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This paper introduces a one-dimensional NPZD-model developed to simulate biological

activity in a turbulent ocean water column. The model consists of a system of coupled

semilinear parabolic equations. An initial-boundary value problem is formulated and the

existence of a unique positive weak solution to it is proved. The existence result is derived

using a variational formulation, an approximate model and a fixed-point method. It is

shown that the qualitative analysis performed still applies if different parameterizations

of several biological processes found in the biogeochemical modeling literature are used.
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1. Introduction

Within the scope of global climate studies, authors carrying out modeling research

use marine ecosystem models with increasing degrees of complexity. Complexity in

such models can arise from the number of biological compartments, or state vari-

ables, which are taken into account, as well as from the parameterizations used to

model interactions between these compartments. The number of variables can vary

from one to more than ten. At least two variables, nutrients (N) and phytoplankton

(P ) are necessary to model primary production, that is to say the transformation of

mineral nutrients into primitive biotic material using external energy, provided by

the sun (Taylor et al. 28). However, in order to study the ocean carbon cycle, the

main biological processes which have to be understood and estimated are primary

production, but also the export of organic matter from the surface to deep ocean

layers and organic matter remineralization. The simpliest model able to represent

all these processes contains four variables, nutrients (N), phytoplankton (P ), zoo-

plankton (Z) and detritus (D). This type of model is termed the NPZD-model and
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2 Well-posedness of a coupled biological-physical model for the upper ocean

different variants of it are used in numerous studies. All these models are similar

from a structural point of view but authors use different parameterizations to model

fluxes between biological compartments.

Complexity can also arise from the spatial resolution of the physical dynamics to

which biological variables are submitted. Many model set-ups are zero-dimensional

and biological variables correspond to ocean mixed-layer values (e.g., Fasham et al.
10, Steele and Henderson 27, Spitz et al. 26, Fennel et al. 13). Others are one-

dimensional, considering that the ocean, in some particular places, can be modeled

with a good approximation by a turbulent water column (e.g., Prunet et al. 25,

Doney et al. 8, Lévy et al. 16, Mémery et al. 22). Finally, in some studies,

the biological model is integrated in a three-dimensional circulation model (e.g.,

Fasham et al. 11, Moisan et al. 23, Lévy et al. 17 , Carmillet et al. 6). The

question which has motivated this work is: are all these models well-posed? Of

course, it seems difficult to study all of them and in this work we concentrate first

on a one-dimensional NPZD-model and then discuss the possible generalization of

our result. The three-dimensional version of the model we consider is proposed

in Lévy et al. 17, and a one-dimensional version of a similar model, containing

six biological variables, is used by Faugeras et al. 12 to assimilate data from the

JGOFS-DYFAMED time-series station in the North-Western Mediterranean Sea.

Mathematically, the biological model under consideration is a system of coupled

parabolic semilinear equations to which initial and boundary conditions are added.

Under certain hypotheses, this general type of initial-boundary value problem can

be transformed to an abstract Cauchy problem and studied using the theory of

semigroups (following Chapter 6 of the book by Pazy 24 for example). In their paper

Boushaba et al. 4 used results on semigroups to provide a mathematical analysis of

a model describing the evolution of a single variable phytoplankton. Although the

model they considered is three-dimensional the biological reaction terms are quite

simple since only production and mortality of phytoplanckton are represented. The

model we propose here seems to be more realistic and has already been numerically

validated using observations from the DYFAMED time-series station (Lévy et al.
17, Faugeras et al. 12).

If data are regular enough the semigroup method can enable the existence of

classical solutions to be proved. However it does not enable parabolic equations

with time-dependent irregular coefficients to be easily handled. Since this is the

case in the NPZD-model we consider a variational formulation approach is more

attractive. The main purpose of this paper is to address the issue of the existence

of weak solutions to this particular one-dimensional model. The method we propose

is inspired from the work of Artola 2 in which an existence result for a semilinear

parabolic system is derived using a fixed-point argument. We introduce an approx-

imate model and prove the existence of weak solutions to this model using this

method. We then pass to the limit in the approximate model to prove the existence

of weak solutions to the NPZD-model. Furthermore, as the variables of the model

represent concentrations they should be positive. We show this is the case.
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We shall now briefly outline the contents of the paper. In the next section we

introduce the equations of the one-dimensional NPZD-model and give some com-

ments on the different parameterizations used. In Section 3 we set the mathematical

framework and state our main result, which is proved in Sections 4 and 5. The goal

of Section 6 is twofold. First we show that the existence and positivity results still

hold when different parameterizations found in the literature are used. Second, we

address the issue of uniqueness of solutions. In order to prove uniqueness we need

the nonlinear reaction terms to satisfy a local Lipschitz condition. We show this is

the case in our particular model.

2. Presentation of the one-dimensional NPZD-model

2.1. Equations of the model

In this section we give the equations of the one-dimensional NPZD-model and for-

mulate the initial-boundary value problem which will be studied.

Let us first of all justify the use of a one-dimensional model. We have in mind

numerical studies (Faugeras et al. 12, Lévy et al. 16, Mémery et al. 22) conducted

with such one-dimensional models. In these studies simulations are forced with

physical data (wind stress, heat fluxes, evaporation-precipitation) and validated

by comparison with biogeochemical data (chlorophyll and nitrate) collected at the

DYFAMED station. This station is located in the Northwestern Mediterranean

Sea and is an interesting test case for several reasons. First, several biogeochemical

production regimes that take place in the world ocean are found here. Secondly, the

station is far enough away from the Ligurian Current to be sufficiently protected

from lateral transport, thereby permitting a one-dimensional study.

In the above cited numerical studies the biogeochemical model is integrated in a

one-dimensional physical model, which simulates the time evolution of velocity,

temperature, salinity and turbulent kinetic energy (TKE). Advection is neglected

even though this might result in a crude approximation in summer during strong

wind events (Andersen and Prieur 1). The only dynamic process which is taken

into account is vertical diffusion.

The one-dimensional NPZD-model consists of four coupled semilinear parabolic

equations. Before introducing them let us give some notations. In all the following

we denote the nutrient, phytoplankton, zooplankton and detritus concentration

vector by,

C = (N,P, Z,D) = (C1, C2, C3, C4),

and the reaction terms by,

f = (fN , fP , fZ , fD) = (f1, f2, f3, f4).

The equations of the NPZD-model read as follows. For i = 1 to 4:
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





















∂Ci

∂t
− ∂

∂x
(d(t, x)

∂Ci

∂x
) + δi,4vd

∂Ci

∂x
= fi(t, x,C), t ∈]0, T ], x ∈]0, L[,

∂Ci

∂x
(t, 0) =

∂Ci

∂x
(t, L) = 0, t ∈]0, T ],

Ci(0, x) = C0
i (x), x ∈]0, L[,

(2.1)
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
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


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























fN (t, x,C) = (−µp(1− γ)LI(t, x, P )LNP + µzZ + µdD) l1]0,l](x)

+(τ(P + Z +D)) l1]l,L[(x),

fP (t, x,C) = (µp(1− γ)LI(t, x, P )LNP −GPZ −mpP ) l1]0,l](x)

+(−τP ) l1]l,L[(x),

fZ(t, x,C) = (apGPZ + adGDZ −mzZ − µzZ) l1]0,l](x)

+(−τZ) l1]l,L[(x),

fD(t, x,C) = ((1− ap)GPZ − adGDZ +mpP +mzZ − µdD) l1]0,l](x)

+(−τD) l1]l,L[(x).
(2.2)

T is a fixed time. In numerical simulations, system (2.1) is intregated over a period

of time which can vary from one month to a few years.

