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Abstract

We are interested in the design of automated procedures for analyzing the (in)security
of cryptographic protocols in the Dolev-Yao model for a bounded number of ses-
sions when we take into account some algebraic properties satisfied by the operators
involved in the protocol. This leads to a more realistic model than what we get un-
der the perfect cryptography assumption, but it implies that protocol analysis deals
with terms modulo some equational theory instead of terms in a free algebra. The
main goal of this paper is to set up a general approach that works for a whole class
of monoidal theories which contains many of the specific cases that have been con-
sidered so far in an ad-hoc way (e.g. exclusive or, Abelian groups, exclusive or in
combination with the homomorphism axiom). We follow a classical schema for cryp-
tographic protocol analysis which proves first a locality result and then reduces the
insecurity problem to a symbolic constraint solving problem. This approach strongly
relies on the correspondence between a monoidal theory E and a semiring SE which
we use to deal with the symbolic constraints. We show that the well-defined sym-
bolic constraints that are generated by reasonable protocols can be solved provided
that unification in the monoidal theory satisfies some additional properties. The
resolution process boils down to solving particular quadratic Diophantine equations
that are reduced to linear Diophantine equations, thanks to linear algebra results
and the well-definedness of the problem. Examples of theories that do not satisfy
our additional properties appear to be undecidable, which suggests that our char-
acterization is reasonably tight.
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1 Introduction

Cryptographic protocols. Cryptographic protocols are small concurrent
programs that use cryptographic primitives like encryption under public or
symmetric keys, digital signatures, etc., to ensure confidentiality of the mes-
sages exchanged in an insecure environment. To write correct cryptographic
protocols has turned out to be a difficult and error-prone task. For instance, a
man in the middle attack has been found [Low96] in the infamous Needham-
Schroeder protocol [NS78] only seventeen years after the first description of
the protocol. This calls for automated tools to help designers to check that
their protocol is free of logical flaws, and a lot of progress has been done in this
direction. These achievements rely on the so-called Dolev-Yao model [DY81]
which assumes that the cryptography is perfect, i.e., one cannot decipher an
encrypted message if one does not know the decryption key. In this model,
messages are terms of a free algebra, and the deductive power of the attacker,
designated later on as the intruder, is modeled by a set of deduction rules.
In this framework, known as the formal model approach, the insecurity prob-
lem amounts to deciding whether there is an execution of the protocol that
allows the intruder to learn some secret data. The insecurity problem is un-
decidable when the number of sessions of the protocol is unbounded. Sev-
eral decidability results have been proved for a bounded number of sessions
[MV01,ALV02,RT03], which is the case that we consider in this paper, yielding
the realization of effective tools like [AVI]. These results rely on a reduction
of the insecurity problem to a symbolic constraint solving problem.

Algebraic properties. The hypothesis of perfect cryptography in the Dolev-
Yao model is too strong since protocols use operations that satisfy some al-
gebraic properties used in a crucial way in the protocol or in the encryp-
tion/decryption process. For example, this is the case for the DES and for the
more recent AES which both rely on the properties of exclusive or. Therefore,
a current trend in the formal model approach is to relax the perfect crypto-
graphy hypothesis in order to accommodate for these algebraic properties, and
several new decidability results have been obtained, for instance in the case of
exclusive or (ACUN), Abelian groups (AG), and weak models of modular expo-
nentiation [CKRT03,CLS03,CKR+03,MS05]. A weakness of these approaches
is their lack of generality since each new theory requires a new complex proof.
This calls for results that are as generic as possible, or for new paradigms. Ho-
momorphic properties occur in many protocols, alone or in combination with
other operators, and cannot be dealt with by a simple adaptation of the tech-
niques that have been developed so far. In this paper, we consider the axioms of
Associativity-Commutativity (AC), Unit element (U), Nilpotency (N), Idem-
potency (I), homomorphism (h), and specifically the combinations of these
axioms that constitute monoidal theories.
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Our contribution. In this paper we propose a general approach to handle
monoidal theories that covers several cases already studied, and furthermore
includes properties of homomorphic operators. A monoidal theory E determ-
ines a semiring SE, that is, an algebraic structure which can be thought of
as a ring without subtraction. For instance, the semirings corresponding to
the theories ACU, AG and ACUNh are the natural numbers N, the ring of
integers Z and the ring Z2[h] (a.k.a. GF(2)[h]) of polynomials in the indeterm-
inate h with coefficients from the finite field Z2. Monoidal theories have been
extensively studied by F. Baader and W. Nutt [Nut90,Baa93,BN96] who have
provided a complete survey of unification in these theories. We shall rely on
these previous results in an essential way since the decidability of unification
is a necessary condition for the decidability of protocol insecurity.

If the monoidal theory enjoys some additional properties then our approach
provides a decision procedure for protocol insecurity for a bounded number
of sessions. This procedure applies to a large class of algebraic theories that
generalizes many previous works. The additional properties required involve
natural concepts from algebra: (1) unification must be unitary, that is any
solvable unification problem has a most general solution, and (2) SE must be
an Euclidean ring that is either finite or where the Euclidean division has some
good properties, and such that linear Diophantine equations are solvable. As
far as we know this is the most general result for theories involving AC ax-
ioms. Our procedure is inspired by the work of J. Millen and V. Shmatikov
for the Abelian group theory [MS05] but it is different in several aspects: it
handles monoidal theories, and we have devised a characterization of well-
defined systems that relies on classical linear algebra concepts. Furthermore,
our resolution procedure for solving quadratic Diophantine equations is differ-
ent and more general than the procedure of [MS05].

The main steps of our method are sketched as follows. First, we replace the
deduction system modeling the intruder capabilities by a new system contain-
ing a rule which “compresses” into a single rule sequences of rule applications
of the original system involving operators subject to the algebraic laws. This
will allow us later to model arbitrary sequences of these operators by linear
equations over the semiring SE. Next we will exploit the fact that any reason-
able protocol, i.e. any protocol where participants have a deterministic beha-
vior, will result in a so-called well-defined constraint system [MS05]. Thanks
to properties of unification in monoidal theories we reduce the solvability of
constraint systems (where a constraint denotes existence of a deduction of
arbitrary length) to the solvability of one-step constraint systems (where con-
straints denote exactly one application of a deduction rule), which then are
transformed into constraint systems in a signature consisting of constants and
operators of the theory E, but without the operations of the Dolev-Yao model
like pairing and encryption. Then we prove that if the monoidal theory enjoys
some additional properties, such as the finiteness of SE, then the resolution of
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the latter system amounts to solving particular quadratic Diophantine equa-
tions in the semiring SE. Finally, we can thanks to the well-definedness of
the constraint system reduce the resolution of this quadratic system to the
resolution of a system of linear Diophantine equations, which is decidable.

Our characterization is reasonably tight as shown by the case of the AGh
theory: this theory has a decidable unification problem but the associated
semiring is neither finite nor an Euclidean ring, and protocol insecurity is in
fact undecidable [Del06b].

Applications to cryptographic operators and protocols Properties of
cryptographic operators are crucial for the design and the verification of cryp-
tographic protocols for at least two reasons: The design of a protocol can
itself make essential use of some algebraic properties, or it may the case that
cryptographic operators used for the realization of a protocol “accidentally”
enjoy properties which then can be exploited by an attacker. Protocols that
are based on the properties of exclusive or fall into the first case, like for in-
stance Bull’s recursive authentication protocol which was proved correct in a
model which abstracts from the algebraic properties [Pau97], but for which
later an attack was found when taking account the properties of exclusive
or [RS98]. An example of a protocol with “accidental” algebraic properties
of cryptographic operators is the TMN protocol where the RSA-like asym-
metric encryption operation has the properties of Abelian groups with homo-
morphism. This protocol has a vulnerability based on exactly these algebraic
properties [Sim94].

The algebraic theories of exclusive or, as of Abelian groups with a homo-
morphism, are instances of the class of monoidal theories to which our results
apply.

Related works. Many results have already been obtained for an exact
analysis of cryptographic protocols in presence of algebraic properties for a
bounded number of sessions. The theory of exclusive or (ACUN theory) was
addressed first [CKRT03,CLS03], followed by the case of modular exponenti-
ation. In this later case decidability results [CKR+03,MS05] and undecidability
results [KNW03] have been shown, depending on the accurateness of the axio-
matization. The results of [CKRT03,CKR+03] are presented in a very general
framework (oracle rules), but these rules are difficult to use and this frame-
work has not been used for other theories than the ones already mentioned.
Abelian groups were also treated in [MS05], and homomorphic properties have
been dealt with either in isolation [CLT03] or in combination with other prop-
erties [DLLT06]. When the algebraic theory enjoys a particular subterm prop-
erty which can be checked syntactically, protocol insecurity is decidable for a
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bounded number of sessions [DJ04,Bau05]. A general approach for handling
algebraic properties has been advocated in [CL04], but it relies on the finite
variant property which does not hold in the ACUNh case [CD05] (for which
we get a decidability result) and requires that the AC case is solved. Surpris-
ingly enough, this simple theory does not fulfill our conditions and its status
is still open. Another direction of research is to use a combination algorithm
that, given decidability results for disjoint theories, yields a decidability result
for the union of the theories [CR05]. This has been extended to non-disjoint
properties [CR06], but the requirements on the theories are strong, and the
main relevant application so far is modular exponentiation. None of these
combination methods are applicable for the class that we deal with.

When we generalize to protocol insecurity for an unbounded number of ses-
sions the problem becomes undecidable even without algebraic properties, and
even when additional restrictions are imposed on the messages [DLMS04].
Dealing with general algebraic properties like in [BMV05,ZD04] leads to pro-
cedures that approximate the behavior of the protocol and/or require strong
conditions on the equational theories to get termination and exact analysis.
Furthermore, the final verification is often done with an automated theorem
prover such as ProVerif [Bla01] for which no termination guarantee holds in
general.

Plan of the paper. We recall the links between protocol insecurity and con-
straint systems in Section 2. After some preliminaries we describe, in Section 4,
the Dolev-Yao model and we state the locality theorem which is a prerequisite
for the constraint solving procedure. The first part of our procedure for hand-
ling protocol insecurity proceeds by several successive simplification steps and
is detailed through Section 5 to Section 8. Our first Theorem (Theorem 42)
allows us to deal with monoidal theories for which the associated semiring is
finite. Finally, in Sections 9 and 10, we show how to reduce the search space
of solutions to deal with the case where the associated semiring is infinite
(Theorem 62). Section 11 summarizes our decidability results. The last two
Sections 12 and 13 show how this general framework can be instantiated by
specific equational theories, and discuss why it does not apply to certain other
equational theories.

2 Protocol Insecurity as a Constraint Solving Problem

We briefly recall on a simple example how protocol insecurity is reduced to
constraint solving. For more details the reader is referred to [MV01] for in-
stance.
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A cryptographic protocol is defined by a set of programs (or roles) which may
be executed by agents which are distributed over a network. In the simplest
case these programs are linear sequences of receive and send instructions on
a public communication channel. The attacker may modify the messages sent
on the channel using a certain set of intruder capabilities. The fact that all
messages may be modified by the attacker is often expressed by saying that
the attacker is the network.

The most basic property of cryptographic protocols is the so-called secrecy
property, which states that for any number of agents executing the roles, for
any possible interlacing of the program execution, and for any modifications
of the messages by the attacker (according to his deduction capabilities) the
intruder is not able to deduce a certain message which is supposed to remain
secret.

In the case of a bounded number of sessions, i.e. a bounded number of role
instances running in parallel, there is only a bounded number of symbolic
traces, each of which represents an interleaving of the execution of the parallel
role instances. Every message received during the execution of a role is a
message that can be deduced using the intruder deduction capabilities from the
messages sent before on the communication channel. The idea of the algorithm
is to guess a symbolic trace in which the messages are represented by terms
containing variables. This symbolic trace corresponds to a concrete execution
trace if the variables can be instantiated in such a way that at every moment
a message received by an agent can in fact be deduced by the intruder from
the messages seen before.

Let {m}K denotes the encryption of m by the key K and let + denote some
binary operation on messages. Let us consider the toy protocol

A → B : {Na}K

B → A : {Nb}K

which is used by roles A and B to share a temporary secret, say {Na + Nb}K ,
that can be used once for some latter transaction. The protocol involves a
permanent symmetric key K shared by A and B and nonces Na, Nb.

The protocol is a sequence of receive-send actions 0 → {Na}K , {x}K → {Nb}K

(the initial 0 serves to kick off the protocol).

The fact that the execution of a single session of the protocol is insecure is
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described by the following sequence of deduction constraints:

T  0

T, {Na}K  {x}K

T, {Na}K , {Nb}K  {Na + Nb}K

where T is the initial knowledge of the intruder, say T = {0} in this example.
The last deduction step states that the secret is revealed and the protocol is
insecure if the constraint system has a solution.

The procedure to solve these constraints system returns an instantiation of
the variables, for instance {x 7→ Na} which satisfies the ground deducibility
constraint system

T ⊢ 0

T, {Na}K ⊢ {Na}K

T, {Na}K , {Nb}K ⊢ {Na + Nb}K

where ⊢ is the relation that describes the attacker deduction capabilities as a
proof system. This latter system is satisfiable for instance if the operator +
is the exclusive or and if the encryption by K is an homomorphism over the
operator +. These algebraic properties define monoidal theories and our goal
is to provide a solution for protocol insecurity in these theories.

To achieve this goal, we follow a classical approach:

(1) Prove a locality result required for the satisfiability of ground deducibility
system. This means that if T ⊢ u holds, then there is a proof consisting
only of subterms of T and u for an appropriate notion of subterms and
for a variant of the proof system (that relies on solving linear equations in
monoidal theories).

(2) Give a decision procedure for solving so called well-defined constraints sys-
tem in monoidal theories. The first step is to reduce the deduction con-
straints to a system of particular quadratic Diophantine equations, and the
second one is to solve these Diophantine equations in an ad-hoc way. These
two steps can be done successfully when the monoidal theory E enjoys some
additional properties.

The most difficult part of this work deals with part (2) and presents:

• A procedure for solving constraint systems and the conditions required on
the equational theory E allowing us to apply it. Those conditions are sum-
marized in Section 11 (Theorems 42 and 62).

• The proofs concerning soundness, completeness and termination of our pro-
cedure are stated and proved along the description of the procedure.
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3 Preliminaries

3.1 Terms

We use classical notations and terminology from [DJ90,BS01] on terms, uni-
fication and rewrite systems. We write T (F ,X ) for the set of terms. For our
purpose, the set F is partitioned into a subset PF of private function sym-
bols, and a subset VF of visible or public function symbols. We also assume
that VF contains at least the function symbols 〈 , 〉, { } . The set of variables
occurring in a term t is denoted by vars(t).

Given two terms u and v, the replacement of u by v, denoted by [u 7→ v],
maps every term t to the term t[u 7→ v] which is obtained by replacing all
occurrences of u in t by v. Note that the result of such a replacement is
uniquely determined. A replacement [x 7→ t] is also a substitution.

3.2 Equational Theories and Contexts

An equational theory E is a set of equations (i.e. a set of unordered pairs of
terms). We denote by sig(E) the set of all function symbols occurring in E.
Given two terms s and t such that s, t ∈ T (sig(E),X ), we write t =E s if the
equation t = s is an equational consequence of E.

It is well known that =E is a sig(E)-congruence, and that we can define, for
any set X , the quotient algebra T (sig(E),X )/E, the elements of which are
congruence classes of T (sig(E),X ) under the relation =E. See for instance
[MT92] for details.

An E-context is a λ-term λy1, . . . , yn.t with t ∈ T (sig(E), {y1, . . . , yn}), also
written t[y1, . . . , yn]. The application of t[y1, . . . , yn] to arguments u1, . . . , un

is written t[u1, . . . , un].

3.3 Monoidal Equational Theories

In this paper, we are particularly interested in the class of monoidal equational
theories introduced by W. Nutt. [Nut90].

Definition 1 (monoidal theory) An equational theory E is called monoidal
if it satisfies the following properties:
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(1) The signature sig(E) contains a binary function symbol + and a constant
symbol 0, and all other function symbols in sig(E) are unary.

