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Abstract 

During the last ten years, intense experimental and theoretical work has proven the 

existence of ultrafast non-radiative decay routes for UV-excited monomeric nucleic acid bases 

explaining their high photostability. This mechanism has been explained by the occurrence of 

easily accessible conical intersections connecting the first excited * state with the ground 

state. However, recent studies of substituent and solvent effects indicate that the situation is 

more complicated than what was initially thought, notably by the presence of dark excited 

states. Moreover, the actual shape of the excited state potential energy surface may induce 

non-exponential dynamics. Further efforts are needed in order to clarify how various 

environmental factors affect the structural and dynamical aspects of the nucleic acid base 

excited states. 
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To this date, the exact circumstances for the beginning of life on Earth remain obscure. 

However, much of the prebiotic chemistry probably occurred under intense UV irradiation. 

Among the various molecules that emerged at that time, the purines (adenine and guanine) 

and pyrimidines (uracil, thymine, and cytosine) that became the building blocks of RNA and 

DNA, possess a remarkable photostability. Indeed, in spite of the fact that these molecules 

absorb strongly in the UV, the excess energy is rapidly dissipated to the surroundings in form 

of heat, as shown by the very low fluorescence quantum yield suggesting excited state 

lifetimes shorter than 1 picosecond (10
-12

 s). This natural protection of the nucleic acid bases 

against UV light has come to be considered the key for their success. 

 

Ultrafast and effective non-radiative decay routes exist for the electronically excited 

states of all nucleic acid bases. Is this the reason for them being selected as fundamental 

building blocks of life? 

 

Obtaining a detailed picture of the static and the dynamical behavior of the 

electronically excited states of nucleic acid bases, nucleosides and nucleotides (NABs) and 

assessing the molecular mechanisms underlying their very efficient nonradiative deactivation 

is thus important. In addition to the intrinsic interest of these molecules, unveiling the 

photophysical and photochemical behaviour of the DNA/RNA monomeric constituents is 

mandatory for a full comprehension of the phenomena triggered in single- and double-

stranded nucleic acids by the absorption of UV-light. These processes are biologically 

relevant since the initially populated singlet excited electronic states may constitute the first 

step of a cascade of events leading to photochemical reactions responsible for carcinogenic 

mutations.  

 



 4 

On these grounds, it is not surprising that a rapidly growing amount of experimental 

and computational studies has been devoted to the electronically excited states of the NABs 

during the last decade. As a consequence, they have become molecular "guinea pigs" for 

assessing the basic physical-chemical effects ruling the non-radiative decay of organic 

molecules in general. A detailed review of the situation up to 2004 can be found in ref. 1. 

 

Figure 1. Fluorescence decays for the four nucleosides (black) and four nucleotides (red). Also shown are 
the fluorescence decays of thymine (green) and uracil (blue) as well as the apparatus function (gray line). 

The structures of adenine, cytosine, guanine and thymidine monophosphate are presented in the 
corresponding panels. The average lifetimes are : 0.13/0.13 ps (dA/dAMP), 0.30/0.45 ps (dC/dCMP), 

0.33/0.34 ps (dG/dGMP), 0.30/0.32/0.50 ps (T/dT/TMP) and <0.1 ps (U). 
 

 

On the experimental side a major issue was how to monitor the time-evolution of the 

first singlet excited state population (in the following denoted S*) with sufficiently high 

time-resolution. A decisive step forward was the successful use of UV femtosecond laser 

spectroscopic techniques in the characterisation of the NABs. In the gas phase, femtosecond 

two-photon ionisation/REMPI experiments provided clear evidence for ultrafast (< 1 ps) 
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excited state deactivation processes although slower components have also been observed. 
2
 

In solution, most results have been obtained by two pump-probe techniques; fluorescence 

upconversion (FU) and transient absorption (TA). The former probes the S* spontaneous 

emission and the latter the S*Sn induced absorption, where Sn is a higher excited singlet 

state. At the beginning of the millennium these techniques had proven invaluable tools in 

numerous studies of other molecular systems, but they were poorly adapted to NAB 

spectroscopy falling into the UV spectral region. The real breakthroughs were the discovery 

of a S*Sn TA band in the visible spectral region and the adaptation of FU in the UV, 

allowing the monitoring of the NAB S* population. Both techniques have been successfully 

applied to various NABs allowing the first determinations of the S* excited state lifetimes.
3-5

 

The main outcome of these and subsequent experimental studies was that the excited state 

decays were indeed found to be much faster than 1 ps, for all the NABs.
6-11

 To illustrate this, 

fluorescence decays for the eight nucleosides and nucleotides are shown in Figure 1. 

