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Essential self-adjointness for combinatorial
Schrodinger operators II- Metrically non
complete graphs

Yves Colin de Verdiere*
Nabila Torki-Hamza, '
Francoise Truct

October 9, 2010

Abstract

We consider weighted graphs, we equip them with a metric structure
given by a weighted distance, and we discuss essential self-adjointness for
weighted graph Laplacians and Schrodinger operators in the metrically non
complete case.

1 Introduction

This paper is a continuation of [[IJ] which contains some statements about es-
sential self-adjointness of Schrodinger operators on graphs. In [Tq], it was proved
that on any metrically complete weighted graph with bounded degree, the Lapla-
cian is essentially self-adjoint and the same holds for the Schrodinger operator
provided the associated quadratic form is bounded from below. These results
remind those in the context of Riemannian manifold in [O]] and also in [B-M-§],
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[Bhul], [Fhug. There are many recent independent researches in locally finite
graphs investigating essential self-adjointness (see [Joi], [Go-Schl|, [Md]), and re-
lations between stochastic completeness and essential self-adjointness ( see [W4],
[WoiZ as well as the thesis [Woll]). Similar results have been extended for arbi-
trary regular Dirichlet forms on discrete sets in [Ke-Le-3] which is mostly a survey
of the original article [Ke-Le-1]. More recently the paper [Hd] is devoted to the
stability of stochastic incompleteness, in almost the same setup as in [[Ke-Le-1J.
Here, we will investigate essential self-adjointness mainly on metrically non com-
plete locally finite graphs.

Let us recall that a weighted graph G is a generalization of an electrical network
where the set of vertices and the set of edges are respectively weighted with pos-
itive functions w and c. For any given positive function p, a weighted distance d,
can be defined on GG. Thus we have the usual notion of completeness for GG as a
metric space.

The main result of Section [ states that the weighted graph Laplacian A, . (see
the definition ([[) below) is not essentially self-adjoint if the graph is of finite
volume and metrically non complete (here the metric d, is defined using the

weights p, , = cgj% ). The proof is derived from the existence of the solution for

a Dirichlet problem at infinity, established in Section f.

In Section [, we establish some conditions implying essential self-adjointness.

More precisely, defining the metric d, with respect to the weights p,, given by
1

Doy = (min{w,,w,})cei , and addressing the case of metrically non complete
graphs, we get the essential self-adjointness of A, . + W provided the potential
W is bounded from below by N/2D? | where N is the maximal degree and D the
distance to the boundary. We use for this result a technical tool deduced from
Agmon-type estimates and inspired by the nice paper [Net|, see also [[Col-T1.
We discuss in Section [] the case of star-like graphs. Under some assumptions on
a, we prove that for any potential W, A, + W is essentially self-adjoint us-
ing an extension of Weyl’s theory to the discrete case. In the particular case of
the graph N, the same result had been proved in [Bei] (p.504) in the context
of Jacobi matrices. We give some examples in Subsection to illustrate the
links between the previous results. Moreover we establish the sharpness of the
conditions of Theorem [.2.

The last Section is devoted to Appendix A dealing with Weyl’s limit point-limit
circle criteria (see [RY]) in the discrete case as well as in the continuous case,
and to Appendix B including the unitary equivalence between Laplacians and
Schrodinger operators [Id used repeatedly in Subsection p.J.

Let us start with some definitions.

G = (V, FE) will denote an infinite graph, with V- = V(G) the set of vertices and
E = E(G) the set of edges. We write z ~ y for {z,y} € E.