(2) The symbol + is associative-commutative with unit 0. In other words, we
have that x + (y + z) =E (x + y) + z, x + y =E y + x and x + 0 =E x.

(3) Every unary function symbol h ∈ sig(E) is an endomorphism for + and 0,
i.e. h(x + y) =E h(x) + h(y) and h(0) =E 0.

Example 2 Suppose “+” is a binary function symbol and 0 is nullary. Moreover
assume that the others symbols (e.g. −, h) are unary symbols. The equational
theories below are monoidal.

• The theory ACU which consists of:
· Associativity, Commutativity (AC) (x+y)+z = x+(y+z), x+y = y+x,
· Unit (U) x + 0 = x.

• The theories ACUI and ACUN (also called exclusive or theory):
the axioms (AC) and (U) with in addition Idempotency (I) x + x = x or
Nilpotency (N) x + x = 0

• The theory AG of so-called Abelian groups:
AG is generated by the identities (AC), (U) and x + −(x) = 0 (Inv).

• The theories ACUh, ACUIh, ACUNh, AGh: these equational theories corres-
pond to the equational theories described above extended by the homomorph-
ism laws (h) for the symbol h, i.e. h(x + y) = h(x) + h(y) and h(0) = 0.

Note that there are two homomorphisms in the theory AGh, namely − and h.
These two homomorphisms commute, that is h(−x) =AGh −(h(x)). More ex-
amples of monoidal equational theories can be found in [Nut90].

Definition 3 (semiring) A semiring is a set S (called the universe of the
semiring) with distinct elements 0 and 1 that is equipped with two binary
operations + and · such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a
monoid, and the following identities hold for all α, β, γ ∈ S:

• (α + β) · γ = α · γ + β · γ (right distributivity)
• α · (β + γ) = α · β + α · γ (left distributivity)
• 0 · α = α · 0 = 0 (zero laws).

We call the binary operations + and · the addition and the multiplication of
the semiring. The elements 0 and 1 are called zero and unit. In the sequel
we will often omit the · sign and write αβ instead of α · β. A semiring is
commutative if its multiplication is commutative. Semirings are different from
rings in that they need not be groups with respect to addition. Every ring is
a semiring. In a ring, we will denote by −α the additive inverse of α, and we
write α − β as an abbreviation of α + (−β).

For any monoidal theory E there exists a corresponding semiring SE [Nut90].
We can rephrase the definition of SE as follows. Its universe is T (sig(E), {1})/E,

9



that is the set of equivalence classes of E-terms possibly containing the new
constant 1 under equivalence by the equational axioms E. The constant 0 and
the sum + of the semiring are defined as in the algebra T (sig(E), {1})/E.
The multiplication in the semiring is defined by s · t := s[1 7→ t]. As a con-
sequence, 1 acts as a neutral element of multiplication in SE. This is the reason
why we call this new generator 1 instead of, say, x, as it is often done in the
literature.

Example 4 The universe of the semiring SACUN consists of the two elements 0
and 1. We have in SACUN that 0 + 1 = 1 + 0 = 1, 0 + 0 = 1 + 1 = 0,
0 · 0 = 1 · 0 = 0 · 1 = 0, and 1 · 1 = 1. Hence, SACUN is isomorphic to the
ring Z2.

It has been shown [Nut90] that

(1) SE is a ring if, and only if, E is a group theory.
(2) SE is commutative if, and only if, E has commuting homomorphisms, that

is if h1(h2(x)) =E h2(h1(x)) for any two homomorphisms h1 and h2.

Note that any E with no more than one homomorphism has commuting ho-
momorphisms.

Example 5 The semiring SAGh is isomorphic to Z[h], the commutative ring
of polynomials in the indeterminate h with integer coefficients. Note that AGh
is a group theory and has commuting homomorphisms.

We denote by φ1 : T (sig(E), {1})/E → SE the function which maps any
term t ∈ T (sig(E), {1})/E to t considered as an element of the semiring SE.
We often choose for convenience of presentation some semiring S ′

E
which

is isomorphic to SE, and also use φ1 for the corresponding function from
T (sig(E), {1})/E to S ′

E
. In case of a finite set X of p generators (i.e. vari-

ables) we generalize this construction and obtain a function which assigns
to any term a tuple in Sp

E
, that is a tuple of p elements from SE. For X =

{c1, . . . , cp} we define the function φX : T (sig(E), X)/E → Sp
E

as follows: any
term t ∈ T (sig(E), X)/E has a unique decomposition t = t1 + . . . + tp with
ti ∈ T (sig(E), {ci})/E, and we define φX(t) = (φc1(t1), . . . , φcp

(tp)).

Example 6 Taking into account that the semiring SAGh is (isomorphic to)
Z[h], we have that

φ{c1,c2,c3}(c1 + c1 + h(c3) + h3(c3)) = (2, 0, h3 + h)

where hn(t) (n ≥ 1) stands for n applications of the function h to the term t.

If we have additional free constant symbols from some set C in the signature
then we can decompose any term t ∈ T (sig(E) ∪ C, {c1, . . . , cp}) in a unique
way as t = t1+. . .+tp+t0 with ti ∈ T (sig(E), {ci})/E and t0 ∈ T (sig(E) ∪ C, ∅).
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Example 7 If C = {a, b} then the decomposition of the term t = a + c1 +
h(h(c3)) + b is t = t1 + t2 + t3 + t0 where t1 = c1, t2 = 0, t3 = h(h(c3)),
t0 = a + b.

Definition 8 (operation ⊙) Let p be an element of SE and t be a term
in T (F , {c1, . . . , cp}). The product of p by t, denoted p ⊙ t is the uniquely
defined term such that φ{ci}(p ⊙ t) = p · φ{ci}(t) for any i.

Example 9 In case of the equational theory AGh we have that, using the usual
abbreviations:

(

Σn
i=1αih

i
)

⊙
(

Σm
j=1tj

)

= Σn
i=1Σ

m
j=1αih

i(tj)

For instance,

(h2 + 2h) ⊙ (c1 + c3 + h(c3)) = h2(c1) + 2h(c1) + h3(c3) + 3h2(c3) + 2h(c3)

4 The Attacker Model

4.1 The Inference System

The deduction capabilities of an intruder are modeled by the now classical
Dolev-Yao model [DY81]. We extend the intruder capabilities by equational
reasoning modulo a set E of equational axioms which is assumed to sat-
isfy sig(E) ⊆ (VF r {〈 , 〉, { } }). This inference system, denoted (IDY,E),
is formally defined in Figure 1.

Unpairing (UL)
T ⊢ 〈u, v〉

T ⊢ u
Compose (C)

T ⊢ u1 . . . T ⊢ un
with f ∈ VF

T ⊢ f(u1, . . . , un)

Unpairing (UR)
T ⊢ 〈u, v〉

T ⊢ v
Decryption (D)

T ⊢ {u}v T ⊢ v

T ⊢ u

Equality (Eq)
T ⊢ u

u =E v
T ⊢ v

Figure 1. Inference System (IDY, E).

The intended meaning of a sequent T ⊢ u is that the intruder is able to de-
duce the term u ∈ T (F ,X ) from the finite set of terms T ⊆ T (F ,X ). As in
the standard Dolev-Yao model, the intruder can compose new terms (C) from
known terms, he can also decompose pairs (UL,UR) and decrypt ciphertexts,
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provided that he can deduce the decryption key (D). Finally, we relax the per-
fect cryptography assumption by taking into account the algebraic properties
of the cryptographic primitives through the rule (Eq).

Definition 10 (proof tree) Given an inference system I, a proof tree P of
a sequent T ⊢ u is a finite tree such that

• every leaf of P labeled with T ⊢ v is such that v ∈ T ,
• for every node of P labeled with T ⊢ v having n children (n ≥ 0) labeled

with T ⊢ v1, . . . , T ⊢ vn, there is an instance
T ⊢ v1 . . . T ⊢ vn

(R)
T ⊢ v

of an

inference rule of I. If this node labeled with T ⊢ v is the root of P then we
say that P ends with an instance of (R).

• the root of P is labeled with T ⊢ u.

We say that u is deducible from T in I or shortly that T ⊢ u in I.

Note that the terms in the proof are not necessarily ground. The size of a
proof P , denoted by |P |, is the number of nodes in P . A proof P of T ⊢ u is
minimal if there is no proof P ′ of T ⊢ u such that |P ′| < |P |.

Example 11 Let T = {{a + h(h(b))}k, k, b + h(b)}. The proof P below is a
proof of T ⊢ a + b in (IDY,ACUNh).

T ⊢ {a + h(h(b))}k T ⊢ k
(D)

T ⊢ a + h(h(b))

T ⊢ b + h(b)
(C)

T ⊢ h(b + h(b)) T ⊢ b + h(b)
(C)

T ⊢ a + h(h(b)) + h(b + h(b)) + b + h(b)
(Eq)

T ⊢ a + b

4.2 Factors and Subterms

A main idea of our procedure consists in separating inference steps involving
operators subject to the equational theory E from steps involving only stand-
ard Dolev-Yao operators, and then to analyze these steps separately. We hence
need some notation that allows us to distinguish the parts of a term belonging
to either class of operators.

A term t is standard if it is a variable or if it is headed with a function symbol
f 6∈ sig(E). In case of the theory E = ACUNh, for instance, the terms x,
〈a, b + c〉 and {h(a)}b are standard whereas h(a) and a + b are not.

Definition 12 (factors) Let t be a term in normal form. We have t =
C[t1, . . . , tn] for some standard terms t1, . . . , tn and an E-context C. The set
FactE(t) of factors of t is defined by FactE(t) = {t1, . . . , tn}.
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Example 13 Let E = ACUNh, t1 = 〈a, b+ c〉 and t2 = 〈a, b〉+ c, we have that
FactE(t1) = t1 and FactE(t2) = {〈a, b〉, c}. Note that FactE(t) = {t} for any
term t that is standard.

Definition 14 (subterms) The set StE(t) of subterms of t is the smallest
set such that:

• t ∈ StE(t),
• if f(t1, . . . , tn) ∈ StE(t) with f 6∈ sig(E) then t1, . . . tn ∈ StE(t),
• if s ∈ StE(t) is not standard, i.e. headed with f ∈ sig(E) then we have that

FactE(s) ⊆ StE(t).

These notations are extended as expected to sets of terms. The set FactE(T )
(resp. StE(T )) is the union of the sets FactE(t) (resp. StE(t)) for all terms t
occurring in T . Note that, by definition, the factors of any term are neces-
sarily standard. Subterms of a term, however, can be either standard or non-
standard.

Example 15 Let E = ACUNh, t1 = h2(a) + b + c, t2 = h(〈a, b〉) + c and
t3 = 〈a + b + c, d〉. We have FactE(t1) = {a, b, c}, StE(t1) = {t1, a, b, c},
FactE(t2) = {〈a, b〉, c}, and StE(t2) = {t2, 〈a, b〉, a, b, c}, FactE(t3) = {t3}, and
StE(t3) = {t3, a + b + c, d, a, b, c}.

Now, we introduce a notion that will be used in Section 7. Intuitively, a sub-
stitution is non-collapsing w.r.t. to a set of terms T if it does not introduce
any new equalities between terms in T . This notion will be useful since at one
moment in our procedure we will guess all the pairs of non-variable subterms
of the problem that will be rendered equal by the solution (provided that a
solution exists). After this non-deterministic guessing step we will make use
of the assumption that the solution does not render any more subterms equal,
that is that the solution is in fact non-collapsing.

Definition 16 (non-collapsing) A substitution σ is non-collapsing w.r.t. a
set T ⊆ T (F ,X ) of terms if for all u, v ∈ StE(T ) r X such that uσ =E vσ,
we have u =E v.

Example 17 Let E = ACUNh and T = {h(a), h(〈a, b〉), h(x)}. We have that
StE(T ) r X = T ∪ {〈a, b〉, a, b}. Let σ1 = {x 7→ a}, σ2 = {x 7→ 〈a, b〉},
σ3 = {x 7→ 〈b, a〉} and σ4 = {x 7→ b}. The substitutions σ1 and σ2 are
collapsing since h(a)σ1 =E h(x)σ1 and h(〈a, b〉)σ2 =E h(x)σ2, whereas h(a) 6=E

h(x) and h(〈a, b〉) 6=E h(x). The substitutions σ3 and σ4 are non-collapsing
w.r.t. T .
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4.3 Some Useful Inference Relations

In the remainder, we assume that the equational theory E can be represented
by RE, an AC-convergent rewriting system, and we will denote by (IDY,RE)
the inference system described in Figure 2 and by (IME

,RE) the inference
system made up of the inference rule (ME) only. One step in our algorithm
will be to separate a proof in the original inference system into a combination
of (IDY,RE)-proofs and of (IME

,RE)-proofs.

Unpair. (UL)
T ⊢ 〈u, v〉

T ⊢ u
Comp. (C−)

T ⊢ u1 . . . T ⊢ un
f ∈ VF r sig(E)

T ⊢ f(u1, . . . , un)

Unpair. (UR)
T ⊢ 〈u, v〉

T ⊢ v
Decrypt. (D)

T ⊢ {u}v T ⊢ v

T ⊢ u

Context (ME)
T ⊢ u1 . . . T ⊢ un

T ⊢ u

where u = C[u1, . . . , un]↓RE

and C is an E-context

Figure 2. Inference System (IDY,RE).

Equivalence modulo AC is easy to decide, so we omit the equality rule for AC
and just work with equivalence classes modulo AC. When the rewriting sys-
tem is clear from the context, we write u↓ instead of u↓RE

. More generally,
along this paper, we consider implicitly that terms are always kept in normal
form, hence we write u (resp. uσ) instead of u↓ (resp. uσ↓). This implicit as-
sumption will help us to simplify notation, since otherwise we would have to
use equivalence modulo E when applying an inference rule, when computing
subterms and factors, and so on.

Example 18 Let E = ACUNh and consider the rewriting system RE obtained
by orienting from left to right the equation (U), (N) and (h) and by adding the
consequence h(0) → 0. Let u1 = a+ h(a), u2 = h3(a)+ b, C[x1] = x1 + h(x1)+
h2(x1) and C ′[x1, x2] = x1 + h(x1) + h2(x1) + x2. We have that C[u1]↓R =
a + h3(a) and C ′[u1, u2]↓R = a + b.

The deductive systems (IDY,E) and (IDY,RE) deal with symmetric encryption
only. However, it is not difficult to design a similar deduction system for asym-
metric encryption and to extend the result of this paper to this new inference
system. The lemma below states that the systems (IDY,E) and (IDY,RE) are
equivalent in deductive power.
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Lemma 19 Let T ⊆ T (F ,X )↓ and u ∈ T (F ,X )↓. We have:

T ⊢ u in (IDY,E) ⇔ T ⊢ u in (IDY,RE)

PROOF.
(⇐) Let P be a proof tree of T ⊢ u in (IDY,RE). It is easy to obtain a proof
tree of T ⊢ u in (IDY,E) by replacing normalization steps by some instances
of the rule (Eq).

(⇒) Let P be a proof tree of T ⊢ u in (IDY,E). Let P ′ be the proof obtained
by normalizing all the terms and by removing the application of the rule (Eq).
We can show by induction on P that the tree P ′ obtained is a proof tree
of T ⊢ u↓ in (IDY,RE), i.e. of T ⊢ u, since u = u↓. �

We now come to the notion of one-step deducibility, that is of deducibility in at
most one inference step. This is an important notion, in fact one essential step
in analyzing (IDY,RE) will be reducing deducibility to one-step-deducibility.

Definition 20 (R-one-step deducible) A term u is R-one-step deducible
from a set of terms T in any of the following cases:

• T ⊢ u is a proof of T ⊢ u (i.e., u ∈ T ),

• there exists some terms u1, . . . , un such that
T ⊢ u1 . . . T ⊢ un

(R)
T ⊢ u

is a

proof tree of T ⊢ u.

Given an inference system (IDY,RE), we say that u is one-step deducible
from T if u is R-one-step deducible from T for some inference rule R ∈ (IDY,RE).
We say also that u is DY-one-step deducible from T if R ∈ {C−,UL,UR,D}.
Note that the rule ME does not appear in this set.

