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Abstract

• It is widely believed that distance-independent tree models fail to take into account the complex-
ity of mixed stands due to the fact that spatial structure often has a greater impact on growth and
dynamics in mixed stands than in pure stands. On the other hand, distance-dependent tree models
are difficult to use because they require a map of the stand, which is not only very costly but also
impracticable in a routine management context.
• This paper reports the development of a model bridging distance-dependent and distance-
independent tree models, and that is designed to simulate the growth of a mixed forest. The model
used distributions of the number of neighbours to reconstruct tree neighbourhoods and compute the
competition indices needed as inputs to the growth model.
• Data were collected from a mixed forest of sessile oak and Scots pine in central France. The study
showed that local competition indices explained a significant proportion of growth variability and
that intraspecific competition was greater than interspecific competition. The model based on neigh-
bourhood distributions gave consistent predictions compared to a distance-dependent model.
• This type of model could be used instead of distance-dependent models in management contexts.
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Résumé – Un modèle intermédiaire entre un modèle arbre dépendant et indépendant des dis-

tances pour simuler la croissance des peuplements mélangés.

• On considère généralement que les modèles arbre indépendant des distances ne permettent pas de
rendre compte de la complexité des peuplements mélangés. En effet, la structure spatiale a souvent un
rôle plus important sur la croissance et la dynamique dans ces peuplements que dans les peuplements
purs. Les modèles arbre dépendant des distances sont quant à eux difficile à utiliser, car ils néces-
sitent une cartographie du peuplement qui est une information très coûteuse à obtenir et qui n’est pas
disponible dans un cadre de gestion courante.
• Cet article présente un modèle intermédiaire entre un modèle arbre indépendant des distances et
un modèle arbre dépendant des distances. Ce modèle a été développé pour simuler la croissance de
peuplements mélangés. Il utilise des distributions de nombre de voisins pour reconstruire le voisinage
des arbres. Ces voisinages reconstruits permettent ensuite de calculer les indices de compétition né-
cessaires dans l’équation de croissance.
• Les données ont été récoltées dans des peuplements mélangés de chêne sessile et de pin sylvestre
dans le centre de la France. Ce travail montre que des indices de compétition locaux expliquent une
part significative de la croissance individuelle et que la compétition intraspécifique est supérieure à la
compétition interspécifique. Le modèle basé sur les distributions de voisinage donne des prédictions
cohérentes par rapport au modèle arbre dépendant des distances.
• Ce type de modèle pourrait être utilisé à la place des modèles arbre dépendant des distances dans
des contextes de gestion.
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1. INTRODUCTION

Interest in mixed forests has been growing steadily,
prompted mainly by environmental reasons such as biodiver-
sity conservation or adaptation to global change. In France,
mixed forests also represent an economic challenge, since they
cover about 50% of the total forest area according to the latest
national forest inventory (Morneau et al., 2008) and this figure
appears to be on the increase (Ulrich et al., 2006). Neverthe-
less, forest managers have relatively few tools enabling them
to accurately describe or predict mixed forest growth.

Mixed forests are more difficult to understand than pure
stands because they are made up of several species that gen-
erally present different growth rates. Moreover, the differ-
ent types of between-species interactions can change during
the life of the stand or in response to environmental condi-
tions (Tilman, 1988). Thus, contrary to pure stands for which
distance-independent tree models have proven their worth
(Munro, 1974), there is no consensus on the best way to model
mixed forest growth.

It is widely believed that distance-independent tree mod-
els fail to take into account the complexity of these stands
due to the fact that spatial structure often has a greater im-
pact on growth and dynamics in mixed stands than in pure
stands (Goreaud, 2000; Ngo Bieng, 2007; Porté and Bartelink,
2002). For example, Goreaud et al. (2002) showed that sur-
vival of an inferior competitor in a mixed stand was directly
dependent on the specific composition of its neighbourhood.
Furthermore, many studies have demonstrated the interest of
distance-dependent competition indices to explain tree growth
in mixed forests (e.g. Canham et al., 2006; Stadt et al., 2007;
Zhao et al., 2006). Consequently, more and more models are
using spatial characteristics to launch simulations in mixed
forests (Porté and Bartelink, 2002).

However, distance-dependent tree models are often diffi-
cult to use because they require a map of the stand, which is
not only very costly but also impracticable in a routine man-
agement context (Munro, 1974; Wimberly and Bare, 1996).
Consequently, spatial models are often launched using virtual
stands (Illian et al., 2008; Kokkila et al., 2002; Pommerening,
2006; Pretzsch, 1997) generated through point processes
(Comas and Mateu, 2007; Stoyan and Penttinen, 2000) whose
characteristics can be fitted from real data (e.g. Goreaud et al.,
2004; Ngo Bieng, 2007; Pommerening and Stoyan, 2008).