The graph G is always assumed to be locally finite, that is any x € V has a finite
number of neighbors, which we call the degree (or valency) of z. If the degree is



bounded independently of x in V', we say that the graph G is of bounded degree.
The space of real functions on the graph G is denoted

CV)={f:V —R}

and Cy(V') is the subspace of functions with finite support.
We consider, for any weight w : V' —]0, +00[, the space

BV)={feC(V); Y w2f*(z) <oc}.
zeV
It is a Hilbert space when equipped with the inner product:
(f9)z =Y wif (x).g(x)
zeV

For any w : V' —]0,4+00[, and ¢ : E —]0, +o0l, the weighted graph Laplacian
A, on the graph G weighted by the conductance c on the edges and by the
wetgth w on the vertices, is defined by:

(Buef) (@) = =S eay (F () — 1 (9) (1)

w2
Yy~
for any f € C(V) and any x € V. If w = 1, we have

AI af Zamy (y)> .

y~zx

Definition 1.1 Letp: E —]0, +00[ be given, the weighted distance d,(< +00)
on the weighted graph G is defined by

dy(z,y) = inf L(v)

Y€y

where I', ,, is the set of the paths v 1 x1 = x,29,-- ,x, = y from x to y. The
length L(7) is computed as the sum of the p-weights for the edges of the path ~:

= E : Paimiyy -
1<i<n

In particular, if  and y are in distinct connected components of G, d,(z,y) = 0.
We say that the metric space (G,d,) is complete when every Cauchy sequence of
vertices has a limit in V.

Definition 1.2 We denote by V the metric completion of (G, d,) and by Vi =
V' \ V' the metric boundary of V.

Definition 1.3 If G is a non finite graph and Gy a finite sub-graph of G, the
ends of G relatively to G are the non finite connected components of G'\ Gy.



2 The Dirichlet problem at infinity

_1
We will use in this section the distance d, defined using the weights p, , = cz 3.
Let us consider the quadratic form

Q) = D cayf(@) = f)+ > w2f(x)

{zyteE eV

which is formally associated to the operator A, . + Id on [2. We will need the
following result which is close to lemma 2.5 in [Jo-Pe-J:

Lemma 2.1 For any f : V — R so that Q(f) < oo and for any a,b € V, we

have
|f(a) = f(O)] < /Q(f)dy(a,b).
Proof.—

For any {z,y} € E, |f(z) = f(y)| < V/Q(f)/\/Cay. For any path

from a to b, deﬁned by the vertices r1 = a,xs,- - ,T, = b, we have
|f(a (0)] < +/Q(f)L(~). Taking the infimum of the righthandside
Wlth respect to v we get the result.

O

Remark 2.1 Lemma B3 implies that any function f with Q(f) < oo extends to
V as a Lipschitz function f We will denote by f., the restriction off to V.

Theorem 2.1 Let us assume that (V,d,) is non complete. Let f : V — R with
Q(f) < oo, then there exists a continuous function F :'V — R which satisfies
both conditions:

(i) (F = f)eo =
(ii) (Ay.c + 1)(Fy) = 0.

Moreover, such an F satisfies Q(F) < 0o and F € I,
If V is compact, such an F is unique.

Proof.—

We will denote by Ay the affine space of continuous functions G :
V — R which satisfy Q(G) < 0o and (G — f)o =

@ is lower semi-continuous for the pointwise convergence on V' as
defined by @ = sup @, with Q,(f) = sum of a finite number of terms
in Q.

Let Qo := infgea, Q(G) and G, be a corresponding minimizing
sequence. The G,,’s are equicontinuous and pointwise bounded. From

4



3

Ascoli’s Theorem, this implies the existence of a locally uniformly
convergent subsequence G,, — ['. Using semi-continuity, we have

Q(F) = Qo.
If x € V and 6, is the Dirac function at the vertex x, we have
d
—  Q(F +1d,) = 2w[(Auc + 1) F(2)]
dt =0

and this is equal to 0, because F' is a minimum of () restricted to Ay.

Uniqueness is proved using a maximum principle: let us assume
that there exists a non zero continuous /' with F,, = 0, then, chang-
ing, if necessary, F' into —F, there exists zo € V with F(zg) =
max,cy F(z) > 0. The identity (ii) evaluated at the vertex xy gives
a contradiction.

Not essentially self-adjoint Laplacians

Theorem 3.1 Let A, . be a weighted graph Laplacian and assume the following
conditions:

(i) (G,d,) with py, = ¢z is NON complete,
(i1) there exists a function f:V — R with Q(f) < oo and fu # 0.
Then A, . is not essentially self-adjoint.

