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A multi-region nonlinear age-size structured

fish population model

Blaise Faugeras ∗ and Olivier Maury

IRD, CRHMT, Av. Jean Monnet, BP 171, 34200 Sète, France

Abstract

The goal of this paper is to present a generic multi-region nonlinear age-size struc-
tured fish population model, and to assess its mathematical well-posedness. An
initial-boundary value problem is formulated. Existence and uniqueness of a positive
weak solution is proved. Eventually, a comparison result is derived : the population
of all regions decreases as the mortality rate increases in at least one region.

Key words: Population dynamics, age-size structure, system of partial differential
equations, initial-boundary value problem, variational formulation, positivity.

1 Introduction

Fish population dynamics models are essential to provide assessment of the
fish abundance and fishing pressure. Their use forms the basis of scientific
advice for fisheries managements. Discrete age structured models are most of
the time used for fisheries stock assessments [1]. Indeed, ecologists, mathemati-
cians and population biologists have observed that the age structure provides
more realistic results at reasonable computational expense for a wide variety
of biological populations (see [2], [3], [4], [5]).
In this paper we study a model which was first designed to represent Atlantic
bigeye tuna populations [6] but which is also generic enough to be potentially
usefull for various fish species. Indeed, most fish populations share specific
characteristics which have to be taken into account in order to model their
dynamics in a realistic manner.
A first point concerning tuna fisheries is that they are highly heterogeneous
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in space and time. This has an important impact on their functioning. Impor-
tant migrations of fish occur at various scales and fish movements have to be
explicitly represented. Moreover, growth potentially varies with space that is
to say with the region of the ocean under consideration. Hence, fishes of the
same age can exhibit very different sizes depending of their various history.
Consequently a spatialized approach taking explicitly into account the poten-
tial variability of growth in space has to be used.
A second point is that, because of non-uniform mortality over sizes, bias on
both growth and mortality estimates may result from simply adding a gaus-
sian size distribution to an age structured model as it is generally done. It is
reasonable to think that the use of both age and size as structure variables
should enable to overcome this difficulty.
These are some of the principal problems of current stock assessment models.
That is why it is necessary to carry on the modelling effort by proposing and
testing more complex models. This paper follows this direction and its purpose
is twofold.
First we describe a synthetic and generic model of population dynamics in
which both age and size are taken as structure variables and in which fish
movements among spatial regions are explicitly represented. The model is a
system of coupled partial differential equations. Nonlocal nonlinearities appear
in the boundary conditions modelling recruitment that is to say the birth law
or density dependent fish reproduction. The relative complexity of the model
enables a direct and simultaneous comparison with all the data available for
tuna fisheries such as catches, fishing efforts, size frequencies, tagging data,
and otoliths increments. This paper does not aim at getting into all the details
of the parameterizations used to represent a particular tuna population and
we refer to [6] for these points.
Our second and most important goal is to assess the mathematical well-
posedness of the model. The paper is organized as follows. The equations of
the model are presented in Section 2. Sections 3, 4 and 5 deal with the math-
ematical analysis of the model. In Section 3 we formulate an initial-boundary
value problem, introduce a variational formulation and state our main math-
ematical results. Existence of a unique weak solution is shown in Section 4.
As often with nonlinear problems the proof uses a fixed point argument. The
methodology follows the one proposed in [7] for a scalar equation. It has to be
adapted in order to be able to deal with our nonlinear system. We also show
positivity of the solution and give a comparison result in Section 5. Namely
we prove that if the fish mortality rate increases in at least one geographic
region then the population globally decreases in all regions.
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2 The model

The dynamics of the population of fish is described through density functions
pi(t, a, l) where time t ∈ (0, T ), age a ∈ (0, A) and length l ∈ (0, L) are
continuous variables and the subscript i ∈ [1 : N ] refers to the geographic
zone or region under consideration. The number of fish of age between a1 and
a2, of length between l1 and l2 at time t in region i is given by the integral

∫ a2

a1

∫ l2

l1
pi(t, a, l)dlda,

Let us set O = (0, T )× (0, A) and Q = O × (0, L). The time evolution of the
population given by Eq. 1 includes the following processes.