A map of a stand in fact provides a wealth of information
that is often under-used in models describing ecological pro-
cesses. This raises the question of whether it is possible to
use less costly information. For example, Phillips et al. (2004)
modelled distributions of competition indices for use with a
distance-dependent model where each tree had a competition
index assigned at random but respecting normal distributions
whose parameters were dependent on the species and size of
the subject tree.

The aim of this article is to propose a method that combined
distributions of the number of neighbours, called neighbour-
hood distributions, with a list of trees to reconstruct tree neigh-
bourhoods. These reconstructed neighbourhoods make it pos-
sible to compute the competition indices needed as inputs in

the growth model without knowing the location of every trees.
This method allows neighbourhoods to automatically change
over time, since each neighbouring tree is itself part of the
stand subject to the growth process. However, the individuals
have no explicit location, which is what makes the model an
intermediary between spatial and non-spatial models. We ap-
plied this method to a relatively simple case where only two
species are mixed, i.e. sessile oak (Quercus petraea L.) and
Scots pine (Pinus sylvestris L.), in central-northern France. In
addition, we focused only on tree radial increments.

This paper begins by presenting the principle of the neigh-
bourhood distribution-based model. Secondly, we present the
application of this model in oak-pine forests in central-
northern France. We then show how the predictions of
this neighbourhood distributions-based model were compared
with the predictions of the distance-dependent tree model. Fi-
nally, we discuss the limitations of this model and its possibil-
ities for use in routine forest management.

2. MATERIALS AND METHODS

2.1. Stand description and growth data

Data were collected in mixed sessile oak-Scots pine stands from
the Orléans state run forest (47◦ 51′ N, 2◦ 25′ E), a 35 000 ha for-
est located in central-northern France. Oak-pine mixed stands hold
an important position in the French forests for three main reasons:
they cover a relatively large area (Morneau et al., 2008); they have a
heritage value for people; and they are well adapted to the sandy and
waterlogged soils common to central France.

Between 2004 and 2007, 30 plots of an area between 0.5 and
1.25 ha each were fully mapped in the Orléans state run forest so
as to run an in-depth study on the horizontal spatial structure of these
stands. Ngo Bieng et al. (2006) described different types of canopy
structure corresponding to a gradient from random to strong aggre-
gation of the two species, and from independence to interspecific re-
pulsion. We then selected 9 of the 30 plots to cover this gradient of
spatial structure in order to have contrasted competitive conditions
between trees of the same species but also between trees of different
species. These plots included small proportions of other broadleaved
species (mainly Carpinus betulus L., Betula pendula R. and Sorbus

torminalis L.) representing 4% of the total basal area (Tab. I).
In each of the selected plots, 20 trees per species were sampled

to perform growth measurements. We made the assumption that for
a given plot, tree size and local competition were the two factors that
had the greatest influence on individual growth. Data corresponding
to different tree sizes and different local competitions are necessary
to model the effects of these factors. We therefore used a stratified
sampling to select the trees to be measured. The stratification vari-
ables, tree size and local competition, were characterized using girth
at a height of 1.3 m and a competition index (Biging and Dobbertin,
1992), respectively. For each species and each plot, 20 trees were then
randomly selected to cover the range of the stratification variables in
the plot.

Sampled trees were cored to the pith in two perpendicular direc-
tions at a height of 1.3 m. Cores were scanned and analyzed using
WinDENDRO software version 2005a (Regent, 2005), and ring width
was measured to the nearest 0.01 mm. The individual ring-width se-
ries were cross-dated using COFECHA software (Grissino-Mayer,
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Table I. Basal area (BA), density (N) and mean diameter (Diam.) for oak, pine and other broadleaved species in the 9 plots.

Oak Pine Other broadleaved species
Plot Area BA N Diam. BA N Diam. BA N Diam. Total BA Total N

(ha) (m2/ha) (stems/ha) (cm) (m2/ha) (stems/ha) (cm) (m2/ha) (stems/ha) (cm) (m2/ha) (stems/ha)
D02 0.57 12.1 308 20.5 10.9 113 34.4 1.0 65 13.0 23.9 486
D108 0.48 8.6 327 17.2 25.5 252 35.5 1.5 100 13.4 35.6 679
D20 0.51 9.1 435 15.4 18.4 208 33.1 0.4 38 11.4 28.0 680
D27 0.31 9.7 371 16.6 15.6 140 36.8 3.3 292 11.5 28.6 803
D42 0.24 11.5 467 16.5 15.3 292 24.8 1.0 96 11.3 27.8 854
D49 0.64 13.8 521 16.8 18.5 236 30.9 1.7 77 15.5 34.0 834
D534 0.36 11.5 467 16.5 18.9 167 37.6 0.7 53 12.8 31.2 686
D563 0.24 12.6 229 24.6 21.2 246 32.8 0.2 25 10.9 34.0 500
D78 0.37 14.3 405 20.2 20.4 119 46.2 0.9 57 13.2 35.6 581

2002) to assess the quality of the operation. As some trees were not
possible to core and some cores were not usable, the statistical anal-
yses were finally based on a total of 154 oaks and 179 pines.