L is the depth of the water column under consideration (L ≈ 1000 m), l is the

maximum depth of the euphotic layer (l ≈ 200 m).

l1]0,l] and l1]l,L[ are the usual indicator functions,

l1]0,l](x) =

{

1 if x ∈]0, l],
0 otherwise.

δi,4 is the Kronecker symbol,

δi,4 =

{

1 if i = 4,
0 otherwise.

Neuman boundary conditions at x = 0 and x = L express the fact that there is no

flux through the surface of the ocean and through the ocean floor.

Initial concentrations, C0
i , satisfy C

0
i (x) ≥ 0 for all x ∈]0, L[.

The different parameters which appear in the reaction terms fi are strictly pos-

itive constants. All of them are shown in Table 1. A schematic representation of
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the model is shown on Figure 1. Let us note that parameters γ, ap and ad satisfy

1− γ > 0, 1− ap > 0 and 1− ad > 0.

The nonlinear functions LI , LN , GP and GD are given explicitly in the following

subsection, and more details about the model can be found in Lévy et al. 17.

Table 1: Parameter values
parameter name value unit
half-saturation constant kn 0.5 mmolNm−3

maximal grazing rate gz 0.75 day−1

half-saturation constant for grazing kz 1 mmolN.m−3

assimilated fraction of phytoplankton ap 0.7
assimilated fraction of detritus ad 0.5
zooplankton excretion rate µz 0.1 day−1

phytoplankton mortality rate mp 0.03 day−1

zooplankton mortality rate mz 0.03 day−1

detritus remineralization rate µd 0.09 day−1

detritus sedimentation speed vd 5 m.day−1

maximal growth rate µp 2 day−1

exsudation fraction γ 0.05
remineralization rate τ 0.05 day−1

Figure 1: Schematic representation of the compartments and processes of the NPZD
surface layer model.
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2.2. Comments and hypotheses

1. The mixing or diffusion coefficient, d(t, x), is obtained diagnostically from

TKE (Gaspar et al. 14). In modeling studies it is considered in the first

approximation that biological variables do not influence physical variables. As

a consequence biological tracers are vertically mixed with the same coefficient

as temperature and salinity. This coefficient is an output of the physical model

and data for the biological model. Consequently it does not depend on C. We

are thus given once and for all a mixing coefficient d(t, x). It strongly varies in

space and time and we can not assume it is particularly regular (Lewandosky
18). The usual basic assumption made in the mathematical literature as well

as in numerical studies is the following. We suppose that

0 < d0 ≤ d(t, x) ≤ d∞, a.e. in ]0, T [×]0, L[.

2. Because of functions l1]0,l] and l1]l,L[, the equations of the model are not the

same above and below the depth l which physically corresponds to the depth

at which the action of light on the system becomes negligeable. This corre-

sponds to a discontinuity of the reaction terms fi(t, x,C) at the point x = l.

It is the choice of modelization made by Lévy et al. 17. Above the depth l

the reaction terms correspond to the schematic representation of the model

shown on Figure 1. The basic biogeochemical fluxes are represented using a

minimum number of prognostic variables. Nutrients allow the estimation of

production to be made. Zooplankton mortality and detrital sedimentation

feed the particle export flux. Below the depth l remineralization processes

are preponderent and the surface model does not apply. Instead decay of

phytoplankton, zooplankton and detritus in nutrients parameterize reminer-

alization. More details about the modeled biogeochemical processes can be

found in Lévy et al. 17. In the following points we give the analytical expres-

sion of the nonlinear terms which are used.

3. LN , GP and GD are nonlinear functions.

• LN parameterizes the nutrient limitation on phytoplankton growth. It

follows the Michaelis-Menten kinetic, LN =
N

kn +N
. The possible nulli-

fication of the term kn + N , invites us to define, LN =
N

kn + |N | . This

formulation will be used in the following. We will show that if initial con-

centrations are positive then concentrations always stay positive, thus the

two formulations are equivalent. Let us remark that,

LN is defined and continuous on IR,

|LN (N)| ≤ 1, ∀N ∈ IR.
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• GP and GD are the zooplankton grazing rates on phytoplankton and

detritus. The formulation used is a squared Michaelis-Menten response

function:

GP =
gzP

2

kz + P 2
,

GD =
gzD

2

kz +D2
.

In the remainder of this paper we use the following properties:

GP and GD are defined and continuous on IR,

|GP | ≤ gz, ∀P ∈ IR,

|GD| ≤ gz, ∀D ∈ IR.

4. The limitation of phytoplankton growth by light is parameterized by,

LI(t, x, P ) = 1− exp(−PAR(t, x, P )/kpar),

kpar is a positive constant. The photosynthetic available radiation, PAR, is

predicted from surface irradiance and phytoplankton pigment content by a

light absorption model according to Lévy et al. 17. From a biological point of

view, the fact that PAR depends on P is important. This models the so-called

self-shading effect. We give further details of the parameterization of PAR in

Section 6, and here we only suppose it is a positive function, continuous in P

for a.e. t, x and measurable in t, x for all P . In order to prove the existence

result we have to notice that:

LI is defined on [0, T ]× [0, L]× IR,

0 ≤ LI(t, x, P ) ≤ 1, a.e in [0, T ]× [0, L]× IR,

(t, x) → LI(t, x, P ) is measurable, for all P ∈ IR,

P → LI(t, x, P ) is continuous, for a.e (t, x) ∈ [0, T ]× [0, L].

5. Eventually, let us remark the presence of the advection term vd
∂D

∂x
in the

detritus equations. Detritus, D, sink at a speed of vd.

3. Mathematical preliminaries and statement of main result

3.1. Functional spaces

In this section we introduce the functional spaces which we use in the remainder

of this work. All this study is conducted on the open set ]0, L[ and T is a fixed

time. Throughout this work, concentrations, Ci, are considered as elements of

the functional space L2(0, L) whose Hilbert space structure is convenient to use.

However, let us remember that L2(0, L) is continuously imbedded into L1(0, L)

which is a natural space for concentrations.
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H and H1 are the separable Hilbert spaces defined by

H = (L2(0, L))4,
H1 = (H1(0, L))4.

H is equipped with the scalar product

(C, Ĉ) =

∫ L

0

4
∑

i=1

Ci(x)Ĉi(x)dx

=

4
∑

i=1

(Ci, Ĉi)L2(0,L).

We denote by ||.|| the induced norm on H.

H1 is equipped with the scalar product

(C, Ĉ)1 =

∫ L

0

4
∑

i=1

Ci(x)Ĉi(x)dx +

∫ L

0

4
∑

i=1

∂Ci(x)

∂x

∂Ĉi(x)

∂x
dx

=

4
∑

i=1

(Ci, Ĉi)L2(0,L) +

4
∑

i=1

(
∂Ci

∂x
,
∂Ĉi

∂x
)L2(0,L).

