rule (C,) in P.
(2) there is no rule (C,) just after a rule (D,) in P.

Proof: This is an immediate consequence of the simplicity. a
Proposition 4 Let P be a proof of T+ w.

o If P is minimal then P is flat.
o If P is minimal then P is simple.

Proof: If the proof P of T'F w is not flat then the proof is not minimal since
we can merge two rule (GX) and obtain a smaller proof. Similarly, if a proof
P of T+ w is not simple then the proof is not minimal since we can cut the
loop in the proof and construct a smaller proof. O

These two propositions will be used implicitly in the rest of the paper.

17



6.3 Technical Lemmas

We demonstrate a technical lemma used in the proof of Lemma 3. Then we
prove Lemma 3.

Lemma 2 Let P be a simple proof of the form:

P P,
P:{(R) THFw

If T+ w does not occur in any of Pi,..., P, and (u,v) € S(w) then there is
at least one i such that (u,v) € S(w;), where the root of P; is one of T + w;
orw; €T.

Proof: We consider all possible rules for the last rule (R) of P:

e The last rule is (A): obvious

e The last rule is (UL) or (UR): In this case we have n = 1 and w; = (uq, us)
where w is one of u; or us. We conclude by induction hypothesis since
(u,v) € S(w) C S(wy).

e The last rule is (D): In this case we have n = 2 and w; = {w},,. We
conclude by induction hypothesis since (u,v) € S(w) C S(wy).

e The last rule is (GX): (u,v) € S(w) by hypothesis and w = (w1 +...+w,) |.
Hence by definition of the subterm relation (u,v) € U;S(w;), more precisely
there exists ¢ such that (u,v) € S(w;), since (u,v) is not headed with +.
We conclude with the induction hypothesis.

e The last ruleis (P): since T' F w can not occur in P by simplicity of the proof
P, we have that w = (wq, wy) # (u,v). Since (u,v) € S(w) by hypothesis
we obtain that (u,v) € S(w;) U S(wy) and we conclude with the induction
hypothesis.

e The last rule is (C'): We have n = 2 and w = {w; },- Since (u,v) € S(w)
by hypothesis we obtain that (u,v) € S(w;) U S(wy) and we conclude with
the induction hypothesis. O

Lemma 3 Let P be a simple proof of T'F u. If P is one of

then (u,v) € S(T).
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Proof: Let us assume that the last rule is (UL), the case (UR) is similar.

P ...P,
T+ (u,v)
P=<S(UL)————
(L) THu
P is simple so T' F u does not occur in any of P, ..., P,. Hence, we can apply
P ... P,
Lemma 2 to ————" . Either (u,v) € T, or there is some P; with root 7' F w
T+ (u,v)

such that (u,v) € S(w) and T+ u does not occur in P;. Lemma 2 can be
applied again and the iteration of this reasoning finally leads to (u,v) € T. O

Lemma 4 Let P be a minimal proof of T - w. If the proof P contains a rule
of pairing (P) of the following form:

THu Thrw
T+ (u,v)

(P

then (u,v) € S(T,w).

Proof: We prove the result by structural induction on the the proof P of
T F w. There are different cases according to the last rule of the proof P:

e The last rule is (A). This case is trivial.
e The last rule is (UR) or (UL).

Py
T+ (w,v)

(L) THw

By induction hypothesis we know that all terms generated by a rule (P) in
the proof P; are in S(T, (w,v)). Since a minimal proof is simple we obtain
by Lemma 3 that (w,v) € S(T'). As a consequence, all terms generated by
a rule (P) are in S(T') C S(T,w).

e The last rule is (C).

P P,
THu TFE
(C)Tl—{u}k:w

By induction hypothesis we know that all terms generated by a rule (P)
are in S(T,u) for the subproof P; and that all the pairs generated by a
rule (P) are in S(7, k) for the subproof P». By definition of S we have that
u e SH{u}lr) = S(w) and k € S({u}r) = S(w). Hence, all terms generated
by a rule (P) in the proof P are in S(7T,w).
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e The last rule is (P). The claim is obviously true for the occurrence of (P)
which is at the root of the proof P. The rest of the demonstration is similar
to the previous case with rule (C).

Py Py
THu TFo

(P) —
T+ (u,v) =w

By induction hypothesis we know that all terms generated by a rule (P)
are in S(T,u) for the subproof P; and that all the pairs generated by a
rule (P) are in S(7',v) for the subproof P». By definition of S we have that
u € S({u,v)) = S(w) and v € S((u,v)) = S(w). Hence, all terms generated
by a rule (P) in the proof P are in S(T,w).

e The last rule is (GX).

Consider an occurrence of rule (P) yielding some term v = (vy,v9) in
some subproof P;. By induction hypothesis, v € S(T,u;). Assume that
v &€ S(T,w). This implies that v € S(T"), hence v € S(u;).

By consequence, this occurrence of v is “canceled out” in the sum, that is
we have that v € S(u;) for some j # i. We can now obtain a smaller proof
of T'F w as follows: We ascend in both subproofs P, and P; the maximal
paths of nodes from w;, resp. u; on which the nodes contain v as a subterm.
Either one of the paths ends in an application of rule (A), in which case
we conclude that v € S(7T') in contradiction to the hypothesis v ¢ S(T, w).
Otherwise all these paths end in an application of rule (P). In this case we
replace this application of rule (P) by the subproof leading to 7" - vy, we cut
the subproof of vy, and in all nodes on the two paths we replace the subterm
v by vy. This yields a smaller proof, in contradiction to the minimality of
the proof.

e The last rule is (D).
Pl P2
(D)T}_ {1;}& TkHE
w

We use a similar reasoning as in the previous case for the rule (GX). Con-
sider an occurrence of rule (P) yielding some term v = (vy,v;) in some
subproof P;, and assume that v € S(T,w).

If the application of (P) occurs in Py, we get v € S(T, {w}x) by induction
hypothesis, hence v € S(T, k) since we assumed that v ¢ S(T,w) and a pair
cannot be an encrypted term. If the application of (P) occurs in P, we get
that v € S(T, k) by induction hypothesis.
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We show how to get a smaller proof of 7' w. We consider the maximal
subpaths of the proof P such that all nodes of the path are labeled by a term
T+ w such that v = (v, v2) € ST (u). The rule corresponding to the ending
node of these path cannot be (A), otherwise we get v € ST(T') which is
not possible since we assume that v ¢ S(T, w). Therefore the rule labeling
these nodes is (P). Let us consider the new tree obtained by replacing each

T+ U1 T+ (%) b .

TFuv=(v,vy) y TFuwv
node by vy. A straightforward induction on the structure of proofs shows
that these rewriting process still yields a valid proof of T w. By definition
this proof is smaller than the initial one, which contradicts the minimality
assumption. O

subtree and every occurrence of v under this

6.4 Partial Locality Result

We now prove Lemma 5 which states a locality property of a variant of the
proof system: we consider all successive applications of the rules (GX), (C)
and (D) as a “macro” rule denoted (GXCD). This rule takes as hypotheses
all the hypotheses of the rules (GX), (C) and (D) and yields the result of all
these rules. In this proof system, called Sgxcp, we only have the rules of (A),

(UR), (UL), (P) and (GXCD).

Lemma 5 Let P be a proof of T - w in Sgxcp, then there exists a proof P’
of T'Fw in Sgxcp such that all the nodes of P are in S(T,w).

Proof: Let P be a proof of T+ w in Sgxcp, we consider a proof of 7'+ w
in the initial system which exists by construction of the rule (GXCD). We
construct from this proof the minimal proof of 7' F w in the initial system.
By Lemma 2 and 4, all nodes resulting from a rule (UR), (UL) or (P) are in
S(T,w). We reconstruct with this proof a proof in Sgxcp, we obtain that:

e all nodes which are hypotheses or conclusion of a rule (UR), (UL) or (P)
are in S(7T,w).

e all hypothesis of all the rules (GXCD) stem from 7" or from a rule (UR),
(UL) or (P), and by consequence are in S(T, w).

e all conclusions of all the rules (GXCD) are either an hypothesis of one rule
(UR), (UL) or (P), or it is w, and by consequence are in S(7, w).