Detailed information on past disturbances were not available in
our plots (location and size of suppressed trees). The period from
2000 to 2005 was therefore chosen to study growth, as there were no
human or natural disturbances during this period.

2.2. Principle of the neighbourhood distribution-based
model

We considered the general case of a distance-dependent tree model
using local competition indices to predict growth:

INCi = f (Xi,CIi)

where INCi is the size increment of the ith tree between time t and
time t + ∆t, Xi corresponds to tree or site characteristics, and CIi is
one or more local competition indices. To compute local competition
indices, the neighbourhood of each tree needs to be identified, which
is generally done using a map of the stand. However, instead of using
the map, the model proposed here uses neighbourhood distributions
as a means of reconstructing this local information.

2.2.1. Neighbourhood distributions: definition

Counting the number of neighbours in a disk of radius R for sev-
eral trees in a stand usually results in different values. To account
for this variability, it is necessary to use a distribution of the number
of neighbours, similarly to the distribution of diameters used in size
class models (see Porté and Bartelink, 2002). In a mixed stand, we
have to define several distributions depending on the species of the
subject tree and the species considered in the neighbourhood. These
distributions are noted Dss,ns where ss is the subject tree species and
ns is the neighbourhood trees species. Dss,ns(x) is thus the probability
that a tree of species ss has x trees of species ns in its neighbourhood.
These distributions are called neighbourhood distributions.

Neighbourhood distributions are directly related to a set of statis-
tics used to characterize the spatial structure of a stand. The spatial
structure of a two-species stand can be characterized using Intertype
function K12(R) (Lotwick and Silverman, 1982), which is defined as:

NnsKss,ns (R) = E
(

number of trees of species ns

at a distance ≤ R of a tree of species ss
)

where Nns is the density of species ns, E the expectation value, and
R the radius of the disk centred on the subject tree. Let µss,ns be the
expected value of the distribution Dss,ns . We then have:

NnsKss,ns (R) = µss,ns .

It can be shown that Kss,ns (R) = Kns,ss (R) (Lotwick and Silverman,
1982). Thus if ss � ns, then µss,ns/Nns characterizes the spatial in-
teraction between species at a distance less than R. If ss = ns, then
Kss,ss (R) is the Ripley function K(R) (Ripley, 1977) and µss,ss/Nss

characterizes the spatial structure of one species at a distance less
than R. In the oak-pine mixed stands that we presented, we chose to
use four neighbourhood distributions (Doak,oak, Doak,pine, Dpine,pine and
Dpine,oak) so as to take into account the specific and interspecific spa-
tial interactions between individuals (Fig. 1).

Furthermore, neighbourhood distributions also reflect the vari-
ability in the neighbourhoods. Figure 2 shows three examples of
neighbourhood distribution in three virtual stands exhibiting the same
density but different spatial structures (spatial structures were charac-
terized with the Ripley function, not presented in this article). The
three stands have, as expected, different mean values for the number
of neighbours, but also very different variability. The stand with a reg-
ular pattern shows very low variability while the stand with an aggre-
gated pattern shows very high variability. In regular stands, the mean
value of the distribution makes it possible to obtain a good estimator
of local competition, whereas the mean value makes little sense in
aggregated stands. Neighbourhood distributions thus reflect not only
differences in stand spatial structures but also variability of the neigh-
bourhoods in the stand.

2.2.2. Reconstructing neighbourhoods

In a mixed stand, if we assume that we know the neighbourhood
distributions as well as the list of trees in the stand, it is possible
to reconstruct virtual neighbourhoods, i.e. to give each tree a list
of neighbours compatible with the neighbourhood distributions ob-
served (Fig. 3).

For one tree, the first step is to draw a random number of neigh-
bours of each species that conforms to the neighbourhood distribu-
tions. In a second step, the neighbouring trees are selected at random
from the list of trees. For each subject tree, this selection is done with
the full list of the trees without replacement. Thus, two trees may
share common neighbours but a subject tree cannot have two times
the same neighbour. For the oak-pine mixed stands, two approxima-
tions are made here. First, for a given subject tree, oak numbers and
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Figure 1. Frequency of number of neighbours at a distance less than 10 m for a plot with two species (plot D49). Subj. Sp. = subject species;
Neigh. Sp. = neighbour species. Class width = 1 neighbour.
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Figure 2. Frequency of number of neighbours at a distance less than 10 m for three simulated stands with one species. The three stands have
the same density, but exhibit different spatial structures. Class width = 1 neighbour.

pine numbers were not constrained by the total number of neighbours.
Secondly, the neighbours were selected regardless of the size of the
subject tree, which corresponds to the assumption of spatial indepen-
dence between the location of an individual and its size.