In region i, as time goes on and fishes grow older, their length increases with a
growth rate γi. In a fish population individuals of the same age can often differ
markedly in size [8]. This variability in growth can result from many different
mechanisms, including genetic or behavorial traits that confer different per-
formances to individuals, and factors such as environmental heterogeneity and
variability [9]. In fishery science, this variability is usually taken into account
in age-structured models using a length-at-age relation perturbed by a Gaus-
sian noise with a length dependent standard deviation (see for example [10]).
The model discussed here is length-structured and uses a diffusion term in the
length variable with dispersion rate di to account for individuals having the
same age but different lengths. The advection-diffusion term in length can be
seen as the limit of a random walk model in which each individual grows with
an average velocity, but has at each time step a small binomial probability to
grow faster or slower than this average (see the book by Okubo [11] for more
details).

The model also describes mortality and migration of individuals. The mortality
rate is split into natural mortality µi and fishing mortality fi. Let also mi→j

be the migration rate of individuals going from region i to region j (mi→j = 0
if regions i and j are not adjacent).
The density functions pi for i ∈ [1 : N ] follow the balance law:























































∂tpi(t, a, l) + ∂api(t, a, l) = ∂l(di(t, a, l)∂lpi(t, a, l))− ∂l(γi(t, a, l)pi(t, a, l))

+
N
∑

j 6=i

mj→i(t, a, l)pj(t, a, l)

−(
N
∑

j 6=i

mi→j(t, a, l))pi(t, a, l)

−(µi(t, a, l) + fi(t, a, l))pi(t, a, l), (t, a, l) ∈ Q,

(1)
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These equations have to be completed with initial and boundary conditions.
Homogeneous Neumann boundary conditions at l = 0 and l = L express the
fact that the length of individuals can not reach negative values or values
larger than L.

∂lpi(t, a, 0) = ∂lpi(t, a, L) = 0, (t, a) ∈ O. (2)

The initial age and size distribution is prescribed,

pi(0, a, l) = p0i (a, l), (a, l) ∈ (0, A)× (0, L). (3)

We also need a boundary condition for a = 0 that is to say a recruitment law.
It is written as:

pi(t, 0, l) = βi(t, l, Pi(t)), (t, l) ∈ (0, T )× (0, L), (4)

The length of recruited fish is assumed to lie between 0 and a small constant
length Lb. Moreover we denote by Lm the minimal length of fishes which have
reached maturity. Lb and Lm satisfy 0 < Lb < Lm < L. The stock spawning
biomass is calculated as

Pi(t) =
∫ A

0

∫ L

Lm

wi(t, a, l)pi(t, a, l)dlda, (5)

where wi is a weighting function. Finally we use a Beverton and Holt [9]
stock-recruitment relation in each region and obtain,

βi(t, l, P ) = l1[0,Lb](l)ψi(t)
P

θi + P
, (6)

where l1[0,Lb] is the usual characteristic function, θi > 0 is a constant parameter
and ψi(t) is a given function of time used to parameterize fluctuations of the
recruitment not taken into account in the Beverton and Holt relation.

3 Main assumptions and preliminary results

In this section we set the mathematical frame in which the analysis is con-
ducted. We formulate the main assumptions which are made on the data of
the model, give the definition of a weak solution to the initial-boundary value
problem and state our results in Theorems 3.1 and 3.2.

3.1 Functional spaces

Let us introduce the functional spaces which we use in the remainder of this
work.
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The vectorial notation p = (p1, ..., pN)
T is used. The usual scalar product of

two vectors p,q ∈ R
N is denoted by p.q and the norm of p by |p|.

H and H1 are the separable Hilbert spaces defined by H = (L2(0, L))N and
H1 = (H1(0, L))N . H is equipped with the scalar product

(p,q)H =
∫ L

0
p(l).q(l)dl.

We denote by ||.||H the induced norm on H.
H1 is equipped with the scalar product

(p,q)H1 =
∫ L

0
p(l).q(l)dl +

∫ L

0
∂lp(l).∂lq(l)dl.

We denote by ||.||H1, the induced norm on H1.
By < ., . > we denote the duality between H1 and its dual (H1)′.
L2(O,H) (resp. L2(O,H1)) denotes the Hilbert space of measurable functions
of O with values in H (resp. H1) such that

||p||L2(O,H) = (
∫

O
||p(t, a, .)||2

H
dtda)1/2 <∞ (resp. ||p||L2(O,H1) <∞).

We also make use of the notation V = L2(O,H1) and the dual space V ′ =
L2(O, (H1)′). By << ., . >> we denote the duality between V and its dual
V ′.
The partial derivatives ∂t and ∂a denote differentiation in D′(O, (H1)′) and D
stands for ∂t + ∂a.
We will have to use he following trace result.