We conclude that all nodes of this new proof of T'F w in Sgxcp are in S(T, w).
(]
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All the proofs of all the lemmas of this section carry over to the ezclusive-or
case without any modification.

7 Elementary Provability

By Theorem 1 and Lemma 5 we have now to show that one-step deducibility
by the “macro rule” (GXCD) is decidable. The goal of the present section
is to show that it is sufficient to search for a (GXCD) proof such that its
expansion into single steps (GX), (C) and (D) has the following properties:

e All nodes are in a particular form (Lemma 8).
o All keys used as hypothesis of a rule (C') or (D) are hypotheses to the macro
rule (Lemma 9).

We will show in Section 8 that existence of such a restricted (GXCD) proof
is decidable.

7.1 Definitions

We define first an important notion of atom of a term in normal form.
Definition 5 The set of atoms of a term t in normal form is defined by:

atoms(t; + t2) = atoms(ty) U atoms(tz)

atoms(—t) = atoms(t)

atoms({t1}+,) = {{t1}+,} U atoms(t,) U atoms(tz)

atoms(t) = {t} if t is not headed with + and not headed with —.

We write atoms(T') for Uer atoms(t), and atoms(T',t) for atoms(T U {t}).
Proposition 5 For every term t, atoms(t) C S(t).

Proposition 6 Let atoms(t) = {ay,...,a,}. Then there exist ay,..., o, €
Z \ {0} such that t = >;=7 aa,.

Proof: These two properties are consequences of Definition 3 of syntactic
subterms and the Definition 5 of atoms. O

Obviously there is an instance of the macro rule (GXCD)

THt Tkt,
THt

(GXCD)
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Tk 2y ThHuov Tk x, ThHuov :
(R)=—— ... (Rp)

C, o)—nr -7 -
(GX)( ) T+ {x1}, (C) TH{x,}y TkFzn Tk 2z
THa{ri}o+ . +anf{ante + 01214+ - B + 2m
U
ThFx TkFx,
GX
( ) THoayz) + ...+ apx, Tk
o) (Cy) TEa{zi}e+ ...+ an{znte (Rl)T I— - (Rm)m

THa{zibo+ . . +af{zn o+ Bizi + oo+ Bz

Figure 5. Transformation of (C,)-(GX) into (GX)-(C,), where n > 2 and all (R;) are different
from (C,).

if and only if there exists a proof of 7' ¢ using only the rules (A), (GX), (C)
and (D).

Definition 6 A proof of T - w using only (A), (C), (D) and (GX) is called
elementary if for each node T'+ u we have that atoms(u) C atoms(T, w).

Our goal in this section is to show that whenever there is a proof of 7' w
using the rules (A4), (C), (D) and (GX) then there is an elementary proof of
TFw.

The following notion is central in establishing the main result of this section.
Intuitively, in a +-eager proof the (GX) rule is applied as early as possible.

Definition 7 Let P be a flat proof of T = w. P is a +-eager proof if

(1) for every v there is at most one rule (C,) with the key v immediately
above a (GX) in P,

(2) and there is no rule (D,) just after a (GX) with a rule (C,) just above
(GX).

Example 4 We consider the two proofs of T+ w given in Example 3. The
first proof presented is simple but not +-eager since there are two rules (Cy)
above a rule (GX), while the second one is +-eager and simple.

We will prove in Lemma 8 that every simple and +-eager proof is elementary.
7.2 Proof Transformations and Technical Lemmas
Now we present some transformations on proofs used to demonstrate that

every proof can be transformed into an elementary one.

Proposition 7 All the transformations of proofs given in Figures 4, 5 and 6
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THB T+ B, THB Trwv

R R C
(GX)( 1)T|—B{ (”)THB;L () T+ {B},
(D) Tt 1B +...4+a,Bl, +a{B}, = {u}, Ttw
v Thu
(3
THDB T+ B,
(B)—r - (Rn) 1
€x) T+ B, T+ B, (C)TFB Truv
©x) TraiB)+...4+a,B, = {c} Y TF{B},
TH {C}v + a{B}v = {u}v Tkwo
(D)
THe+aB=u
(3
T+HB T+ B,
(Ri)o o oo (Ra)or
T+ B THB
(GX) =
. TFa1By+...+a,Bl, = {c}y Thw
(GX)( o) Tk e T+B
TrFe+aB=u

Figure 6. Elimination of a rule (D,) after a (GX) with a rule (C,) just above the (GX)
(Cr)-(GX)-(Dy,), with n > 2.

decrease the number of nodes.

Proof: We denote by 7, the subproof of P with root 7" x. Observe first
that all the transformations transform a proof with some hypotheses and a
conclusion into a proof with the same hypotheses and the same conclusion.

In Figure 4 it is obvious.

+ 20 | +
+ |7, + 3 nodes,

In Figure 5 the number of nodes of the initial proof is X!=/"|r,
n|m,|+n+1 and the final proof contains Z:=7| 7., | + X7 |,
which is less since n > 2.

In Figure 6, we decompose the message {u}, into two parts {u}, = {c}, +
a{B},, where the term {c}, represents the sum of all terms that compose
the term {u}, except the term B just encrypted by the key v. Using this
decomposition, we can apply the decryption rule earlier, and obtain a new
proof of Tt u. Hence, the first proof has Xi=}'|mp/| + |7p| + 2|7,| + 3 nodes
and the last proof has 3= |mp| 4 |7s| + |7,] + 3 nodes. We deduce that the
number of nodes decreases. g

Lemma 6 If there is a proof of T' = w then there is also a +-eager and simple
proof of T+ w.

Proof: Let P be a proof of 7' - w. The transformation rules given in Fig-
ures 4, 5 and 6 decrease | P| as well as the transformation to get a simple rule.
Therefore the application of rules eventually terminates with a +-eager simple
proof of T'F w. O
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THA{u}y | THv]
THu|

Figure 7. Illustration of the case (D) in Lemma 7

Lemma 7 Let P be a +-eager and simple proof of T'+ u of the form

(R)Tl—{u'}vlzr TI—'vl

THu

(D)

Then atoms({u},) C atoms(T).
Proof: The proof is by structural induction on P.
Base case: obvious.

Induction step: we perform a case analysis on the last rule (R) used in the
subproof of P with root {u}, |.

(R) is (A): the result is true by definition of the rule (A).
(R) is some rule (C): this cannot happen since either (C) is (C,) and P is
not simple or (C) is (Cy) and {u}, = {v'},, with v # v’ which is impossible.

Tk o THEV
(R) is some rule (D) s.t. Hujo) Y Then by induction hy-
T+ {u},

pothesis atoms({{u},},) C atoms(T), yielding by definition of atoms that
atoms({u},) C atoms(7).

(R) is (GX). The last deductions in the proof P are described in Figure 7
and we consider the different cases according to the rules (R;) and to the
structure of {u}, |.