At this stage, each tree has a list of neighbours of each species,
which makes it possible to compute local competition indices and
update the neighbourhoods over time, as indicated below.

2.2.3. Updating neighbourhoods over time

The neighbourhood of a tree in a stand changes over time due to
regeneration, growth and mortality, as well as to human impacts. In
our study, we did not take mortality or regeneration processes into
account, which is why we assumed that a tree’s neighbourhood was

only influenced by the growth process and thinnings. As stated above,
each tree has a list of neighbours that themselves belong to the stand.
The growth of a tree between two dates depends on the state of the
neighbourhood at the beginning of the growth period. Hence, the
neighbourhoods are updated after the growth process when all the
trees have grown and their new features are known (Fig. 4). Simi-
larly, neighbourhoods are also updated after a thinning to account for
the trees removed. We can thus ensure that reconstructed neighbour-
hoods change over time according to growth process and thinnings.

To summarize, the neighbourhoods are reconstructed once at the
beginning of the first growth period using the neighbourhood distribu-
tions and the trees of the stand. Then, as trees of the neighbourhoods
are trees of the stand, they change over time according to the growth
process and thinnings. Thus, each tree has its own neighbourhood that
is consistently changing over time.
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i

Figure 3. Representation of the way the neighbourhood for one tree in the stand is reconstructed at the beginning of the first growth period (t0).
The neighbourhood is defined by a disk of radius R. In this example, there is three trees in the neighbourhood of tree i.
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Figure 4. Representation of the way the neighbourhood of a tree is updated at the end of a growth step. All the trees in the stand have a list of
neighbours. Tree i has three neighbours called 63, 331 and 103 that belong to the stand. Between time t and time t + ∆t, the model effects tree
growth based on the status of the neighbourhoods at time t. The characteristics of the neighbours are updated after the growth step. Trees 63,
331 and 103 at time t+∆t make it possible to update the neighbourhood of tree i. The new state of the neighbourhoods will be used for the next
growth step.

2.3. Tree size and local competition effects on growth

The growth of a tree is related to its ability to exploit the resources
of its environment. We made the classical assumption that the bigger
a tree, the greater its potential growth (Wykoff, 1990). To account for
tree size, we used tree girth at a height of 1.3 m (Fig. 5).

In a given stand, the neighbours of a tree reduced its growth. In a
mixed stand, the type of species in the neighbourhood of a tree could
also have an influence on its ability to exploit resources (e.g. Uriarte
et al., 2004b; Zhao et al., 2006). Hence, we next assumed that part

of the growth variability is linked to differences in neighbourhoods
leading to differences in local competition. We considered that a tree’s
local competition can be characterized by a local competition index.

Competition indices are computed according to characteristics of
trees belonging to the neighbourhood of a subject tree. In our applica-
tion, we want to study the growth between 2000 and 2005. Competi-
tion indices should be calculated at the beginning of a growth period
(year 1999) if the model is to be used for predictions. Having mea-
sured a sample of trees in the stand, we reconstructed the diameters in
1999 for trees in the neighbourhoods in order to estimate the value of
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Figure 5. Radial increment (mm) between 2000 and 2005 versus girth in 1999 for the nine plots; o = Sessile oak; • = Scots pine.

the competition indices in 1999. For each plot, we used a relationship
between the diameter measured during the inventory (2005 or 2006
depending on the plots) and the circumference in 1999 obtained on
the sampled trees. In the absence of mortality or thinning, there is a
strong correlation between the neighbourhood at the beginning and
the end of a growth period. We therefore assumed that our correction
had a small impact on the results about competition indices.

In our work, neighbourhood was defined as a disk of radius R, and
three radii were tested in the analyses (R = 5, R = 10 and R = 15 m)
so as to cover the range of radii reported in other studies (Canham
et al., 2004; Stadt et al., 2007; Uriarte et al., 2004a) and to minimize
the influence of edge effects when computing the competition indices.
The Crowding index (Canham et al., 2004) was used as predictor
variable in the growth model and was calculated in the neighbourhood
defined above. This index assumed that the effect of a neighbouring
tree on the growth of a target tree varies as a function of the size of the
neighbour and as an inverse function of the distance to the neighbour:

CIi,s =

ns
∑

j=1

dbha
j,s

lb
i j

(1)

where CIi,s is the competition index of the target tree i computed for
the neighbouring trees belonging to species s, with ns the number of
neighbouring trees belonging to species s, dbh j,s the diameter at a
height of 1.3 m of the jth neighbouring tree belonging to species s,
and li j the distance between the target tree i and the jth neighbouring
tree. a and b respectively determine the shape of the effect of neigh-
bour diameter and its distance to the target tree on CI (Uriarte et al.,
2004b). We tested a limited number of values for a and b (a ∈ {0; 1; 2}

and b ∈ {0; 0.5; 1}) in order to cover the classical indices of competi-
tion, such as local density (a = 0 and b = 0) or local basal area (a = 2
and b = 0), as well as intermediary indices. As stated in the pre-
sentation of data, the neighbourhoods may also feature broadleaved
species other than oak. Since these other species were very scarce
(Tab. I), they were grouped with oak when computing the competi-
tion indices.