We denote by ||.||1, the induced norm on H1.

We will also have to consider the space L∞ = (L∞(0, L))4. L∞(0, L) is a Banach

equipped with the norm

||Ci||∞ = inf{M ; |Ci(x)| ≤M a.e. in (0, L)}.

Similarly L∞ is a Banach space equipped with the norm

||C||∞ = sup
i=1,...,4

||Ci||∞.

Now, if X is a real Banach space equipped with the norm ||.||X , C([0, T ], X)

is the space of continuous functions on [0, T ] with values in X , equipped with the

norm,

||C||C([0,T ],X) = sup
[0,T ]

||C(t)||X .

Similarly L2(0, T,X) is the space of functions L2 in time with values in X , equipped

with the norm,

||C||L2(0,T,X) = (

∫ T

0

||C(t)||2Xdt)1/2,

and L∞(0, T,X) is the space of functions L∞ in time with values in X , equipped

with the norm,

||C||L∞(0,T,X) = inf{M ; ||C(t)||X ≤M a.e in (0, T )}.

C([0, T ], X), L2(0, T,X) and L∞(0, T,X) are Banach spaces.

We have the useful
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Lemma 3.1 The imbedding, H1 ⊂ L∞, is continuous.

The imbeddings, H1 ⊂ H and H1 ⊂ C([0, L], IR4) are compact.

Proof. It is a consequence of corollaries IX.14 and IX.16 in Brézis 5, and of the

Rellich-Kondrachoff theorem (Lions and Magenes 20) .

H′ denotes the dual of H and (H1)′ the dual of H1. When H is identified with

its dual, we have the classical scheme,

H1 ⊂ H = H′ ⊂ (H1)′,

where each space is dense in the following and the imbeddings are continuous.

Let us denote by W (H1) the Hilbert space,

W (H1) = {C ∈ L2(0, T,H1);
dC

dt
∈ L2(0, T, (H1)′)}.

Lemma 3.2 Every C ∈ W (H1) is a.e equal to a continuous function from [0, T ]

to H. Moreover we have the following continuous imbedding,

W (H1) ⊂ C([0, T ],H).

Proof. See Dautray and Lions 7 for example .

Moreover, because the injective mapping H1 ⊂ H is compact, we know that,

Lemma 3.3 The identity mapping, W (H1) ⊂ L2(0, T,H), is compact.

Proof. See Aubin 3 or Lions 19 .

3.2. A preliminary transformation of the system and the bilinear form

a(t,C,C′)

In order to work with a bilinear form as simple as possible, we start by adding λCi

to both sides of system (2.1). The value of λ > 0 will be fixed in what follows. This

leads to the equivalent system, for i = 1 to 4:



































∂Ci

∂t
− ∂

∂x
(d(t, x)

∂Ci

∂x
) + δi,4vd

∂Ci

∂x
+ λCi

= fi(t, x,C) + λCi, t ∈]0, T ], x ∈]0, L[,
∂Ci

∂x
(t, 0) =

∂Ci

∂x
(t, L) = 0, t ∈]0, T ],

Ci(0, x) = C0(x), x ∈]0, L[.

(3.3)
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For N,N ′, P, P ′, Z, Z ′ and D,D′ ∈ H1(0, L), we define

aN (t, N,N ′) =

∫ L

0

d(t, x)
∂N

∂x

∂N ′

∂x
+ λ

∫ L

0

NN ′,

aP (t, P, P
′) =

∫ L

0

d(t, x)
∂P

∂x

∂P ′

∂x
+ λ

∫ L

0

PP ′,

aZ(t, Z, Z
′) =

∫ L

0

d(t, x)
∂Z

∂x

∂Z ′

∂x
+ λ

∫ L

0

ZZ ′,

aD(t,D,D′) =

∫ L

0

d(t, x)
∂D

∂x

∂D′

∂x
+

∫ L

0

vd
∂D

∂x
D′ + λ

∫ L

0

DD′,

and

a(t,C,C′) = aN (t, N,N ′) + aP (t, P, P
′) + aZ(t, Z, Z

′) + aD(t,D,D′).

Lemma 3.4 For a.e. t ∈ [0, T ], a(t,C,C′) is a continuous bilinear form on H1 ×
H1. For all C, C′ ∈ H1, t → a(t,C,C′) is measurable and there exists a constant

Ma > 0 such that,

|a(t,C,C′)| ≤Ma||C||1||C′||1, ∀C,C′ ∈ H1.

For a fixed λ, λ ≥ v2d
2d0

, there exists a constant c0 > 0 such that,

a(t,C,C) ≥ c0||C||21, ∀t ∈ [0, T ], ∀C ∈ H1.

Proof. The proof for this is classical and it is omited .

3.3. The reaction terms and the nonlinear operator G

In this paragraph we show that the reaction terms of the NPZD-model enable us

to define a continuous operator G on L2(0, T,H).

Lemma 3.5 The reaction terms fN , fP , fZ and fD defined in Section 2 have the

following properties:

(P1) For a.e. (t, x) ∈ [0, T ]× [0, L], and all C ∈ IR4,

|fN (t, x,C)| ≤ (µp(1− γ) + τ)|P |+ (µz + τ)|Z|+ (µd + τ)|D|,
|fP (t, x,C)| ≤ (µp(1 − γ) +mp + τ)|P |+ gz|Z|,
|fZ(t, x,C)| ≤ ((ap + ad)gz +mz + µz + τ)|Z|,
|fD(t, x,C)| ≤ (((1− ap) + ad)gz +mz)|Z|+mp|P |+ (µd + τ)|D|.

(P2) The function f(t, x,C), defined from [0, T ]× [0, L]× IR4 → IR4, is measurable

in (t, x), for all C ∈ IR4, and is continuous in C, for a.e. (t, x) ∈ [0, T ]×[0, L].
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Proof. The proof is straightforward and uses the comments of Section 2.2 .

We now define a function g(t, x,C) = f(t, x,C)+λC from [0, T ]× [0, L]× IR4 →
IR4 and a nonlinear operator, G, by:

GC = g(t, x,C(t, x)), (t, x) ∈ [0, T ]× [0, L].

Proposition 3.1 The operator, G, is well defined from L2(0, T,H) to itself. There

exists a constant Mg > 0, depending only on the parameters of the model, such that,

for all C ∈  L2(0, T,H)

||GC||L2(0,T,H) ≤Mg||C||L2(0,T,H).

The operator G is continuous on L2(0, T,H).