Given a set of terms T and a term u, it is easy to decide if u is DY-one-step
deducible from T . This can be done in polynomial time since each DY inference
rule has a finite set of premises.

One-step deducibility is more difficult to decide in case of the rule ME. How-
ever, in the case of monoidal equational theories we will see that ME-one-step
deducibility problems can be reduced to solvability of linear equations over
the associated semiring. This has already been used for particular equational
theories such as ACUN, AG, ACUNh and AGh (see for instance [Che03,Del06a]).

Example 21 Consider the equational theory E = ACUNh, s = a1+h2(a1) and
T = {a1+h(a1)+h2(a1), a2+h2(a1), h(a2)+h2(a1)} with a1, a2 standard terms.
The problem of deciding whether s is ME-one-step deducible from T amounts
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to decide whether the following system of equations has a solution over Z2[h].



1 + h + h2 h2 h2

0 1 h



 · Y =




1 + h2

0





The vector Y = (1 + h, h, 1) is a solution. Hence, s is ME-one-step deducible
by using the E-context x1 +h(x1)+h(x2)+x3 where xi is used to denote the ith

term of T .

The notion of a decomposition proof will be useful in Subsection 4.4.

Definition 22 (decomposition proof) A proof tree P of T ⊢ u in (IDY,RE)
is a decomposition proof in any of the following cases:

• |P | = 1,
• P ends with an instance of a decomposition rule (i.e. (UL,UR,D)),
• P ends with an instance of (ME) and u is a standard term.

Example 23 Let E = ACUNh and T = {a + h(a), b}. The proof P below is a
proof of T ⊢ a+h(h(h(a)))+h(b). It is made up of an instance of the rule (ME)
with C = y1 + h(y1) + h(h(y1)) + h(y2).

T ⊢ a + h(a) T ⊢ b
(ME)

T ⊢ a + h(h(h(a))) + h(b)

Since a + h(h(h(a))) + h(b) is not standard, P is not a decomposition proof.
We have |P | = 3 and a + h(h(h(a))) + h(b) is ME-one-step deducible from T
but is not DY-one-step deducible from T since ME 6∈ {C−,UL,UR,D}.

4.4 Locality

Now, we can define the notion of locality. This notion, first introduced by
McAllester [McA93], allows us to focus on proof trees that involve only some
particular terms. This is the foundation of reducing deducibility to one-step
deducibility since it allows us, given only the hypotheses and the result of a
proof, to guess the intermediate proof steps.

Definition 24 (local inference system) We say that (IDY,RE) is local if
each minimal proof tree P of T ⊢ u contains only terms in StE(T ∪ {u}). If
moreover P is a decomposition proof, then P contains only terms in StE(T ).

This notion of locality has already been studied for numerous inference sys-
tems. In particular, some existing results establish locality of the inference
system (IDY,RE) for the equational theories ACUN, AG (see [Che03]) and
ACUNh, AGh (see [Del06a]). Actually, we have the following lemma.
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Lemma 25 (locality lemma) Let E be an equational theory and RE be an
AC-convergent rewriting system representing E. If sig(E) ∩ {〈 , 〉, { } } = ∅,
then the inference system (IDY,RE) is local.

PROOF. Let T be a set of terms and u a term. Let P be a minimal proof
of T ⊢ u in (IDY,RE). By induction on P , we prove that:

(1) P only contains terms in StE(T ∪ {u}),
(2) if P is a decomposition proof, then P contains only terms in StE(T ).

We consider all possible cases for the last inference rule of P and we conclude
by applying the induction hypothesis (1) or (2). We omit the cases (UL), (UR),
(C−) and (D) which are straightforward. The most interesting case is when
the last inference is (ME). We have the following derivation:

P1

{ . . .

T ⊢ u1
. . . Pn

{ . . .

T ⊢ un

(ME)
T ⊢ C[u1, . . . , un]

By (1), each Pi only contains terms in StE(T ∪{ui}). Hence, in order to prove
claim (1) we have to show that every ui is in StE(T ∪ {u}).

• If ui is not a standard term (i.e. ui headed with f ∈ sig(E)) then Pi is a
decomposition proof since the rule (C−) only produces standard terms. Fur-
thermore, by minimality of the proof, Pi cannot end on ME since otherwise
on could merge the two ME rules. Hence, ui ∈ StE(T ) by (2).

• If ui is standard then let us assume that ui 6∈ StE(T ∪ {u}). This means
that ui ∈ FactE(uj) for some j 6= i. The term uj must be standard since
otherwise we have ui = uj, and we contradict the minimality of P since
a smaller proof could be obtained by replacing the subproof Pi of ui by
a proof of 0. Hence, by induction hypothesis (2) applied to Pj, we deduce
that ui ∈ StE(T ).

In order to show claim (2) let u be standard. We have u ∈ StE(ui) for some ui

that is not standard. Hence ui ∈ StE(T ) and P only contains terms in StE(T ).
�
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5 Constraint Systems

5.1 Constraint Generation

As mentioned in Section 2, verifying security of a protocol amounts to a non-
deterministic guessing of the symbolic trace plus the resolution of a system of
deducibility constraints.

Definition 26 (deducibility constraint) A constraint (resp. one-step con-
straint) is a sequent of the form T  u (resp. T 1 u) where T is a finite subset
of T (F ,X ) and u ∈ T (F ,X ). We call T (resp. u) the hypothesis set (resp.
the target) of the constraint. A system of constraints is a sequence of con-
straints. Given an inference system I, a solution of a constraint system C is
a substitution σ such that:

• for every T  u ∈ C, there exists a proof of Tσ ⊢ uσ in I,
• for every T 1 u ∈ C, uσ is one-step deducible from Tσ in I.

Given an inference system I, we say that a constraint system C is satisfiable
if it has a solution w.r.t. I.

5.2 Well-Defined Constraint Systems

The definition stated below is due to J. Millen and V. Shmatikov. In [MS05]
they show that “reasonable” protocols, in which legitimate protocol parti-
cipants only execute deterministic steps (up to the generation of random
nonces) always lead to a well-defined constraint system. In the following we
will only consider well-defined protocols. This allows us to restrict our atten-
tion to well-defined constraint systems.

Definition 27 (well-defined) A system C = {T1  u1, . . . , Tn  uk} of con-
straints is well-formed if:

(1) monotonicity: 0 ∈ T0 and for all i < k, we have that Ti ⊆ Ti+1,
(2) origination: ∀i ≤ k, ∀x ∈ vars(Ti), ∃j < i such that x ∈ vars(uj).

We say that C is well-defined if for every substitution θ, Cθ↓ is well-formed.

This notion of well-definedness is defined in a similar way on systems of one-
step constraints. Note that this notion depends on the equational theory under
consideration.

Example 28 The constraint system C1, described below, is not well-defined
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w.r.t. the equational theory E = ACUN. Indeed, the application of the substitu-
tion θ = {x2 → x1} on C1 yields a constraint system which is not well-formed.

C1 :=







0, a  x1 + x2

0, a, x1  x3

C1θ :=







0, a  0

0, a, x1  x3

The following constraint system C2, however, is well-defined:

C2 :=







0, a  〈x1, x2〉

0, a, x1  x3

The remainder of this paper deals with the design of a procedure to solve well-
defined constraints systems under some additional restrictions on the theory
E, and to the proofs of soundness, completeness and termination.

Our procedure proceeds by several successive simplification steps. The steps
described in Sections 6 and 7 allow us to reduce our problem to the satisfiab-
ility of constraint systems in (IME

,RE). Note that, in the case of the empty
equational theory, the inference system (IME

,RE) is empty. Hence, as a con-
sequence, we have that a well-defined constraint system is satisfiable in (IDY, ∅)
if, and only if, the empty constraint system can be obtained by applying the
(non-deterministic) procedure described in Sections 6 and 7.

Then, in Section 8, we reduce the satisfiability of constraint systems in (IME
,RE)

to the satisfiability of constraint systems over a signature containing only sym-
bols of sig(E) and constants. After this step, we establish our first Theorem
(Theorem 42) allowing us to deal with monoidal theories for which the associ-
ated semiring is finite. Finally, in Sections 9 and 10, we show how to reduce the
search space of solutions to deal with the case where the associated semiring
is infinite.

6 Existence of Conservative Solutions

The completeness of our decision procedure is ensured by the existence of a
conservative solution (Lemma 30), which means intuitively that the solution
does not introduce any new structure structural elements that are not already
present in the constraint system. Moreover, conservative solutions allow us to
lift the notion of locality (see Lemma 34 below).

Definition 29 (conservative) Let C be a constraint system and σ a sub-
stitution, σ is conservative w.r.t. C if and only if for all x ∈ vars(C), we
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have FactE(xσ) ⊆ (StE(C) r vars(C))σ.

Lemma 30 Assume that (IDY,RE) is a local inference system. Let C be a
well-defined constraint system. If there exists a solution σ to C in (IDY,RE)
then there exists a conservative one.

The proof of Lemma 30 is rather classical [RT03,MS05] and is detailed in Ap-
pendix A.

We will use this lemma in order to show the completeness of several steps of
our algorithm (see Lemma 35 and Lemma 39 in Section 7, and Lemma 41 in
Section 8).

Example 31 Let E = ACUNh. Consider the following well-defined constraint
system C:

0, a, h(b)  h(x)

0, a, h(b), x  〈a, b〉

The solution σ = {x 7→ 〈a, a〉 + b} is not conservative w.r.t. C. Indeed
FactE(〈a, a〉 + b) = {〈a, a〉, b}, and 〈a, a〉 does not belong to (StE(C) r {x})σ
which is equal to {0, h(b), b, h(〈a, a〉 + b), 〈a, b〉, a}. However, as it is said in
Lemma 30, there is a conservative solution: {x 7→ b}.

Proposition 32 Let t be a term and σ a substitution. We have:

StE(tσ) ⊆ StE(t)σ ∪
⋃

x∈vars(t)

StE(xσ)

The proof is straightforward. Obviously, the proposition above can be extended
to any set of terms. Note, however, that the inclusion may be strict.

Example 33 Let E = ACUNh, t = x + y and σ = {x 7→ a; y 7→ a}. We
have StE(tσ) = {0} whereas StE(t)σ ∪ StE({xσ, yσ}) = {0, a}.

The following lemma states a lifting of the Locality Lemma 25 to the solutions
of constraint systems.

Lemma 34 Assume that (IDY,RE) is a local inference system. Let σ be a
conservative solution of C = {C1, . . . , Ck}. For each i ≤ k, there exists a
proof Pi of Ciσ which involves only terms in StE(C)σ.

The proof is given in Appendix A.
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7 From Satisfiability in (IDY,RE) to Satisfiability in (IME
,RE)

We reduce the satisfiability of a constraint system in (IDY,RE) to the satis-
fiability of a constraint system in (IME

,RE) in two steps :

(1) Firstly, we reduce our problem to the satisfiability of one-step constraints
in (IDY,RE) (Lemma 35).

(2) Secondly, we reduce the satisfiability of one-step constraint systems to
the satisfiability of constraint systems in (IME

,RE) (Lemma 39).

To perform these two steps, some conditions on the equational theory E are
required. These conditions are formally stated in each lemma.

The non-deterministic algorithm described below allows us to reduce the sat-
isfiability of a system of constraints to the satisfiability of a system of one-step
constraints. First, we guess among the subterms of C those which are going to
be deduced by the intruder and insert all deducible subterms in the constraint
system. The completeness of this step of the procedure is essentially due to
the existence of a conservative solution (Lemma 30) and the lifting locality
lemma (Lemma 34). In the resulting constraint system, every constraint can
be solved by application of a single inference rule.

Input: C = {T1  u1, . . . , Tk  uk}.
Output: C ′.

Algorithm:

choose S ⊆ StE(C).
for all s ∈ S, choose j(s) ∈ {1, . . . , k}.
C ′:= ∅.
S0 := ∅ .

for i = 1 to k do

let Si := {s | j(s) = i}.
choose a total ordering on Si (Si = {s1

i , . . . , ski
i }).

for j = 1 to ki do

T := Ti ∪ S0 ∪ . . . ∪ Si−1 ∪ {s1
i , . . . , sj−1

i }.
C ′ := C ′ ∪ {T 1 sj

i}.
end

C ′:= C ′ ∪ {T 1 ui}.
end

return C ′.

Algorithm 3. From constraints to one-step constraints.
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Lemma 35 Let (IDY,RE) be a local inference system and C be a well-defined
system of constraints. Let C ′ be the set of all constraint systems obtained by
applying Algorithm 3 on C (by considering all the possible choices).

(1) C ′ is a finite set of well-defined systems of one-step constraints.
(2) Let C ′ ∈ C ′. If σ is a solution to C ′ in (IDY,RE) then σ is a solution to C

in (IDY,RE).
(3) If σ is a conservative solution to C in (IDY,RE) then there exists C ′ ∈ C ′

such that σ is a solution to C ′ in (IDY,RE).
(4) For any C ′ ∈ C ′, σ is conservative w.r.t. C if and only if σ is conservative

w.r.t. C ′.

The proof is given in Appendix C. The essential part of the proof is the com-
pleteness assertion stated in item (3). The main idea of the proof is to use
the lifting locality Lemma 34 which justifies that we do not loose complete-
ness when we choose the intermediate proof steps from the subterms of the
constraint system.

The completeness of the following step of our procedure relies on the notion
of a non-collapsing solution (see Definition 16). In order to use complete-
ness assertions for non-collapsing solutions to show overall completeness of
our algorithm, we guess the equalities between terms, and for each guess of
equations, we compute a finite and complete set of unifiers. Furthermore, we
need to ensure that the unifiers obtained do not introduce “new structural
elements” not already present in the constraint system. Otherwise, we would
have to deal with the new equalities introduced after application of the unifier.

Definition 36 (P -conservative) Let P be a general unification problem mod-
ulo a monoidal theory E. A solution θ to P is called P -conservative if

StE(img(θ)) r X ⊆ StE(P )θ ∪ {0}.

In other words, θ is P -conservative if
∀x ∈ dom(θ),∀v ∈ StE(xθ) r {X ∪ {0}},∃t ∈ StE(P ) such that v =E tθ.

Definition 37 (unification property) Let E be an equational theory, we
say that E satisfies the unification property if there exists an algorithm which
for any general unification problem P decides whether it has a solution, and in
this case computes a complete and finite set mguE(P ) of unifiers of P which
are P -conservative.

Proposition 38 Let E be a monoidal equational theory which is unitary for
elementary unification, and such that there is an algorithm to compute solu-
tions of inhomogeneous linear equations over the associated semiring SE. Then E
satisfies the unification property.
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Existence of an algorithm to solve general unification problems under the
stated conditions is due to F. Baader and W. Nutt [BN96]. Their algorithm is
based on the algebraic characterization of unification in monoidal equational
theories [Nut90], and the general combination procedure of [BS96]. A proof
that the most-general unifiers obtained in that way are P -conservative is given
in Appendix B. Note that several monoidal theories considered in this paper
satisfy the hypothesis of Proposition 38 (see Section 12).

Lemma 39 allows us to reduce the satisfiability of a system of one-step con-
straints in (IDY,RE) to the satisfiability of a constraint system in (IME

,RE).
We first guess a set of equalities between subterms and thus obtain a unifica-
tion problem. We require that there is a finite and complete set of solutions.
We apply the unifier to the constraint system. Then, the one-step constraints
that can be solved by the application of a standard inference rule, i.e. (D),
(UL), (UR) and (C−) can be determined by syntactic inspection. Hence, we
can eliminate all constraints that can be satisfied by a single application of an
inference rule other than (ME). We obtain a constraint system that we have
to solve in (IME

,RE).

Lemma 39 Let E be an equational theory for which general unification is de-
cidable and finitary and let C be a well-defined system of one-step constraints.
Let P = {

∧

(s1,s2)∈S′ s1 = s2 | S ′ ⊆ StE(C)2}. Let R ∈ P and θ ∈ mguE(R).
Let Cθ = {Tθ  uθ | T 1 u ∈ C and uθ is not DY-one-step deducible from Tθ}.

(1) There are only finitely many outputs (i.e. possibilities for Cθ) for a given
input C. Each of them is a well-defined system of constraints.