Tree size and competition indices of each species were added
to the growth model (Stadt et al., 2007) so as to create a distance-
dependent tree model, otherwise known as a spatially explicit
individual-based model:

∆ri,k,s = αk,s + βk,sgirthi,k,s + λoakCIi,oak + λpineCIi,pine + εi,k,s (2)

where ∆ri,k,s is the radial increment (mm) of a six-year (2000–2005
period) timespan of tree i, girthi,k,s is the girth (cm) in 1999 of tree
i, εi,k,s is the residual error, αk,s and βk,s are the model parameters
for plot k and species s, respectively, and λoak and λpine are the coef-
ficients associated with the competition index calculated on the oak
competitors and the pine competitors, respectively. For the growth
of one species, we considered that a and b were identical for CIi,oak

and CIi,pine. This made it possible to compare the competitive powers
of the two species and thus to explore intraspecific and interspecific
competition through coefficients λoak and λpine. A total of 27 indices
were tested (3 radii × 9 competition indices). To select the best com-
petition index, we classified the models using the adjusted R-square.
We also adjusted the model with a size effect only in order to as-
sess the improvement made by introducing the competition indices
(λoak = 0 and λpine = 0).
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Table II. Coefficient values of the first 10 competition indices, probability values and adjusted R-squares corresponding to Equation (2) model.

Subject tree Rank a b R λoak Proak > F λpine Prpine > F Adj. R2

Oak 1 0 0.5 10 –0.788 < 0.0001 –0.523 0.0196 0.585
Oak 2 0 0 10 –0.353 < 0.0001 –0.242 0.0129 0.580

Oak 3 1 0 10 –2.431 < 0.0001 –1.123 0.0010 0.576
Oak 4 1 0.5 10 –5.108 < 0.0001 –2.282 0.0035 0.572
Oak 5 1 0.5 15 –4.310 < 0.0001 –1.897 0.0015 0.572
Oak 6 0 0.5 15 –0.535 < 0.0001 –0.356 0.0375 0.547
Oak 7 1 0 15 –1.417 < 0.0001 –0.619 0.0049 0.544
Oak 8 2 0.5 15 –18.474 < 0.0001 –6.636 0.0008 0.542
Oak 9 2 0 15 –26.885 < 0.0001 –9.616 0.0008 0.534
Oak 10 2 0 10 –38.537 < 0.0001 –13.163 0.0025 0.528
Oak Size effect model (λoak = 0 and λpine = 0) 0.433
Pine 1 2 0.5 10 –1.459 0.7729 –8.496 0.0002 0.228
Pine 2 2 1 10 –4.304 0.6662 –19.361 0.0001 0.226
Pine 3 2 0 10 –0.750 0.9283 –12.779 0.0005 0.223

Pine 4 1 0.5 10 0.582 0.5349 –2.488 0.0008 0.221
Pine 5 1 0 10 0.320 0.4174 –0.947 0.0019 0.219
Pine 6 2 1 15 –0.969 0.9203 –16.555 0.0005 0.218
Pine 7 1 1 10 0.612 0.7276 –5.684 0.0004 0.216
Pine 8 2 0.5 15 2.070 0.6338 –5.662 0.0037 0.213
Pine 9 1 1 15 0.688 0.6799 –4.977 0.0010 0.213
Pine 10 1 0.5 15 0.711 0.3621 –1.743 0.0044 0.212
Pine Size effect model (λoak = 0 and λpine = 0) 0.155

The plot effect takes into account the possible effects of factors
acting at stand level, such as effects of site, total density or stage
of development (young or old stand). To test the influence of plot
effect on growth, four models were compared: the model given by
Equation (2), the model with a plot effect on the α parameter only,
the model with a plot effect on the β parameter only, and a model
without plot effect. The models were selected using the F statistic,
which compares the mean squares of two models. When two models
had the same degree of freedom, the model with the lower residual
sum of squares was selected.

2.4. Methods used to compare models

From the results obtained with the tree distance-dependent model,
we developed a model based on neighbourhood distributions adapted
to oak-pine mixed stands. We estimated the four neighbourhood dis-
tributions for all plots (Doak,oak, Doak,pine, Dpine,pine and Dpine,oak). To
estimate these distributions, it is first necessary to identify the num-
ber of neighbours for certain trees in the stand. If a map of the stand
is available, the number of neighbours can be calculated for all trees
of the stand, which provides a precise distribution. If the map is not
available, it is possible to proceed by sampling, for example by ran-
domly selecting trees in the stand for which the number of neighbours
is counted. In this case, the distribution will be estimated more or
less accurately depending on the sampling size. In our work the dis-
tributions were estimated using all the trees of the stand because we
did not want to introduce an additional source of variation related to
the estimate of the distributions in the predictions of the model. The
two models were implemented in the CAPSIS4 simulation platform
(Coligny et al., 2003) to run the simulations.