We will show that every atom of {u}, | is in fact an element of atoms(7").
Let a € atoms({u}, |). Note that a is necessarily of the form {a'},, and
that there is an ¢ such that a € atoms(u;). We consider different possible
cases for the rule (R;):

- (R;) is (A), hence a € atoms(T).
/
(R s (Dy) st (Dy) L twoe THY
THw = u;
By induction hypothesis atoms({w; },/) C atoms(T"), therefore by defini-
tion of atoms we conclude that atoms(u;) C atoms(7") and a € atoms(T').
- (R;) is (Cy) or (GX): Impossible since the proof is +-eager and flat.
- (R;) is (Cy) with v # o'. Then u; = {u'}, |. Since v' # v none of
atoms({u'}, |) can be equal to a, all these atoms are canceled out by
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other occurrences of the same atom in one of the u; with j # 4. Since the
proof is +-eager and flat it is impossible that the other terms stem from
the rule (GX) or the rule (C'), consequently the other terms stem only
from a rule (A) or (D). In the first case atoms are obviously in atoms(7),
in the second case we apply the induction hypothesis. We conclude that
atoms(u;) C atoms(T"). O

7.8 Elementary Proofs

Now we have all ingredients to demonstrate the existence of an elementary
proof, and as consequence we prove some lemmas on the keys used in the
proof which will be employed in the next section.

Lemma 8 FEwvery simple and +-eager proof is elementary.

Proof: We proceed by structural induction on the proof P and case distinc-
tion of the last rule (R) of P a simple and +-eager proof of T F u:

e (R)is (A): P is obviously an elementary proof.
TH{u}, Tkv
THu

that the proof P; which yields 7'+ {u}, and the proof P, which yields
T F v are elementary, that is that for all nodes 7'+ w in P;, resp. Ps, we
have that atoms(w) C atoms(7’, {u},), resp. atoms(w) C atoms(7,v). Since
P is +-eager we obtain with Lemma 7 that atoms({u},) C atoms(7") C
atoms(7', w). We conclude that atoms(w) C atoms(7’, u) for all T'F w in P.

e (R) is some rule (C'): We have that u = {u1}u,. (R) is some (C) s.t.
T+ (251 T+ U9

T+ {Ul}u2

yields T' F u and the proof P, which yields T' - v are elementary, that
is that for all nodes T' - w in P;, resp. P», we have that atoms(w) C
atoms(7, u1), resp. atoms(w) C atoms(uz). We conclude by the fact that
atoms(T', u1) C atoms(T, {u1 }.,) and atoms(T, us) C atoms(T, {u }y,)-

e (R) is some rule (GX) such that

e (R) is some rule (D) s.t.

. The induction hypothesis yields

. The induction hypothesis yields that the proof P, which

T}_Uq

(R1)

(GX) THu

By induction hypothesis, each of the proofs P; yielding 7' - u; is elementary,
that is for each 7'+ w in P; we have that atoms(w) C atoms(7, u;). In order
to conclude we will show that atoms(u;) C atoms(7’,u) for every i. We
proceed by case distinction on the last rule (R;) of the proof P,.
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-+ (R;) is (GX): Impossible since P is +-eager, hence flat.

(R;) is (A), (D): By Lemma 7, atoms(u;) C atoms(7") C atoms(7’, u).

- (R;) is (Ck): Let a € atoms(u;), and assume that a ¢ atoms(7, u). Since
u; is obtained by application of rule (C%) we have that a is of the form
{a'}e.

Since a ¢ atoms(u) it must be the case that a is “canceled out” by
some other term w;, j # i, with a € atoms(u;). Since we assumed that
a ¢ atoms(T") we conclude as above that the last rule (R;) of the proof P,
cannot be (A4), (D), or (C'). Hence, R, is some rule (C), and by the fact that
a = {a'}; we obtain that R; is (C)). This means that we have two distinct
applications of (C}) above (GX), which contradicts the assumption that
P is +-eager. O

Definition 8 A term v is in key position of a term in normal form w if
{t}, € S(w) for some term t.

Lemma 9 Let P be a +-eager and simple proof of T+ w. All terms occurring
in key position of some node of P are in S(T,w).

Proof: If a term k appears in key position of a term ¢ occurring in the proof P
then it is syntactic subterm of an atom of ¢, and hence by Lemma 8 a subterm
of some atom of 7', w. By Proposition 5 we obtain k € S(T,w). O

Lemma 9 allows us to obtain a refined version of the locality theorem obtained
above: not only do we obtain locality when we cluster successive applications
of (GX), (C) and (D), but we even have locality for the following refined

“macro” rule:

Definition 9 A proof tree P is a GCD-proof tree with set of leaves L, set of
keys K, and root u in any of the following cases:

(1) P consists of a single node T+ u and L = {u}, K =,

(2) or P is of the form (C) PTii_TuH{ where P is a GCD proof tree with
root v, leaves L and set of keys K', K = K' U{k}, and {u'}, | = u,

(8) or P is of the form (D) PTil_J;)_k where P is a GCD proof tree with
root v, leaves L and set of keys K', K = K' U{k}, and {u}y | =/,

P --- P, . ,
(4) or P consists of (GX) LT with m > 1 such that every P is a
u

GCD-proof tree with respective leaves L;, root uq, and set of keys K;, and
K=UY,K;UK" and L =U, L;.

In particular, any instance of one of the rules (GX), (C), or (D) is a GCD-
proof tree.
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Again, the reasoning performed in this section applies also to the case of the
exclusive-or.

8 Deciding GCD-Deducibility in the General Case

Our goal in this section is to decide elementary deducibility.

Definition 10 We say that a term w is elementary deducible from a finite
set L of terms if there exists a GCD-proof tree with set of leaves L' C L, set
of keys K C L, and root w, and such that for all nodes T -t of the proof we
have that atoms(t) C atoms(L,w).

We first demonstrate the ezclusive-or case which is an immediate consequence
of the result on elementary proofs. Second we decide elementary deducibility
for the more complex case of Abelian group using the mathematical notion of
Z-module.

8.1 The Exclusive-Or Case

This case is easy: by definition, the nodes of the GCD-proof trees have the
form a; + ... + a,, where a; € atoms(L,w) and a; # a; for i # j. Therefore,
there are only exponentially (in the size of |L| + |w|) many possible nodes,
hence only a finite number of possible proofs. The one-step deducibility for
the rule (GX) in this case is equivalent to solving linear Diophantine equations
over 7Z./27. This approach is similar to the method used by [12,13] to prove
one-step deducibility by the rule (GX).

8.2 The Abelian Group Case

The above reasoning does not apply in the Abelian group case since there is
no a priori bound on the coefficients of a sum %:=7a;a;. Let

atoms(L,w) = {aq,...,a,}

We call an (L, w)-elementary term a term t such that atoms(t) C atoms(L, w).
By Proposition 6 an (L, w)-elementary term ¢ can be written in the form
aray + ... + apa, with o € Z. We define the representation of ¢t as ¢ =
(o, ...,qp) € Z™. Obviously, t; + ty = t; + {9, and —t = —{. Furthermore, by
definition, @; = e; where e; is the ¢-th unit vector.
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We recall that a Z-module, or simply module, is an Abelian group M equipped
with an operation of scalar multiplication such that o(z + y) = az + ay and
a(—z) = —ax for all @« € Z and z,y € M. Here we are interested in the
module Z", where scalar multiplication with an integer is defined as usual,
and sub-modules thereof.

For zq,...,x,, € Z" we denote by (z1, ..., x,,) the sub-module of Z" generated
by z1,...,x,, that is

(X1, ..y ) = {aqxy + ..oy, | @ € 7}

It is of course decidable whether y € (xy, ..., x,,) for given y, x4, ..., x,, since
deciding this question amounts to solving a system of linear equations over Z.
We will construct, for any given finite set L and term w, a finite set of gen-
erators for the set of (L, w)-elementary terms that are elementarily deducible
from L. This will be achieved by a fixed point construction. In order to guar-
antee that the fixed point is reached in a finite number of steps we need an
operation which allows us to extend a submodule by a new generator, but in
such a way that the new generator is only added if necessary, and such that
the generator is “small”. In order to make this notion of “small” precise we
write for x = (x1,...,2,),y = (y1,...,yn) € Z" that x <y if |z;| < |y,| for all
1, and x <y if x Iy and x # y.