Additional experimental information has also been obtained by picosecond 

UV/infrared transient absorption spectroscopy.
12

 Probing in the 1500-2000 cm
-1

 range after 

UV excitation brought information not only about the "hot ground state" but also a longer-

lived state in the case of 2'-deoxycytidine 5’-monophosphate (dCMP). Furthermore, 

resonance Raman experiments have shown shown that uracil-like molecules keep a planar 

geometry during the first femtoseconds after the excitation of Sπ,.
13

 Triggered by the 

increasing amount of experimental findings, quantum chemistry calculations at various levels 

were dedicated to the study of the excited state behavior of the NABs and have provided a 

very rich source for understanding the mechanisms at the origin for their exceedingly short 

lifetimes 
7,10,14-22

 

The picture emerging from these experimental and theoretical studies is that the 

ultrafast decay of the first singlet excited state S* is due to highly efficient conical 
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intersections (CI) between this state and the ground state (S0). Very loosely speaking, for the 

pyrimidines, the internal conversion through the CI involves a pyramidalization of C5 and/or a 

torsion of the C5C6 bond accompanied by an out-of-plane motion of the 5-substituent (see 

Figure 1 for atom labelling). For the purines, the reaction path involves a twisting around the 

C2N3 bond provoking an out-of-plane bending of the 2-substituent. Such a general description 

is bound to be oversimplified, and a very active debate (a review of which is outside the scope 

of this perspective) exists regarding the details of the decay mechanism for each individual 

base. In particular, the decay mechanism of cytosine is far from being completely assessed. 

On the other hand, theoretical studies agree in predicting that almost barrierless paths connect 

the Franck-Condon region of the S* state with the CI with S0 for all the NAB’s, accounting 

for their ultrafast decay.
23

 This scenario, originally proposed on the ground of gas phase 

calculations, is to a large extent also valid in solution. As an example, Figure 2 illustrates the 

UV-induced structural changes occurring in uracil in water and leading to the CI. 

 

Figure 2.The picture emerging today for the uracil S* excited state dynamics in aqueous solution. The 
initial  evolution from a flat structure in the Franck-Condon towards a flat pseudo-minimum region is 

followed by a very rapid (<100 fs) out of plane motion driving the system to a conical intersection point 
with the ground state where a very efficient internal conversion takes place. Similar scenarios apply to 

the other NABs. (Potential energy surfaces taken from ref. 10) 
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The very efficient internal conversion is explained by the existence of easily accessible 

conical intersections connecting the first excited * state with the ground state.  

 

According to this simple and easy-to-grasp representation, the excited state decay of 

monomeric NABs is ruled by intrinsic effects involving the properties of the lowest energy 

bright state S* only. Although such a description can be used as a first approach, the most 

recent experimental and computational studies revealed a much more intricate picture. Below 

we highlight some factors that contribute to this increased complexity. 

First, for all NABs, a spectroscopically dark excited state with n* character (Sn*) is 

very close in energy to the bright S* state in the Franck-Condon region. Consequently, 

besides the direct S* S0 decay (radiative or non-radiative), S* Sn*  and
 
Sn* S0 

population transfers also influence the excited state deactivation. Indeed, if for uracil and 

thymine the involvement of a dark Sn* state in the gas phase dynamics is still a matter of 

debate, in solution, experiments and computations agree in predicting a fast and effective 

S* Sn*   population transfer. The dark Sn* state is characterized by a slower decay 

component (~25 ps), as measured by TA.
24

 The relative energies of the bright S* and the 

dark Sn* excited states are strongly tuned by the environment, giving rise to significant 

solvent effects in the excited state dynamics of  NABs. For example, the excited state lifetime 

of thymine decreases from 0.39 to 0.24 picoseconds when going from water to acetonitrile, 

while a fourfold decrease is observed for 5-fluorouracil (from 1.39 to 0.36 ps).
10,15

 

Interestingly, the lifetimes of the S* excited state of uracils in alcohols were found to be 

intermediate between those determined for water and acetonitrile solutions. These findings 

have been fully rationalized by quantum mechanical calculations including the solvent, which 

show that the stability of the Sn* decreases significantly in hydrogen bonding media. As a 

result, the energy gap between Sn* and S* is modified affecting the deactivation process.
25
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This is illustrated in Figure 3 where fluorescence decays and potential energy surfaces of 5-

fluorouracil in protic and aprotic polar solvents are shown. 

 

Figure 3. Solvent dependence of the 5-fluorouracil excited state dynamics: fluorescence decays in water, 

propanol and acetonitrile (left), potential energy surfaces for the S* and Sn*  states in water (middle) 
and in acetonitrile (right). (Potential energy surfaces taken from ref.  25) 

 

Another source of complexity is the fact that, on the femtosecond timescale, the 

initially excited S* state population is strongly out of equilibrium corresponding to a rapidly 

evolving wavepacket. For this reason, the excited state decays of NABs cannot be fittted by 

mono-exponential functions. We underline that such non-exponential decays are not 

necessarily due to the involvement of several electronically excited states. Two detailed 

studies of guanosine 5'-monophosphate (GMP) 
7
 and 2'-deoxyguanosine 5'-monophosphate 

(dGMP) 
26

 show clearly that the correspondence "one time constant - one electronic state" 

does not hold. Contrary to what had been observed for the other NABs, the dGMP 

fluorescence decays were found to depend strongly on the emission wavelength, getting 

longer when going towards the red. This was explained by theoretical calculations predicting 

an excited state surface being practically flat along the reaction coordinate towards the CI. 