Proof.—

Because A, . is > 0 on Cy(V), it is enough (see Theorem X.26 [RY])
to build a non zero function F': V' — R which is in [2(V') and satisfies

(Ape+ 1)F =0 2)

The function F given by Theorem P.1] will be the solution of equation
(B) the limit of which at infinity is f..

t

Remark 3.1 The assumptions of Theorem [3] are satisfied if (G,d,) is non com-
plete and Zwi < 00: it is enough to take f = 1.

They are already satisfied if G has a non complete “end” of finite volume.

Remark 3.2 Theorem [B.1 is not valid for the Riemannian Laplacian: if X is
a closed Riemannian manifold of dimension > 4, ro € X and Y = X \ zy, the
Laplace operator on Y is essentially self-adjoint (see [Coll/) and Y has finite
volume.

Question 3.1 In Theorem [3.1, what is the deficiency index of A, . in terms of
the geometry of the weighted graph?



4 Schrodinger operators for metrically non com-
plete graphs

We now discuss essential selfadjointness for Schrodinger operators of the type
H = A,.+W ona graph G in the following setup: we define , , = min{w,, w,}

Q@
and we assume that (G,d,), with p,, = — | is non complete as a metric
c

m7y
space. It means that there exist Cauchy sequences of vertices without limit in
the set V. We will assume that G is of bounded degree, and we denote the upper

bound by N.

Definition 4.1 For a vertex x € V, we denote by D(x) the distance to the
boundary V., defined by
D(x) = ir%/f dy(z, 2).
2€Voo

Lemma 4.1 We have, for any edge {x,y},

D(x) - D(y)] < dyla,y) < e} 3)

Cay

4.1 Agmon-type estimates
Lemma 4.2 Let v, f € Co(V) be real valued and assume Hv = 0. Then

(fo H(fo))e = Y cyo@o@)(fl@)— f(y). (4)
{z,y}eFE

Proof.—
In the case of positive v this type of formula is known as ground state
transform (see [Hea-Kel| and references within). A particular case of

this computation (for operators of the type A;, + W) can be found
in [[I[d], let us recall the proof for the reader’s convenience:

(o Hifo)e = 3 f@)o(a) <Z Con(f(x) - f(y))v(y)>

zeV Yy~

where we used the fact that Hv(z) = 0. An edge {z,y} contributes
to the sum twice. The total contribution is

f@)o(z) cay(f(x) = f(y)o(y) + f(y)o(y)eys(f(y) — flz))v(z)

SO

(fo H(fo))e = Y coy(f(@)=F W) (f@)o(@)v(y) — fy)v(y)v()) .

{z,y}eFE



t

Theorem 4.1 Let v be a solution of (H — A)v = 0. Assume that v belongs to
I2(V') and that there exists a constant ¢ > 0 such that, for all u € Cy(V),

(ul (H ~ M) > 5 max (ﬁ 1) @ +efully, ()

then v = 0.

Proof.—

This theorem is based on Lemma (.9 applied to H — A\. Let us

consider p and R satisfying 0 < p < 3 and 1 < R < 4o00. For any

e > 0, we define the function f. : V. — R by f. = F.(D) where D
denotes the distance associated to the metric d,, and F. : Rt — R is
the continuous piecewise affine function defined by

(0 foru<e
plu—e)/(p—e)fore <u<p
ufor p<u<l
lforl<u<R
R+l—-uforR<u<R+1

(| Oforu>R+1

R+1

Figure 1: The function F

Using Lemma [[.3, Lemma [[.1] and the inequalities

S0 +0(y)?)
)

the lefthandside of Equation ([) is bounded as follows

v(z)u(y) <

(ol = (o)) < 5 3 (e wele)

zeV



with

d.(z) = Z (fe(x) = fe(y))? < Np?