(2) If there exists Cθ (obtained by the procedure above) which has a solution
in (IME

,RE) then C has a solution in (IDY,RE).
(3) If C has a conservative solution in (IDY,RE) then there exists Cθ (obtained

by the procedure above) which has a solution in (IME
,RE). Moreover, if

E satisfies the unification property then Cθ has a non-collapsing solution.

Again, the proof is given in Appendix C. The crucial part is the completeness
assertion stated in the last item of the lemma. The proof of this step uses
the fact that we have covered with the set P all possible identifications of
subterms of the constraint system, and that for each of these identifications
there is a finite complete set of unifiers. As a consequence, the solution σ to C
is an instance of one of the unifiers θ, which is in turn a unifier pertaining to
the identifications of exactly those terms u = v for which uσ = vσ. We can
show (the details are in the proof) that this means that every (IDY,RE)-proof
step on Cσ can be imitated on Cθ (which is in general not a ground system).
Hence, only the (IME

,RE)-constraints of Cθ remain to satisfy, that is exactly
the system Cθ.
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8 Reducing the Signature

In the last section we have seen that the satisfiability of the original constraint
system can be reduced to the satisfiability of an (IME

,RE) constraint system.
The latter system, however, still contains “mixed” terms, that is terms that
contain both standard and non-standard function symbols. This is a problem
since only if the constraint system is “pure” and contains only non-standard
function symbols (plus free constant symbols) can we reduce this constraint
system into an equation system over SE.

This is the subject of this section: We will show in Lemma 41 that we can
reduce the satisfiability of constraint systems in (IME

,RE) to the satisfiability
of constraint systems over a signature containing only symbols of sig(E) and
constants.

Notation. If ρ : M → N is a replacement, that is a bijection between two
finite sets of terms M and N , then we denote for any term t by tρ the term
obtained by replacing in t any top-most occurrence of a subterm s ∈ M by sρ.
This extends in a natural way to constraint systems, and to substitutions by
setting x(σρ) = (xσ)ρ for all variables x ∈ dom(σ).

Note that the constraint system obtained after such an abstraction is not
necessarily well-defined.

Example 40 Consider the system C described below. After application of the
abstraction ρ = [a 7→ a1; b 7→ a2; 〈x1, x2〉 7→ a3], we obtain the non well-
defined system Cρ described below.

C =







a  〈x1, x2〉

a, x1, x2  b
Cρ =







a1  a3

a1, x1, x2  a2

Lemma 41 Let C be a constraint system and F = FactE(C) r X . Let F0 be
a set of new constant symbols of the same cardinality as F and ρ : F → F0 a
bijection.

(1) If C has a non-collapsing solution in (IME
,RE) then Cρ has also a solution

in (IME
,RE).

(2) If Cρ has a solution in (IME
,RE) then C has a solution in (IME

,RE).

PROOF.

(1) Let σ be a non-collapsing solution to C. For all v1, v2 ∈ FactE(C) r X
such that v1σ =E v2σ we have by definition of non-collapsing solution
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that v1 =E v2 and hence vρ
1 =E vρ

2 . The constraint system Cσ is a set
of ground constraints that is satisfiable in (IME

,RE), hence we have also
that (Cσ)ρ is satisfiable in (IME

,RE). Since we have that (Cσ)ρ = Cρσρ,
we easily deduce that σρ is a solution to Cρ in (IME

,RE).
(2) Let σ be a solution to Cρ in (IME

,RE), then σ(ρ−1) is a solution to C
in (IME

,RE). �

At this point, we can conclude for monoidal equational theories for which the
associated semiring is finite. This allows us to conclude for some equational
theories such as ACUN or ACUI (see Section 11) in the following theorem.

Theorem 42 Let E be a monoidal equational theory for which there exists
an AC-convergent rewriting system such that sig(E) ∩ {{ } , 〈 , 〉} = ∅ and
for which the associated semiring SE is finite. Then, the problem of deciding
whether a well-defined constraint system has a solution in (IDY,E) is decidable.

Note that the theory E is always unitary for unification with constants in case
the associated semiring SE is finite [BN96]. We also have a naive algorithm to
solve inhomogeneous linear equations over SE. This allows us to ensure that E
satisfies the unification property (Proposition 38) and gives us an algorithm
to verify that some guessed substitution is indeed a solution.

PROOF. By Lemma 25, we have that the inference system (IDY,RE) is local.
Hence, the procedure described along the first part of this paper allows us to
reduce the problem of deciding whether a well-defined constraint system has
a solution in (IDY,E) to the problem of deciding whether a constraint system
has a solution in (IME

,RE) on the reduced signature. Indeed, let C be a well-
defined constraint system.
Soundness: Let C1 be a constraint system obtained by applying the first part
of our procedure on C. Let C2 be the constraint system obtained from C1 by
replacing all factors by different constants. Assume that C2 has a solution
in (IME

,RE) (on the reduced signature). We deduce, thanks to Lemma 41,
that C1 has a solution in (IME

,RE), and by Lemma 35 and 39 that C has a
solution in (IDY,RE).
Completeness: Assume that σ is a solution to C. Thanks to Lemma 30, we
can assume that σ is conservative w.r.t. C. Let C ′ be the finite set of well-
defined one-step constraint systems obtained by applying Algorithm 3 on C.
By Lemma 35, we know that there exists C ′ ∈ C ′ such that σ is a conservative
solution to C ′. By Lemma 39, we know that there exists a constraint system
Cθ which has a non-collapsing solution. Thanks to Lemma 41, we deduce that
Cρ

θ has a solution in (IME
,RE) on the reduced signature.

Now, thanks to the finiteness of SE, it is easy to decide if a constraint system C
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has a solution in (IME
,RE) on the reduced signature. Indeed, we can guess

(among a finite number of possibilities) the solution σ, i.e. the vector φ(xσ)
associated to each variable x ∈ C. Then, it remains to verify that this solution
is indeed a solution. �

If the semiring SE is infinite then this argument does not apply since then we
have a priori an infinite search space. In the next two sections we will show
how we can in some cases restrict the search to a finite search space even when
the semiring SE is infinite.

9 About Well-Defined Constraint Systems

In Section 10, we give an algorithm to solve constraint systems in (IME
,RE)

(when the associated semiring SE is not finite) over the reduced signature.
However, our algorithm only deals with well-defined constraint systems. Hence,
we need to ensure that the constraint systems obtained after abstraction of
factors by constants are well-defined. To obtain this result, we first give another
characterization of well-definedness (see Section 9.1). Then, we show that the
stability of well-definedness by the abstraction is ensured if we consider factor-
preserving constraint systems (see Section 9.2).

9.1 Another Characterization of Well-Definedness

In this section, we show that on the reduced signature, well-defined constraint
systems can be characterized algebraically. For this, we consider an equa-
tional theory for which the associated algebraic structure is a commutative
ring. Hence in this section (and also in Section 10) SE is assumed to be a com-
mutative ring. Moreover, we consider a constraint system C of the following
form:

C =







t1, . . . , tn  u1

t1, . . . , tn, tn+1  u2

. . .

t1, . . . , tn, tn+1, . . . , tn+k−1  uk

where u1, . . . , uk, t1, . . . , tn+k−1 are terms built on the full signature and on
the set of variables X = {x1, . . . , xp}. When we say that C is a constraint
system on the reduced signature, this means that the terms involved in C
are in T (F0 ∪ sig(E),X ) where F0 is the set of new constants of the reduced
signature.
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Input: C = {T1  u1, . . . , Tk  uk} and i ≤ k
Output: L

Algorithm:

L := ∅;
for l = 1 to i do

if {φX (ul)}∪{φX (uj) | j ∈ L } is independent then L := L ∪ {l};
end

return L.

Algorithm 4. Construction of Li(C) (indexes of defining constraints).

Note that we assume (w.l.o.g) that the hypotheses (i.e. t1, . . . tn+i) of the i + 1th

constraint contain exactly one term more than the hypotheses of the ith con-
straint. This can be achieved by duplicating some terms or by adding some
constraints.

We need to introduce a notion of dependency. This notion relies on the stand-
ard notion used in linear algebra.

Definition 43 (dependent, independent) Let S be a commutative ring.
Let V = {~v1, . . . , ~vm} be a subset of Sn. The set V is dependent if there
exist {α1, . . . , αm} ⊆ S such that α1, . . . , αm are not all equal to zero and
α1 · ~v1 + . . . + αm · ~vm = ~0. Otherwise V is independent.

If the set V is independent and the set V ∪{~v} is dependent, then we say that
the vector ~v is dependent from V.

Example 44 Let E = ACUNh. Let t1 = a + h(a) + b + x1 + h3(x1) + h2(x2)
and t2 = h(a) + h(x1) + x2. The vectors φX (t1) and φX (t2) associated to the
terms t1 and t2 are:

φX (t1) =






1 + h3

h2




 φX (t2) =






h

1






The vectors φX (t1) and φX (t2) are independent. Let t3 = h(a)+b+x1, φX (t3) =
(1, 0) is dependent of {φX (t1), φX (t2)} since φX (t3) = φX (t1) + h2 · φX (t2).

We denote by Li(C) the set of indexes obtained by applying Algorithm 4
on C, k. The set L(C) is equal to Lk(C) and it is called the indexes of de-
fining constraints. Let Bi(C) = {φX (uj) | j ∈ Li(C)}, and B(C) = Bk(C). By
construction of Li(C), the sets Bi(C) are independent.

Example 45 Let E = ACUNh. We consider the constraint system C described
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below.

C :=







h(a) + a, b + h2(a)  h(x1) + h2(x2)

h(a) + a, b + h2(a), x1 + h(x2)  x1 + a

h(a) + a, b + h2(a), x1 + h(x2), h(x1) + h(a)  h(x1) + h2(x2) + x1 + a

Let u1 = h(x1) + h2(x2), u2 = x1 + a and u3 = h(x1) + h2(x2) + x1 + a. We
have φX (u1) = (h, h2), φX (u2) = (1, 0) and φX (u3) = (1+h, h2), L(C) = {1, 2}
and B(C) = {φX (u1), φX (u2)}.

Proposition 46 (new characterization of well-definedness) Let C =
{T1  u1, . . . , Tk  uk} be a constraint system on the reduced signature which
satisfies the monotonicity property. The system C is well-defined if and only
if for all i ≤ k, for all t ∈ Ti, the vector φX (t) is dependent of Bi−1(C).

The proof of this proposition (see Appendix D) relies on the following fact:

Fact 47 Let S be a commutative ring and A be an n×m matrix over S such
that the n row vectors are independent (n ≤ m). There exists Q ∈ S such that

∀b ∈ Sn,∃X ∈ Sm A · X = Q · b (1)

Such a coefficient Q is computable as a determinant of the matrix obtained by
completing A with m − n independent row vectors.

Notation. Let C be a constraint system, we denote by Qmax(C) the element
of S associated to the matrix B(C).

Example 48 Consider again the constraint system described in Example 45.
We have that Qmax(C) = h2.

This algebraic characterization of well-defined constraint systems gives us an
algorithm to decide if a given constraint system is well-defined (when SE is
a commutative ring). However, this characterization allows us to deal with
constraint systems on the reduced signature only, and seems not to be gener-
alizable on the full signature. We will show later (cf. Lemma 55) that we can
still obtain one direction of Proposition 46 on the full signature (and not the
other one, see Example 57) and we will use this result to obtain a procedure
to decide satisfiability of well-defined constraint systems.
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9.2 Well-Definedness of Constraint Systems Obtained after Abstraction

Unfortunately, the constraint systems obtained by abstraction on a well-defined
constraint system are not necessarily well-defined (see Example 40). To ob-
tain such a result, i.e. the stability of well-definedness under abstraction (cf.
Proposition 52), we need to restrict ourselves to factor-preserving constraint
systems. However, as it is stated by Lemma 51, this is not a real restriction,
since a well-defined constraint, which has a non-collapsing solution, is neces-
sarily factor-preserving.

Definition 49 (factor-preserving) A constraint system is factor-preserving
if for all i, 1 ≤ i ≤ k, we have that

FactE(ui) r X ⊆
j=n+i−1
⋃

j=1

FactE(tj).

Example 50 The constraint system C in Example 40 is not factor-preserving
since the factor 〈x1, x2〉 does not satisfy the required property.

Lemma 51 If a well-defined constraint system C has a non-collapsing solution
in (IME

,RE) then it is factor-preserving.

Proposition 52 Let C be a well-defined and factor-preserving constraint sys-
tem. Let F = FactE(C) r X . Let F0 be a set of new constant symbols of the
same cardinality as F and ρ : F → F0 a bijection. The system Cρ is a well-
defined constraint system.

Before proving this result, we need to introduce some notions and to establish
an intermediate lemma (cf. Lemma 55).

Definition 53 (non-standard subterms) The set of non-standard subterms
NStE(t) of a term t is

NStE(f(t1, . . . , tn)) =
⋃n

i=1 NStE(ti) if f 6∈ sig(E)

NStE(t) = {t} ∪
⋃

s∈FactE(t)rX NStE(s) otherwise

Example 54 Let t be the term h(x1) + x2 + 〈x3, x4 + x5〉. We have that
NStE(t) = {t, x3, x4 + x5}.

Lemma 55 Let C = {T1  u1, . . . , Tk  uk} be a factor-preserving and well-
defined constraint system (on the full signature) and 1 ≤ i ≤ k. We have that:
for all s ∈ NStE(Ti), the vector φX (s) is dependent from Bi−1(C).

This Lemma is proved in Appendix D.
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Example 56 Consider the equational theory E = ACUNh and the following
constraint system C:

C :=







0, a  x1 + x2

0, a, b  x1

0, a, b, 〈h(x1), a〉 + 〈h(x2), a〉  a + b

This system is well-defined and factor-preserving. We have L(C) = {1, 2},
φX (u1) = (1, 1) and φX (u2) = (1, 0). We have NStE(〈h(x1), a〉 + 〈h(x2), a〉) =
{〈h(x1), a〉+〈h(x2), a〉; h(x1); h(x2)}. The vectors (0, 0) (resp. (h, 0) and (0, h))
are dependent from {(1, 1), (1, 0)}.

Note that, contrary to what happens on the reduced signature (see Proposi-
tion 46), the converse of Lemma 55 is false.

Example 57 Consider the equational theory ACUNh and the following con-
straint system made up of the constraints a  x + y + {y}k and a, x  a. This
system is not well-defined (θ = {x 7→ y + {y}k}). However, φX (x) = (1, 0) is
dependent from {φX (u) | u ∈ {x + y + {y}k, y}} = {(1, 1), (0, 1)}.

PROOF. (of Proposition 52)
Let C = {T1  u1, . . . , Tk  uk}. By hypothesis, C is a well-defined and factor-
preserving constraint system. By Lemma 55, we know that for all i ≤ k and
for all s ∈ NStE(Ti), the vector φX (s) is dependent of Bi−1(C). Since for all
terms t, we have φX (t) = φX (tρ), we conclude by applying Proposition 46. �

10 Satisfiability in (IME
,RE) over the Reduced Signature

Now, we have to solve well-defined constraint systems in (IME
,RE) on the

reduced signature. In the remainder, we consider a constraint system C of the
following form:

C =







t1, . . . , tn  u1

t1, . . . , tn, tn+1  u2

. . .

t1, . . . , tn, tn+1, . . . , tn+k−1  uk

with u1, . . . , uk, t1, . . . , tn+k−1 ∈ T (F0 ∪ sig(E),X ) where X = {x1, . . . , xp}.
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To deal with the case of an infinite semiring we need to assume that SE satisfies
some additional properties. In particular, we have to assume that SE is an
Euclidean ring as defined below.

Definition 58 (Euclidean ring) An Euclidean ring is a commutative ring:

• without zero divisors, i.e.

∀x, y ∈ S if x · y = 0 then x = 0 or y = 0

• in which a division algorithm can be defined, i.e. there is a function v :
S r {0} → N, called norm, that satisfies the following property:

∀a, b ∈ S with b 6= 0,∃q, r ∈ S such that
{
a = bq + r, and
r = 0 or v(r) < v(b).