Lemma 3.1 Let p,q ∈ V such that Dp, Dq ∈ V ′. It holds that:
For all t0 ∈ (0, T ) and all a0 ∈ (0, A), p has a trace at t = t0 belonging to
(L2((0, A)× (0, L)))N and at a = a0 belonging to (L2((0, T )× (0, L)))N . The
trace applications are continuous in the strong and weak topology. Moreover
the following integration by parts formula holds,

∫

O
[< Dp,q > + < Dq,p >]dtda =

∫ A

0

∫ L

0
[p.q(T, a, l)− p.q(0, a, l)]dadl

+
∫ T

0

∫ L

0
[p.q(t, A, l)− p.q(t, 0, l)]dtdl

Proof: This result is the extension to dimension N of Lemma 0 in [12]. Also
see [13]. �

We will also have to consider the space L∞ = (L∞(Q))N . L∞(Q) is a Banach
space equipped with the norm ||pi||∞ = inf{M ; |pi(t, a, l)| ≤ M a.e. in Q}.
Similarly L∞ is a Banach space equipped with the norm ||p||∞ = max

i∈[1:N ]
||pi||∞.
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3.2 Assumptions on the data and preliminary transformation of the system

The movements rates mi→j are assumed to satisfy

• mi→j(t, a, l) ≥ 0 a.e in Q, mi→j ∈ L∞(Q).

We define the matrix of movements M by

Mij =



















mj→i if i 6= j,

−
N
∑

k 6=i

mi→k if i = j.

Hence the term, [
N
∑

j 6=i

mj→ipj − (
N
∑

j 6=i

mi→j)pi], in Eq. 1 can be written in matrix

form as (Mp)i.
Concerning the diffusion coefficients di, the growth rates γi and the natural
and fishing mortality rates µi and fi, we make the following assumptions for
all i ∈ [1 : N ]:

• di(t, a, l) ≥ d0 > 0, a.e in Q, di ∈ L∞(Q),
• γi(t, a, l) is differentiable with respect to l, and γi, ∂lγi ∈ L∞(Q),
• µi(t, a, l), fi(t, a, l) ≥ 0, a.e in Q, µi, fi ∈ L∞(Q). We also make use of the
notation zi = µi + fi.

In the formulation of the recruitment process (Eq. 4) ψi and wi satisfy:

• ψi(t) ≥ 0 a.e in (0, T ) and ψi ∈ L∞(0, T ),
• wi(t, a, l) ≥ 0 a.e in Q and wi ∈ L∞(Q).

The initial distributions p0i (a, l) satisfies for all i ∈ [1 : N ]:

• p0i (a, l) ≥ 0 a.e in Q, p0i ∈ L2((0, A)× (0, L)).

In order to prove our existence result it is convenient to perform a change of
unknown function: p satisfies (1)-(4) if and only if p̂ = e−λtp is a solution to
the same system where −(µi + fi)pi is replaced −(µi + fi + λ)pi in Eq. 1 and
βi in the expression of the boundary condition at a = 0 (Eq. 4) is replaced by

β̂i(t, l, P̂i(t)) = l1[0,Lb](l)ψi(t)
P̂i(t)

θie−λt + P̂i(t)
, (7)

P̂i(t) =
∫ A

0

∫ L

Lm

wi(t, a, l)p̂i(t, a, l)dlda. (8)

In the remaining part of this paper this change of unknown is implicitly done
and we omit the p̂i notation. The constant λ will be fixed to a convenient value
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below. Moreover, the possible nullification of the term θie
−λt + P̂i(t), invites

us to define,

βi(t, l, Pi(t)) = l1[0,Lb](l)ψi(t)
Pi(t)

θie−λt + |Pi(t)|
. (9)

This formulation will be used in the following. We will show that if initial dis-
tributions, p0i are nonnegative then pi ≥ 0 a.e. in Q, thus the two formulations
are equivalent.