LGN ) L
where the second inequality uses the fact that f; is —Lipshitz.
This implies
Np?
O|(H = N (fo0))e < ———||v||% . 6
(fevl( J(fev))e < 20— g)QHUng (6)

On the other hand, due to assumption (f]) the lefthandside of
Equation (f]) is bounded from below as follows:

(fool(H = M) ([0))iz, = g Y. ww@)?relfoll o (7)

p<D(z)<R
Putting together Equations (f]) and ([]) we get

N Np?
3 2 ehEredfolh <otk ®
p<D(@)<R p
Then we do € — 0. After that, we do p — 0 and R — oo. We get
v=0.

O

Remark 4.1 The previous result is inspired by a nice idea from [Nen/, so fol-
lowing the terminology of we call Agmon-type estimates Equation (J) .

4.2 Essential self-adjointness

Theorem 4.2 Consider the Schrodinger operator H = A, .+ W on a graph G,

a
define a,, = min{w,,w,} and assume that (G,d,), with p,, = —= , is non
c

.y
complete as a metric space. For a vertex x € V', we denote by D(z) the distance

from x to the boundary V,,. We assume the following conditions:

(i) G is of bounded degree and we denote the upper bound by N,

(ii) there ezists M < oo so that

>
Ve eV, W(z) > 2D(a

Then the Schrodinger operator H is essentially self-adjoint.



Remark 4.2 In the particular case when Yy w2 < oo, the Laplacian H = A,
does not satisfy the assumption ([9) so this result is coherent with Theorem [3_1.

Remark 4.3 The exponent of D(z) in ([9) is sharp. In fact, one can find a
potential W such that W (x) > D(a)?
that H = A, . + W is non essentially self-adjoint. See Example [5.53 .

where k < 6 and weights w and ¢ such

Remark 4.4 In the case where w = 1 the result is an immediate consequence of

(Theorem 5).
Proof.—

We have, for any u € Co(V)

(ul Hu)g >y W (z)wilu(@) P,

zeV

so using assumption (f) we get:

(= N = 5 3 prmgetlul@) = 32—+ M)l

Then choosing for example
A=—-M-1

we get the inequality (H) with ¢ = 1, and the proof follows from
Theorem [.]].

5 Schrodinger operators on “star-like” graphs

5.1 Introduction

Definition 5.1 The graph N is the graph defined by V = {0,1,2,---} and E =
{{n,n+1} | n=0,1,---}.

Definition 5.2 We will call an infinite graph G = (V, E) star-like if there exists
a finite sub-graph Gy of G so that G\ Gy is the union of a finite number of disjoint
copies G, of the graph N (the ends of G relatively to Gy according to Definition
3.



For example, the graph 7Z, defined similarly to N, is star-like.
Let us consider a Laplace operator L = A;, on G. On each end G, of G, L
will be given by

Lafn = _az,n—l—lfnJrl + (az—l,n + a’g,n—l—l)fn - ag—l,nfnfl ’

where the a;_; ,’sare > 0. If W : V' — R, we will consider Schrodinger operators
H on Cy(G) defined by H = Ay, + W .

Lemma 5.1 Let Gy be a finite sub-graph of G. The operator H = Ay, + W on
G is essentially self-adjoint if and only if it is essentially self-adjoint on each end
of G relatively to Gy. More precisely, the deficiency indices ny are the sum of
the corresponding deficiency indices of the ends.

We will need the following Lemma which is a consequence of Kato-Rellich

Theorem, see [Go-Sclj], Proposition 2.1:

Lemma 5.2 If A and B are 2 symmetric operators with the same domains and
R = B — A is bounded, then the deficiency indices of A and B are the same.

Proof.—

We give here an alternative proof to this result. Let us define, for
teR, Ay = A+1tR so that A = A and A, = B. The domains of
the closures of the A;’s coincide: the “graph-norms” || Aul|;z + ||ul];2
are equivalent. The domains of the adjoints coincide too. Let K =
D(A*)/D(A) and Q:(u,v) = —i ({Afulv) — (u|(Afv)) which is well
defined on K. We know that these bounded Hermitian forms are non
degenerate on K with the graph norm and continuous w.r. to ¢t. Hence
the Morse index n_(t) is locally constant: take a decomposition K =
K, ® K_ where q = @y, satisfies qx, > C >0 and ¢x_ < —C <0.

