
HAL Id: hal-00496288
https://hal.science/hal-00496288

Submitted on 30 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cidre: Programming with Distributed Shared Arrays
Françoise André, Yves Mahéo

To cite this version:
Françoise André, Yves Mahéo. Cidre: Programming with Distributed Shared Arrays. 3rd International
Conference on High-Performance Computing (HiPC ’96), Dec 1996, Trivandrum, India. pp.439-444.
�hal-00496288�

https://hal.science/hal-00496288
https://hal.archives-ouvertes.fr

Cidre: Programming with Distributed Shared Arrays

F. Andr�e and Y. Mah�eo

IRISA, Campus de Beaulieu, F-35042 Rennes, France

Email: fandre@irisa.fr

Abstract

A programming model that is widely approved to-

day for large applications is parallel programming with

shared variables. We propose an implementation of

shared arrays on distributed memory architectures: it

provides the user with an uniform addressing scheme

while being e�cient thanks to a logical paging tech-

nique and optimized communication mechanisms.

1 Introduction

Modularity and extensibility are two strong points

of distributed memory architectures. In these

machines, that are composed of interconnected

processor-memory nodes, the number of nodes can

vary easily so that the power of the machine is adapted

to the size of the problem and to the expected perfor-

mances.

Among these architectures one can �nd on the one

hand machines built with parallel computing in mind

like the Intel Paragon or the IBM SP2 and on the

other hand, high performance networks of worksta-

tions like for instance ATM networks of PCs. This

second family makes parallel machines available to a

large number of users.

Despite important research e�orts and a remark-

able improvement in the last few years, programming

this kind of machines remains complex because of the

distribution of the memories that imposes the use of

communication operations.

The programming model that is widely approved

today for large applications is parallel programming

with shared variables. With this model, the program-

mer can bring out the parallelism that will yield per-

formance while keeping a global view on the manipu-

lated data structures.

Improving the use of distributed memory ar-

chitectures relies on the implementation of the

model of communicating-through-shared-variables

processes. Distributed shared memory systems are

a solution to this problem [8, 7, 5]. Shared variables

are placed in the virtual memory, hence they are ad-

dressed in a uniform way. However, this apparent

ease of use is tempered with several drawbacks. The

page size is independent from that of accessed vari-

ables. This may bring about a larger than necessary

amount of communication. Above all, when a page

contains several variables accessed in parallel by dif-

ferent processors, some \ping-pong" communication

patterns may occur.

Our objective is to propose an alternative to this

distributed shared memory system. We have designed

an implementation of shared variables that is original

and e�cient on the following two key-points:

� On the addressing side: it provides the user with

an uniform addressing scheme for his variables

but the interpretation in terms of local addresses

in distributed memories is optimized thanks to a

logical paging technique.

� On the communication side: we use message

passing for required elements but we largely take

bene�t from vectorization techniques, connected

to our logical paging mechanism, in order to re-

duce the number of messages and the amount of

transferred elements.

The remaining of this paper expounds the above-

mentioned mechanisms. Section 2 gives a global pre-

sentation of the programming environment and de-

tails the di�erent levels of abstraction. Through an

example, section 3 describes the programming model

o�ered to the user. Section 4 is devoted to the im-

plementation of the distributed array library and ex-

plains the addressing techniques and the communica-

tion optimizations. Section 5 concludes.

2 Structure of the programming envi-

ronment

In this paper, we focus on data structure manage-

ment. Other programming aspects like parallel pro-

Level 6

High level programming :

provides access to any shared data structure,

including protection and coherence control

Level 5 Coherence and protection protocols library

Level 4
Distributed array library and

coherence function

Dynamic structures

library (lists, trees)

Level 3 Logical paging mechanism

Level 2 Communication and threads system

Level 1 Physical architecture

Cidre

Figure 1: Structure of the programming environment

cess management are not addressed here.

The most external level provides a programming

environment where the user can declare any data

structure that may be accessed by several processes.

References to this shared data structure are made

through the usual notation of any programming lan-

guage. As data structures may be read or written

by many processes, the programmer is given di�erent

protection mechanisms and coherence control proto-

cols. These tools are typically included in a library.

References to several works on such protocols may be

found in [5].

The high level programming model is not �xed in

our environment : di�erent versions may be proposed

depending on the chosen source language.

High level programming layers use the distributed

data structure management system described in this

paper. The distributed shared array library Cidre

at the 4th level allows the creation of data structures

like multi-dimensional arrays and the speci�cation of

their logical decomposition upon a distributed mem-

ory architecture. This decomposition is expressed in

HPF style.