3.3 Variational formulation and weak solutions

Formally multiplying Eq. 1 by a function qi and integrating by parts on (0, L)
yields to the definition of the following linear forms. For pi, qi ∈ H1(0, L) let
us define,

bi(pi, qi) =
∫ L

0
di∂lpi∂lqidl +

∫ L

0
γi(∂lpi)qidl +

∫ L

0
(zi + ∂lγi + λ)piqidl, (10)

ci(p, qi) = −
∫ L

0
(Mp)iqidl, (11)

ei(p, qi) = bi(pi, qi) + ci(p, qi) (12)

Summing over i, we define for p,q ∈ H1, the bilinear form e(p,q) by,

e(p,q) =
N
∑

i=1

ei(p, qi) (13)

Lemma 3.2 For λ > (
1

2d0
||γ||2∞ + ||∂lγ||

2
∞ + N ||M||∞), the bilinear form

e(., .) is continuous and coercive on H1 ×H1, i.e there exist constants C1 > 0
and C2 > 0 such that

|e(p,q)| ≤ C1||p||H1||q||H1, ∀p,q ∈ H1, (14)

e(p,p) ≥ C2||p||
2
H1, ∀p ∈ H1. (15)

Proof: Using Cauchy-Schwarz inequality we obtain,

|
∑

i

bi(pi, qi)| ≤ (||d||∞ + ||γ||∞ + ||z||∞ + ||∂lγ||∞ + λ)||p||H1||q||H1

and

|
∑

i

ci(p, qi)| = |
∑

i

∑

j

∫ L

0
Mijpjqidl| ≤ ||M||∞N ||p||H1||q||H1.
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which proves (14).
Again using Cauchy-Schwarz inequality yields

|
∫ L

0
γi∂lpipi|dl ≤ ||γ||∞||∂lpi||L2(0,L)||pi||L2(0,L).

Young’s inequality then gives for any α > 0

|
∫ L

0
γi∂lpipidl| ≤

α

2
||∂lpi||

2
L2(0,L) +

1

2α
||γ||2∞||pi||

2
L2(0,L).

Therefore we have that

∑

i

∫ L

0
γi∂lpipidl ≥ −

α

2
||∂lp||

2
H
−

1

2α
||γ||2∞||p||2

H
.

Now since µi and fi are positive and di is bounded below by d0, it follows that

e(p,p) ≥ (d0 −
α

2
)||∂lp||

2
H
+ (λ− (

1

2α
||γ||2∞ + ||∂lγ||

2
∞ +N ||M||∞))||p||2

H
.

It is possible to choose α = d0 and λ such that λ0 = (λ−(
1

2d0
||γ||2∞+||∂lγ||

2
∞+

N ||M||∞)) > 0 and C2 = min(
d0

2
, λ0). �

We can now give the definition of a weak solution to the initial-boundary value
problem (1)-(4) and state the results which are shown in Section 4 and 5. A
weak solution to the initial-boundary value problem (1)-(4) is a vector valued
function p satisfying the following problem (P):
Find

p ∈ V, such that Dp ∈ V ′, (16)

solution of
∫

O
< Dp,q > dtda+

∫

O
e(p,q)dtda = 0, ∀q ∈ V, (17)

p(0, a, l) = p0(a, l) a.e in (0, A)× (0, L), (18)

p(t, 0, l) = β(t, l,P(t)) a.e in (0, T )× (0, L). (19)

In Section 4 it is proved that:

Theorem 3.1 There exists a unique solution p to problem (P).

Notation: p(t, a, l) and q(t, a, l) being vector valued functions, p ≤ q means
that pi ≤ qi a.e. in Q for all i ∈ [1 : N ].
With this notation, it is proved in Section 5 that:
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Theorem 3.2 The solution, p, to problem (P) is nonnegative a.e in Q.
Moreover, let p1 (resp. p2) denote the solution to problem (P) associated
with the vector of mortality rates z1 (resp. z2). If z1 ≤ z2 then p2 ≤ p1.

4 Existence and uniqueness

The proof of existence and uniqueness consists in two main steps. First we
show the result in the case of a constant recruitment (independent of the fish
density). Second a fixed point argument enables to cope with the original
nonlinear recruitment.

Lemma 4.1 Let b be fixed in L2((0, T ) × (0, L))N . There exists a unique p
satisfying (16)-(18) of problem (P) in which the initial condition (19) is
replaced by p(t, 0, l) = b(t, l) a.e in (0, T )× (0, L).

Proof: The proof is an adaptation of the results given for the scalar case in
[7]. We sketch it for the sake of completeness. It consists in two steps.

Step 1: We prove that given h ∈ V ′ there exists a unique p ∈ V , Dp ∈ V ′

such that
∫

O
< Dp,q > dtda+

∫

O
e(p,q)dtda =

∫

O
< h,q > dtda, ∀q ∈ V (20)

and p(0, a, l) = p(t, 0, l) = 0.