Proof. Let C ∈ L2(0, T,H) and t ∈ [0, T ]. From point (P1) of lemma 3.5 we

obtain,

||GC(t)||2 =

∫ L

0

|fN (t, x,C(t, x)) + λN(t, x)|2 + |fP (t, x,C(t, x)) + λP (t, x)|2

+|fZ(t, x,C(t, x)) + λZ(t, x)|2 + |fD(t, x,C(t, x)) + λD(t, x)|2dx,

||GC(t)||2 ≤

cte1(||P (t)||2L2(0,L) + ||Z(t)||2L2(0,L) + ||D(t)||2L2(0,L) + ||N(t)||2L2(0,L))

+cte2(||P (t)||2L2(0,L) + ||Z(t)||2L2(0,L) + ||P (t)||2L2(0,L))

+cte3(||Z(t)||2L2(0,L))

+cte4(||Z(t)||2L2(0,L) + ||P (t)||2L2(0,L) + ||D(t)||2L2(0,L)),

||GC(t)||2 ≤M2
g ||C(t)||2,

and integrating on [0, T ],

||GC||L2(0,T,H) ≤Mg||C||L2(0,T,H).

From point (P2) of lemma 3.5 we know that the function,

g(t, x,C) = f(t, x,C) + λC,

from [0, T ]× [0, L]× IR4 → IR4, satisfies the conditions of Carathéodory and by the-

orem 2.1 page 22 of Krasnosel’skii 15, we know that the operatorG is continuous .

3.4. Variational formulation

We can now write the definition of a weak solution to system (2.1),
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Definition 3.1 C ∈W (H1) is a weak solution of system (2.1) if

∀φ ∈ H1, (
dC

dt
, φ) + a(t,C, φ) = (GC, φ),

in the D′(]0, T [) sens,

and C(0) = C0.

and state the main result of this paper,

Theorem 3.1 Let C0 ∈ H. There exists a weak solution to system (2.1). Further-

more, if N0, P 0, Z0 and D0 are positive then N,P, Z and D are positive for a.e.

t ∈ [0, T ].

The proof is given in the next two sections.

4. Existence

The existence result is obtained in two steps. We first define an approximate prob-

lem, in which the operatorG is approximated by an operatorGn. This approximate

problem is solved using the Schauder fixed-point theorem. In the second step we

let n→ ∞ to obtain a solution to the initial problem.

4.1. Step 1: approximated problem

Let n > 0 be a fixed integer and gn be defined by,

gn : [0, T ]× [0, L]× IR4 → IR4

(t, x,C) → (
(g(t, x,C))i

1 + 1
n |(g(t, x,C))i|

)i=1,...4.

Define the nonlinear operator, Gn, by:

GnC = gn(t, x,C(t, x)), (t, x) ∈ [0, T ]× [0, L].

Proposition 4.2 The operator, Gn, is well defined from L2(0, T,H) to itself and

there exists a constant, Mg > 0, such that for all C ∈  L2(0, T,H),

||GnC||L2(0,T,H) ≤Mg||C||L2(0,T,H).

The operator Gn is continuous on L2(0, T,H).

For all C ∈ L2(0, T,H), we also have the estimation,

||GnC||L2(0,T,H) ≤ 2n
√
LT.

Proof. Let C ∈ L2(0, T,H). From the definition of gn and from proposition 3.1

we obtain,

||GnC||L2(0,T,H) ≤ ||GC||L2(0,T,H) ≤Mg||C||L2(0,T,H).

The estimation ||GnC||L2(0,T,H) ≤ 2n
√
LT is also derived easily from the choice

made to define gn.
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As in proposition 3.1, gn satisfies the conditions of Carathéodory and Gn is con-

tinuous on L2(0, T,H) .

We now seek a solution to the approximated system and show that such a

solution is a fixed-point of the operator Θ defined in the next proposition.

Proposition 4.3 Let Ĉ be a fixed element of L2(0, T,H) and let C0 ∈ H. There

exists a unique solution to the problem:

find C ∈ W (H1) such that,

∀φ ∈ H1, (
dC

dt
, φ) + a(t,C, φ) = (GnĈ, φ),

in the D′(]0, T [) sens,

and C(0) = C0.

This solution defines an operator Θ on L2(0, T,H), ΘĈ = C.

Proof. Since the problem is linear in C and GnĈ is fixed in L2(0, T,H), the proof

is classical (e.g. Dautray and Lions, 7) .

To insure that Θ has a fixed point, we show that the Schauder fixed point

theorem can be applied.

Lemma 4.6 The operator Θ is continuous on L2(0, T,H).

Proof. Let Ĉ1 and Ĉ2 ∈ L2(0, T,H). C1 and C2, the associated solutions to the

problem of proposition 4.3, satisfy,

(
d

dt
(C1 −C2), φ) + a(t,C1 −C2, φ) = (GnĈ

1 −GnĈ
2, φ).

Taking φ = C1 −C2 as a test function, integrating on [0, t], using the coerciveness

of a and Cauchy-Schwarz inequality, we obtain,

∫ t

0

1

2

d

dt
||C1(s)−C2(s)||2 + c0||C1(s)−C2(s)||21ds

≤
∫ t

0

||GnĈ
1(s)−GnĈ

2(s)||||C1(s)−C2(s)||ds.

As C1(0) = C2(0) = C0 we obtain using Young’s inequality,

||C1(t)−C2(t)||2 +
∫ t

0

2c0||C1(s)−C2(s)||21ds

≤
∫ t

0

1

α
||GnĈ

1(s)−GnĈ
2(s)||2ds+ α

∫ t

0

||C1(s)−C2(s)||2ds,

and with α = 2c0,

||C1(t)−C2(t)||2 ≤
∫ T

0

1

2c0
||GnĈ

1(s)−GnĈ
2(s)||2ds.
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Eventually, we obtain, integrating on [0, T ],

||ΘĈ1 −ΘĈ2||L2(0,T,H) = ||C1 −C2||L2(0,T,H) ≤
√

T

2c0
||GnĈ

1 −GnĈ
2||L2(0,T,H)

and Θ is continuous as Gn is .

Lemma 4.7 The operator Θ maps L2(0, T,H) in the ball

B = {C ∈ L2(0, T,H), ||C||L2(0,T,H) ≤

√

T (
2LTn2

c0
+ ||C0||2)}.

In particular, we have, Θ(B) ⊂ B.

Proof. Let Ĉ ∈ L2(0, T,H). C, the solution to the problem of proposition 4.3,

satisfies,

(
d

dt
C, φ) + a(t,C, φ) = (GnĈ, φ).

Taking φ = C as a test function, integrating [0, t], using the coerciveness of a and

the Cauchy-Schwarz inequality we obtain,

∫ t

0

1

2

d

dt
||C(s)||2 + c0||C(s)||21ds ≤

∫ t

0

||GnĈ(s)||||C(s)||ds,

with Young’s inequality,

||C(t)||2 +
∫ t

0

2c0||C(s)||21ds ≤
∫ t

0

1

α
||GnĈ(s)||2ds+ α

∫ t

0

||C(s)||2ds+ ||C0||2,

with α = 2c0 and as

∫ t

0

||GnĈ(s)||2ds ≤ 4LTn2, we have

||C(t)||2 ≤ 4LTn2

2c0
+ ||C0||2,

integrating once more on [0, T ] we obtain,

||ΘĈ||2L2(0,T,H) = ||C||2L2(0,T,H) ≤ T (
2LTn2

c0
+ ||C0||2).

.

Lemma 4.8 The operator Θ is compact.