The wavepacket motion undergoes a “spreading out”, producing strongly wavelength 

dependent dynamics from the same excited state potential energy surface, as illustrated in 

Figure 4. Actually, there are several hints that also for other NABs the excited state dynamics 
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is modulated by the interplay between planar and non planar region of the S* potential 

energy surface.
25,27

 

 

Figure 4. Schematic picture illustrating the wavepacket dynamics on a "flat" excited state potential 
energy surface. The rapid evolution from a localized well-defined function in the Franck-Condon region 

towards a delocalized, diffuse distribution at longer time. 

 

Fast does not mean simple: dark excited states, interactions with the solvent, ring 

substituents, topology of the potential energy surfaces…..the excited state decays of 

NABs can be very complex.  

 

A very useful method to shed light on such complex decay mechanisms is a systematic 

exploitation of substituent effect.
10

 Replacing one particular hydrogen or methyl group on the 

NAB skeleton by another substituent group may have dramatic effects on the excited state 

dynamics. The most representative example is the difference in excited state decay rate in 

water between the RNA base uracil (>10
13

 s
-1

) and the DNA base thymine (5
.
10

13
 s

-1
), where 

the hydrogen in the 5-position is replaced by a methyl group. Moreover, the excited state 

lifetime of the minor natural base 5-methylcytosine, is about ten times longer than that of 

cytosine.
28

 These two examples provided an unambiguous proof of the involvement of the C5 

moiety in the non-radiative deactivation mechanism in pyrimidines. However, other more 
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subtle substituent effects remain to elucidate. One striking example is the effect of the 

deoxyribose and of the phosphate group on the NBAs excited state dynamics, which is 

apparent for pyrimidines while it is negligible for the purines (Figure 1).
29

 This is surprising 

taking into account the fact that the steady-state fluorescence spectra of nucleosides and 

nucleotides are identical. Moreover, quantum mechanical computations suggest that the main 

features of the lowest energy excited states of the nucleosides and nucleotides are similar to 

those of the bases in the FC region. 
22

 

There may be different explanations for the way the phosphate group affects the 

pyrimidine photophysical behavior. One can mention the formation of additional hydrogen 

bonds which could be favored by the folding of the flexible group or the presence of a 

negative charge in the vicinity of the chromophore. Experiments also suggest that the ionic 

strength of the solution affects the pyrimidine excited state dynamics.
29,30

 Elucidating the role 

of local charges on the excited state behaviour is crucial for obtaining a correct description of 

the photoprocesses within the double helix which is a polyelectrolyte. In order to bridge the 

gap between our knowledge of the isolated NABs and that of DNA double strands,
31,32

 we 

should discriminate between the collective features and those only due to the environmental 

effects on the behaviour of monomeric NAB. To this aim, it would be helpful to study the 

NABs in conditions not too different from a DNA-like environment.   

There are several other open questions whose elucidation is not only important for 

getting the full picture of the NABs excited state decays but is also crucial for the 

understanding of DNA behaviour. They concern not only the bright S* states but also the 

dark excited states. For example, a 30 ps lifetime detected in the infrared absorption spectrum 

of the poly(dGdC)·poly(dGdC) duplex was assigned to the n* state localized on cytosine.
33

 

The steady-state fluorescence spectrum of the same duplex is dominated by emission from 

“dark” states with nanosecond lifetime.
34

 Other dark states, * states, have also been 
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proposed to influence the excited state dynamics in the gas phase.
35

 Their dependence on the 

environmental factors is also an important issue. It is also possible that “dark” states may 

borrow intensity from close-lying bright states and fluoresce weakly in solution. In this 

respect, experiments using time-correlated single photon counting, which is much more 

sensitive than FU, would be precious.  

Another aspect which merits closer attention is the characterization of the triplet states. 

Intersystem crossing quantum yields in purines and pyrimidines were determined 

experimentally decades ago,
36,37

 but it would be instructive to revisit this topic in the light of 

the accumulated knowledge of the singlet excited state described above. Recently, results 

from a time-resolved infrared study of the lowest triplet state of thymine and thymidine were 

interpreted as the triplet state being fully formed within the first 10 ps after excitation.
38

  

On the theoretical side, a real breakthrough would be the development and the 

applications of suitable quantum dynamical methods which have just started to be 

successfully applied to the study of NAB excited states.
20,27

 Such methods would allow a 

direct quantitative comparison with results from time-resolved spectroscopy such as time 

constants and branching ratios. 

In conclusion, giant steps have been made in the last few years towards the 

understanding of the NAB excited state deactivation mechanism, and the general features 

seem to be well understood. On the other hand, as we have just highlighted, many 

fundamental questions remain to be answered. We are convinced of the importance of 

continued joint experimental and theoretical efforts and, in particular, systematic studies of 

environmental and substitutional effects. Although femtosecond spectroscopic techniques 

remain the key tool in this field, it is also important to explore the above-mentioned effects on 

longer times. Theoretical models should provide a valid description for the ensemble of 

experimental data. 
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