Let A0 be the unbounded linear operator on (L2(Q))N with domain D(A0) =
{p ∈ (L2(Q))N , ∂tp + ∂ap ∈ (L2(Q))N ,p(0, t, l) = p(t, 0, l) = 0}, defined by
p ∈ D(A0), A0p = ∂tp + ∂ap. Then −A0 is the infinitesimal generator of a
contraction semigroup, (S(τ)p, τ ≥ 0), in (L2(Q))N (see [14]) and

(S(τ)p)(t, a, l) =











p(t− τ, a− τ, l) if (t− τ, a− τ, l) ∈ Q,

0 otherwise.

From this one can deduce that the unbounded linear operator A from V to V ′

with domain D(A) = {p ∈ V, Dp ∈ V ′, p(0, a, l) = p(t, 0, l) = 0}, defined by
Ap = Dp is a maximal monotone operator.
With the bilinear form e(., .) we can define a linear bounded and coercive op-

erator E from V to V ′ such that << Ep,q >>=
∫

O
e(p,q)dtda, ∀p,q ∈ V .

Since E is bounded and coercive and A is maximal monotone we conclude
that for any h ∈ V ′ there exists a unique p ∈ D(A) solution to Ap+Ep = h
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which is an abstract formulation of our problem because

<< Ap,q >>=
∫

O
< Dp,q > dtda, ∀p ∈ D(A), ∀q ∈ V .

Step 2: Let us now introduce a sequence of functions φn ∈ (C∞(Q))N such
that

φn(0, a, l) → p0(a, l) in (L2((0, A)× (0, L)))N ,

φn(t, 0, l) → b(t, l) in (L2((0, T )× (0, L)))N ,

From step 1, we conclude that there exists a unique qn in D(A) solution to
Aqn + Eqn = −Aφn − Eφn. Therefore pn = qn + φn is a solution to (17)
satisfying pn(0, a, l) = φn(0, a, l) and pn(t, 0, l) = φn(t, 0, l).
Now taking pn as a test function in (17), integrating by parts using Lemma
3.1 and using the coercivity of e(., .) we obtain that

C2||p
n||2V ≤

1

2
||φn(0, a, l)||2(L2((0,A)×(0,L)))N +

1

2
||φn(t, 0, l)||2(L2((0,T )×(0,L)))N .

By the choice of φn this implies that pn is a bounded sequence in V . There-
fore we can extract a subsequence still denoted pn such that pn → p weakly
in V and Dpn → r weakly in V ′. Since the operator D is continuous on
D′(O, (H1)′), r = Dp. Moreover since E is continuous Epn → Ep. We con-
clude that p satisfies (17). The continuity of the trace applications on t = 0
and a = 0 implies that p(0, a, l) = p0(a, l) and p(t, 0, l) = b(t, l). �

Lemma 4.2 Let C3 = (max
i∈[1:N ]

[AL2||ψ||2∞||w||2∞(
eλT

θi
)2])1/2, then the applica-

tion
(pi(t, a, l)) 7→ (βi(t, l, Pi(t))) (cf Eqs 8 and 9) defines a bounded nonlinear oper-
ator, lipschitz continuous from L2(O,H) to (L2((0, T )×(0, L))N with lipschitz
constant C3.

Proof: The application, pi(t, a, l) 7→ Pi(t) =
∫ A

0

∫ L

Lm

wi(t, a, l)pi(t, a, l)dadl,

defines a bounded linear operator from L2(Q) to L2(0, T ). This follows from,

|
∫ A

0

∫ L

Lm

wi(t, a, l)pi(t, a, l)dadl| ≤
∫ A

0

∫ L

0
|wi(t, a, l)pi(t, a, l)|dadl,

and using Cauchy-Schwarz yields

∫ T

0
|Pi(t)|

2dt ≤ ||w||2∞AL||pi||
2
L2(Q).

The application pi(t, a, l) 7→ βi(t, l, Pi(t)) defines a bounded nonlinear operator
from L2(Q) to L2((0, T )× (0, L)). This follows from the fact that the applica-
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tion ui(t, P ) =
P

θie−λt + |P |
from [0, T ] × R to R satisfies |ui(t, P )| ≤

eλT

θi
|P |

and therefore we have

∫ T

0

∫ L

0
(βi(t, l, Pi(t)))

2dtdl ≤ ||ψ||2∞(
eλT

θi
)2||w||2∞AL

2||pi||
2
L2(Q).

Lipschitz continuity follows from the fact that (t, P ) 7→ ui(t, P ) is lipschitz
continuous in P uniformly in t ∈ [0, T ],

|ui(t, P
1)− ui(t, P

2)| ≤
eλT

θi
|P 1 − P 2|, ∀P 1, P 2 ∈ R, ∀t ∈ [0, T ].