To evaluate the model based on neighbourhood distributions-
based model, we investigated how the model behaves compared to the
distance-dependent tree model. This investigation was led by compar-

ing simulation results from two model types: the distance-dependent
tree model (Eq. (2)) denoted as S that uses real tree locations to
compute local competition indices, with the model denoted as I that
uses neighbourhood distributions to reconstruct neighbourhoods of
each tree. Our mixed oak-pine stands are thinned roughly every 10 y,
which is therefore an appropriate timespan to test the two models.
However, in order to respect the time step of our models, we com-
pared the models after six years of growth. We also compared the
models after twelve years of growth to check whether the difference
between the two models was greater after a longer time projection.
Each model was run to simulate six years and twelve years of growth
on the 9 plots. For predictions, we did not take into account species
other than oak and pine (see Tab. I). For the comparisons, we focused
on the predictions of basal area increment at stand level.

For the I model, as stated above, a stochastic component was intro-
duced when the neighbourhoods were reconstructed at the beginning
of the first growth period. Hence, this model was used to perform
1 000 simulations for each plot to estimate the impact of the stochas-
tic component on the results. From the 1 000 values obtained in a
plot, we calculated the average and the 95% confidence interval of
the basal area increment for each species. We also computed the rela-
tive standard deviation (RSD) to evaluate the variability of the model
predictions. We then compared the results of the two models for each
plot and each species.

3. RESULTS

3.1. Local competition effect on growth

For oak, the first four indices given in Table II are calculated
in a disk of radius 10 m, which leads to the assumption that for
this species the radius that gives the best results is 10 m. For
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Table III. ANOVA tables, parameter estimates and model statistics for the distance-dependent tree model (Eq. (2)).

Oak (a = 0 and b = 0 for CI) Pine (a = 2 and b = 0 for CI)
Source SS d.f. F value Pr > F SS d.f. F value Pr > F

Intercept 50.48 1 4.939 0.0279 110.75 1 10.647 0.0013
Girth1999 93.95 1 9.194 0.0029 250.38 1 24.071 < 0.0001
Plot 177.99 8 2.177 0.0329
CIoak 417.87 1 40.89 < 0.0001
CIpine 64.83 1 6.344 0.0129 137.44 1 13.213 0.0003
Girth1999:Plot 184.87 8 2.261 0.0267 224.02 8 2.692 0.0082
Residuals 1369.24 134 1747.46 168
Coefficient Estimate Standard Error (σ) Estimate Standard Error (σ)
αk,s 4.003 < αk,oak < 13.014 2.270 < σ < 3.393 4.602 1.410
βk,s 0.0361 < βk,oak < 0.1766 0.0256 < σ < 0.0434 0.0337 < βk,pine < 0.0812 0.0097 < σ < 0.0175
λoak –0.3539 0.0553
λpine –0.2424 0.0962 –11.364 3.126
Adjusted R2 0.5806 0.2117
Residual S.D. 3.197 3.225

pine, the result is even clearer, and is also a neighbourhood ra-
dius of 10 m. In terms of coefficient a, values 0 and 1 give the
best results for oak while values 2 and 1 give the best results
for pine. Finally, for coefficient b, values 0 and 0.5 give the
best results for oak, while there was no clear trend for pine.
In terms of oak growth, the fact that the difference in perfor-
mance between the first (a = 0 and b = 0.5) and the second
index (density local, a = 0 and b = 0) was very low (0.5%)
prompted us to choose local density, since this index does not
need to factor in the distances to neighbouring trees in the 10 m
disc radius. Similarly, for pine growth, since the difference in
performance between the first (a = 2 and b = 0.5) and third
(a = 2 and b = 0) index was also very low (0.5%), we chose
a = 2 and b = 0 corresponding to the local basal area. To sim-
plify, we conclude that in the case of oaks, local competition
is related to local density (number of stems in a disc of 10 m
radius) while for pines it is related to local basal area. Know-
ing the location of trees in the disc of 10 m radius does not
significantly improve the results.

In the case of oak coefficients λoak and λpine were both sig-
nificant and negative (Tab. II). For the first 10 indices, the abso-
lute values for λoak were between 1.5 and 3 times greater than
λpine. In the case of pine, the coefficient λoak was never signif-
icant. We can therefore say that for an oak tree, competition
exerted by the neighbouring oaks is between 1.5 and 3 times
greater than competition exerted by neighbouring pines, while
for a pine tree, it is only competition from neighbouring pines
that has a significant influence on growth. For both species,
and particularly for pine, intra-specific competition is greater
than inter-specific competition.