Proof. Let B be a bounded set in L2(0, T,H). Let us show that Θ(B) is bounded

in W (H1). Let Ĉ ∈ B ⊂ L2(0, T,H) and let C be the associated solution to the

problem of proposition 4.3. As in the proof of lemma 4.7 we obtain

||C(t)||2 +
∫ t

0

2c0||C(s)||21ds ≤
∫ t

0

1

α
||GnĈ(s)||2ds+ α

∫ t

0

||C(s)||2ds+ ||C0||2.
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Taking α = c0 this time, we obtain

∫ T

0

||C(s)||21ds ≤
1

c0
||GnĈ||L2(0,T,H)2 + ||C0||2 ≤ 4LTn2

c0
+ ||C0||2,

and ΘĈ is bounded in L2(0, T,H1).

Moreover we obtain

∀φ ∈ H1, (
dC

dt
, φ) + a(t,C, φ) = (GnĈ, φ).

From lemma 3.4,

|(dC
dt
, φ)| ≤Ma||C||1||φ||1 + ||GnĈ||||φ|| ≤Ma||C||1||φ||1 + 2n

√
L||φ||1,

and
∫ T

0

||dC
dt

||2(H1)′ds ≤ 2

∫ T

0

(4Ln2 +M2||C||21)ds.

And therefore, ||dC
dt

||L2(0,T,(H1)′) is bounded in L2(0, T, (H1)′).

The range of Θ is in W (H1), from lemma 3.3, the injection W (H1) ⊂ L2(0, T,H)

is compact, and this concludes the proof .

It is now possible to state the main result of this section, concerning the existence

of weak solutions to the approximated problem.

Theorem 4.2 Let n > 0 be a fixed integer. Let C0 ∈ H. There exists a solution,

Cn, to the problem:

find C ∈ W (H1) such that,

∀φ ∈ H1, (
dC

dt
, φ) + a(t,C, φ) = (GnC, φ),

in the D′(]0, T [) sens,

and C(0) = C0.

Proof. From lemma 4.6, 4.7, 4.8 and the Schauder fixed-point theorem, the oper-

ator Θ has a fixed point, which is the solution sought .

4.2. Step 2: letting n→ ∞
We now pass to the limit as n→ ∞, in the equations,

∀φ ∈ H1, (
dCn

dt
(t), φ) + a(t,Cn, φ) = (GnCn(t), φ),

Cn(0) = C0.
(4.4)

This is achieved in two steps:
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a) a priori estimations on the sequence Cn,

b) extraction of subsequences and letting n→ ∞.

a) estimations. Let us show that:

(a.1) the sequence (Cn)n>0 is bounded in L∞(0, T,H),

(a.2) the sequence (Cn)n>0 is bounded in L2(0, T,H1),

(a.3) the sequence (
dCn

dt
)n>0 is bounded in L2(0, T, (H1)′).

Taking, Cn as a test function in (4.4) we obtain,

1

2

d

dt
||Cn||2 + a(t,Cn,Cn) = (GnCn,Cn),

or,
1

2

d

dt
||Cn||2 + c0||Cn||21 ≤ ||GnCn||||Cn|| ≤Mg||Cn||2,

and integrating on [0, t], we obtain

||Cn||2 + 2c0

∫ t

0

||Cn||21ds ≤ 2Mg

∫ t

0

||Cn||2ds+ ||C0||2. (4.5)

Equation (4.5) gives

||Cn||2 ≤ 2Mg

∫ t

0

||Cn||2ds+ ||C0||2.

Using Gronwall lemma, we have

||Cn(t)||2 ≤ ||C0||2 exp(2MgT ), (4.6)

and the sequence (Cn)n>0 is bounded in L∞(0, T,H).

Equation (4.5) also gives

∫ t

0

||Cn||21ds ≤
Mg

c0

∫ t

0

||Cn||2ds+
1

2c0
||C0||2,

and with (4.6)

∫ t

0

||Cn||21ds ≤
MgT

c0
||C0||2 exp(2MgT ) +

1

2c0
||C0||2.

Therefore the sequence (Cn)n>0 is bounded in L2(0, T,H1).
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Let us now give an estimation for the sequence, (
dCn

dt
)n>0. We have

|(dCn

dt
, φ)| ≤ |a(t,Cn, φ)|+ |(GnCn, φ)|,

and therefore

|(dCn

dt
, φ)| ≤Ma||Cn||1||φ||1 +Mg||Cn||1||φ||1,

that is to say

∫ T

0

||dCn

dt
||2(H1)′ ≤ 2(M2

a +M2
g )

∫ T

0

||Cn||21

≤ 2(M2
a +M2

g )(
MgT

c0
||C0||2 exp(2MgT ) +

1

2c0
||C0||2),

and the sequence (
dCn

dt
)n>0 is bounded in L2(0, T, (H1)′).

b) passing to the limit. Let us first recall that D(]0, T [,H1) ⊂W (H1). There-

fore ∀φ ∈ H1 and ∀ϕ ∈ D(]0, T [), we have ψ = φ ⊗ ϕ ∈ L2(0, T,H1) and
dψ

dt
∈ L2(0, T, (H1)′).

b.1) The term (
dCn

dt
, φ): from (a.3), we are able to extract from the sequence

(
dCn

dt
)n>0 a subsequence (denoted in the same way) converging to some

h in L2(0, T, (H1)′) weak star, that is to say, for all φ ∈ H1 and all

ϕ ∈ D(]0, T [),

lim
n→∞

∫ T

0

(
dCn

dt
, φ)ϕds =

∫ T

0

(h, φ)ϕds.

Moreover, by definition, we obtain

∫ T

0

(
dCn

dt
, φ)ϕds = −

∫ T

0

(Cn, φ)
dϕ

dt
ds.

From (a.2), we are able to extract from the sequence (Cn)n>0 a subse-

quence (denoted in the same way) converging to some C in L2(0, T,H1)

weak. Therefore, for all φ ∈ H1 and all ϕ ∈ D(]0, T [),

lim
n→∞

−
∫ T

0

(Cn, φ)
dϕ

dt
ds = −

∫ T

0

(C, φ)
dϕ

dt
ds,

and h =
dC

dt
in L2(0, T, (H1)′).
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b.2) The term a(t,Cn, φ): from (b.1), we can suppose that the sequence

(Cn)n>0 converges to C in L2(0, T,H1) weak. Therefore the sequence

(∂xCn)n>0 converges to ∂xC in L2(0, T,H) weak. Then, for all φ ∈ H1

and all ϕ ∈ D(]0, T [),

lim
n→∞

∫ T

0

a(s,Cn, φ)ϕds =

∫ T

0

a(s,C, φ)ϕds.

b.3) The term (GnCn, φ): from (a.2), (a.3), and from the compacity of

the injection W (H1) → L2(0, T,H), we can suppose that the sequence

(Cn)n>0 converges to C in L2(0, T,H) strong. Therefore, each Cn,i,

i = 1, ...4, converges to Ci in L
2(0, T, L2(0, L)) strong. From the inverse

Lebesgue theorem (Brézis, 5, theorem IV.9. page 58), we can suppose

that:

(b.3.1) the sequences (Cn,i)n>0, i = 1, ...4, converge toCi a.e. in ]0, T [×]0, L[.