Hence, if to p1i (resp. p2i ) we associate P 1
i (resp. P 2

i ) it holds that

∫ T

0

∫ L

0
[βi(t, l, P

1
i (t))− βi(t, l, P

2
i (t))]

2dtdl

=
∫ T

0

∫ L

0
[l1[0,Lb](l)ψi(t)(ui(t, P

1
i (t))− ui(t, P

2
i (t)))]

2dtdl,

≤ L||ψ||2∞(
eλT

θi
)2

∫ T

0
|P 1

i (t)− P 2
i (t)|

2dt,

≤ AL2||ψ||2∞||w||2∞(
eλT

θi
)2||p1i − p2i ||

2
L2(Q).

�

Lemma 4.3 There exists a unique p satisfying problem (P)

Proof: Let p̂ be given in V . With p̂ we associate a vector (P̂i(t)). Let us denote
F p̂ = p the solution to (16)-(18) and satisfying (pi(t, 0, l)) = (βi(t, l, P̂i(t)).
From Lemma 4.1 and Lemma 4.2 we deduce that the nonlinear operator F
maps V into itself. Moreover it follows from Lemma 3.1 that

∫

O
< Dp,p > dtda ≥ −

1

2

∫ A

0
||p0(a, .)||2

H
da−

1

2

∫ T

0
||p(t, 0, .)||2

H
dt

The coercivity of e(., .) leads to

C2

∫

O
||p(t, a, .)||2

H1dtda ≤
1

2

∫ A

0
||p0(a, .)||2

H
da+

1

2

∫ T

0
||p(t, 0, .)||2

H
dt.

Lemma 4.2 then gives

C2

∫

O
||p(t, a, .)||2

H1dtda ≤
1

2

∫ A

0
||p0(a, .)||2

H
da+

1

2
C3||p̂||

2
L2(O,H),

and F is bounded from L2(O,H) to V .
The solutions we are looking for are the fixed points of F . Let us show that
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F is a strict contraction in L2(O,H).
Let p̂1 and p̂2 be given in L2(O,H) and let p1 = F p̂1 and p2 = F p̂2 be
the associated solutions. The difference p = F p̂1 − F p̂2 satisfies (16),(17),
p(0, a, l) = 0 and (pi(t, 0, l)) = (βi(t, l, P̂

1
i (t))− βi(t, l, P̂

2
i (t))).

At the end of the proof of Lemma 3.2, since λ is arbitrary, one can choose

λ = λ1 + λ2 with λ1 >
1

2d0
||γ||2∞ + ||∂lγ||

2
∞ + N ||M||∞ and λ2 > 0 arbitrary.

Hence,

e(p,p) ≥ C̃2||p||
2
H1 + λ2||p||

2
H
≥ λ2||p||

2
H
, ∀p ∈ H1.

Now using Lemma 3.1 once again we obtain

λ2

∫

O
||p(t, a, .)||2

H
dtda ≤

1

2

N
∑

i=1

∫ T

0

∫ L

0
[βi(t, l, P̂

1
i (t))− βi(t, l, P̂

2
i (t))]

2dtdl

and Lemma 4.2 gives

λ2||p||
2
L2(O,H) ≤

1

2
C3||p̂

1 − p̂2||L2(O,H).

We can choose λ2 = C3 and since p = F p̂1 − F p̂2 this proves that F is a
strict contraction on L2(O,H). Thus it follows from Banach fixed point the-
orem that F admits a unique fixed point p which is the desired solution. �

5 Positivity and comparison result

In this section we first show in Lemma 5.1 that the fish density population
solution to our model is positive. Then a comparaison result is given in Lemma
5.2.

Lemma 5.1 The solution p to problem (P) is nonnegative a.e. in Q.

Proof: As in the proof of Lemma 4.3, let p̂ be given in V and let F p̂ = p
denote the solution to (16)-(18) and satisfying (pi(t, 0, l)) = (βi(t, l, P̂i(t))).
Let us also assume that p̂ ≥ 0.
The negative parts of pi(0, a, l) and pi(t, 0, l) satisfy (pi(0, a, l))

− = (p0i (a, l))
− =

0 and (pi(t, 0, l))
− = (βi(t, l, P̂i(t)))

− = 0.

One can then show using Lemma 3.1 (see [7]) that
∫

O
< Dp,p− > dtda ≤ 0.