O
Using Lemma p.Z, we can prove Lemma p.1J:
Proof.—
We will consider the operator H,.q where we replace the entries a,,
of H with {x,y} € E(Gy) by 0. The claim of the Lemma is clear
for H,eq because it is the direct orthogonal sum of the Schrodinger
operators of the ends and a finite rank [?>—bounded matrix. We can
then use Lemma p.9 because H — H,eq is bounded.
O

10



Remark 5.1 It follows from Lemma .1 that, concerning essential self-adjointness
questions for star-like graphs, it is enough to work on the graph N. We have

(Hf)o=—ao1fi +ao1fo+ Wofo.

This implies that the space of solutions of (H — XN)u = 0 on N is of dimension
1 and any solution so that fy vanishes is = 0. We will consider also solutions
“near infinity”, i.e. (fn)n>o satisfies (H — X)f), =0 for n > 1; this space is of
dimension 2.

5.2 Main result

It is known ([Dod]) that H = Ay, + W is essentially self-adjoint provided A,
is bounded as an operator on [*(G) and W bounded from below. For star-like
graphs, we have the following result, which holds for any potential W :

Theorem 5.1 If G is star-like and if for each end G,
aj_y, ¢ I'(N) (10)

then H = Ay ,+W with domain Co(V') is essentially self-adjoint for any potential
w.

Remark 5.2 The condition ({IQ) is sufficient but not necessary. See Ezxample

£33
Proof.—

Due to Remark [.]] we only have to prove the following

Theorem 5.2 [f
1
¢ I'(N), (11)
Ap—1n

the Schridinger operator H = Ay o, + W with domain Cy(N) is essen-
tially self-adjoint for any potential W .

This result is contained in the book [Bey] (p. 504). We propose here a
short proof, obtained by contradiction using Corollary [.1] which is an
analog of Weyl’s limit point-limit circle criteria in the discrete case.

Let us consider an operator A;, such that ([0) is fulfilled. We
assume that any sequence u, such that (H — i)u = 0 near infinity,
is in [*(N). In particular, there exists a basis f,g of solutions of
(H —4)f =0 with f € I*(N) and g € [*(N).

We have

—Qpn+1 fn+1 + (an—l,n + Ap n+1 + (Wn - Z)) fn — Qp—1n fn—l =0 y

11



and the same holds for g. The Wronskian of f and g is the sequence
Wi = fudn-1 — fn_19n. We have, for any n € N:

anfl,n
Wit = Wi,

an,nJrl

which implies
Qp,1

W, = Wi

Qp—1n

But since the Wronskian is in /! (N) according to the assumption that
f and g are in [*(N), we get a contradiction with the hypothesis ([[0).

5.3 Examples of Schrodinger operators
5.3.1 Example 1

Let us consider the Laplacian A, . on N, with, ¥n > 0, ¢, 1, = n® and, ¥Yn > 0,

1 . —1/2
.S 2 < d
L1 Since dowi <ooand ) ¢, i,

(due to Rem B.1] ) that A, . is not essentially self-adjoint.
Applying a result of [Td] (see Proposition in Appendix B) we get that this
Laplacian is unitarily equivalent to the Schrodinger operator H = A, , + W with
Cn—1.n

Un_1n = ~ n° and
Wp—1Wn

1 1 1 1 1
Wn - [Cn,n+1 <_ - ) + Cn—1n <_ - ):| ~ —3”3 s
Wn Wn wn—}—l W Wn—1

which is therefore not essentially self-adjoint.

W = < oo we deduce from Theorem B.1|

According to Theorem ., such an operator must verify € [1(N), which

anfl,n
is indeed the case.