(b.3.2) for i = 1 to 4, |Cn,i| ≤ hi, ∀n > 0, a.e. in ]0, T [×]0, L[ and hi ∈
L2(0, T, L2(0, L)).

As gn,i(t, x,C) is continuous in its third variable, we deduce from (b.3.1)

that ∀φi ∈ H1(0, L) and ∀ϕ ∈ D(]0, T [),

un,i(t, x) = gn,i(t, x,Cn(t, x))φi(x)ϕ(t)

−→

n→ ∞
gi(t, x,C(t, x))φi(x)ϕ(t),

a.e. in ]0, T [×]0, L[.

Moreover, from lemma 3.3 and with (b.3.2) we have,

|un,i| ≤Mi(
4

∑

i=1

hi)|φi||ϕ| ∈ L1(]0, T [×]0, L[),

where the Mi are constants. Thus, from the Lebesgue theorem on dom-

inated convergence, we obtain,

lim
n→∞

∫ T

0

∫ L

0

un,i(t, x)dxdt =

∫ T

0

∫ L

0

gi(t, x,C(t, x))φi(x)ϕ(t)dxdt,

and finally, for all φ ∈ H1 and all ϕ ∈ D(]0, T [),

lim
n→∞

∫ T

0

(GnCn, φ)ϕ =

∫ T

0

(GC, φ)ϕ.

This concludes the proof of the existence of weak solutions to the one-dimensional

NPZD-model.

5. Positivity
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In this section we prove the second part of Theorem 3.1: if initial conditions

N0, P 0, Z0 and D0 are positive then solutions to the one-dimensional NPZD-model

are positive for a.e. t ∈ [0, T ]. To prove this, we need to treat each of the four

equations seperately, in detail, and in a convenient order. We first show that Z and

P are positive. Next we show that D is positive using the fact that Z and P are

positive. Finally, as Z, P and D are positive we obtain the positivity of N .

• Let us recall that for all C ∈ H1 and all t ∈ [0, T ], aN (t, N,N) ≥ 0,

aP (t, P, P ) ≥ 0, aZ(t, Z, Z) ≥ 0 and aZ(t, Z, Z) ≥ 0.

• Z is positive:

Let C be a weak solution to the NPZD-model. Let us take

−Z− = −max(0,−Z),

as a test function. Since,

∫ L

0

∂Z(t, x)

∂t
Z−(t, x)dx = −1

2

d

dt
||Z−(t)||2L2(0,L),

and

aZ(t, Z(t),−Z−(t)) = aZ(t, Z(t)
−, Z(t)−),

we obtain

1

2

d

dt
||Z(t)−||2L2(0,L) + aZ(t, Z(t)

−, Z(t)−) = −(gZ(C(t)), Z(t)−).

Let us detail the term (gZ(C), Z−).

(gZ(C), Z−)L2(0,L) =

∫ L

0

(ap
gzP

2

kz + P 2
ZZ− + ad

gzD
2

kz +D2
ZZ− −mzZZ

−

−µzZZ
−) l1]0,l] + (−τZZ−) l1]l,L[ + λZZ−.

As ZZ− = −(Z−)2, we have

(gZ(C), Z−)L2(0,L) =

∫ L

0

(−(ap
gzP

2

kz + P 2
)(Z−)2 − (ad

gzD
2

kz +D2
)(Z−)2 +mz(Z

−)2

+µz(Z
−)2) l1]0,l] + (τ(Z−)2) l1]l,L[ − λ(Z−)2,

and

(gZ(C), Z−)L2(0,L) ≥
∫ L

0

(−(ap
gzP

2

kz + P 2
)(Z−)2

−(ad
gzD

2

kz +D2
)(Z−)2)l1]0,l] − λ(Z−)2,
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or

−(gZ(C), Z−)L2(0,L) ≤
∫ L

0

((ap
gzP

2

kz + P 2
)(Z−)2

+(ad
gzD

2

kz +D2
)(Z−)2) + λ(Z−)2.

Thus

−(gZ(C), Z−)L2(0,L) ≤
∫ L

0

(gz(ap + ad) + λ)(Z−)2),

= (gz(ap + ad) + λ)||Z−||2L2(0,L).

As aZ(t, Z
−, Z−) ≥ 0, we obtain

d

dt
||Z−||2L2(0,L) ≤ 2(gz(ap + ad) + λ)||Z−||2L2(0,L).

Integrating this inequality on [0, t] and using Gronwall’s lemma, we obtain

||Z−(t)||2L2(0,L) ≤ ||Z−(0)||2L2(0,L) exp(2(gz(ap + ad) + λ)t).

Therefore Z is positive.

• P is positive:

In the same manner, let us examine the term (gP (C), P−)L2(0,L).

(gP (C), P−)L2(0,L) =

∫ L

0

(µp(1− γ)LILNPP
− − (

gzP
2

kz + P 2
ZP−)

−mpPP
−) l1]0,l] + (−τPP−) l1]l,L[ + λPP−,

=

∫ L

0

(−µp(1− γ)LILN(P−)2 − (
gzP

2

kz + P 2
ZP−)

+mp(P
−)2) l1]0,l] + (τ(P−)2) l1]l,L[ − λ(P−)2,

≥
∫ L

0

(−µp(1− γ)LILN(P−)2

−(
gzP

2

kz + P 2
ZP−)) l1]0,l] − λ(P−)2,

and

−(gP (C), P−)L2(0,L) ≤
∫ L

0

µp(1− γ)LILN (P−)2

+(
−gzP
kz + P 2

Z(P−)2) l1]0,l] + λ(P−)2.

The function x 7→ −x
kz + x2

is bounded by
1

2
√
kz

on IR.

LN and LI are bounded by 1.
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Z(t), is a solution to the NPZD-model and therefore belongs to H1(0, L) ⊂
L∞(0, L). Hence we have, ∀t, Z(t) ≤ ||Z(t)||∞, and

−(gP (C), P−)L2(0,L) ≤ (λ+ µp(1− γ) + gz
1

2
√
kz

||Z(t)||∞)||P−(t)||2L2(0,L).

We conclude in the same way to obtain

||P−(t)||2L2(0,L) ≤ ||P−(0)||2L2(0,L) exp(

∫ t

0

2(λ+ µp(1− γ)

+gz
1

2
√
kz

||Z(s)||∞)ds).

• D is positive:

(gD(C), D−)L2(0,L) =

∫ L

0

((1− ap)(
gzP

2

kz + P 2
ZD−)− ad(

gzD
2

kz +D2
ZD−)

+mpPD
− +mzZD

− + µd(D
−)2) l1]0,l]

+(τ(D−)2) l1]l,L[ + λDD−.

Because P,Z and D− are positive, we obtain

(gD(C), D−)L2(0,L) ≥
∫ L

0

(−ad(
gzD

2

kz +D2
ZD−)) l1]0,l] − λ(D−)2,

−(gD(C), D−)L2(0,L) ≤
∫ L

0

(−ad(
gzD

kz +D2
Z(D−)2)) l1]0,l] + λ(D−)2,

−(gD(C), D−)L2(0,L) ≤
∫ L

0

(ad(gz
1

2
√
kz

||Z||∞)(D−)2) l1]0,l] + λ(D−)2,

−(gD(C), D−)L2(0,L) ≤ (λ+ ad(gz
1

2
√
kz

||Z||∞))||D−||2L2(0,L).