Definition 11 We define the relation Ext(ly,z,ly) where Iy and ly are finite
lists over 7" and x € 7" by: Ext((x1,...,2y,), x,1) holds in any of the following
cases:

o x €(xy,....xy) and | = (z1,...,T,).
o v & (xy,...,x,) and | = (x1,...,x,,y) where y is minimal in the order <
such that y € x + (x1,...,Tp).

Note that in the second case of this definition there may be different choices
for y, These choices differ only in the sign of the components.

We recall that Presburger arithmetic, that is the first-order theory of (Z, +, >),
is decidable. The absolute value of y € Z is definable by a formula, that is
z = |y| can be expressed as (y >0 — z=y) A (y <0 — z = —y). As a conse-
quence, the formula defining x <y is a also a formula of Presburger arithmetic.
Membership z € (zy,...,x,) is expressible by Ja, . .., a, (x = X;a;x;). More-
over x & (z1,...,2,) is simply the negation of the membership formula. The
set, of minimal elements w.r.t. < in a set S C Z" defined by a Presburger
formula x € S is defined by z € S A —=(Jy (y € S Ay<x)). Putting all these
formulas together, we get a definition of all [ such that Ext(l;, x,(3) holds for
given [; and z. From this formula, one can easily compute one particular /.

We recall Dickson’s classical lemma, [36]. Note that in this lemma tuples are
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tuples of natural numbers.

Lemma 10 (Dickson’s lemma) For each infinite sequence ti,t, ... of dis-
tinct n-tuples of IN there exists i < j such that t; <t;.

We can now show that there is no infinite chain in the relation Ext:

Lemma 11 Let zq,...,x;,... € Z" be an infinite sequence, ly the empty se-
quence, and Ext(l;,x;11,li11) for every i. Then there exists an i such that
li =1; for every j > .

Proof: Assume that the sequence ([;);en is not eventually stationary. There
exists an infinite subsequence of (;);c such that its respective last elements
have the same sign (since there are only 2" many possible signs). It follows
that the chosen subsequence is not eventually stationary either.

We can decompose for any ¢ : [; = [} -  where 2 is the last element of /;. By
Dickson’s lemma there are [;, [; in this subsequence with ¢ < j and 2} < :c;
By construction, /; is a prefix of the sequence I’, and hence z; € (l;) Since
vl € xj + (l}) for some x;, this means that 2 — x; € x; + (Ij) by definition of
(I5). Since x; and z; have the same sign, 2/, — z; is strictly smaller than 7’ in
the order <. This contradicts the minimality of x; in the definition of Fxt. O

We use the Z-modules to model all the terms that the rule (GX) can construct.
Now, we analyze more precisely in Lemma 12 how the generators of a Z-
module are modified by the application of a rule (D).

Lemma 12 Let g',...,g™ € Z". We can compute a finite set of generators
of L
Di(gh,....g™) ={t | {t}h € {¢" ..., g™}

Proof: First we calculate a set of generators of

Kk(gla"'>gm) = {m|m€ <gl”gm>}

Let I be the set of indices corresponding to atoms encrypted by the key £k,
that is
Iy ={i | a; = {a;} for some j}

where the (ay,...,a,) is the enumeration of atoms(L,w) chosen at the be-
ginning of the section. An (L, w)-elementary term ¢, whose representation
tis (aq,...,ay), is of the form {u}y iff oy = 0 for every i ¢ I,. Hence,
(a1,... ) € Ki(gt, ..., g™) iff

(oq,...,an) = Big" + ... 4 Bug™
and o; = 519} + ... Bng™ = 0 for every i € I,
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The set of m-tuples (01, ..., 3,,) satisfying this system of equations forms a
sub-module of Z™. We can compute a finite set B of generators of this submod-
ule as follows. Each 3; can be written +; —d; with +;, 6; > 0. Then the equations
Brgi + ... Bmg™ = 0 for € I, define an homogeneous system (H) where the
unknowns 7;, §; belong to IN. Therefore a 2m-tuple (71, ..., Vm,01,...,0m) is a
solution of (H) iff it is a linear combination with coefficients in IN of the (finitely
many) minimal solutions of (H). Any linear combination with coefficients in
Z is also a solution of (H).

Therefore, any solution (3 can be expressed as a linear combination with coef-
ficient in Z of elements of the finite set

B ={(4 =0, .. k=01 | (A, o, ..., 0") minimal solution of (H)}

Conversely, any linear combination with coefficient in Z of elements of B is a
solution of the original set of equations.

This proves that B is a finite set of generators.
Then we obtain that

G ={big"+ ... +bng™| (b1,...,b) € B}
is a finite set of generators of K. (g',...,g™).

We finally obtain a finite set of generators of Dy (g',...,¢™) by “shifting” the
elements of G. Let shift, (aq,...,a,) be the vector (f1,...,3,) defined by

a; if {a;}r = a; € atoms(L, w)

0 if {a;}r & atoms(L, w)

The finite set of generators of Dy(g', ..., g™) is shift,(G). O
Lemma 13 below is the analog of Lemma 12 for the rule (Dy).

Lemma 13 Let ¢g',..., g™ € Z". We can compute a finite set of generators

of
Crlg",...,g™) ={{t}e | T € {g",...,g™), atoms({t}1) C atoms(L,w)}
Proof: The proof is analogous to the proof of Lemma 12. We now construct
first a finite set B of generators of the set
K (g'....,g™) ={t|t€(g",...,¢g™) and atoms({t};) C atoms(L,w)}

that is of the set of terms whose encryption with k is again an (L, w) ele-
mentary term. The finite set of generators of Cy(g',...,¢™) is obtained as
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shift,*(B), where shift, '(a, ..., ay) is the vector (B4, ..., [,) defined by

5 — a; if a; = {a;}x with a; € atoms(L, w)

0 if a; is not of the form {a;}; with a; € atoms(L, w)

O

Lemma 14 We can compute, given a finite set L of terms and a term w, a
finite set of generators of the set of (L, w)-elementary terms that are elemen-
tarily deducible from L.

Proof: Let, as above, atoms(L,w) = {a1,...,a,}, and L = {t1,...,t,}. We
define a relation ® between finite lists of vectors as follows:

Given a finite set [ of vectors, let z1,...,z, be the union of the finite sets of
generators of Dy (l) with & € L computed according to Lemma 12, and let
Tpi1,- .., T, be the union of the finite sets of generators of Cy(l) with k € L
computed according to Lemma 13. Then ®(/,[") holds iff there are finite lists
of vectors ly, ..., [, such that | = ly, ' =1,, and Ext(l;_1,;,[;) holds for all .

Let Iy = (tp,...,1,), and ®(/;,1;41) for any i. By Lemma 11, there exists an ¢
such that [;.1 = [;. By construction, this /; is the finite set of generators of the
set of (L, w)-elementary terms that are elementarily deducible from L. O

9 Decidability of the Intruder Deduction Problem in the General
Case

We sum up the results obtained so far to state our main results for the general
case.

Theorem 15 The intruder deduction problem can be decided in EXPTIME
for the theory of exclusive-or with distributive encryption.

Proof: By Lemmas 9,8 and the decidability of elementary deducibility, we
get that there is a proof iff there is a proof such that all nodes belong to
ST (T,w) ={a1 + ...+ a, | a; € atoms(T,w) a; # a;,i,5 = 1,...,p} which
has an exponential size in |T'| 4+ |w|. O

Theorem 16 The intruder deduction problem s decidable for the theory of
Abelian groups with distributive encryption.

Proof: By Lemmas 9,8 and the decidability of elementary deducibility, we get
that there is a proof consisting of applications of rules (A4), (UR), (UL), (P)
and (GXCD) for which the premises and the conclusions belong to S(T', w).
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This proof has polynomial size in |T'| 4+ |w|, but we cannot give a polynomial
complexity result since deciding elementary deducibility for the rule (GXCD)
relies on Dickson’s lemma. a

10 Decidability of the Intruder Deduction Problem in the Binary
Case

We call a term in normal form top-binary if it is the difference of two different
terms not headed with + or with —, and at most binary if all its syntactic
subterms are either top-binary or not headed with + or —. Note that for
example a — b is at most binary, while 2a and 3a — 2b are not.