For oak, the plot effect is significant on α and β while for
pine the most parsimonious model is the one with a plot effect
on β (Tab. III). The distance-dependent tree model explains
58.1% of the growth variability for oak, i.e. a gain of 14.8%
compared to a model with a size effect only. For pine, the most
parsimonious model explains 21.2% of the growth variability,
i.e. a gain of 5.7% compared to a model with a size effect only.

3.2. Comparison between the tree distance-dependent
model and the neighbourhood distributions-based
model

Model I gives lower predictions than those of model S both
after six years and after twelve years (Figs. 6 and 7). For pine,
model I predicts a basal area increment greater than the model
S for one plot (plot D108). For oak, the predictions of model
S are outside the confidence interval of model I. For pine, the
predictions of the model S are within the confidence interval
of model I for three plots (D02, D27 and D563).

The absolute difference between the two models after six
years of growth is 4.4% on average for oak and 3.6% for pine.
After twelve years of growth the results remain very similar,
with a difference of 4.5% on average for oak and 3.9% for
pine.

Variability of basal area increment at stand level obtained
from 1 000 repetitions of model I on the same plot was very
low and corresponded to an RSD of 1.6% for oak and 1.5%
for pine.

4. DISCUSSION

4.1. Local competition effects on growth

We showed that introducing a local competition index sig-
nificantly improved the proportion of growth variability ex-
plained by the model. Compared to a model with a size effect
only, the improvement was greater for oak (+14.8% for ad-
justed R-square) than for pine (+5.7%). Stadt et al. (2007) used
the same type of competition index to obtain an improvement
of between 10% and 30%. The improvement for pine was low
enough to question the usefulness of introducing a local com-
petition index for this species. Finally, we showed that using
the distance to neighbouring tree led to small improvement in
the performance of competition indices (+0.5% for adjusted R-
square). In a given neighbourhood, the presence and diameter
at breast height of a neighbouring tree is sufficient information
to be able to estimate its contribution to local competition.
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Figure 6. Basal area increment (m2/ha) for oak and pine after 6 y of
growth simulation. For each species, predictions of two models are
shown: the distance-dependent model (in black) and the neighbour-
hood distributions-based model (in white) for which vertical bars rep-
resent 95% CI.

This work showed that intra-specific competition was more
important than interspecific competition. This result is consis-
tent with the “Lotka-Volterra” theoretical model of interspe-
cific competition, which shows that this condition is a requi-
site for two species to coexist (Begon et al., 1996). We also
showed that competition from oak on pine was non-significant.
This result is in agreement with Biondi et al. (1992) who found
that pine (Pinus ponderosa Dougl ex Laws) versus oak (Quer-

cus gambelii Nutt) competition was negligible compared with
pine versus pine when oak remains mostly in the understorey.
Dominant pines were spaced out by the presence of oak trunks
and were therefore less affected by crown competition. This
situation was also reported by Rio and Sterba (2009) who stud-
ied mixed stands of Pinus sylvestris L. and Quercus pyrenaica

Willd. In our study, although not all oaks were in the under-
storey, the pines on average had a greater girth than oaks,
which could explain why there was a non-significant influence
of oaks on pines.

4.2. Comparison between the distance dependent
model and the neighbourhood distributions-based
model

The results obtained with the tree distance-dependent
model made it possible to develop a neighbourhood
distribution-based model adapted to oak-pine mixed stands.
We showed that, the difference between the two models was
lower for pine, than for oak. This result can be explained by the
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Figure 7. Basal area increment (m2/ha) for oak and pine after 12 y
of growth simulation. For each species, predictions of two models
are shown: the distance-dependent model (in black) and the neigh-
bourhood distributions-based model (in white) for which vertical bars
represent 95% CI.

fact that the local competition index for pines explained only
a very small proportion of pine growth variability. The relative
differences between the two models after six and twelve years
of growth were very close. This result demonstrates that the
predictions of the neighbourhood distributions-based model
are little affected by time projection.

However, the predictions of the neighbourhood
distributions-based model are lower than those of the
distance-dependent model. The approximations we made
to reconstruct the neighbourhoods could explain this result.
In particular, the number of oaks and the number of pines
were not constrained by the total number of neighbours.
There is certainly no consequence for pine since the model
only uses pine neighbours. In contrast, for oak, the model
uses oak neighbours as well as pine neighbours. The ap-
proximation could lead to overestimate the total number
of neighbours and thus to overestimate the competition.
Consequently, the growth predicted with the neighbourhood
distributions-based model could be underestimated compared
to the distance-dependent model (upper part of Figs. 6 and 7).