Hence

d

dt
||D−||2L2(0,L) ≤ 2(λ+ ad(gz

1

2
√
kz

||Z||∞))||D−||2L2(0,L),

and we can conclude.

• N is positive:

(gN (C), N−)L2(0,L) =

∫ L

0

(−µp(1 − γ)LILNPN
− + µzZN

−

+µdDN
−) l1]0,l] + (τ(P + Z +D)N−) l1]l,L[ + λNN−.

Because P,Z,D and N− are positive, we have

(gN (C), N−)L2(0,L) ≥
∫ L

0

(−µp(1− γ)LILNPN
−) l1]0,l] − λ(N−)2,

−(gN(C), N−)L2(0,L) ≤
∫ L

0

(−µp(1− γ)LI
1

kn + |N |P (N
−)2) l1]0,l] + λ(N−)2.
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Once again we can conclude and the proof of theorem 3.1 is complete.

Hence, if initial concentrations are positive then concentrations are always pos-

itive and both models, with or without absolute values in the nonlinear terms, are

equivalent.

6. Existence, positivity and uniqueness for different GP , GD, LI and

zooplankton mortality formulations

Functions used to parameterize biological fluxes such as zooplankton grazing on

phytoplankton, GP , or on detritus, GD, light limited growth rate, LI or zooplank-

ton mortality (which is a constant,mz, in our model), vary from one modeling study

to another. One can wonder if the existence result still applies with these different

formulations. To answer this question it should be noticed that the key argument

used in the proof is the fact that the nonlinear reaction terms allow us to define

a nonlinear continuous operator G satisfying ||GC||L2(0,T,H) ≤ Mg||C||L2(0,T,H).

Therefore, as all the functions listed in Table 2, found in the literature, are contin-

uous and bounded on IR+ or (IR+)2, the existence result stays correct. Positivity

can also easily be checked for all these different formulations. It should however be

mentioned that some studies use a quadratic zooplankton mortality term which can

not be treated with the method we propose.

Let us now concentrate on the question of the uniqueness of weak solutions to

the one-dimensional NPZD-model.

In order to prove uniqueness we need the nonlinear reaction terms to satisfy a local

Lipschitz condition which was not needed to obtain the existence result. To ver-

ify that such a condition holds we examine in some details the optical model from

which the PAR(t, x, P ) term and consequently the LI(t, x, P ) term are calculated.

In the different equations LI(t, x, P ) allways appears in the product form PLI(t, x, P ).

Concerning this product the desired local Lipschitz condition reads as follows:

for all (t, x) ∈ [0, T ]× [0, L], and all P, P̂ ∈ [0,+∞[,

|PLI(t, x, P )− P̂LI(t, x, P̂ )| ≤ KI(P, P̂ )|P − P̂ |, (6.7)

where KI is a continuous nonnegative real-valued function which is increasing in

each variable.

In the optical model we considered, two different wavelengths are taken into account

and the absorption coefficients depend on the local phytoplankton concentrations:

PAR(t, x, P ) = Q(t)(exp(−(kgo + kgp(
12Prd
rpgrc

)lg )x)

+ exp(−(kro + krp(
12Prd
rpgrc

)lr )x)).

Q(t) is proportional to the irradiance intensity hitting the sea surface at time t.

Parameters are given in Table 3. Let us suppose that Q(t) ∈ L∞(0, T ) and that
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Table 2: Different parameterizations found in the literature. All parameters are
positive constants.

Z grazing on
P , GP

gzP
2

kz + P 2
this study and e.g.

Fennel et al. 13

gzP
2

kz + P 2 +D2
e.g. Losa et al. 21

gzrP
2

kz(rP + (1 − r)D) + rP 2 + (1− r)D2
e.g. Fasham et al.
10

Z grazing on
D, GD

gzD
2

kz +D2
this study and e.g.

Fennel et al. 13

gzD
2

kz + P 2 +D2
e.g. Losa et al. 21

gzrD
2

kz(rP + (1 − r)D) + rP 2 + (1− r)D2
e.g. Fasham et al.
10

light limited
growth rate,
LI

1− exp(−PAR(t, x, P )/kpar) this study and e.g.

Lévy et al. 16

vpαPAR(t, x, P )

(v2p + α2PAR(t, x, P )2)1/2
e.g. Spitz et al. 26

Z mortality mz this study and e.g.

Lévy et al. 17

mzZ

k + Z
e.g. Losa et al. 21
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Q(t) ≥ 0. Even though the exponents lg and lr satisfy 0 < lg < 1 and 0 < lr < 1,

an easy calculation of the derivative,
d

dP
(PLI(t, x, P )), shows that with such an

optical model property (6.7) is satisfied with:

KI(P, P̂ ) = 1+
||Q||∞L
kpar

(kgplg(
12rd
rpgrc

)lg (max (P, P̂ ))lg+krplr(
12rd
rpgrc

)lr (max (P, P̂ ))lr ).

In the literature PAR(t, x, P ) is often parameterized by,

PAR(t, x, P ) = Q(t) exp(−(k1 + k2P )x),

where k1 and k2 are positive constants. With this simpler formulation property

(6.7) is clearly satisfied.

The following two lemmas give the local Lipschitz property satisfied by all four

reaction terms of the NPZD-model.

Lemma 6.9 The nonlinear reaction terms gN , gP , gZ and gD satisfy:

for all (t, x) ∈ [0, T ]× [0, L], and all C, Ĉ ∈ (IR+)4,

|gN (t, x,C)− gN (t, x, Ĉ)| ≤ KN (P, P̂ )(|N − N̂ |+ |P − P̂ |+ |Z − Ẑ|+ |D − D̂|),
|gP (t, x,C)− gP (t, x, Ĉ)| ≤ KP (P, P̂ )(|N − N̂ |+ |P − P̂ |+ |Z − Ẑ|+ |D − D̂|),
|gZ(t, x,C) − gZ(t, x, Ĉ)| ≤ KZ(Z, Ẑ)(|N − N̂ |+ |P − P̂ |+ |Z − Ẑ|+ |D − D̂|),
|gD(t, x,C)− gD(t, x, Ĉ)| ≤ KD(Z, Ẑ)(|N − N̂ |+ |P − P̂ |+ |Z − Ẑ|+ |D − D̂|),

where KN , KP , KZ , KD are continuous nonnegative real-valued functions which

are increasing in each variable.

Proof. Functions l(x) =
x

kn + x
and g(x) =

x2

k2z + x2
are continuously differentiable

on [0,+∞[, and

|l′(x)| ≤ 1

kn
, |g′(x)| ≤ 3

√
3

8
√
kz
.

Therefore l and g are Lipschitz continuous.