5.3.2 Example 2: Discretization of a Schrédinger operator on R*

Let us consider the Schrédinger operator on |0, 400 defined on smooth compactly

supported functions by Lf := —f” +— f. This operator is essentially self-adjoint
x

if and only if A > 3/4 (see [RY theorem X 10). We discretize this operator in
the following way: let us consider the graph I' = (V, E) resulting of the following
dyadic subdivision of the interval (0,1): the vertices are the z,, = 27" and the
edges are the pairs {27,271} which correspond to the intervals [27", 27" "1] of
length w? = 27"

12



Then we define, for any
FEBV)={feC(V)| Y 27"f < +oo}
neN

where we set f = (f,), the quadratic form

neN

According to the previous definitions and if we set ¢, ,4+1 = 2", this quadratic
form is associated to the Schrédinger operator H = A, .+ W on N with the
potential W, := A22"

Let us set ap 41 =

Cnyn+1 _ 22n+%

WnWn+41
H is unitarily equivalent to

. Applying Proposition [(] we get that

ﬁ:Al,a_'_ﬁ/\_'_W

— 1 1 1 1 1 3 Hv2
Wn - |:Cn n+1 <_ - ) + Cn—1,n (_ - ):| - 22n <_ — —\/_> .
Wn, 7 Wn Wn41 7 Wn Wn—1 2 4

~ 5v2 3
We have H = Ay, + (A — Ap)4" with Ay = T\/_ —3 (> 0). The metric graph

(N, d,) with py, 41 = a;ln/fl is non complete. The solutions u of Hu = 0 verify

Mty sr — <5 +2v2(A - AO)) Un 4 U1 =0 .
The solutions are generated by af and ol where oy and ay are the roots of

4a2—(5+2\/§(A—A0)>04+1:0.

5
We have |a;| < 1 and |as| < 1if and only if 49 — —= < A < Ay.

V2
Using Proposition .1, with d = 2 and U, = ( Hn ), we get, for any

Up—1
A € C, the exponential decay of all solutions near infinity of (ﬁ[ — Nu = 0if
5 ~
Ay — —= < A < Ay, and the existence of a solution of (H — A\)u = 0 with

V2
5\f 3 5v/2 3
>

exponential growth in the case when A > — — 5 Or A< ———

Hence (by Corollary p.]) we get the followmg result:

13



52 5v2 3
Proposition 5.1 1. If —%_ — ; < A< T\/_ ~ 3 then the discretized
operator H is not essentially self-adjoint.
5v2 5v2 3
2. If A > T\/__g () orA< _T\/_ —5 then H is essentially self-adjoint.

From this result we can deduce several informations:

1. The condition (x) is analogous to the condition A > 3/4 in the continuous
case.

2. Proposition p.] implies that for A = 0 the operator H = A, .. is not essen-
tially self-adjoint, which is a result predicted by Theorem B.1].

3. This gives examples of essentially self-adjoint operators with 1/a,, € I'.

4. Sharpness of the assumption (f) in Theorem [£.2

In this context, the distance d, is associated to

Ay

/Cay

Pzy =

with o, = min{w,, w,} so we get

O{pp+1 2—])—1 1/2 1
D(n)=)» ———= = 2722779
=3t (2

p=n p=n

SO
— 22n—1 )

D(n)?

If the operator H = A, . + A4" satisfies the assumption ([), then

1 5/2 3

1
A > 5 which involves condition (%), since 5> 4 "% Theorem
is coherent with proposition p.J. Moreover the operator H = A, . + A4"

5v/2 3

with A = —— — — is not essentially self-adjoint, which implies that the
estimate () on the growth of the potential in Theorem [ is sharp.

5.3.3 Example 3

Let us consider the Laplacian A, . on N, where the coefficients verify c,_;, = n”
1 .

with v > 2 and w,, = (n+ 1)~ with 3 > 5 Since Y w2 < oo and chi/fn < 00

we deduce from Theorem B.J] (due to Remark B.J] ) that A, . is not essentially

self-adjoint.