Similarly, we made the assumption of spatial independence
between the size of a tree and its location. This assumption
could have consequences for pine because the competition
index for pine involves the size of the neighbours (basal area
of pines in a disk of 10 m radius). In a real stand, the size of

502p9



Ann. For. Sci. 67 (2010) 502 T. Pérot et al.

a tree can be dependent on other factors that differ from one
species to another. For instance, if there is a soil heterogeneity,
the size may be different from one place to another, so that the
competition indices would be very variable. On the contrary,
in some situations with strong competition, only small trees
can be found around a big one, so that the competition indices
are less variable. In the distance-dependent model, the local
competition as well as the result at the stand level would be
affected while nothing would change for the model based on
neighbourhood distributions.

4.3. Model limitations

A first limitation of the model is that we used approxima-
tions to reconstruct the neighbourhoods: the number of oaks
and the number of pines were not constrained by the total
number of neighbours, and the neighbours were selected re-
gardless of the size of the subject tree. As we have seen, these
approximations could affect the model’s predictions output,
but they remain difficult to avoid. For example, to avoid the
first approximation, it is necessary to know the joint distribu-
tions that give the probability that a tree of one species will
have noak neighbouring oaks and npine neighbouring pines at
the same time. This solution is feasible (Pommerening, 2006),
but a vast amount of data is necessary to have a good estimate
of these joint distributions, thus generating a constraint com-
parable that involved in mapping a stand.

A second limitation of the model comes from the choice of
the competition indices. The performance of a local compe-
tition index generally depends on the data on which it was
tested. It is therefore possible that for another study, other
types of indices will prove more relevant than those used here.
Some indices, such as those taking into account the spatial or-
ganization of trees in the vicinity (Pukkala, 1989), would be
quite difficult to recalculate with our method, but it remains
possible to assign a distance and azimuth to each neighbouring
tree according to field data or assumptions. This prompts the
question of how the neighbourhood distributions-based model
would behave with other competition indices. In particular, if
the competition indices including distance to the neighbouring
trees demonstrate very high performance, then the difference
with the spatial model could prove more significant than in
our study. Another solution would be to work directly with the
distributions of the competition indices, but this would make
it necessary to model the evolution of these distributions over
time (Phillips et al., 2004).

Finally, another limitation of the model is that regeneration
and death processes are not taken into account. It is question-
able whether these factors can be integrated into the model,
especially when neighbourhoods are updated. For mortality
due to competition, we can assume that individual mortality
depends on tree size and growth in recent years (Wyckoff and
Clark, 2000). Neighbourhoods could then easily be updated in
the same way as for thinnings. In contrast, modelling the re-
generation process generally requires some spatial information
not centred on individuals already in place. In addition, the
relevant neighbourhood for regeneration can be very different
from the neighbourhood used for growth. For these reasons,

the regeneration process could be quite difficult to integrate
into our model without having to input new spatial informa-
tion.

4.4. Using the model in routine management contexts

The oak-pine stands we studied are fairly dense, and there is
generally no regeneration. Moreover, thinnings are conducted
approximately every 10 y, which limits the influence of mortal-
ity by competition. Consequently, our model becomes viable
in this forest context. We are convinced that neighbourhood
distributions can be estimated from data collected during for-
est management. In France, forest managers carry out inven-
tories via fixed-area plot sampling, often installing temporary
plots every quarter of a hectare. The plots may be disks with
constant radius on which trees are inventoried and measured.
If the species of the tree nearest to the center of the disks is
known, these sampling plots could be used to estimate the
neighbourhood distributions. Thus, it should be possible to
reconstruct neighbourhood distributions without significantly
changing the field practices of forest managers.

When we performed several simulations on a plot, the re-
sulting predictions of basal area increment varied little, de-
spite the variability introduced at individual level in the initial
step. This was a predictable result, because the characteristics
of competition indices (average and variability) remain highly
stable since, for each simulation, the numbers of neighbours
are drawn from the same distributions and the neighbours are
drawn from the same list of trees. From a practical point of
view, this means there is no need to run a large number of sim-
ulations with this model to achieve good results at stand level.

5. CONCLUSION

In this study we developed a model falling between spa-
tial and non-spatial tree models that takes into account the
influence of tree neighbourhoods without using a complete
map of the stand. This model uses distributions of the num-
ber of neighbours, called neighbourhood distributions, and a
list of trees to reconstruct tree neighbourhoods. These distribu-
tions take into account the horizontal spatial structure and vari-
ability of local neighbourhoods. Moreover, the reconstructed
neighbourhoods change consistently over time to account for
growth and thinnings. In a mixed forest, local competition be-
tween species may be an important factor to input in order to
predict growth. Our work in oak-pine mixed stands showed
that competition indices computed in a disk of ten-meter ra-
dius have a significant effect on individual growth. Moreover,
these indices showed that intraspecific competition was greater
than interspecific competition. This may affect the dynamics
of the stand by impacting on species coexistence. Even if the
approximations necessary to reconstruct neighbourhoods do
affect the predictions of the neighbourhood distributions-based
model, we showed that the model still demonstrated consistent
behaviour compared to a distance-dependent model. This type
of model could thus be used to replace distance-dependent
models in management contexts.
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