A set is at most binary if each of its elements is. Note that if the set 7" is at
most binary then S(7") is at most binary as well. A proof tree P is called at
most binary if for all its nodes 7'+ u the term « is at most binary.

Our goal is to give a polynomial algorithm for the intruder deduction problem
when the set of hypotheses and the conclusion are at most binary. By Lemma 5
it is sufficient to show that one-step deducibility by the rule (GXCD) is
decidable in polynomial time in case the hypotheses and the conclusion are at
most binary.

The decision algorithm for one-step deducibility by (GXCD) in the binary
case is obtained by analyzing the proof trees that make up the “macro rule”
(GXCD). In the general case, this was done by showing that we can restrict
the search of such a proof tree to elementary trees (Section 7), and then that
existence of such an elementary proof tree can be decided by algebraic means
(Section 8). In the binary case we will show that we can restrict the search
of proof trees to proof trees which are at most binary (Subsection 10.1), and
then that existence of such a proof tree can be decided by using methods of
prefix rewriting (Subsection 10.2).

10.1 At Most Binary Proofs

In this section we will show how to transform such a proof into a proof which
is at most binary.

Example 5 The following (GCD) proof tree of {c}r — {b}r with L = {a —

33



b,c —d,{d}x — {a}r} and K = {k} is not at most binary:

(GX)TI—CL—I) TrHc—d TEk
THa—-b+c—d
T+ A{abr — {b}x + {ctr — {d}x

T l— {C}k — {b}k

Howewver, there is a proof tree which is at most binary:

(€) T FA{d}, —{ajx

(GX)

THa—-b THE ThFce—d THE
T}—{C}k—{b}k

Definition 12 For a set U of terms we denote by (U) the set of terms

(€) T+ A{d}, —{ajx

(GX)

(U) ={(qus + ...+ ayu,) | |a € Z,u; € U}

In other words, (U) is the set of terms in normal form that can be obtained
from some subset of U by applying the rule (GX).

Proposition 8 Let U be a finite set of at most binary terms and u € (U).
Then there ezist at most binary terms vy, ..., v, € (U) with u € (vy, ..., vg)
and atoms(vy, ..., vx) C atoms(u).

Proof: The proof is by induction on the cardinality of U. If u = 0 then we
choose k£ = 0. Otherwise there exists an a € atoms(u), and a term uy € U
such that a € atoms(ug). Let « be the factor with which ug contributes to the
construction of w, that is u = aug + v’ with v’ € (U \ {up}).

By induction hypothesis there are at most binary terms v/, ..., v} € (U\{uo})
such that u' € (v],...,v]) and atoms(v],...,v;) C atoms(u’).

There are three cases:

(1) wg is not headed with +, that is ug = a. We choose k = 1 + 1, v; = v]
for i < k, and v = ug. Since u; € (U \ {uo}) for ¢ < k we obviously also
have u; € (U) for i < k, and v € (U) holds since uy € U.

By construction we have that u € (vy,...,v;), and since a € atoms(u)
we have that atoms(u) = atoms(u')U{a}. Hence, atoms(v;) C atoms(u’)
atoms(u) for ¢ < k by induction hypothesis, and atoms(vy) = {a}
atoms(u) by choice of a.

(2) o =a—bor uy =>b—a for b € atoms(u). This case is similar to the
first case: We choose k =1+ 1, v; = v} for i < k, and v = uy. As above,
u; € (U) for i < k. Also, we have again that u € (vy, ..., v;). Concerning
the atoms of u we now have that atoms(u) = atoms(u') U {a, b}. Hence,
atoms(vy, ..., vx) C atoms(u).

-
C
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(3) up = a—bor uyp = b— a for some atom b, and b ¢ atoms(u). We can
assume w.l.o.g. that ug =a —b.
We can write every v} with 1 < ¢ < [ as v, = Na + b + v/ with
a,b & atoms(v]'). We choose k = [, and v; = (\; +v;)a+v! for 1 <i < k.
For any ¢ there can be at most two atoms in v/ since v} is at most binary.
- If v/ contains two atoms then \; = 7, = 0, and v; = v/ is at most binary.
- Otherwise, if v/ contains at most one atom, then v is at most binary

since b ¢ atoms(v;).

For any i, v} + v;uo = (\; +7;)a + v/ = v;, and hence v; € (U).
By construction, atoms(v;) C atoms(v}) U {a} \ {b} C atoms(u).

It remains to show that u € (vq,...,vx). Let v = Xi=ta,v]. First note
that, since u = aug + SZf 0] = aa — ab+ SZas(Na + ;b + vf) and
b & atoms(u, vy, ..., v") that « = X!=7a;v;. Now, we have that

i=n i=n / i=n / =n /
Yistogu; = Nzl ou(v; + yig) = Xz av; + (B2 ) ug = v 4 aug = u O

Lemma 17 Let P be a GCD-proof tree with leaves L, set of keys K, and root
r. If L and r are at most binary then there exists an at most binary GCD-proof
tree P" with leaves L' C L, keys K' C K, and root r.

Proof: First note that for any instance of a rule (C') or (D), which can be
seen as special cases of GCD-proof trees, the root is at most binary if and only
if the leaf is at most binary. Hence, if all instances of (GX) in the proof tree
P have an at most binary result then P is at most binary.

Otherwise, there exists an instance of (GX') whose result is not at most binary
and where all the leaves are at most binary. Since the root of P is at most
binary, the path from the root of the instance of (GX) to the root of P
eventually leads to another instance of the (GX) rule. That is, we have a
proof tree of the following form

(GX)T}_UI TFu,
T+ € sy U
oy LE (& )
C,D :
(©, )Tl—u’ Py P,

(GX)

P

where (C, D) is any instance of a rule (C') or (D), and where the keys are
omitted for the sake of clarity. By Proposition 8 there are at most binary terms
U1y, U € (Uq,...,u,) such that u € (vy,...,v) and atoms(vy,...,v;) C
atoms(u). We hence obtain, where we abbreviate by 7'+ U the set of sequents
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{TFz|zeU}:

ax THU ax THU
(GX)( )Tl—vl ( )Tl—vn
T n
(D) u (€ (v1,...,0p))
b :
(©D) 7y P - P

(GX)

In this proof tree we hence have that v; € (U) is at most binary for every i. We
can now apply the inverse transformation of Figure 5 and commute the (GX)
rule with succeeding (C') rules. Since atoms(v;) C atoms(u) for 1 < i < k we
can also commute this (GX) rule with succeeding (D) rules. We hence obtain:

(GX) THU (GX) THU
V1 TF v,
D) — C.D) —
(©, )Tl—u'l (©, )Tl—u; P P,
(6X) -

/

where u' € (uf,...,u.). We may now apply the induction hypothesis to this

proof tree since the number of instances of (GX) with a non at most binary
result has decreased by one. O

We can now define the (GC D) proof rule: An instance of this rule is a partic-
ular form of a GCD-proof tree.

Definition 13 The rule (GCD) consists of all GCD-proof trees with exactly
one instance of (GX), where all instances of (C) are above the (GX) rule,
and all instances of (D) are below the (GX) rule.

Definition 14 Let, for any set T of terms in normal form,
Sio(T) = atoms(T) U {a1 — ay | a1, a2 € atoms(T),a; # as}

Lemma 18 Let P be a GCD-proof tree with leaves L, keys K, and root r. If
LU{r} € Sio(T) for some set of terms T then there exists a proof tree using
exclusively the (GCD) rule such that all nodes are in Sy o(T).