14



Applying one more time Proposition [(.1], we see that this operator is unitarily
equivalent to the Schrédinger operator H = A, , + W, with a,,_1,, ~ n’*?% and
the potential W, ~ —B(8 +~ — 1)n?**7=2 which is therefore also not essentially
self-adjoint. We emphasize that W is not bounded from below, which is predicted
in [Id), Theorem 3.2.

Furthermore, according to Theorem [.I], such an operator must verify the

condition € [Y(N), which is indeed the case. Following the terminology of

anfl,n

the previous sections, it means the non completeness of (N, d,) with the weights
—1/2

pnfl,n = a’nf/l,n .

5.3.4 Example 4

Let us consider the Laplacian H = A, . on a spherically homogeneous rooted
tree G = (V, E) (see [Brd and references within). For any vertex x, we denote
by §(z) the distance from z to the root 0 and define w, = 279@ and ¢, = 2°@),
for any y ~ x so that §(y) = n+ 1. We assume that the graph G has a uniform
degree N + 1.

Cl'
Let us set a,, = —~.

WaWy
d(z) = n and 6(y) = n+ 1. Then, due to Proposition [}, the operator H is
unitarily equivalent to

We have a,, = 2% for any edge z,y, so that

H=A,+W
with !
for any x such that 6(z) =n .

The radial solutions u of Hu = 0 can be seen as sequences (u,,) which satisfy
the equation:

1 1
—2Nun+1 -+ <N -+ 5) Up — Zun,1 =0.

The solutions are generated by of and af where a; and as are the roots of

s (Lo 1N, L
“T\eTaN) ey T
We have |a;| < 1 and |as| < 1 for any N > 0.

The radial solutions of (H — \)u = 0 satisfy

1 1
_2Nun+1 + (N + 5) Up — Zun—l - QN)\Q_(3"+1)un .

Using Proposition b.1], with d = 2 and U,, = ( uu" ), we get the exponential
n—1

decay of all solutions near infinity of (]/-\I —ANu = 0.
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Hence (by Corollary (.1]) we get the following result:

Proposition 5.2 For any N > 1 H is not essentially self-adjoint .

Remark 5.3 We have
;wi = ;waN" = zn:(g)” :

If N <4, then Y w? < 0o so Theorem B-1 can also be applied to get the result
1

since the graph is non complete with respect to the metric d, , with p,, = coj.

6 Appendix A: Weyl’s “limit point-limit circle”
criteria

6.1 The discrete case

The goal of this section is to prove the discrete version of the Weyl’s “limit point-
limit circle” criterium. Our presentation is simpler than the classical presentation
for the continuous case (see [RY], Appendix to section X.1).

Let us consider the Hilbert space H := [2(N, C") and the formally symmetric
differential operator P defined by

Pf(0) = Foof (0)+Fof(1), VI = 1, Pf(l) = By f(I=1)+Fuf(D)+Faf(+1)
where

LVI=1, Pryy =P

2. W >0, Py =Py

3. VI >0, P41 is invertible

4. IM € R so that for any f € Co(N,CY), Qp(f) = (Pf | f) > —M]| f|*

Let us define the subspace £ of H as the set of [? sequences f so that, for all
[ >1,(P—1i)f(l) = 0; the space £ is isomorphic to the space of germs at infinity
of 12 solutions of (P —7)f = 0. Assumption 3. implies that dim £ < 2N. Let us
denote by K = ker(P — i) N{? and consider the following sequence

0—-K—=-E—-CYN =0, (12)

where the non trivial arrow is given by f — (P —4)f(0). We have the

Theorem 6.1 The sequence ([[3) is exact and the deficiency indices ne = dim K
of P are given by ny =dim€& — N.

16



Proof.—

Assumption 4. implies (using Corollary of Theorem X.1 in [RY]) that
the deficiency indices are equal. The only non trivial point is to prove
that the arrow p : €& — CV is surjective. Let us consider P a self-
adjoint extension of P which exists because n,. = n_. Let us consider

the map p : CN — & defined by p(x) = (P —i)~(2,0,0,---). Then
pop=Iden.
0

Corollary 6.1 The Schridinger operator H = Ay, + W defined on Cy(N) is
essentially self-adjoint if and only if there exists a sequence u such that (H —i)u =
0 near infinity (i.e. (H —1i)u), =0 for n large enough) which is not in I*(N).