Example 59 The ring Z is an Euclidean ring, where division is defined as
the usual integer division with remainder, and the function v is the absolute
value. For any field K, the ring K[h] of polynomials is an Euclidean ring,
where v(p) is the degree of a polynomial p.

Let E be a monoidal theory. If t1, . . . , tn ⊢ t in (IME
,RE), that is by one step

of the inference rule ME, then we call an instance of this rule the context C
such that C[t1, . . . , tn] = t. Recall that, as always, equalities between terms
are modulo the equational theory E.

Let C be a well-defined constraint system in (IME
,RE) on the reduced signature

as given at the beginning of this section. If σ is a solution to C then we denote
by Cσ

1 , . . . , Cσ
k the instances of the ME rules, that is the contexts such that

Cσ
i [t1, . . . , tn, tn+1σ . . . , tn+i−1σ] = uiσ

Note that tjσ = tj for j ≤ n since the t1, . . . , tn are ground. We denote by
Y = {y1, . . . , yn+k−1} a set of variables disjoint from X on which the con-
texts Cσ

i are built. By construction, vars(Cσ
i ) ⊆ {y1, . . . , yn+i−1}. We also say

that Cσ
1 , . . . , Cσ

k are witnesses of the solution σ.

Proposition 60 Let E be a monoidal equational theory for which SE is an
Euclidean ring with norm v. If C is satisfiable, then there exists a solution σ
to C with witnesses Cσ

1 , . . . , Cσ
k satisfying the following condition:

for all i ∈ L(C), for all y ∈ Y, v(φy(C
σ
i )) = 0 or v(φy(C

σ
i )) < v(Qmax(C)).

Note that if we view the constraint system C as an equation system over the
semiring SE then what we obtain is a quadratic equation system since we
have on the left-hand side of the equation system products between terms
corresponding to the instances of the rule (ME) (i.e., the witnesses Cσ

i ) on the
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one hand, and terms corresponding to the messages (i.e., the instances of the
terms ti) on the other hand. The idea of the proof is that we can re-balance
a solution σ when Cσ

i is too big in the following sense: If Cσ
i is the context

applied to a term ti then we can shift a chunk of the solution to ti, that is we
make Cσ

i smaller and tiσ larger. The fact that SE is an Euclidean ring makes
this shifting operation possible, and by exploiting the fact that the constraint
system is well-defined we can assure that this shifting does not change the
evaluation of the left-hand side of the equation system. The complete proof of
this proposition is given in Appendix E.

Input: C = {t1, . . . , tn  u1; . . . ; t1, . . . , tn, . . . , tn+k−1  uk}
Output: Yes/No

Algorithm:

for all i ∈ L(C) do

for all j := 1 to n + i − 1 do

choose the value of φyi
(Ci) among {e ∈ SE|v(e) < v(Qmax(C))} ∪ {0}

U := ∅
for all i ∈ L(C) do U := U ∪ {Ci[t1, . . . , tn+i−1] = ui}

if U has no solution return No

let θ a solution to U
for all i 6∈ L(C) do

if uθ is not ME-one-step deducible from Tθ
return No

return Yes

Algorithm 5. Satisfiability of a well-defined constraint system in (IME
,RE).

Proposition 61 Let E be a monoidal equational theory that is unitary for
elementary unification, and such that SE is an Euclidean ring with norm v
with

for any q ∈ SE, the set {e ∈ SE | v(e) < v(q)} is finite

and such that there is an algorithm to compute solutions of inhomogeneous
linear equation over SE. Then algorithm 5 allows us to decide the satisfiability
of a well-defined constraint system C (on the reduced signature) in (IME

,RE).
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11 Main Results

We have already stated and proved the following result.

Theorem 42 Let E be a monoidal equational theory for which there exists
an AC-convergent rewriting system such that sig(E) ∩ {{ } , 〈 , 〉} = ∅ and
for which the associated semiring SE is finite. Then, the problem of deciding
whether a well-defined constraint system has a solution in (IDY,E) is decidable.

Now, we can go further since in some cases, we can deal with monoidal equa-
tional theory for which the associated semiring is not finite.

Theorem 62 Let E be a monoidal equational theory for which there exists an
AC-convergent rewriting system such that sig(E) ∩ {{ } , 〈 , 〉} = ∅, and such
that:

(1) the associated semiring SE is an Euclidean ring and the function v used
in the Euclidean division algorithm satisfies the following condition:

for any q ∈ SE, the set {e ∈ SE | v(e) < v(q)} is finite.
(2) the theory E is unitary for elementary unification, and there is an al-

gorithm to compute solutions of inhomogeneous linear equations over the
associated semiring SE.

Then, the problem of deciding whether a well-defined constraint system has a
solution in (IDY,E) is decidable.

PROOF. First, the procedure described along the first part of this paper
allows us to reduce the problem of deciding whether a well-defined constraint
system has a solution in (IDY,RE) to the problem of deciding whether a well-
defined constraint system has a solution in (IME

,RE) on the reduced signature.
This is similar to the proof of Theorem 42. However, note that we obtain
a well-defined constraint system after abstraction thanks to Lemma 51 and
Proposition 52.

Second, thanks to Proposition 61, we know that the problem of deciding
whether a well-defined constraint system has a solution in (IME

,RE) on the
reduced signature is decidable. �

The complexity of the insecurity problem for these theories is not settled yet,
and probably depends on the particular equational theory under consideration.
Although the proofs of correctness are complicated, the algorithm itself is
simple enough: apart from the guessing steps, the most complex operations
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are unification and the resolution of a system of linear equations. Therefore,
the whole process may be in NP at least for the monoidal theories E such that
the semiring SE is finite, provided one uses structure sharing, like it is the case
in the empty equational theory.

12 Application to Particular Monoidal Theories

In this section we show that several interesting monoidal equational theories
satisfy the conditions allowing us to apply either Theorem 42 or Theorem 62.
A summary is given in Figure 6.

12.1 The Theories (IDY,ACUI) and (IDY,ACUN) (Exclusive Or)

These equational theories are made up of the axioms (AC) and (U) with in
addition x+x = x (I) or x+x = 0 (N). The semirings corresponding to these
equational theories are respectively the Boolean semiring B, which is finite,
and the finite field Z2. Theorem 42 allows us to conclude that the problem
whether a well-defined constraint system has a solution in (IDY,ACUI) (resp.
(IDY,ACUN)) is decidable.

12.2 The Theory (IDY,AG) (Abelian Groups)

This well-known equational theory is made up of the axioms (AC) and (U) with
in addition x + −(x) = 0 (Inv). The semiring associated to this equational
theory is in fact a ring, namely the ring Z of all integers. This ring is an
Euclidean ring. We can define the function v as |n|, the absolute value of n.
Hence we have the property that the set {e ∈ Z | v(e) < v(q)} is finite,
for any q ∈ Z. Moreover, it is a well-known result [BS01] that elementary
unification modulo AG is unitary. Lastly, there exist several algorithms to
compute solutions of linear equations over Z (see for instance [Sch86]). Hence,
Theorem 62 allows us to conclude that the problem of deciding whether a
well-defined constraint system has a solution in (IDY,AG) is decidable.

12.3 The Theory (IDY,ACUNh)

This equational theory is made up of the axioms of ACUN with in addi-
tion h(x + y) = h(x) + h(y). The semiring associated to ACUNh is Z2[h], the
ring of polynomials in one indeterminate over Z2. As Z2 is a field, we have that
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Z2[h] is an Euclidean ring. The norm we consider for polynomials is the degree,
and thus, the extra condition on v is satisfied. Elementary unification mod-
ulo ACUNh has been shown unitary in [LLT06] and the authors also provide
an algorithm to compute solutions of linear equations over Z2[h]. Hence, by
applying Theorem 62, we conclude that the problem of deciding whether a
well-defined constraint system has a solution in (IDY,ACUNh) is decidable.

13 Monoidal Theories Not Covered by Our Results

In this section, we briefly discuss some equational theories which do not fulfill
all the required conditions allowing us to apply Theorem 42 or Theorem 62.

13.1 The Theory (IDY,ACUh)

The equational theory ACUh is known to have an undecidable unification prob-
lem [Nar96]. This result had been obtained by using the fact that solvability of
linear equations over the semiring N[h] is undecidable. Hence, Theorem 62 can
not be applied. It is not surprising that our theorem can not handle this case
since it is well-known that decidability of unification is a necessary condition
for decidability of the security property of protocols [CDL06].

13.2 The Theory (IDY,ACUIh)

The equational theory ACUIh is made up of the axioms of ACUI with in addi-
tion h(x + y) = h(x) + h(y) and h(0) = 0. The semiring associated to ACUIh
is B[h], the semiring of polynomial in one indeterminate over B. This semiring
is neither finite nor a ring. Moreover, elementary unification is of type 0 [BS01],
i.e. a minimal complete set of unifiers does not always exists. However, general
unification is decidable, as a consequence of the fact that solvability of uni-
fication problems with constants is decidable [BS01] and of the combination
result obtained in [BS96].

13.3 The Theory (IDY,AGh)

Contrary to the equational theory ACUh, the equational theory AGh is known
to have a decidable unification problem [Baa93]. The semiring correspond-
ing to this equational theory is the ring Z[h]. However, this ring is neither
finite, nor an Euclidean ring. Hence, we can not apply neither Theorem 42,
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nor Theorem 62. Actually, it has recently been shown [Del06b] that the prob-
lem of deciding whether a well-defined constraint system has a solution, is
undecidable for this equational theory.

13.4 The Theory (IDY,ACU)

This equational theory, which is the simplest monoidal equational theory,
seems to be challenging. The semiring corresponding to this equational theory
is the semiring N which is neither finite nor a ring. Hence our results do not
allow us to conclude. Actually, decidability of the problem whether a well-
defined constraint system modulo the theory ACU has a solution is still open.
The problem has so far only been partially solved [BCD07].

13.5 Monoidal Theories with Several Homomorphisms

Another issue is to consider several homomorphic symbols that may or may
not commute (besides the inversion operation of Abelian Groups). In the
non-commuting case, unification is solved by a Gröbner basis approach in non-
commutative algebra [Baa93] and this question is likely to be difficult. The
commutative case seems more tractable, but there is not yet any decidability
result for this case.

Theory E SE Properties of SE Element. Unificat. Constraints

ACUI B finite semiring unitary decidable

ACUN Z2 finite semiring unitary decidable

AG Z Euclidean ring unitary decidable

ACUNh Z2[h] Euclidean ring unitary decidable

ACUh N[h] semiring undecidable undecidable

ACUIh B[h] semiring type 0 ?

AGh Z[h] commutative ring unitary undecidable

ACU N semiring unitary ?

Figure 6. Summary of some results.
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Henri Poincaré, Nancy (France), 2003.
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Appendix A Conservative Solutions

Definition 63 (decomposed) Let P be a proof of T ⊢ u in (IDY,RE). We
say that a standard term v is decomposed in P if:

• either v = 〈u1, u2〉 and P contains an instance of (UL) or (UR) whose
premise is labeled with T ⊢ 〈u1, u2〉.

• or v = {u1}u2
and P contains an instance of (D) whose premises are labeled

with T ⊢ {u1}u2
and T ⊢ u2.

The following proposition has been proved in [RT03] for the standard Dolev-
Yao model. The proof of [RT03] can be transferred in a straightforward way
to our intruder model which comprises in addition to the standard rules the
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rule (ME). It will be used in Lemma 30 to ensure the existence of a proof of
T ⊢ u which respects some conditions.

Proposition 64 Let P be a proof of T ⊢ u in (IDY,RE) and P ′ be a minimal
proof of T ⊢ γ. Moreover, assume that P ′ ends with an instance of (C−). Then,
there exists a proof of T ⊢ u in which γ is never decomposed.

PROOF. The proof can be done by induction on the number of instances of
inference rules in P which decompose γ. Base case: If there is no such instance
then P is the expected proof. Assume there are n + 1 instances of inference
rules in P which decompose γ. We can distinguish two cases depending on
whether γ is a pair (i.e. 〈γ1, γ2〉) or a ciphertext (i.e. {γ1}γ2

). In the first case,
this means that there exists an instance of (UL) (or (UR)) whose premise is
〈γ1, γ2〉 and conclusion is γ1 (or γ2). From P ′, we can easily extract a proof P1

of T ⊢ γ1 (resp. P2 of T ⊢ γ2). Note that P1 (resp. P2) does not decompose
γ by minimality of P ′. Hence, such a proof can be plugged to replace the
subproof of T ⊢ γ1 (resp. T ⊢ γ2) in P which decompose γ. The second case
where γ = {γ1}γ2

is similar. We obtain a proof of T ⊢ u which contains less
instances of inference rules which decompose γ than P . Hence we can apply
the induction hypothesis to conclude. �

Remember that we consider implicitly that terms are kept in normal forms,
hence we write uσ instead of uσ↓.

Lemma 30 Assume that (IDY,RE) is a local inference system. Let C be a
well-defined constraint system. If there exists a solution σ to C in (IDY,RE)
then there exists a conservative one.

PROOF.

We assume given a linear well-founded ordering ≺ on standard terms of
T (F ,X ) such that a special public constant 0 is minimal w.r.t. ≺. We shall
use below the multi-set extension ≪ of ≺ to multi-sets of standard ground
terms. For sake of notation, given two solutions σ1 and σ2 of a constraint sys-
tem, we write σ1 ≪ σ2 if and only if FactE(img(σ1)) ≪ FactE(img(σ2)). Let
σ be a minimal (w.r.t. ≪) solution to C in (IDY,RE).

We reason by contradiction to show that σ is conservative w.r.t. C. Assume
that there exists x ∈ vars(C) and vx ∈ FactE(xσ) such vx 6∈ (StE(C)\vars(C))σ
i.e. for all t ∈ T (F ,X ) r X with tσ =E vx, we have t /∈ StE(C). We will
show that under this condition there exists a smaller solution σ′ of C. Let
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C = {C1, . . . , Ck} and for each i ≤ k, let Ti  ui be the constraint Ci and Ciσ
be the constraint obtained from Ci by instantiating (and normalizing) all the
terms with σ.

Fact 65 If vx ∈ StE(sσ) for some s ∈ Ti (i ≤ k), then there exists j < i such
that vx ∈ StE(ujσ).

We show this result by contradiction. Assume that vx ∈ StE(sσ) for some
s ∈ Ti (i ≤ k), and that for all j < i, we have vx 6∈ StE(ujσ). Let z be a fresh
variable, and ρ be the replacement {vx 7→ z}. Let θ := σρ. We are going to
show that Cθ is not well-formed, leading to a contradiction with the fact that C
is well-defined. Firstly, since vx 6∈ (StE(C) \ vars(C))σ, we have (Cσ)ρ = C(σρ)
(= Cθ). By hypothesis, vx ∈ StE(Tiσ), hence z ∈ vars(Tiθ). However, for all
j < i, we have z 6∈ vars(ujθ) since vx 6∈ StE(ujσ).

This allows us to define: m = min{j
∣
∣
∣ vx ∈ StE(ujσ)}.

Fact 66 There exists P ′ a proof tree of Tmσ ⊢ vx in (IDY,RE) which ends
with an instance of (C−).

By hypothesis, there exists a minimal proof P of Tmσ ⊢ umσ. Firstly, we
show that there exists in P a node labeled with Tmσ ⊢ vx. If P contains a
node labeled by Tmσ ⊢ vx, then it is the expected node. Otherwise, we can
find recursively a path in P , from the root up to one leaf, where every node
which is labeled by Tmσ ⊢ u is such that vx ∈ StE(u). Thanks to Fact 65, the
existence of such a path leads to a contradiction with the minimality of m.
Secondly, by definition of m and thanks to the fact that the inference system
(IDY,RE) is local, the subproof P ′ of P labeled with Tmσ ⊢ vx can not be
a decomposition proof (otherwise vx ∈ StE(Tmσ)). Since vx is necessarily a
standard term, this implies that P ′ ends with an instance of (C−).

Now, we let δ be the replacement {vx 7→ 0}. We will show that σ′ := σδ is
also a solution of C, which is a contradiction since σ′ ≪ σ (vx is a standard
term since it is a factor, hence 0 ≺ vx). For this purpose, we have to build a
proof of each Ciσ

′, i ≤ l. We distinguish two cases.