Proof: By Lemma 6 there is a simple and and +-eager GCD-proof tree
P’. We now apply the transformation of the proof of Lemma 17. Since P’ is
simple the only possible sequence of rule applications between two consecutive
(GX) rules is some applications of (D), followed by some applications of (C').
The “frontier” between two instances of the rule (GCD) is at the end of the
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©— ©O©— ©— ©—

©— ©— ©— ©—
0-O0 " O-0 T 0"0" 0@

(GX)

©)

)
-0

Figure 8. Illustration of the third case

sequence of (D) rule applications. Since u € S,5(T') by hypothesis, we also
have that v; € S,o(T") since for all i we have that atoms(vy C atoms(u) and
v; is at most binary. As a consequence, any term obtained by a sequence of
decryptions form v; is also in S (7). a

10.2 Deciding One-step Deducibility by the (GCD) Rule

In this section we will use an abbreviation for sequences of encryptions and
write {m}z, ..., for {---{m}s, -+ }u.-

We are now faced with the problem of checking whether, for a given set U of
at most binary terms and an at most binary term r there is an instance of
rule (GCD) with leaves and keys contained in U and root r. There are three
possible cases to consider:

(1) r is not headed with +, and there is a sequence of top-binary terms
({a;}v; — {bi}v,)i=1...~ such that for every ¢ one of {a;},, — {b;}.,, and
{bi}v, — {ai}s;, is in U, a term ayy; € U not headed with +, and a
sequence (h;)i—o,. n+1 of words in U* such that {r},, = {ai}v,n, and
{bi}vihi = {ai“}viﬂhiﬂ for i = 1, ey N.

(2) r is a top-binary term 7 — r9, and there are two instances of the rule
(GCD) as in the first case with roots 71, resp. 79, and with the same
sequence of keys h;.

(3) ris a top-binary term r; — o, and there is a sequence of top-binary terms
({@;}v; — {bi}v;)i=1,..~ such that for every i one of {a;},, — {b;i}.,, and
{bi}v, —{a;}s, is in U, and a sequence (h;);—.. n of words in U* such
that {r1}n, = {@1}oines {0itoins = {@it1}toine,, fori=1,...,N —1, and
{bN}UNhN = {T2}ho'

In the following we will only consider the last case, which is illustrated by
Figure 8, since the first two cases can be checked in a very similar way. In
this figure the sequence of encryption keys is not displayed. We have a binary
term as the conclusion of the rule (GX), to which a sequence of decryptions
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(D) is applied, and a sequence of binary terms as hypotheses of the rule (GX)
each of which is obtained by a sequence of encryptions (C'). In this sequence
of terms, the atoms are canceled out in pairs (indicated by the arcs in the

figure), leaving only the very first and the very last one to form the result
of (GX).

The idea is to reduce the problem to reachability in a prefix rewrite system [37].
Let us first explain the construction at hand of a special case. We view a term
{a}sy-, where a is not headed with + and not of the form {m}, as the term
aryz. That is, the string representation consists of a constant denoting the
message, followed by the sequence of keys from the innermost to the outermost
encryption. Alternatively, this can be seen as a configuration of a pushdown
process with state a and stack xyz, where the innermost encryption key is on
top of the stack.

If we ignore for the moment possible instances of the rule (D), and if we
assume for the moment that all terms in key positions of terms in U are also
contained in U then we can just construct the prefix rewrite system which, for
any binary term {a}, — {b},, € L, rewrites any term avz into bwz, and vice
versa:
{av — bw | {a}, — {b},, € U or {b}, —{a}, € U}

If we wish to check for an instance of the rule (GCD) with root {a}, — {b}.
then we just have to test whether the string av rewrites to the string bw in
this prefix rewrite system.

Example 6 Consider U = {a — {b}12,{b}1 — {c}s,1,2,3,4}, and r = {a}4 —
{c}324 (in this, as in the following example, we use numbers for keys). There
is a (GCD) proof tree with leaves and keys and L and root r:

() T+ {b}s —{c}s
T |— a — {b}12 (C ; T }_ {b}12 — {6}32
T+ {a}4 - {5}124 ! TH {5}124 - {0}324
T+ {(I}4 — {6}324

The prefix rewrite system obtained from L is

(Cy)
(GX)

{a — b12,b12 — a,bl — ¢3,c3 — bl}
With this rewrite system we have the rewrite sequence

a4 — b124 — 324

The first difficulty is that some of the keys may not be contained in U. In
this case we may rewrite avx into bwz only when x € U*, that is when x
is a sequence of symbols from U. We can implement this check, in terms of
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a pushdown process, by maintaining a marker symbol # on the stack which
is always at the topmost position such that all symbols below # are in U.
Formally, let left(z) and right(x), for any string x, be such that = = left(z) -
right(x), and such that right(x) is the maximal suffix of x which lies in U*.
Then we construct the rewrite system as follows, in order to assure that all
redexes comprise, or are adjacent to the marker #:

{ a left(v)#right(v) — b left(w)#right(w) |
{a}, = {b}w €U or {b}, —{a}, €U }

Example 7 We apply this refined construction to the variant obtained from
Ezample 6 by removing the key 1 from set U. Then we obtain the same (GCD)
proof tree as in Example 6 since this proof tree does not use an encoding with
the key 1. The rewrite system is now

{a# — D1#2,b1#2 — a,b1# — c#3,c#3 — bl#}

With this rewrite system we have the rewrite sequence
a#4 — b1#24 — c#324

However, if we remove the key 2 as well from the set U then the above proof
tree is not legitimate (since we can not encode with 2). The rewrite system in
this case s

{a# — D12#,b12# — a,b1# — c#3,c#3 — bl#}

With this system, we can rewrite a#4 into b12#, but then we can no longer
apply the rewrite rule b1# — c#3.

Finally, it may be possible that the result of the (GC'D) rule is only obtained
after some sequence of decryptions from the result of the (GX) rule. We
hence cut now the rewrite process in two consecutive processes. During the
first process, if we have a stack x and wish to apply a rewrite rule the left-
hand side of which contains x as a proper prefix then we just put the missing
symbols with a negative sign on the stack. In the second process we do the
reverse action, that is if some negative symbols are on the top of the stack
and if the right hand side of the rewrite rule produces these symbols, then
we just pop these negative symbols from the stack. We denote the negation
of a symbol a as @. The states of the second process are decorated with a
hat in order to keep the two state spaces disjoint. We denote by Z for any
x =1, the string T, - - - T1 (note the inversion of the order). The symbol
1 is used to denote the right end of a string (i.e., the bottom of a stack).

Definition 15 We define sta({t}x) = sta(t), sta(t) = Uscatomsqr) Stala), and
sta(t) = {t} if t is not headed with + and not of the form {z},.
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We define keys({t}r) = keys(t)U{k}, keys(t) = Uacatoms() keys(a), and keys(t) =
0 if t is not headed with + and not of the form {z},.

For a setT of terms we define sta(T) = U;er sta(t) and keys(T') = User keys(t).

Example 8 LetT = {{a}p.—{d}e,{d}ce}, then sta(T) = {a,d} and keys(T) =
{b,c,e}.

We define, for given set U of at most binary terms and an at most binary term
r two prefix rewrite systems. Let @ = sta(U,r) and C = keys(U, r).

(1) The prefix rewrite system PR; is defined by the following rules:

{ a left(v)#right(v) — b left(w)#right(w)

a left(v)#viy — b left(w)Ffright(w)vzy |
{a}, —{b}w € U or {b}, —{a}, €U,
v1vy = right(v),
ve{liu{uluelU}}

(2) The prefix rewrite system PR; is defined by the following rules:

{a left(v)#right(v) — b left(w)#right(w)
i left(v)#right(v)ws — b left(w)#w, |
{a}o — {b}w € U or {b}y, — {a}, € U,
wiwe = right(w) }

These two rewrite systems are symmetric one to the other with the technical
exception that the symbol 7 in the system PR, serves to ensure the invariant
that no negative symbol occurs to the left of a non-negative symbol. The
system PR, maintains this invariant since it can not push negative symbols.
Note that we have in the first case a rewrite rule for every decomposition
of right(v) into v; and vy, and in the second case a rewrite rule for every
decomposition of right(w) into w; and ws.