The bilinear form e can be decomposed as e(p,p−) = e(p+,p−)− e(p−,p−),
with

e(p+,p−) =
N
∑

i=1

bi(p
+
i , p

−
i ) + ci(p

+, p−i ).

It holds that bi(p
+
i , p

−
i ) = 0 since one can check that bi(pi, p

−
i ) = −bi(p

−
i , p

−
i ).

12



Moreover, ci(p
+, p−i ) = −

∫ L

0

N
∑

j=1

Mijp
+
j p

−
i dl ≤ 0, since Mijp

+
j p

−
i ≥ 0 for i 6= j

and Miip
+
i p

−
i = 0.

We conclude that e(p+,p−) ≤ 0.
Taking q = p− in Eq. 17 yields,

∫

O
< Dp,p− > dtda+

∫

O
e(p+,p−)dtda−

∫

O
e(p−,p−)dtda = 0

so that we obtain
∫

O e(p
−,p−)dtda ≤ 0. The coercivity of e gives,

C2||p
−||V ≤ 0, that is to say p is nonnegative.

If we define a sequence with p1 = p̂ and pn+1 = Fpn, then from the previous
lines we deduce that pn is nonnegative for all n ≥ 1. By Banach fixed point
theorem this sequence converges to the solution p which is therefore nonneg-
ative. �

Lemma 5.2 Let p1 (resp. p2) denote the solution to problem (P) associated
with the vector of mortality rates z1 (resp. z2). If z1 ≤ z2 then p1 ≥ p2.

Proof:

Step 1: Let p̂1 and p̂2 be given in V and satisfying 0 ≤ p̂1 ≤ p̂2. Let p1 = F p̂1

and p2 = F p̂2 be the associated solutions defined as in the proof of Lemma
5.1. Let us show that p1 ≤ p2.
It is clear that P̂ 1

i (t) ≤ P̂ 2
i (t) a.e in (0, T ), then since ui(t, P ) is an increasing

function of P it holds that βi(t, l, P̂
1
i (t)) ≤ βi(t, l, P̂

2
i (t)) a.e in (0, T )× (0, L).

The difference p = p2 − p1 satisfies (16),(17) and

p(0, l, a) = 0,

p(t, 0, a) = (βi(t, l, P̂
2
i (t)))− (βi(t, l, P̂

1
i (t))) ≥ 0.

This is the same situation as in the first part of proof of Lemma 5.1 and we
conclude that p is nonnegative that is to say p1 ≤ p2.

Step 2: Let p̂ ≥ 0 be given in V . To the vectors of mortality rates z1 and z2

(0 ≤ z1 ≤ z2) we associate the bilinear forms e1 and e2 (see (10)-(12), note
that c1i (., .) = c2i (., .)) as well as the nonlinear operators F1 and F2 defined as
in the proof of lemma 5.1. They define the solutions p1 = F1p̂ and p2 = F2p̂.
Let us show that p1 ≥ p2.
(p2 − p1) satisfies

∫

O
< D(p2 − p1),q > dtda+

∫

O
[e2(p2,q)− e1(p1,q)]dtda = 0 (21)

(p2 − p1)(0, a, l) = 0 (22)
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(p2 − p1)(t, 0, l) = 0 (23)

Let us choose q = (p2 − p1)+. From the equality z2i p
2
i − z1i p

1
i = z1i (p

2
i − p1i ) +

p2i (z
2
i − z1i ) follows that

e2i (p
2, (p2i − p1i )

+)− e1i (p
1, (p2i − p1i )

+)

= ci((p
2 − p1)+, (p2i − p1i )

+)− ci((p
2 − p1)−, (p2i − p1i )

+)

+bi((p
2
i − p1i )

+, (p2i − p1i )
+)− bi((p

2
i − p1i )

−, (p2i − p1i )
+)

+
∫ L
0 p

2
i (f

2
i − f 1

i )(p
2
i − p1i )

+dl

(24)

We have already shown in the proof of Lemma 5.1 that ci((p
2 − p1)−, (p2i −

p1i )
+) ≤ 0 and that bi((p

2
i − p1i )

−, (p2i − p1i )
+) = 0. Moreover since p2 is non-

negative the last term of equality (24) is nonnegative. Then we obtain that

e2(p2, (p2 − p1)+)− e1(p1, (p2 − p1)+) ≥ e1((p2 − p1)+, (p2 − p1)+).