(1) Case i < m: By definition of m, vx /∈ StE(Ciσ). In this case, (Ciσ)δ =
Ciσ = Ciσ

′, i.e. σ′ is a solution to Ci.
(2) Case i ≥ m: In the remainder, we are going to show that σ′ = σδ is also

a solution to Ci = Ti  ui.

Firstly, we may note that Ci(σδ) = (Ciσ)δ since by hypothesis vx 6∈ (StE(C) \
vars(C))σ. By hypothesis σ is a solution to Ci in (IDY,RE), this means that
we have a proof P of Tiσ ⊢ uiσ in (IDY,RE). Moreover, Fact 66 ensures the
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existence of a proof of Tiσ ⊢ vx which ends with (C−) in P . σ′ is a solution
of Ci in (IDY,RE), it is obvious for i = m and we extend the result for i > m
by well-definedness of C (stability by any substitution that C is well-formed).
Now, we can apply Proposition 64 to obtain a proof Pi of Tiσ ⊢ uiσ in which
vx is never decomposed. We shall build from Pi a proof P ′

i of (Tiσ)δ ⊢ (uiσ)δ

in (IDY,RE) by replacing every subtree ended by
Tiσ ⊢ v1 . . . Tiσ ⊢ vn

(C−)
Tiσ ⊢ vx

with a leaf labeled with Tiσ ⊢ vx and then by applying δ to every term of the
tree obtained.

Fact 67 P ′
i is a proof of (Tiσ)δ ⊢ (uiσ)δ.

To prove this, we have to show that for every node in P ′
i labeled with Tiσδ ⊢ v0

and with n sons labeled respectively by Tiσδ ⊢ v1, . . . Tiσδ ⊢ vn, the inference
Tiσδ ⊢ v1 . . . Tiσδ ⊢ vn

Tiσδ ⊢ v0

is an instance of an inference rule of Figure 2.

We distinguish several cases:

• If the inference is a leaf added by the replacement of an instance of (C−) in
the construction of P ′

i given above, then we have v0 = 0, hence v0 ∈ Tiσδ.
• If the inference is not a leaf added by the replacement, then we have a “cor-

responding” inference in Pi. This means that there exists
Tiσ ⊢ u1 . . . Tiσ ⊢ un

Tiσ ⊢ u0
an inference step in Pi such that vi = uiδ for each 0 ≤ i ≤ n. Since, by con-
struction of P ′

i we know that vx is never decomposed in Pi and the conclusion
of an instance of (C−) can not be vx, we can show by case analysis on the
inference rule, that when we apply δ on the inference above, we retrieve
another instance of the same inference rule. �

Proposition 32 Let t be a term and σ a substitution. We have:

StE(tσ) ⊆ StE(t)σ ∪
⋃

x∈vars(t)

StE(xσ)

PROOF. This can be easily proved by structural induction on t. If t is a
constant or a variable, it is obvious. Now, assume that t is a standard term,
i.e. t = f(t1, . . . , tn) with f ∈ F r sig(E). Note that, in such a case, we have
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that tσ = f(t1σ, . . . , tnσ) is also a standard term. We have:

StE(tσ) = {tσ} ∪
⋃n

i=1 StE(tiσ)

⊆ {tσ} ∪
⋃n

i=1 (StE(ti)σ ∪
⋃

x∈vars(ti) StE(xσ)) by induction hypothesis

⊆ StE(f(t1, . . . , tn))σ ∪
⋃

x∈vars({t1,...,tn}) StE(xσ)

⊆ StE(t)σ ∪
⋃

x∈vars(t) StE(xσ)

If t is not a standard term, then we have t = C[t1, . . . , tn] for some standard
terms t1, . . . , tn and an E-context C, and we can do the same reasoning as
before. �

Lemma 34 Assume that (IDY,RE) is a local inference system. Let σ be a
conservative solution of C = {C1, . . . , Ck}. For each i ≤ k, there exists a
proof Pi of Ciσ which involves only terms in StE(C)σ.

PROOF. Since the system (IDY,RE) is local, we know that for each i there
exists a minimal proof Pi of Tiσ ⊢ uiσ which only involves terms in StE(Cσ).
Thanks to Proposition 32, we have StE(Cσ) ⊆ StE(C)σ ∪

⋃

x∈vars(C) StE(xσ).
Hence, we obtain:

StE(Cσ) ⊆ StE(C)σ ∪
⋃

x∈vars(C) StE(xσ)

⊆ (StE(C) r vars(C))σ ∪
⋃

x∈vars(C) StE(xσ) since xσ ∈ StE(xσ)

⊆ S̄ (C)σ since σ is conservative w.r.t. C

where S̄ (C) = {C[t1, . . . , tn]
∣
∣
∣ ∀i. ti ∈ StE(C)rvars(C) and C is an E-context}

Hence, each node Tiσ ⊢ v of Pi is such that v ∈ S̄ (C)σ. Now, it remains to show
that each node is actually in StE(C). To establish this, we first show that all
the nodes involved in an inference other than (ME) satisfy this condition. Let
Tiσ ⊢ u1 . . . Tiσ ⊢ un

Tiσ ⊢ u0

be an inference in Pi which is an instance of some rule

other than (ME), say that (C−). We have to show that for all j ∈ {0, . . . n}, we
have uj ∈ StE(C)σ. Since u0 ∈ S̄ (C) and u0 is headed with f ∈ VFrsig(E), we
have that u0 ∈ StE(C)rvars(C). Hence, we deduce that u0, u1, . . . , un ∈ StE(C).

Then, we have to deal with the instance of (ME). By minimality of Pi, an
instance of a rule (ME) must not be followed by another instance of (ME) (we
could otherwise merge the two instances). Hence, for each premise Tiσ ⊢ u of
an instance of (ME), either Tiσ ⊢ u is the conclusion of an instance of another
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inference rule than (ME), or we have u ∈ Tiσ. Furthermore, the conclusion
Tiσ ⊢ u of an instance of (ME) is either the premise of an instance of another
inference rule than (ME), or we have u = uiσ. This allows us to conclude.

�

Appendix B About General Unification in Monoidial Theories

In this section we show a technical property of most general solutions of general
unification problems:

Proposition 38 Let E be a monoidal equational theory which is unitary for
elementary unification, and such that there is an algorithm to compute solu-
tions of inhomogeneous linear equations over the associated semiring SE. Then E
satisfies the unification property.

In order to show that proposition, we first need some additional lemmas. In
this section, we denote by Σ1 the signature of the equational theory E, and
by Σ2 the set of function symbols not in Σ1 (that is, the free function symbols
and constants). We denote by E1 the equational theory E, and by E2 the
empty equational theory.

A unification problem with linear constant restrictions in an equational the-
ory E is a triple (P,C,<) where C is a set of new constants not contained
in sig(E), P is a set of equations over the signature sig(E) ∪ C, and < is a
linear order on C ∪ vars(P ). A substitution σ is a solution to (P,C,<) if σ
is a solution to P with the additional property that c is not a subterm of xσ
whenever c < x.

Lemma 68 Let E be a monoidal equational theory that is unitary for element-
ary unification, and such that there is an algorithm to compute solutions of
inhomogeneous linear equations over the associated semiring SE.

There is an algorithm which for any unification problem (P,C,<) with linear
constant restrictions decides whether it has a solution, and in this case com-
putes a complete and finite set mguE(P,C,<) of solutions to (P,C,<) which
are P -conservative.

In difference to Proposition 38, Lemma 68 is only about unification problems
with linear constant restrictions.

PROOF. An algorithm to compute solutions of unification problems with
linear constant restrictions is given in [BN96]. We just have to show that all
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solutions obtained by their algorithm are P -conservative. To this end let θ be
a substitution returned by the algorithm, x ∈ dom(θ) and v ∈ StE(xθ) r X .
According to our definition of subterms (see Definition 12), we have to consider
two cases:

(1) v = xθ. In this case we simply choose t = x.
(2) v is a constant. In this case, the constant v is either 0 or is already a

subterm of P . �

Lemma 69 There is an algorithm which for any unification problem with
linear constant restrictions (P,C,<) over the signature Σ2 decides whether
it has a solution, and in this case computes a most general unifier which is
P -conservative.

PROOF. We use the algorithm of A. Martelli and U. Montanari [MM82]
which is trivial to extend to linear constant restrictions. Here we follow the
presentation of that algorithm in [BS01]. The algorithm consists of 6 trans-
formation rules which rewrite pairs of the form P ; S where P is a unification
problem and S a solved form. We denote by σS the substitution derived from
a solved form S. Given a unification problem P we start on the pair P ; ∅. The
transformation system has the property that vars(P ′) ∩ dom(σS′) = ∅ and also
that dom(σS′) ∩ img(σS′) = ∅ for every reachable pair P ′ ; S ′. If we can reach
a pair ∅ ;S ′ then σS′ is the most general unifier of P .

It is now sufficient to show by induction on the length of the rewrite se-
quence P ; ∅ →∗ P ′ ;S ′ that

StE(P ′) ∪ StE(img(σS′)) ⊆ StE(P )σS′

This is obviously the case when the length is one. Otherwise we consider the
last rule used in the rewrite sequence. The assertion is trivially true for the
rules (Symbol Clash) and (Occurs Check), and obvious for the rule (Orient)
since this latter rule does not change the set of terms in P ;S. Furthermore, the
assertion is obviously true for the rules (Trivial) and (Decomposition) since
these rules only restrict the set of subterms of the unification problem and do
not change the solved form.

It remains the case of the rule (Variable Elimination):
{x = t} ∪ P ′ ; S ′ → P ′[x 7→ t] ; S ′[x 7→ t] ∪ {x = t} if x 6∈ vars(t)

Let S ′′ be S ′[x 7→ t]∪ {x = t} and v ∈ StE(P ′[x 7→ t]) ∪ StE(img(σS′′)). There
are two cases:

(1) v ∈ StE(t):
By induction hypothesis, we have that v = sσS′ for some s ∈ StE(P ).
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We have that x 6∈ vars(t) by the side condition of the rule, and as a
consequence x 6∈ vars(v). Furthermore, we have that σS′′ = σS′ [x 7→ t].
Hence, we have that v = sσS′ = sσS′′ .

(2) v = v′[x 7→ t] for some v′ ∈ StE(P ′) ∪ StE(img(σS′)):
By induction hypothesis we have that v′ = sσS′ for some s ∈ StE(P ).
Hence, we have that v = v′[x 7→ t] = sσS′ [x 7→ t] = sσS′′ . �

PROOF of Proposition 38. We show that all substitutions returned by the
combination algorithm of [BS96] are P -conservative. We recall here only the
features of that combination algorithm that are essential for us:

Given a general unification problem P we obtain by a non-deterministic pro-
cedure two unification problems P1 and P2, together with a linear order <
on V := vars(P1) ∪ vars(P2), and a partition of V into V1 ⊎ V2. This yields two
unification problems with linear constant restrictions (Pi, V3−i, <) for i = 1, 2.
Let σi be a solution of (Pi, V3−i, <) for i = 1, 2.

A substitution σ is constructed by induction on the order <:

• If x ∈ Vi is minimal in the order < then xσ := xσi.
• Otherwise, with x ∈ Vi, let xσ := xσiσ. In fact, the linear constant re-

strictions guarantee that y < x for all y ∈ vars(xσi), and hence that the
expression xσiσ is well-defined.

Note that in particular σiσ = σ for i = 1, 2. The substitution σ is not yet a
solution to P . However, the solution σ′ finally obtained satisfies img(σ′) = img(σ).
Hence, for our purpose it is sufficient to show by induction on the order <
that

∀x ∈ V,StE(xσ) r X ⊆ StE(P )σ ∪ {0}

Let x ∈ Vi, and assume that the assertion is true for all variables y with y < x.
Let v ∈ StE(xσ)rX . By construction of σ, this means that v ∈ StE(xσiσ)rX .
By Proposition 32, there are two cases:

(1) v ∈ StE(xσi)σ rX . We may even assume that v ∈ (StE(xσi) rX )σ since
otherwise we have that v ∈ Xσ, and hence the second case applies.
By Lemmas 68 and 69 we know that StE(xσi) rX ⊆ StE(P )σi ∪ {0}. As
a consequence, (StE(xσi) r X )σ ⊆ (StE(P )σi ∪ {0})σ = StE(P )σ ∪ {0},
where the last equation is due to σiσ = σ.

(2) v ∈ StE(yσ) for some y < x.
In this case we conclude by applying the induction hypothesis. �
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Appendix C From Satisfiability in (IDY,RE) to Satisfiability in (IME
,RE)

Lemma 35 Let (IDY,RE) be a local inference system and C be a well-defined
system of constraints. Let C ′ be the set of all constraint systems obtained by
applying Algorithm 3 on C (by considering all the possible choices).

(1) C ′ is a finite set of well-defined systems of one-step constraints.
(2) Let C ′ ∈ C ′. If σ is a solution to C ′ in (IDY,RE) then σ is a solution to C

in (IDY,RE).
(3) If σ is a conservative solution to C in (IDY,RE) then there exists C ′ ∈ C ′

such that σ is a solution to C ′ in (IDY,RE).
(4) For any C ′ ∈ C ′, σ is conservative w.r.t. C if and only if σ is conservative

w.r.t. C ′.

PROOF.

(1) Algorithm 3 is non-deterministic and at each step there are only finitely
many possibilities to consider. Hence, C ′ is finite. By construction, each
constraint system in C ′ is a one-step constraint system. Now, let C ′ be
a one-step constraint system in C ′. The monotonicity of C ′ is due to
the monotonicity of C and the construction of C ′. To complete the proof
of well-definedness of C ′ we observe that each term which appears in a
hypothesis set of a constraint is either a term introduced by the algorithm
(i.e. a term in S) or a term issuing from a hypothesis set of a constraint
in C. In the first case, this means that the term appears previously in
the target of a constraint by construction. As a consequence,if there were
a substitution θ that makes well-definedness fail for C ′ then this same θ
would make well-definedness fail for C, which contradicts the assumption.
Hence in both cases we conclude that C ′ is well-defined thanks to the well-
definedness of C.

(2) For each constraint Ti  ui ∈ C, there exists Ti ∪ S1 ∪ . . . ∪ Si 1 ui ∈ C ′.
Since σ is a solution to C ′ (by hypothesis), this means that uiσ is one-
step deducible from Tiσ ∪ S1σ ∪ . . . ∪ Siσ. By construction of C ′, we can
show that each term in Sjσ is deducible by using only terms in Tjσ. In-
tuitively, each proof is obtained by stacking “one-step” proofs in correct
order. From this, we easily deduce that uiσ is deducible from T1σ∪. . .∪Tiσ
which is equal to Tiσ thanks to the monotonicity of C.

(3) By hypothesis, for each constraint Ti  ui ∈ C, there exists a proof Pi

of Tiσ ⊢ uiσ. Since σ is conservative and (IDY,RE) is local, thanks to
Lemma 34, we can assume that the proof trees Pi involve only terms in
StE(C)σ. Let S ′

i = {s ∈ StE(C) | Tiσ ⊢ sσ}. In other words, S ′
i contains

all the subterms of C whose instance by σ is deducible at step i (i.e. by
using the terms in Ti). Note that, thanks to the monotonicity of C, we
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have S ′
i ⊆ S ′

i+1 for all 1 ≤ i < k.
Now, let S1 = S ′

1 and Si = S ′
i r (S ′

1 ∪ . . . ∪ S ′
i−1) for i ≥ 2 . Si con-

tains all the subterms of C whose instance by σ is deducible at step i and
not before. Finally, for each i, we order the elements in Si such that: for
all s, s′ ∈ Si such that Tiσ ⊢ sσ is the root of a subproof of a minimal proof
of Tiσ ⊢ s′σ, then s ≺i s′. Hence for each s ∈ Si, we have that sσ is one-
step deducible from S1σ ∪ . . . ∪ Si−1σ ∪ {s′σ | s′ ≺i s and s′ ∈ Si}. It re-
mains to show that uiσ is one-step deducible from Tiσ ∪ S1σ ∪ . . . ∪ Siσ.
By definition of the Sj and thanks to the fact that uiσ is deducible at
least at step i, we know that ui ∈ S1 ∪ . . . ∪ Si. So, we easily deduce
that uiσ ∈ Tiσ ∪ S1σ ∪ . . . ∪ Siσ. Hence, the result holds.