It is clear that

|gN (t, x,C)− gN (t, x, Ĉ)| ≤ µp(1− γ)|LI(t, x, P )PLN (N)− LI(t, x, P̂ )P̂LN (N̂)|
+(µz + τ)|Z − Ẑ|+ (µd + τ)|D − D̂|
+τ |P − P̂ |+ λ|N − N̂ |.

Now since

|LI(t, x, P )PLN (N)− LI(t, x, P̂ )P̂LN(N̂)| = |LI(t, x, P )P (LN (N)− LN(N̂))

+LN(N̂)(LI(t, x, P )P ) − LI(t, x, P̂ )P̂ |,

we have

|LI(t, x, P )PLN (N)−LI(t, x, P̂ )P̂LN (N̂)| ≤ 1

kn
max (P, P̂ )|N−N̂ |+KI(P, P̂ )|P−P̂ |.
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We then define

KN(P, P̂ ) = max (λ+ µp(1− γ)
1

kn
max (P, P̂ ), τ + µp(1− γ)KI(P, P̂ ), µz + τ, µd + τ).

KP , KZ and KD are obtained in the same way .

Lemma 6.10 For t ∈ [0, T ] and for positive C(t), Ĉ(t) ∈ H1, there exists a con-

stant L∞, depending on ||C(t)||∞ and ||Ĉ(t)||∞, such that the operator, G, satisfies,

||GC(t)−GĈ(t)|| ≤ L∞||C(t)− Ĉ(t)||.

Proof. From lemma 3.1, H1 ⊂ L∞. From lemma 6.9 we have,

||GC(t)−GĈ(t)||2

=

∫ L

0

|gN (t, x,C(t, x)) − gN (t, x, Ĉ(t, x))|2 + |gP (t, x,C(t, x)) − gP (t, x, Ĉ(t, x))|2

+|gZ(t, x,C(t, x)) − gZ(t, x, Ĉ(t, x))|2 + |gD(t, x,C(t, x)) − gD(t, x, Ĉ(t, x))|2dx,

≤ cte(KN(||P (t)||∞, ||P̂ (t)||∞))2 [ ||N(t)− N̂(t)||2L2(0,L)

+||P (t)− P̂ (t)||2L2(0,L) + ||Z(t)− Ẑ(t)||2L2(0,L) + ||D(t)− D̂(t)||2L2(0,L) ]

+...

≤ L∞(||C(t)||∞, ||Ĉ(t)||∞)2||C(t)− Ĉ(t)||2.

.

Elementary calculations show that functions of Table 2 are continuously dif-

ferentiable on IR+ or (IR+)2, with bounded first derivatives. Therefore they are

Lipschitz continuous and the uniqueness result presented below also holds for these

formulations.

Proposition 6.4 The weak solution to the one-dimensional NPZD-model, C ∈
W (H1), is unique.

Proof. Let us suppose that there are two solutions C1 and C2 ∈ W (H1). They

satisfy

∀φ ∈ H1, (
d

dt
(C1 −C2), φ) + a(t,C1 −C2, φ) = (GC1 −GC2, φ),

Let us choose φ = C1 −C2 as a test function. Using the coerciveness of a and the

Cauchy-Schwarz inequality, we obtain

1

2

d

dt
||C1(t)−C2(t)||2+ c0||C1(t)−C2(t)||21 ≤ ||GC1(t)−GC2(t)||||C1(t)−C2(t)||.
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With Young’s inequality, we obtain

1

2

d

dt
||C1(t)−C2(t)||2 + c0||C1(t)−C2(t)||21

≤ 1

2α
||GC1(t)−GC2(t)||2 + α

2
||C1(t)−C2(t)||2,

with α = 2c0,

d

dt
||C1(t)−C2(t)||2 ≤ 1

2c0
||GC1(t)−GC2(t)||2.

From lemma (6.10) we obtain

d

dt
||C1(t)−C2(t)||2 ≤ 1

2c0
L2
∞
(t)||C1(t)−C2(t)||2.

Thus, integrating on [0, t] and using Gronwall’s lemma

||C1(t)−C2(t)||2 ≤ ||C1(0)−C2(0)||2 exp(
∫ t

0

1

2c0
L2
∞
(s)ds).

This concludes the proof .

Table 3: Optical model parameters
parameter name value unit
Redfield ratio C:N rd 6.625
contribution of Chl to absorbing
pigments

rpg 0.7

carbone:chlorophyll ratio rc 55 mgC.mgChla−1

water absorption in red kro 0.225 m−1

water absorption in green kgo 0.0232 m−1

pigment absorption in red krp 0.037 m−1.(mgChl.m−3)−lr

pigment absorption in green kgp 0.074 m−1.(mgChl.m−3)−lg

power law for absorption in red lr 0.629
power law for absorption in green lg 0.674

7. Conclusion

We have presented a qualitative analysis of a one-dimensional biological NPZD-

model. This model describes the evolution over time and space of four biological

variables, phytoplankton, zooplankton, nutrients and detritus. The only physical

process which is taken into account is vertical diffusion and the biological model

is imbedded in a physical turbulence model which we did not give explicitly but

appeared as a space and time-dependent mixing coefficient. The model’s equation

for detritus also contains an advection term which represents the sinking of detri-

tus with a constant speed. All four variables interact through nonlinear reaction
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terms which depend on space and time through the action of light and present a

discontinuity in the space variable at a particular depth.

We have formulated an initial-boundary value problem and proved existence of

a unique weak solution to it. Furthermore, a detailed investigation of the reaction

terms enabled us to prove positivity of the solution. This is biologically important

since variables represent concentrations which should always be positive quanti-

ties. We have also shown that the result still holds if different parameterizations of

biological processes found in the biogeochemical modeling literature are used.

The analysis conducted in this paper is a necessary first step towards the inves-

tigation of qualitative properties other than positivity which might be of interest.

For example Boushaba et al. 4 deal with the problem of determining the asymp-

totic behavior of solutions to their phytoplankton model. One could also wish to

investigate the bifurcational structure of the NPZD-model even though the com-

plexity of the analytical formulation of the equations might constitute a difficulty.

This type of study could help the understanding of the modifications of evolution

of the NPZD system under minor changes in the values of parameters reported in

Edwards 9 and Faugeras et al. 12.

Eventually we would like to point out that the analysis we presented can easily

be extended to models containing any number, n, of biological variables as long as

the nonlinearities allow us to define a continuous nonlinear operator G satisfying

||GC||L2(0,T,(L2(0,L))n) ≤ Mg||C||L2(0,T,(L2(0,L))n). However, in such more complex

models, the question of positivity seems to be delicate as equations have to be

treated one after the other, and the right order has to be found as the positivity of

some variables can depend on the positivity of others. Let us also mention that the

analysis can be extended to three-dimensional models in which not only mixing coef-

ficients but also velocities, calculated by an ocean circulation model, are included in

the system of partial differential equations constituing the biological model. These

velocities can be included in the bilinear form, a(t, ., .), as vd, the detritus sedimen-

tation speed, is in the formulation of the initial-boundary value problem we studied.
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16. M. Lévy, L. Mémery and J.-M. André, Simulation of primary production and export

fluxes in the Northwestern Mediterranean Sea, J. Mar. Res. 56 (1998) 197–238.
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