As we said, the usual index notation is used at lev-

els 5 and 6 to access data structures. Indexes are

computed globally according to array bounds regard-

less of the distribution. That is the key point of the

programming model we propose : references to dis-

tributed arrays are the same as shared memory refer-

ences. The example 2 illustrates this point.

The Cidre library provides mechanisms to trans-

form global addresses into physical addresses and per-

forms data communication if necessary. Moreover,

a synchronization function called coherence allows

groups of parallel processes sharing the same data

structure to synchronize so that they have the same

coherent view of the structure. This function, detailed

in section 3, is the key element for the construction of

enhanced protocols at the 5th level.

Other libraries may be built at level 4 to handle

other data structures than arrays.

The Cidre library implementation is built upon a

mechanism we call logical paging. Level 3 manages

the distribution of arrays in di�erent local memories.

A distributed array is described as a set of logical

pages; the size of these pages is related to the size of

the array. The processes that own a part of the array

in their local memories are given an array descriptor

which consists mainly of a table of logical pages. It

will be explained in section 4 how we manage to trans-

late references in a very e�cient way, which is a major

advantage of our model.

Finally, according to the location of the requested

page, access may be local or distant. For the distant

accesses, we use the communication system of the tar-

get machine (level 2). Though it is not compulsory,

the use of threads makes the implementation of the

distributed arrays library easier, allowing overlap be-

tween di�erent activities. At last, level 1 represents

the physical layer.

Many shared object libraries have been conceived

lately [1, 3, 11, 4]. Situated at di�erent levels of user-

interface, they provide various coherence protocols.

Compared to these libraries, the Cidre library o�ers

optimizations for data structure implementation and

communication management.

3 The programming model

In this section we describe the library interface and

the way it may be used for programming parallel ap-

plications.

The appropriate programming model is based on

user-de�ned parallel processes. As it is often the case

in the context of highly parallel architectures, pro-

cesses may execute the same basic code according to

the SPMD (Single Program Multiple Data) model.

Depending on its identity or on the data it owns, each

process will specialize in executing speci�c parts of the

program.

The Cidre library allows user processes to share

variables which will be implicitly distributed accord-

ing to a user-de�ned partitioning scheme.

The example in �gure 2 illustrates the use of the li-

brary. P processes are involved in the execution of the

given code which corresponds to a Jacobi algorithm.

Shared arrays are declared by calling the Cidre func-

tion create. This function takes as parameters the

dimensions of the array, followed by the de�nition of

how it is partitioned. Cyclic or block partitioning

schemes on the P processors of the architecture are

possible. In the example,N�N matrices A and B are

de�ned and partitioned into blocks of size N=P � N .

Our programming model is speci�cally de�ned to

allow global references to shared variables, avoiding

the need for explicit data transfers and global to local

addresses computations. The assignment

write(B; i; j, f(read(A; i+ 1; j), read(A; i� 1; j),

read(A; i; j + 1), read(A; i; j � 1)))

where f is a prede�ned function, illustrates these fa-

cilities.

In the example, process Pi owns the blocks of lines

(N=P � i) to (N=P � (i + 1) � 1). To execute its

computation at step k, it needs the line (N=P �i�1),

after it has been computed by process Pi�1 at step

k�1, and the line (N=P�(i+1)) computed by Pi+1 at

step k�1. Reciprocally, Pi�1 needs the line (N=P�i)

and Pi+1 needs the line (N=P � (i+ 1)� 1).

To ensure that each process uses up-to-date val-

ues at step k (i.e. values computed at step k � 1),

we introduce two synchronization-and-coherence op-

erations named coherence. The �rst one performs a

cooperation between Pi and Pi�1 for updating their

lines (N=P�i�1) (N=P�i) and for providing to both

processors a coherent view of these lines; the second

one makes Pi et Pi+1 cooperate for obtaining an up-

to-date and coherent view of lines (N=P � (i+1)�1)

and (N=P � (i + 1)).

Generally speaking, the parameters of the

coherence function describe the set of shared array

elements (an array section de�ned by a lower bound,

an upper bound and a step in each dimension) that

has to be made equally visible to a group of processes.

This group is referenced to by the last parameter. The

semantics of the coherence function applied to an

array section AS and a group of processes G is the

following:

� Synchronization of all the processes in G in or-

der to take into account every write operation

performed on AS since the last coherence call

(or the beginning of the execution);

� Broadcasting of an up-to-date version of AS to

all processes in G.

Of course, if several writes to the same array ele-

ment have been performed by di�erent processes be-

fore the coherence call, the content of the up-to-date

version of this element is non deterministic.