(4) Let C ′ ∈ C ′. We have StE(C ′) = StE(C). Hence σ is conservative w.r.t. C
if and only if σ is conservative w.r.t. C ′. �

Lemma 39 Let E be an equational theory for which general unification is de-
cidable and finitary and let C be a well-defined system of one-step constraints.
Let P = {

∧

(s1,s2)∈S′ s1 = s2 | S ′ ⊆ StE(C)2}. Let R ∈ P and θ ∈ mguE(R).
Let Cθ = {Tθ  uθ | T 1 u ∈ C and uθ is not DY-one-step deducible from Tθ}.

(1) There are only finitely many outputs (i.e. possibilities for Cθ) for a given
input C. Each of them is a well-defined system of constraints.

(2) If there exists Cθ (obtained by the procedure above) which has a solution
in (IME

,RE) then C has a solution in (IDY,RE).
(3) If C has a conservative solution in (IDY,RE) then there exists Cθ (obtained

by the procedure above) which has a solution in (IME
,RE). Moreover, if

E satisfies the unification property then Cθ has a non-collapsing solution.

PROOF.

(1) P is a finite set of equation systems since StE(C) is finite. Each system
of equations represents a unification problem and has a finite complete
set of unifiers since E is finitary for general unification. Let θ be such
a unifier. Let Cθ be a constraint system obtained by using the substi-
tution θ. We have to show that Cθσ is well-formed for every substitu-
tion σ. Let C ′ = Cθσ. Thanks to the well-definedness of C, we deduce
that C ′ is well-formed. It remains to show that the constraints that we
need to remove to obtain Cθ from C ′ do not change anything regard-
ing well-definedness. In other words, we need to show that a removed
constraint Tθ 1 uθ does not introduce a variable for the first time,
i.e. there exists x ∈ vars(uθ) and x 6∈ vars(Tθ). By hypothesis, such a
constraint Tθ 1 uθ is such that uθ is DY-one-step deducible from Tθ.
Hence vars(uθ) ⊆ vars(Tθ).
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(2) Let Cθ be the constraint system obtained from C by applying the trans-
formation described in Lemma 39 with the substitution θ. Let θ′ be a solu-
tion to Cθ. We are going to show that θθ′ is a solution to C. Let T 1 u ∈ C.
Either uθ is DY-one-step-deducible from Tθ (without any instantiation)
or Tθ  uθ ∈ C ′. In both case, this means that uθθ′ is one-step deducible
from Tθθ′. Hence θθ′ is a solution of C.

(3) Let σ be a conservative solution to C. Let

R = {(s1, s2) | s1, s2 ∈ StE(C) and s1σ =E s2σ}

Let θ ∈ mguE(R) such that θ is more general than σ. Then, let θ′ be the
substitution such that θθ′ =E σ. Let

Cθ = {Tθ  uθ | T 1 u ∈ C and uθ is not DY-one-step deducible from Tθ}.

We are going to show that θ′ is a solution to Cθ, i.e. uθ′ is ME-one-step de-
ducible from Tθ′ for each constraint in Cθ. Let T 1 u ∈ C such that uσ is
DY-one-step deducible from Tσ. We are going to show that uθ is DY-one-
step deducible from Tθ. Hence, the constraints that remain in Cθ are those
that can be solved by using (ME). If uσ ∈ Tσ, this means that there ex-
ists t ∈ T such that tσ = uσ. Hence, we have tθ = uθ since t, u ∈ StE(C).
Hence uθ ∈ Tθ, and so uθ is one-step deducible from Tθ. Otherwise, uσ
is one-step deducible from Tσ by using an inference rule among (C−),
(UL), (UR) or (D).
In the first case, i.e. (C−), we have uσ = f(v1, . . . , vn) for some vi ∈ Tσ
and f ∈ VF r sig(E). Hence, for every i ≤ n there exists v′

i ∈ T such
that vi = v′

iσ. There are two possibilities:
• If u is not a variable, then u = f(u′

1, . . . , u
′
n), we have u′

i, v
′
i ∈ StE(C)

and u′
iσ = v′

iσ for each i ≤ n. Hence, we deduce that u′
iθ = v′

iθ and uθ
is DY-one-step deducible from Tθ.

• If u is a variable then (since σ is conservative w.r.t. C) there exists
t ∈ StE(C) \ vars(C) such that uσ =E tσ. Hence t = f(t1, . . . , tn) for
some ti ∈ StE(C). We can deduce that ti = v′

i. Hence uθ is DY-one-step
deducible from Tθ.

The others cases (UR), (UL) and (D) are similar.

Finally, if E satisfies the unification property then we can show that θ′ is
non-collapsing w.r.t. Cθ. Let u, v ∈ StE(Cθ)rX . Hence, by Proposition 32,
we have u, v ∈ StE(C)θ ∪

⋃

x∈vars(C) StE(xθ). Thanks to the fact that E
satisfies the unification property (cf. Definition 37) there exist u1, v1 ∈
StE(C) such that u = u1θ and v = v1θ. Assuming that uθ′ =E vθ′, we
obtain that u1θθ

′ =E v1θθ
′, hence we have u1σ =E v1σ and by definition

of R we have that (u1, v1) ∈ R. Finally, by construction of θ, we deduce
that u1θ = v1θ, i.e. u =E v. Hence, we deduce that θ′ is non-collapsing
w.r.t. Cθ. �
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Appendix D About Well-Defined Constraint Systems

Proposition 46 (new characterization of well-definedness) Let C =
{T1  u1, . . . , Tk  uk} be a constraint system on the reduced signature which
satisfies the monotonicity property. The system C is well-defined if and only
if for all i ≤ k, for all t ∈ Ti, the vector φX (t) is dependent of Bi−1(C).

PROOF. (⇐) We have to show that for every substitution θ, Cθ satisfies the
origination property. Let θ be a substitution and t be a term which appears
in an hypothesis set Ti of C such that tθ contains a variable Z. As explained
at the end of Section 3, we denote by t0 (resp. u0

j) the constant part of the
term t (resp u0

j). We have to show that Z ∈ vars(ui′θ) for some i′ < i.
Let Li−1(C) = {i1, . . . , in}. By hypothesis, we know that there exists α ∈ SE

(α 6= 0) and αi1, . . . , αin ∈ SE such that:

α · φX (t) =
∑

j∈Li−1(C)

αj · φX (uj)

⇒ α ⊙ (t − t0) =
∑

j∈Li−1(C)

αj ⊙ (uj − u0
j)

⇒ α ⊙ (tθ − t0) =
∑

j∈Li−1(C)

αj ⊙ (ujθ − u0
j)

⇒ α ⊙ tθ =
∑

j∈Li−1(C)

αj ⊙ (ujθ − u0
j) + α ⊙ t0

Hence, since Z ∈ vars(tθ), we deduce that Z ∈ vars(ui′θ) for some i′ ≤ i.

(⇒) Assume that there exists 1 ≤ i ≤ k and t ∈ Ti such that φX (t) is
independent of B(Ci−1(C)). Let Li−1(C) = {i1, . . . , in}. Let A be the matrix
whose rows is made up of the vectors φX (ui1), . . . , φX (uin) and φX (t), and b
be the column vector (0, . . . , 0, 1). By Fact 47, there exists Q ∈ SE such that
A · Y = Q · b has a solution in Sp

E
.

Let (c1, . . . , cp) be a solution to this system of equations. Let Z be a fresh
variable and θ be the substitution defined by Xi′ 7→ ci′ ⊙ Z for 1 ≤ i′ ≤ p.
By construction of θ, we have uiθ = u0

i for each i ∈ L such that i ≤ j and
we have tn+jθ = Q ⊙ Z + t0n+j (remember that tn+j is the term added in the
hypothesis set of the j + 1th constraint – cf. beginning of Section 9). In other
words, we have found a substitution θ such that Z appears for the first time
in an hypothesis set of Cθ. This contradicts the well-definedness of C. �
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Lemma 51 If a well-defined constraint system C has a non-collapsing solution
in (IME

,RE) then it is factor-preserving.

PROOF. Let C = {T1  u1, . . . , Tk  uk} be a well-defined constraint system
and σ a non-collapsing solution to C in (IME

,RE). Firstly, we show that for all
i ≤ k:

(1) FactE(uiσ) ⊆ (FactE(Ti) r X )σ, and
(2) for all x ∈ vars(ui) such that for all j < i we have x 6∈ vars(uj), the

following property is satisfied:

FactE(xσ) ⊆ (FactE(Ti) r X )σ.

Base case. Since T1 is a set of ground terms, we have FactE(u1σ) ⊆ FactE(T1)
and FactE(T1) = (FactE(T1) r X )σ. This allows us to conclude about (1).
Now, let x ∈ vars(u1). If x ∈ FactE(u1) then FactE(xσ) ⊆ FactE(u1σ) and
we conclude thanks to (1). Otherwise, there exists f ∈ FactE(u1) such that
x ∈ vars(f). Then, we have fσ = tg with tg ∈ StE(T1). This contradicts the
fact that σ is non-collapsing.
Induction step. Let i > 1. We have FactE(uiσ) ⊆ FactE(Ti)σ. Assume that
there exists f ∈ FactE(uiσ) and x ∈ FactE(Ti) such that f = xσ. By induc-
tion hypothesis, we know that: FactE(xσ) ⊆ (FactE(Ti) r X )σ. We conclude
about (1). Now, assume that there exists x ∈ vars(uiσ) such that x 6∈ vars(ujσ)
for all j < i. Since C is a well-defined constraint system, we have x 6∈ vars(Ti).
We deduce that x ∈ FactE(ui) since σ is non-collapsing. Hence, we have that
FactE(xσ) ⊆ FactE(uiσ) and we conclude thanks to (1).

Now, we have to show that C satisfies (1) and (2) implies that C is factor-
preserving. Let i be such that 1 ≤ i ≤ k. We have that

(FactE(ui) r X )σ ⊆ FactE(uiσ) ∪
⋃

x∈vars(ui)

FactE(xσ)

Thanks to (1) and (2), we deduce that (FactE(ui) rX )σ ⊆ (FactE(Ti) rX )σ.
Since σ is non-collapsing, we have that FactE(ui) r X ⊆ FactE(Ti) r X and
hence FactE(ui) r X ⊆ FactE(Ti). This allows us to conclude. �

Lemma 55 Let C = {T1  u1, . . . , Tk  uk} be a factor-preserving and well-
defined constraint system (on the full signature) and 1 ≤ i ≤ k. We have that:
for all s ∈ NStE(Ti), the vector φX (s) is dependent from Bi−1(C).

PROOF. We proceed by induction on i.
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Base case: i = 1. Let s ∈ NStE(T1). Since T1 is ground, we deduce that s is
ground, and hence φℓX (s) = (0, . . . , 0). This allows us to conclude.

Induction step: Let 1 < i ≤ k. By contradiction, we suppose that there is
a s ∈ NSt(Ti) such that {φX (s)}∪Bi−1 is independent. We will now construct
a substitution θ witnessing the fact that C is not well-defined.

By Fact 47 there is some Q ∈ SE, Q 6= 0, and a vector (cx1 , . . . , cxp) ∈ (SE)
p

such that












φx1
(u1) . . . φxp

(u1)
...

...

φx1
(ui−1) . . . φxp

(ui−1)

φx1
(s) . . . φxp

(s)













·










cx1

...

cxp










=













0
...

0

Q













(⋆)

where only those row vectors φX (uj) appear in the matrix for which j ∈ L.
We define the substitution θ in the following way:

xi 7→ xi + cxi ⊙ z

for any 1 ≤ i ≤ p.

We are going to establish that:

• for all j < i, we have z 6∈ vars(ujθ) (cf. Fact 71),
• z ∈ vars(Tiθ) (cf. Fact 72)

Fact 70 For all j < i, for all t ∈ Tj, we have z 6∈ vars(tθ).

Let j < i. We show that for all t ∈ NStE(Tj), we have Z 6∈ vars(tθ).

Base case: If FactE(t) ⊆ X ∪ T (F) (In other words, the factors of t are either
variables or ground terms), we have that

t = φx1
(t) ⊙ x1 + . . . + φxp

(t) ⊙ xp + t0.

By induction hypothesis (of Lemma 55), we know that φℓX (t) is dependant of
Bi−1(C). We deduce that tθ = t0. Hence we conclude that Z 6∈ vars(tθ).

Induction step: We distinguish two cases.

(1) The term t is a standard term. There exists a {F r sig(E)}-context C
and some non-standard terms (or variables) t1, . . . , tn ∈ NStE(t) such
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that t = C[t1, . . . , tn]. In such a case, we have tθ = C[t1θ, . . . , tnθ] and we
conclude by applying the induction hypothesis on t1, . . . , tn.

(2) The term t is a non-standard term. In such a case t is of the form:

t =
p
∑

i=1

(φxi
(t) ⊙ xi) +

∑

f∈FactE(t)rX

(φf (t) ⊙ f)

By definition of θ, we have:

tθ =
p
∑

i=1

(φxi
(t) ⊙ xiθ) +

∑

f∈FactE(t)rX

(φf (t) ⊙ fθ)

=
p
∑

i=1

(φxi
(t) ⊙ xi)

︸ ︷︷ ︸

t1

+
p
∑

i=1

((φxi
(t) · cxi) ⊙ Z)

︸ ︷︷ ︸

t2

+
∑

f∈FactE(t)rX

(φf (t) ⊙ fθ)

︸ ︷︷ ︸

t3

Firstly, we have z 6∈ vars(t1). By induction hypothesis (of Fact 70), we have
that z 6∈ vars(t3). By induction hypothesis (of Lemma 55), φX (t) is dependant
of Bj−1(C), and hence of Bi−1(C). Let {i1, . . . , in} = {ℓ ∈ L | ℓ < i}. There
exists α, αi1 , . . . , αin ∈ Z2[h] such that α 6= 0 and:

α · φX (t) = αi1 · φX (ui1) + . . . + αin · φX (uin)

⇒ α ·
p
∑

i=1

(φxi
(t) · cxi) = αi1 ·

p
∑

i=1

(φxi
(ui1) · c

xi) + . . . + αin ·
p
∑

i=1

(φxi
(uin) · cxi)

⇒ α ·
p
∑

i=1

(φxi
(t) · cxi) = αi1 · 0 + . . . + αin · 0 thanks to (⋆)

⇒ α ·
p
∑

i=1

(φxi
(t) · cxi) = 0

Hence, we have
∑p

i=1(φxi
(t) · cxi) = 0. We deduce that z 6∈ vars(t2). Hence, we

obtain that for all j < i, for all t ∈ NStE(Tj), we have z 6∈ vars(tθ).

Let t ∈ Tj. If t is a non-standard term, we have t ∈ NStE(t) and we conclude.
Otherwise, there exists a {F r sig(E)}-context C and some non-standard
terms t1, . . . , tn ∈ NStE(t) such that t = C[t1, . . . , tn]. We apply Fact 70 on
t1, . . . , tn and we conclude.

Fact 71 For all j < i, we have z 6∈ vars(ujθ).

Assume that there exists j < i such that z ∈ vars(ujθ). If j ∈ Li−1(C) then

54



∑p
i=1(φxi

(uj) · c
xi) = 0 by construction of θ, and if j 6∈ Li−1(C), we also have

∑p
i=1(φxi

(uj) · c
xi) = 0 since by construction of Li−1(C), φX (uj) is dependant

of Bi−1(C). Hence, we deduce that there exists f ∈ FactE(ujθ) r X such that
z ∈ vars(f), and there exists f ′ ∈ FactE(uj) such that z ∈ vars(f ′θ). Since C is
factor-preserving, we deduce that there exists j′ ≤ j such that f ′ ∈ FactE(Tj′).
Lemma 73, stated and proved below, ensures that for all f ′′ ∈ FactE(Tj′) such
that f ′ 6= f ′′, we have f ′θ 6= f ′′θ. Hence, z ∈ vars(Tj′θ), which contradicts
Fact 70.