We can finally define the complete rewrite system as consisting of the following
rules:
PR1UPR2U{G—>&|G€Q}

Example 9 Let U = {{a}12 — b,{b}ss — c,c — {d}a34,1,2,3,4}, and r =
a — {d},. We only give the rewrite rules which are relevant for this example:
The system PR, contains, among others, the rules a# 1 — b#21 1 and b#2 —
c#432. The system PRy contains the rule ¢#432 — d#. Hence, we have the

rewrite sequence

a#tL > bHITL s #A32T L — #4321 L — d#TL
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The following two lemmas state the central property of each of these two prefix
rewrite systems:

Lemma 19 The following two assertions are equivalent for every a,b € @,
z1,y1 € {e UCH(C\U), 2,y0,y3 € U™:

(1) There is a prefiz rewrite sequence by PRy
ar1#xe L —" by #yoyz L

(2) either a =b, x1 = y1, To = Yo, Y3 = €,
or there exists a sequence of binary terms {a;}v,—{bi}w, € U,i=1,...,n,
and a sequence of strings h; € U*, 1 =1,...,n, such that
(a) {a}eizays = {01} o
(b) {bl}wzhz = {a’i+1}vi+1hi+1 fOT’ i=1,...,n—1
(¢) {bn}wan, = {b}yips

and such that for some i the longest common suffix of y3 and h; is e.

Lemma 20 The following two assertions are equivalent for every a,b € (),
T1, % S {6} U C*(C \ U)i x2,Y2,Y3 € U*

(1) There is a prefiz rewrite sequence by PR,
am #aaTs L " by #ya L

(2) either a = b, x1 = y1, T3 = Yo, T3 = €,
or there exists a sequence of binary terms {a;},,—{bi}w, € U,1=1,...,n,
and a sequence of strings h; € U*, 1 =1,...,n, such that
(a’) {a}xwz = {al}vﬂu
(b) {bz}wlhz = {ai+1}vi+1hi+1 fO’/‘ 1=1,...,n—1
(C) {bn}wnhn = {b}ylyzw?,

and such that for some i the longest common suffiz of x5 and h; is e.
The proof of these two lemmas can be found in the appendix.

Hence, if ¢t and s are both not of the form {m}; then there is a proof of
T+ {t}, — {s} if and only if for some u, z1, xo, x3:

t left(v)#right(v) L —* u x1#22T3 — U x1#02T3 —" § left(w)#right(w) L

Lemma 21 Let L be a set of at most binary terms, K a set of terms, and r
an at most binary term. It is decidable in polynomial time whether there exists
an instance of the (GCD) rule with leaves L, keys K, and root r.

Proof: By Lemmas 19 and 20, checking an instance of (GC'D) reduces to a
reachability problem in a prefix rewrite system of polynomial size (note that
we may w.l.o.g. exclude instances of (GC D) where all hypotheses of (GX) are
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obtained by some (C,) and where there is (D,) immediately below the (GX)).
This can be done in polynomial time [37]. O

As a consequence we obtain:

Theorem 22 The binary intruder deduction problem for the equational theory
of Abelian groups with distributive encryption is decidable in polynomial time.

11 Conclusion

Public key encryption. Moving from symmetric key encryption (as used in
this paper) to public key encryption simply amounts to adding a new oper-
ator I which computes the private key associated to a public key. Then, the
decryption rule becomes

T+ A{u}y lr/ac T+ 1(v) lr/ac
TFulrac

and the definition of subterms is completed by S(I(t)) = {I(t)}, stating that
the inverse operation hides its argument. The lemmas and proofs stated in the
symmetric case are extended to this framework in a straightforward way.

Related works. The use of locality in the analysis of cryptographic protocols
has been used first in [38], and later on by [12,13]. In [39], we studied the case of
a homomorphic operator that distributes over some binary operation + which
can be one of a the free associative-commutative operator, the exclusive-or
operator, or the addition of an Abelian group. The EXPTIME result that we
obtained for the intruder deduction problem for the theory of exclusive-or and
a homomorphism has been strengthened in [17] to get a PTIME decision pro-
cedure by means of the resolution of polynomial equations in Z/2Z[X]. There
are two main differences with the present work: First, the homomorphism is
an isolated operation not related to the encryption operation, which is less
realistic than our model. Second, the polynomial complexity obtained in [17]
relies on the fact that there is only a fixed number of homomorphisms, while
our case can be seen as the one of an infinite family of homomorphisms (one
for every possible key). Even in light of a locality result, which implies that
only the keys occurring in the goal term or in the set of hypotheses are rele-
vant for a proof, the number of homomorphisms still depends in our case on
the problem instance.

Further work. A main step of our approach uses an idea which is similar
to the one used in [17]: regroup certain combinations of “--constructions”,
encryptions, and (in our case) decryptions into one “macro” rule, the instances
of which are then decided by an ad-hoc method (here linear algebra or prefix
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rewriting in the binary case). This could be probably formalized into a generic
solution to solve the intruder deduction problem. The active case is more
problematic since undecidability results show that this case is much more
complex.

Another issue raised by our result is to extend this framework to the case of a
commutative encryption, i.e. {{z},}. = {{z}.},. A preliminary work in this
direction suggests that the same approach can be used successfully [40], but
that a lower EXPSPACE bound could be established in case of non-symmetric
keys, i.e. when there is an explicit operation I to compute the inverse of a key
such that a term {x}, can be decrypted only if one knows I(y).
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A Proofs for Section 10

Definition 16 We call a string admissible for given Q,C,U if it is of the
form qr1#xT3 L where

e there is some a € () such that ¢ =a or q=a
e cither z1 =€ or z; € C*(C'\ U)

e 1y, 13 €U

Proposition 9 The prefix rewrite system of Section 10 rewrites admissible
strings into admissible strings.

The following proposition lists some basic properties of the decomposition and
inversion of strings which we will use in the sequel without further reference:

Proposition 10 For all z,y € (CUU)* :

(1) zy=7y7=
(2) If y € U* then left(zy) = left(x) and right(xy) = right(z)y

We now prove the central lemmas of the prefix rewrite construction:

Lemma 23 The following two assertions are equivalent for every a,b € @,
z1,y1 € {e} UCH(C\U), 22,2,y € U™
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(1) There is a prefiz rewrite sequence by PRy

axi1#ro L =" by #yaysz L

(2) either a = b, x1 = y1, To = Yo, Y3 = €,
or there exists a sequence of binary terms {a;},,—{bi}w, € U,1=1,...,n,
and a sequence of strings h; € U*, 1 =1,...,n, such that
(a) {a}eizays = {01} o
(b) {bl}wzhz = {a’i+1}vi+1hi+1 fO’f‘ 1=1,...,n—1
(¢) {bntwan, = {b}yip

and such that for some i the longest common suffiz of y3 and h; is €.

Lemma 24 The following two assertions are equivalent for every a,b € (),
z1, 91 € {e} UCH(C\U), 22, y2,y3 € U

(1) There is a prefix rewrite sequence by PRy
axy #aTz L =" by #ya L

(2) either a =b, x1 = y1, T3 = Yo, T3 = €,
or there exists a sequence of binary terms {a;},,—{b;i}w, €U, 1 =1,...,n,
and a sequence of strings h; € U*, 1 =1,...,n, such that
(a’) {a}xwz = {al}vﬂu
(b) {bl}wzhz = {a’i+1}vi+1hi+1 fO’/‘ i=1,...,n—1
(C) {bn}wnhn = {b}ylyzw?,

and such that for some i the longest common suffiz of x5 and h; is e.