4 Logical paging mechanism

The Cidre library provides access to shared dis-

tributed arrays. The involved mechanisms have been

used in the HPF Pandore compiler [2]. They exploit

logical paging of arrays according to the user-speci�ed

rectangular block distribution. The goal is to have

a quick elementary access while keeping the memory

cost at a reasonable level [10].

The multi-dimensional address space de�ned for

each array is linearized and split into pages. These

pages are used to store temporary copies of distant

data as well as local data.

Elements are uniformly accessed : global indices

are translated into a page number and an o�set in

the page. The couple (PG,OF) and a table of pages

available on each processor are then used to access the

corresponding memory element.

The size of the pages and the direction of the pages

| i.e. a linearization function | are de�ned for each

array according to the array distribution parameters.

The direction of the pages corresponds to the dimen-

sion of the largest block extent. The page size is cho-

sen to be a power of two to speed up accesses : com-

putation of the couple (PG,OF) only needs simple

logical operations (shifts and masks).

Two di�erent cases may occur:

� If there is a non-distributed dimension, the page

size is equal to the �rst power of two greater than

process myself

A = create('A',N , N , N=P , N)
B = create('B', N , N , N=P , N)

prev set = fmyself, myself�1g
next set = fmyself, myself+1g

my �rst line = N=P�myself
my last line = N=P�(myself+1) �1

for k=1 to nloop

if (myself 6= 0)

coherence(A,my �rst line-1,my �rst line,1,0,N-1,1, prev set)

if (myself 6= P � 1)

coherence(A,my last line,my last line+1,1,0,N-1,1, next set)

for i = my �rst line to my last line

for j = 1 to N � 2

write(B;i; j, f(read(A;i+ 1; j), read(A;i� 1; j), read(A;i; j + 1), read(A;i; j � 1)))

for i = my �rst line to my last line

for j = 1 to N � 2

write(A;i; j, read(B; i; j))

Figure 2: Programming example : Jacobi algorithm

the size of the array in that dimension. Compu-

tation of (PG,OF) is then very e�cient (identity

in the 2D-case).

� If all the dimensions are distributed, the page size

is the �rst power of two lower than the largest

block extent. A page may then overlap a block

border. In this case, each of the involved proces-

sors is responsible for a part of the page.

In addition to e�cient elementary accesses, logical

paging permits the optimization of the communica-

tions involved in the synchronization-and-coherence

operation.

Communications are organized in segments (adja-

cent elements of a page). Direct communications are

used to transfer big segments without any commu-

nication bu�er, while small segments are aggregated

in a larger bu�er to minimize the e�ect of message

latency. The limit between small and big segments

can be expressed as a function of platform-speci�c

parameters. Furthermore, multiple occurrences of el-

ements are eliminated when preparing the transfers.

A complete description of these mechanisms is avail-

able in [9].

5 Performances of logical paging

We have already compared the joint use of the log-

ical paging system discussed above and message pass-

ing with shared virtual memory in the framework of

the HPF Pandore compiler [9].

Indeed, two versions of the compiler have been

written. With the �rst one, the generated code makes

use of the logical paging system and of a portable

message passing library, the POM library [6], that al-

lows executions on several parallel architectures and

systems (Intel iPSC/2, Intel Paragon, BSD Sockets,

PVM: : :). The second version of the compiler gener-

ates code for the SVM Koan [7] build on top of the

NX/2 system on the Intel iPSC/2.

Several experiments have been made on the iPSC/2

in order to compare these two approaches. Figure 3

shows the speedups obtained for three numerical ker-

nels: the Jacobi iterative relaxation, the LU factor-

ization and the matrix-matrix product. These results

give a good idea of how the Cidre library would com-

pare to a SVM because, for these regular examples,

the code produced by the Pandore compiler is very

similar to a hand-coded version of the parallel SPMD

code.

Speed of local accesses turns out to be a critical

parameter for the overall e�ciency. In this respect,

logical paging is very close to SVM |that can be

considered optimal| as illustrated in the Jacobi ex-

ample.

As logical paging is associated with message pass-

ing, complex communication patterns can be handled

more e�ciently than with SVM. This is the case with

the LU factorization and the matrix-matrix product

where broadcasting of lines and above all communi-

cations of parts of lines are necessary. To solve this,

broadcasting is employed in both systems. But in the

logical paging version, segment broadcasting is carried

out so that the number of messages and the amount of

transferred elements is kept at a minimum, whereas

in the SVM version, a producer-consumers commu-

nication pattern for which entire pages are broad-

casted is used. As a consequence, a much more impor-

tant falling o� can be observed for the SVM version

when the number of processors increases, especially

for small array sizes. Moreover, it is clear that the

di�erence would be greater without this broadcasting

protocol that is to say when only point to point page

transfers would be authorized through page faults

solving.