Since (p2 − p1) satisfies (22) and (23) it also holds that

∫

O
< D(p2 − p1), (p2 − p1)+ > dtda ≥ 0,

so that
∫

O
e1((p2 − p1)+, (p2 − p1)+)dtda ≤ 0,

and using the coercivity of e1 we finally obtain p2 ≤ p1.

Step 3: Let p̂ ≥ 0 be given in V . We define two sequences (p1,n)n≥1 and
(p2,n)n≥1 by (p1,1 = p̂, p1,n+1 = F1p1,n) and (p2,1 = p̂, p2,n+1 = F2p2,n).
From step 2 follows that p1,2 ≥ p2,2.
In addition to p1,3 = F1p1,2 and p2,3 = F2p2,2, let us define q3 = F2p1,2.
The inequality p1,3 ≥ q3 follows from step 2, whereas p2,3 ≤ q3 follows from
step 1. Therefore p1,3 ≥ p2,3. An induction then shows that p1,n ≥ p2,n, ∀n ≥
1 and since the sequences converge to the solution p1 and p2 of problem (P)
associated with the vector of mortality rates z1 and z2 respectively, the proof
is complete. �

6 Concluding remarks

In this paper we have investigated a multi-region nonlinear age-size struc-
tured fish population model. The model was formulated in a generic way so
that it can be potentially used for various fish species. We formulated an ini-
tial boundary-value problem and proved existence and uniqueness of a positive
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weak solution. We also proved a comparison result which shows that the varia-
tions in the mortality rate in each region have consequences on the population
of fish in every regions.
Other important problems need to be addressed now and are currently un-
der progress. The first one concerns the numerical implementation of this
model. In order to integrate numerically system (1)-(4) we use the character-
istic method. Indeed this system can be viewed as a collection of systems of
parabolic equations on the characteristic lines

S = {(t0 + s, a0 + s); s ∈ (0, smax(t0, a0))},

where (t0, a0) ∈ {0} × (0, A) ∪ (0, T ) × {0}. Each of these systems is then
integrated in time with an operator splitting method using the Lie formula
([15], [16]).
The second problem concerns the estimation of the different badly known
parameters of the model (growth, mortality and migration rates) from the
data available for fisheries and mentioned in the Introduction. In order to solve
numerically this inverse problem, the implementation of a variational data
assimilation method is under progress. The objective is to obtain a synthetic
representation of the real system combining theoritical knowledge (the model)
and experimental knowledge (the data).

References

[1] B. Megrey, Review and comparison of age-structured stock assessment models
from theoritical and applied points of view, in: E. Edwards, B. Megrey (Eds.),
Mathematical analysis of fish stocks dynamics, Vol. 6, AM. Fish. Soc. Symp.,
1989, pp. 8–48.

[2] G. Webb, The theory of nonlinear age-dependent population dynamics, Marcel
Dekker, 1985.

[3] D. DeAngelis, K. Rose, L. Crowder, E. Marschall, D. Lika, Fish cohort
dynamics: application of complementary modeling approaches, Am. Nat. 42
(1993) 604–622.

[4] J. Swart, A. Meijer, A simplified model for age-dependent population dynamics,
Math. Biosci. 121 (1994) 15–36.

[5] O. Arino, A survey of structured cell population dynamics, Acta Biotheor. 43
(1995) 3–25.

[6] O. Maury, B. Faugeras, V. Restrepo, FASST: A Fully Age-Size and Space-Time
structured statistical model for the assessment of tuna populations, ICCAT Coll.
Vol. Sci. Pap. in revision.

15



[7] M. Langlais, A nonlinear problem in age-dependent population diffusion, SIAM.
J. Math. Anal. 16 (3) (1985) 510–529.

[8] A. Pfister, Some consequences of size variability in juvenile prickly sculpin,
cottus asper, Environmental Biology of Fishes 66 (2002) 383–390.

[9] R. Beverton, S. Holt, On the Dynamics of of Exploited Fish Populations, Fish
and Fisheries Series 11, Chapman & Hall, 1996.

[10] D. A. Fournier, J. R. Sibert, MULTIFAN a Likelihood-Based Method for
Estimating Growth Parameters and Age Composition from Multiple Length
Frequency Data Sets Illustrated using Data for Southern Bluefin Tuna (thunnus
maccoyii), Can. J. Fish. Aquat. Sci. 47 (1990) 301–317.

[11] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Vol. 10 of
Biomathematics, Springer-Verlag, 1980.

[12] M. Garroni, M. Langlais, Age-Dependent Population Diffusion with External
Constraint, J. Math. Biology 14 (1982) 77–94.
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