Proof: First note that the two prefix rewrite systems PR; and PR, are
completely symmetrical (the only purpose of the occurrences of y in PRy is to
guarantee admissibility of all reachable configurations). We hence prove only
the first lemma, corresponding to the rewrite system PR;. The proof of the
second lemma is completely symmetrical.

For the direction from (1) to (2) we proceed by induction on the length of
the rewrite sequence. If the length of the rewrite sequence is 0 then obviously
a=0b, r1 =1y, T3 = Y9, and y3 = €. If there is exactly one rewrite step then
there are two possible cases:

(1) The rewrite rule is of the form
a left(r)#right(r) — b left(s)#right(s)
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Then there exists a u such that
x1 = left(r) y1 = lefi(s)
xo = right(r)u Yo = right(s)u
Ys =€
We conclude by choosing

{ar}, = {b1}w, :=={a}, — {b}s

hl =Uu
since then

{a}eizays = {0} a12s = {0}ru = {1 }oiny
{bl}w1h1 = {b}su = {b}y1y2

(2) The rewrite rule is of the form
a left(r)#riL — b left(s)#right(s)Ta L

with right(r) = ri7r5. Then we have

xy=left(r) v = lefi(s)
T2 =T1 Yo = right(s)

U3 = T3, hence y3 = ry

We conclude by choosing

{ar}e, = {b1}w, :=={a}, — {b}s
hl =€

since then

{a}eizays = {a}r = {a1}oin,
{bl}wlhl = {b}s = {b}y1y2

In both cases, the longest common suffix of ~; and y;3 is €.

In case there are N > 1 rewrite steps, the string obtained in NV — 1 steps is by
Proposition 9 admissible. Hence, there are b € Q, y; € {e} UC*(C \ U), and
Y2, Y3 € U* such that

av1#xo L =" by #yoz L — cai#H L

By induction hypothesis, there exists a sequence of binary terms {a;}.,
{bi}w, €U, i =1,...,n, and a sequence of strings h; € U*, i = 1,...,n, such
that
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(1) {a}wlmys = {a’l}vlhl
(2) {bz}wlhl = {ai+1}vi+1hi+1 for 1 = 1, e, = 1
(3) {bn}wnhn = {b}ylyz

and such that the longest common suffix of y3 and some h; is e. We will show
that there exists some {dn41}o,,, — {0n+1}wn,s € U, and a sequence of key
strings k; € K*,i=1,...,n+ 1 such that

(1) {a}wlmzs = {a’l}vlkl
(2) {bl}wzkz = {a’i+1}vi+1ki+1 fori=1,....n
(3) {bn+1}wn+1kn+1 = {C}lez

and such that the common longest suffix of y3 and some k; is €. There are two
possible cases for the rewrite rule used in the last rewrite step:

(1) The rewrite rule is of the form

b left(r)#right(r) — c left(s)#right(s)

Then there exists « such that

y1 = left(r) z1 = left(s)
Yo = right(r)u 2z = right(s)u

3 = 73, hence z3 = y3

We conclude by choosing

{an+l}vn+1 - {bn+l}Wn+1 = {b}r’ - {C}s
klzhl (121,,71)

kpni1:=u
since

{a}eraazs = {0} a1aays = {01 born = {a1 ik

{03 Yosks = {0 Ywins = { @it Yo iho = 101 boriake, (E=1,...,n = 1)
{6 twnkn = {0tyrye = {0}ru = {an+l}vn+1kn+1

{bn+1}wn+1kn+1 = {ctsu = {c}s1

If the longest common suffix of y3 and h;, 1 < i < n, is € then the longest

common suffix of z3 = y3 and k; = h; is €.
(2) The rewrite rule is of the form

b left(r)#riy — c lefi(s)#right(s)T3
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with right(r) = riry, and v € {w | uw € U} U{L}. Then we have

y1 = left(r) 21 = left(s)
Yo =11 29 = right(s)

Z3 =Tz U3, hence z3 = ysrs
We conclude by choosing

{ant1ton = {bngrtwny = {b}r = {c}s
k‘iizhi’f’g (Zzl,,’l’b)

kpi1:=¢€
since

{a}eraazs = {0 a1maysr = {01 orhars = {@1}oik

10 bwiks = Abibwihira = 1Git1 Foiihiiars = 1Git1bopakiy, (E=1,...,n—1)
{00 tunkn = {00 twnhnrs = {0tyiyars = {0} = {an+1}vn+1kn+1

{bnt1twnsibnss = {bnt1 twn = {cts = {c}aiy

The longest common suffix of 23 and &, 1 = € is €.

For the direction from (2) to (1), if a = b, 1 = y1, ¥ = Y2, and y3 = € then
we obviously have that azi#xo 1 —* by;#y-75L. Otherwise, we proceed by
induction on n.

If n =1 then there exists {a1},, — {b1}w;, € U and hy € U* such that

(1) {a}wlmys = {a’l}vlhl
(2) {bl}wlhl = {b}ylyz

and the longest common suffix of y3 and hy is €, that is y3 = € or hy = €.

(1) Ifys = ethen z19txy = left(vi)#right(vi)hy and y1#ys = left(w:)#right(wa)ha,
hence axi#xs L — by #ys L by virtue of the the binary term {a;},, —
{1}, € U.

(2) If hy = € then x1#x9 = left(vy)#v] and y3 = v? for right(v;) = vivi, and
y1#ye = left(w)#right(w). Hence axi#xo L — byi#y»ys L by virtue of
the the binary term {a;},, — {b1}w, € U.

If n > 2 then there exists a sequence of binary terms {a;},, — {b;}w, € U,
t=1,...,n, and a sequence of strings h; € U*, : = 1,...,n, such that

(1) {a}wlmys = {a’l}vlhl

(2) {bl}wzhz = {a’i+1}vi+1hi+1 fore=1,...,n—-1
(3) {bn}wnhn = {b}ylyz
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and such that for some 7 the longest common suffix of y3 and h; is €.

(1) If there is an i < n such that the longest common suffix of y3 and h; is €
then, by induction hypothesis,

ax1#xy —" b1 left(w,_1)#right(w,—1)hn—173

Now, we have that b, _1left(w,_1)#right(w,_1)h,_1 = ayleft(v,)#right(v,)h,
and that {b},,4, = {bn}w,n, Hence,

bn—l leﬁ(wn—l)#right(wn—1>hn—1%
= ay, left(v,)#right(v,)h, 73
— by, left(w,)#right(w,)h, 73
= by1 #1273

(2) Otherwise, the longest common suffix of /,, and y3 is €. Let s be the longest
common suffix of y3 and the h; for i < n, and let y4, h} (1 < i < n) be
such that y; = y4s and h] = h;s. Hence, we also have that

(a) {a}xwzyg = {al}mh’l

(b) {bz}wlh; = {(J,i+1}vi+1h;+1 for ¢ = 1, o, — 2

and for some i < n the longest common suffix of ¢4 and &} is e. Hence,
by induction hypothesis,

CL.Tl#LUQ —* bn—l leﬁ(wn_1)#rz’ght(wn_1)h;_1%'

Now, we have that {b,—1}w, 1n, + = {@n}to,n,, that is w,_1h), ;s = v, h,,.
Since s is a suffix of y3, and since the longest common suffix of y3 and
h, is €, we conclude that h, = ¢, and s is a suffix of v,,. We decompose
v, = v}s and obtain that

b1 left(w,_1)#right(w,_1)h,,_ Y5
= a, lef(v,)#0,75
— by, left(wy,)#right(w, )5y,
= by, left(w,,)#right(w,)h, 73
= by1#Y27s3
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