Besides, we believe that the superiority of the log-

ical paging (combined with message passing) that is

used in the Cidre library over SVM is likely to be

greater in the context of networks of workstations

where the message latency is very high.

6 Conclusion

We are currently implementing the Cidre library

for shared distributed arrays. The interface language

may be subject to some slight modi�cations, for ex-

ample concerning the syntax of primitives such as

coherence.

Moreover, we must work out some implementation

mechanisms. For instance, we are experimenting dif-

ferent solutions to e�ciently perform the test that

must determine if references correspond to data al-

ready present or not in the local memory. A prefetch

operation appears to provide a good way to avoid nu-

merous executions of this test.

At last, the writing of high level coherence proto-

cols is envisaged in order to have enlightenments on

the adequacy of Cidre to parallel application pro-

gramming and on the performances that may be ob-

tained at the user level.

References

[1] J.-M. Adamo. Arch, an object-oriented library

for asynchronous and loosely synchronous sys-

tem programming. Technical Report 228, Cornell

Theory Center { Ithica, NY, December 1995.

[2] F. Andr�e, M. Le Fur, Y. Mah�eo, and J.-L. Pazat.

The Pandore Data Parallel Compiler and its

Portable Runtime. In HPCN Europe '95, number

919 in LNCS, Milan, Italy, May 1995. Springer

Verlag.

[3] Thomas Brandes. Adaptor : The distributed

array library. Technical report, German Na-

tional Center for Computer Science (GMD) { St-

Augustin, Germany, April 1993.

[4] W.W. Carlson and J.M. Draper. Distributed

data access in AC. In ACM PPOPP Santa Clara,

CA, USA, pages 39{47, 1995.

[5] M.R. Eskicioglu. A Comprehensive Bibliography

of Shared Distributed Memory. ACM Operating

Systems Review, 30(1):71{96, janvier 1996.

[6] F. Guidec and Y. Mah�eo. POM: a Virtual

Parallel Machine Featuring Observation Mecha-

nisms. In International Conference on High Per-

formance Computing, New Delhi, India, Decem-

ber 1995.

[7] Z. Lahjomri and T. Priol. Koan: a Shared Virtual

Memory for the iPSC/2 Hypercube. In 2nd Joint

International Conference on Vector and Paral-

lel Processing, CONPAR 92 - VAPP V, num-

ber 634 in LNCS, Lyon, France, September 1992.

Springer Verlag.

[8] K. Li and R. Shaefer. A Hypercube Shared Vir-

tual Memory System. In International Confer-

ence on Parallel Processing, University Park, PA,

1989.

[9] Y. Mah�eo. Environnements pour la compilation

dirig�ee par les donn�ees : supports d'ex�ecution et

exp�erimentations. PhD thesis, IFSIC / Univer-

sit�e de Rennes I, July 1995.

[10] Y. Mah�eo and J.-L. Pazat. Distributed Ar-

ray Management for HPF Compilers. In High

Performance Computing Symposium, Montr�eal,

Canada, July 1995.

[11] J. Nieplocha, R.J. Harrisson, and R.J. Little-

�eld. Global arrays : A portable "shared-

memory" programming model for distributed

memory computers. In Supercomputing, pages

1{9, November 1994.

Logical Paging SVM

0

8

16

24

32

0 8 16 24 32

Spd.

Nb proc.

Jacobi

256
512 2

2

2

2

2

1024 4

4

4

4

ideal

0

8

16

24

32

0 8 16 24 32

Spd.

Nb proc.

Jacobi

256
512 2

2

2

2

2

ideal

0

8

16

24

32

0 8 16 24 32

Spd.

Nb proc.

LU factorization

256
512 2

2

2

2

2

2

1024 4

4

4

4

4

ideal

0

8

16

24

32

0 8 16 24 32

Spd.

Nb proc.

LU factorization

256
512 2

2

2

2

2

2

1024 4

4

4

4

ideal

0

8

16

24

32

0 8 16 24 32

Spd.

Nb proc.

Matrix-matrix product

256
512 2

2

2

2

21024 4

4

4

ideal

0

8

16

24

32

0 8 16 24 32

Spd.

Nb proc.

Matrix-matrix product

256
512 2

2

2

2
ideal

Figure 3: Comparison between logical paging+message passing and SVM