Fact 72 We have z ∈ vars(Tiθ).

The term s has the following form:

s =
p
∑

i=1

(φxi
(s) ⊙ xi) +

∑

f∈FactE(s)rX

(φf (s) ⊙ f).

By definition of θ, we know that:

sθ =
p
∑

i=1

(φxi
(s) ⊙ xi) +

p
∑

i=1

((φxi
(s) · cxi) ⊙ z)

︸ ︷︷ ︸

=Q⊙z

+
∑

f∈FactE(s)rX

(φf (s) ⊙ fθ).

We deduce that z ∈ vars(sθ). If s ∈ Ti, we conclude that z ∈ vars(Tiθ).
Otherwise, there exists f ∈ FactE(Ti) r X such that s ∈ NStE(f). Lemma 73
ensires that the factor fθ can not disappear. Hence, we deduce that z ∈
vars(fθ), and z ∈ vars(Tiθ).

Hence, we have z ∈ vars(Tiθ) and z 6∈ vars(ujθ) for all j < i, which contradicts
the fact that C is a well-defined constraint system. �

In the proof above, we use the following lemma in order to ensure that different
factors can not become equal after application of the substitution θ that we
have chosen. We formally state and prove this lemma below.

Lemma 73 Let z be a fresh variable and θ a substitution of the form x 7→
x + cx ⊙ z for all x ∈ X , where cx ∈ SE for all x ∈ X . If t1 6=E t2, then
t1θ 6=E t2θ.

PROOF. We show this result by induction on the size of the terms t1 and
t2. The base case is trivial. We distinguish several cases:

• If t1 and t2 are standard terms, we have t1 = f1(t
1
1, . . . , t

n
1 ) and t2 =

f2(t
1
2, . . . , t

m
2 ). If f1 6= f2 then we conclude that t1θ 6= t2θ. Otherwise, we
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have n = m and there exists i < n such that ti1 6= ti2. By induction hypo-
thesis, we know that ti1θ 6= ti2θ, and we deduce that t1θ = f1(t

1
1θ, . . . , t

n
1θ) 6=

f2(t
1
2θ, . . . , t

n
2θ) = t2θ.

• If t1 is a standard term and t2 a non-standard term, we have t1 = f1(t
1
1, . . . , t

n
1 )

and t2 =
∑

s∈FactE(t2)(φs(t2) ⊙ s). The set FactE(t2) contains at least two ele-
ments. By induction hypothesis, we know that for all s1, s2 ∈ FactE(t2) such
that s1 6= s2, we have s1θ 6= s2θ . Hence, t2θ is not a standard term whereas
t1θ is a standard term. This allows us to conclude.

• If t1 and t2 are both non-standard terms. Let F = FactE(t1) ∪ FactE(t2)
and x1, . . . , xp the variables of t1 and t2. The terms t1 and t2 can be decom-
posed in the following way:

t1 =
p
∑

i=1

(φxi
(t1) ⊙ xi) +

∑

f∈FrX

(φf (t1) ⊙ f)

t2 =
p
∑

i+1

(φxi
(t2) ⊙ xi) +

∑

f∈FrX

(φf (t2) ⊙ f)

By definition of θ, we have that:

t1θ =
p
∑

i=1

(φxi
(t1) ⊙ xi) +

p
∑

i=1

((φxi
(t1) · c

xi) ⊙ z) +
∑

f∈FrX

(φf (t1) ⊙ fθ)

t2θ =
p
∑

i=1

(φxi
(t2) ⊙ xi) +

p
∑

i=1

((φxi
(t2) · c

xi) ⊙ z) +
∑

f∈FrX

(φf (t2) ⊙ fθ)

By hypothesis, we know that t1 6=E t2. We distinguish two cases. Either
there exists i (1 ≤ i ≤ p) such that φxi

(t1) 6= φxi
(t2). In such a case, we

obtain that t1θ 6=E t2θ. Or, there exists f ∈ F rX such that φf (t1) 6= φf (t2).
By induction hypothesis, for all f, f ′ ∈ F r X such that f 6= f ′, we have
fθ 6=E f ′θ. Hence, we obtain t1θ 6=E t2θ. �

Appendix E Satisfiability in (IME
,RE) over the Reduced Signature

Proposition 60 Let E be a monoidal equational theory for which SE is an
Euclidean ring with norm v. If C is satisfiable, then there exists a solution σ
to C with witnesses Cσ

1 , . . . , Cσ
k satisfying the following condition:

for all i ∈ L(C), for all y ∈ Y, v(φy(C
σ
i )) = 0 or v(φy(C

σ
i )) < v(Qmax(C)).

PROOF. Let σ be a solution to C with witnesses Cσ
1 , . . . , Cσ

k . Moreover,
we assume that we have chosen the solution and the contexts for which the
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required condition is violated (if it is) for φyM
(Cσ

N) with (N,M) the biggest
one (lexicographic order). In other words, if σ′ with contexts Cσ′

1 , . . . , Cσ′

k is a
solution to C, then there exists N ′ and M ′ with (N ′,M ′) � (N,M) such that
v(φyM ′

(Cσ′

N ′)) 6< v(Qmax(C)) and v(φyM ′
(Cσ′

N ′)) 6= 0.

In the following we construct, from σ, a solution σ′ with witnesses Cσ′

1 , . . . , Cσ′

k .
This solution fulfills the required condition for all (i, j) � (N,M). This con-
tradicts the way we have chosen σ and Cσ

1 , . . . , Cσ
k . Hence, the result. The

construction of σ′ and the contexts Cσ′

1 , . . . , Cσ′

k will be in four steps. Finally,
we will prove that this is indeed a solution to S.

(1) φyj
(Cσ′

i ) = φyj
(Cσ

i ) for all (i, j) ≺ (N,M).

(2) Let K, r ∈ SE such that v(r) < v(Qmax(C)) or r = 0 and φyM
(Cσ

N) =
r + K · Qmax(C). Let φyM

(Cσ′

N ) = r.

(3) Definition of xσ′ for x ∈ vars(C).
Let L(C) = {i1, . . . , iℓ}. Our goal is to find σ′ such that:

• for each i ∈ L r {N}, uiσ − uiσ
′ = 0

• uNσ − uNσ′ = K · Qmax ⊙ tMσ
To do this, we have to solve the following matrix equation (expressing
equalities between terms), where the value of a variable x′

i corresponds
to xiσ − xiσ

′:

















φx1
(ui1) φx2

(ui1) . . . φxp
(ui1)

...

φx1
(uN) φx2

(uN) . . . φxp
(uN)

...

φx1
(uiℓ) φx2

(uiℓ) . . . φxp
(uiℓ)

















⊙













x′
1

...

...

x′
p













=

















0
...

K · Qmax ⊙ tMσ
...

0

















(E.1)

This can be achieved by solving the system of equations described
below where the unknowns wi take their value in SE:

















φx1
(ui1) φx2

(ui1) . . . φxp
(ui1)

...

φx1
(uN) φx2

(uN) . . . φxp
(uN )

...

φx1
(uiℓ) φx2

(uiℓ) . . . φxp
(uiℓ)

















·













w1

...

...

wp













=

















0
...

K · Qmax

...

0

















(E.2)

Thanks to Fact 47 the equation (E.2) has a solution (c1, . . . , cp). As a
consequence, (c1 ⊙ tMσ, . . . , cp ⊙ tMσ) is a solution to (E.1).
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This allows us to define σ′ on vars(C) by:

xiσ
′ = xiσ − ci ⊙ tMσ for all i such that 1 ≤ i ≤ p.

(4) Definition of φyq
(Cσ′

i ) for (i, q) ≻ (N,M).
We define φyq

(Cσ′

i ) in the following way:

φyq
(Cσ′

i ) =







φyq
(Cσ

i ) +
n+i−1∑

j=n+N

(
p
∑

l=1

φxl
(tj) · cl

)

· φyj
(Cσ

i ) if q = M, i > N

φyq
(Cσ

i ) if q 6= M

We have to verify that σ′ is a solution to C and also that the contexts
Cσ′

1 , . . . , Cσ′

k are witnesses of this fact. First we can note that

tjσ = tjσ
′ for 1 ≤ j < n + N (E.3)

This is a direct consequence of the fact that uiσ = uiσ
′ for 1 ≤ i < N and of

the well-definedness of C.

Now, we proceed to the verification constraint by constraint by distinguishing
three cases:

(1) Case i < N : This is immediate by (E.3) and the fact that uiσ = uiσ
′ for

1 ≤ i < N .
(2) Case i = N : We notice that by construction:

r = φyM
(Cσ

N) − K · Qmax(C) (E.4)

Hence, let θ = {y1 7→ t1, . . . , yn+k−1 7→ tn+k−1}, we have
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Cσ′

N θσ′ =
n+N−1∑

j=1

φyj
(Cσ′

N ) ⊙ tjσ
′ since vars(Cσ′

N ) ⊆ {y1, . . . , yN−1}

=
M−1∑

j=1

φyj
(Cσ′

N ) ⊙ tjσ
′ + φyM

(Cσ′

N ) ⊙ tMσ′ +
n+N−1∑

j=M+1

φyj
(Cσ′

N ) ⊙ tjσ
′

By definition φyM
(Cσ′

N ) = r

=
M−1∑

j=1

φyj
(Cσ

N) ⊙ tjσ + r ⊙ tMσ +
n+N−1∑

j=M+1

φyj
(Cσ

N) ⊙ tjσ

(E.3) and φyj
(Cσ

N) = φyj
(Cσ′

N ) for j 6= M

=
M−1∑

j=1

φyj
(Cσ

N) ⊙ tjσ + (φyM
(Cσ

N) − K · Qmax(C)) ⊙ tMσ

+
n+N−1∑

j=M+1

φyj
(Cσ

N) ⊙ tjσ

=
n+N−1∑

j=1

φyj
(Cσ

N) ⊙ tjσ − K.Qmax(C) ⊙ tMσ

= Cσ
Nθσ − K · Qmax(C) ⊙ tMσ

= uNσ − K.Qmax(C) ⊙ tMσ since σ is a solution to C

= uNσ′ by definition of σ′.

(3) Case i > N : We consider the ith constraint of C, i.e. t1, t2, . . . , tn+i−1  ui.
Note that, using xiσ

′ = xiσ − ci ⊙ tMσ, we get that:

tjσ
′ =

∑

v∈FactE(C)rvars(C)

φv(tj) ⊙ vσ′ +
∑

v∈vars(C)

φv(tj) ⊙ vσ′

=
∑

v∈FactE(C)rvars(C)

(φv(tj) ⊙ v)

+
p
∑

l=1

(φxl
(tj) ⊙ xlσ) −

p
∑

l=1

(cl · φxl
(tj) ⊙ tMσ)

= tjσ −
p
∑

l=1

(cl · φxl
(tj) ⊙ tMσ) (E.5)
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Hence, we have:

Cσ′

i θσ′ =
n+i−1∑

j=1

φyj
(Cσ′

i ) ⊙ tjσ
′ since vars(Cσ′

i ) ⊆ {y1, . . . , yN+i−1}

=
M−1∑

j=1

φyj
(Cσ′

i ) ⊙ tjσ
′ + φyM

(Cσ′

i ) ⊙ tMσ′

+
n+N−1∑

j=M+1

φyj
(Cσ′

i ) ⊙ tjσ
′ +

n+i−1∑

j=n+N

φyj
(Cσ′

i ) ⊙ tjσ
′

=
M−1∑

j=1

φyj
(Cσ

i ) ⊙ tjσ + φyM
(Cσ′

i ) ⊙ tMσ

+
n+N−1∑

j=M+1

φyj
(Cσ

i ) ⊙ tjσ +
n+i−1∑

j=n+N

φyj
(Cσ

i ) ⊙ tjσ
′

(E.3) and φyj
(Cσ

i ) = φyj
(Cσ′

N ) for j 6= M

=
M−1∑

j=1

φyj
(Cσ

i ) ⊙ tjσ

+

(

φyM
(Cσ

i ) +
n+i−1∑

j=n+N

(
p
∑

l=1

φxl
(tj) · cl) · φyj

(Cσ
i )

)

⊙ tMσ

+
n+N−1∑

j=M+1

φyj
(Cσ

i ) ⊙ tjσ

+
n+i−1∑

j=n+N

φyj
(Cσ

i ) ·

(

tjσ −
p
∑

l=1

(φxl
(tj) · cl ⊙ tMσ)

)

(E.5)

=
n+i−1∑

j=1

φyj
(Cσ

i ) ⊙ tjσ

= Cσ
i θσ

= uiσ since σ is a solution to C

= uiσ
′ since uiσ = uiσ

′ for i > N .

Hence, we conclude that σ′ is a solution to C. By construction of σ′, we have
v(φyj

(Cσ′

i )) < v(Qmax(C)) or v(φyj
(Cσ′

i )) = 0 for all (i, j) � (N,M). Hence we
obtain a contradiction and we conclude. �
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Proposition 61 Let E be a monoidal equational theory that is unitary for
elementary unification, and such that SE is an Euclidean ring with norm v
with

for any q ∈ SE, the set {e ∈ SE | v(e) < v(q)} is finite

and such that there is an algorithm to compute solutions of inhomogeneous
linear equation over SE. Then algorithm 5 allows us to decide the satisfiability
of a well-defined constraint system C (on the reduced signature) in (IME

,RE).

PROOF. Algorithm 5 is clearly sound. Now, it remains to show that it is
also complete. Assume that C has a solution in (IME

,RE). By Proposition 60,
we know that if there exists a solution to C then there exists a solution σ to C
with witnesses C1, . . . , Ck satisfying the following condition:

for all i ∈ L(C), for all y ∈ Y, v(φy(Ci)) = 0 or v(φy(Ci)) < v(Qmax(C)).

Hence, for all i ∈ L(C) and for all j ∈ {1, . . . , n+ i−1} we can guess the value
of φyj

(Ci) since there is only a finite number of possibilities. It remains to show
that the algorithm we propose to decide whether there exists a substitution
that is both a solution to

• the unification problem U = {Ci[t1, . . . , tn+i−1] = ui | i ∈ L(C)} (modulo E),
and

• the set of deducibility constraint {t1, . . . , tn+i−1  ui | i 6∈ L(C)} (in (IME
,RE))

is complete.

By hypothesis, σ is a solution to the problem described above. Hence the
unification problem U has a solution. Let Θ be the set of solutions of U . Now,
we are going to show that:

Fact 74 for all θ1, θ2 ∈ Θ, we have:

(1) Cθ1 = Cθ2, and
(2) Cθ1 is a system of ground constraints.

Hence, thanks to this fact, we obtain that Cθ = Cσ. Moreover Cθ is a set of
ground constraints satisfiable in (IME

,RE). Note that satisfiability of ground
constraints in (IME

,RE) is decidable since we can solve by hypothesis inhomo-
geneous equation systems over SE (see Example 21).

We are going to prove Fact 74 by induction on the number i of constraints
in the constraint system C. The base case i = 1 is obvious. Indeed, we have
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either 1 6∈ L(C) and all the terms of the constraint are ground, or otherwise
1 ∈ L(C). In this case, the fact that θ1, θ2 ∈ Θ allows us to deduce that
u1θ1 = u1θ2. Since t1, . . . , tn are ground we have that u1θ1 is ground.

Now, we consider a system of i + 1 constraints. We know by induction hypo-
thesis that for all θ1, θ2 ∈ Θ, we have:

• for 1 ≤ j ≤ n + i − 1, we have tjθ1 = tjθ2 and tjθ1 is ground,
• for 1 ≤ j ≤ i, we have ujθ1 = ujθ2 and ujθ1 is ground.

We distinguish two cases:

Case i + 1 ∈ L(C): We have ui+1θ1 = ui+1θ2 = Ci[t1θ1, . . . , tn+iθ1]. By induc-
tion hypothesis, we know that t1θ1, . . . , tn+i−1θ1 are ground. Moreover, we
can show that tn+iθ1 is also ground thanks to the well-definedness of the
constraint system C. Hence, we deduce that ui+1θ1 is ground. This allows
us to conclude.

Case i + 1 6∈ L(C): We conclude thanks to the well-definedness of C. �
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