6.2 Asymptotic behavior of perturbed hyperbolic itera-
tions

In order to apply Corollary f.1], the following results will be useful
Proposition 6.1 Let us consider the following linear dynamical system on C:
Vn >0, Uy, = AU, + R(n)U, (13)
where
1. A is hyperbolic: all eigenvalues \; of A satisfy |\;| # 1
2. R(n) = 0 as n — oc.
Then

e case A: [f all eigenvalues \; of A satisfy |\;| < 1, all solutions (U,) of
FEquation ({I3) are exponentially decaying.

e case B: Ifm eigenvalues satisfy |\;| > 1, then there exists an m-dimensional
vector space F of solutions of Equation (I3) whose non-zero vectors have
exponential growth.

Proof.—

Case A: There exists a norm .|| on C? so that the operator
norm of A satisfies ||A|| = & < 1. For n large enough, we have
|A+ R(n)|| <k < 1. The conclusion follows.

17



Case B: There exists a splitting C¢ =Y @ Z, denoted z = y + z,
with dimY = m, stable by A, norms on Y and Z and 2 constants
nw <1< o,so that

Yy €Y, [|Ay|l = allyll ,

Vz e Z, || Az|| < pll=]] -
Let us choose € > 0 so that 1 < 0 —2¢ and N so that |[R(n)|| < ¢ for
n > N. We have, for n > N,
[Yns1ll = ollynll = elllynll + 12al]); [[2nsall < pllzall +lynll + 1zall)

so that
[Yns1ll = [|zng1ll = (0 = 2e)([lynll — [[2al]) -

Any solution which satisfies ||yn|| > ||zn]|| will have exponential growth.
Take for F' the space of solutions for which zy = 0.

6.3 The continuous case

2
A similar method works for the continuous case. Let H = 0 + A(x) be a
x

system of differential operators where A(z) is Hermitian for every x and is con-
tinuous on [0,a[ as a function of z. The differential operator H is L?-symmetric
on the Dirichlet domain

D = C([0,a[,CY) N {u | u(0) =0} .

We denote Hp the closure of (H, D). Let us assume that n,(Hp) = n_(Hp)
which is true for example if A is bounded from below or if A is real-valued. Then

Theorem 6.2 If £ is the space of solutions u of the differential equation
(H —i)u = 0 which are L* near a, then ny(Hp) = dim& — N.

Proof.—
Let us consider the sequence
0 —ker(Hp —i) = & - CYN =0, (14)

where the only non trivial arrow is given by v — u(0). This sequence
is exact: we have only to prove the surjectivity of the non trivial
arrow. Let H be a self-adjoint extension of Hp and x € C5°([0, a[, R)
with x(0) = 1. For any X € CV, let us consider

u=xX —(H—i)"" ((H - 1)(xX)) .
Then (H —i)u =0, u(0) =V and u is L? near a.

18



7 Appendix B: Unitary equivalence between Lapla-
cians and Schrodinger operators

In this section, we recall the following results (see [[Id] Proposition 2.1 and Theo-

rem 5.1): the first one states that a Laplacian is always unitarily equivalent to a

Schrodinger operator, and the second result asserts that a Schrodinger operator

with a strictly positive quadratic form is unitarily equivalent to a Laplacian.
For a weighted graph G by the weight w on its vertices, let

U,: B(V)— (V)

the unitary operator defined by

Uo (f) =wf .
This operator preserves the set of functions on V' with finite support.
Proposition 7.1 The operator

A=U, A, U,

s a Schrodinger operator on G . More precisely:

A=A+ W

where a 15 a strictly positive weight on E given by:

Cay
WyWy

gy =
and the potential W : V. — R is given by:
1
W=——A w.
w

The following Theorem uses the existence of a strictly positive harmonic func-
tion (see [I4], section 4).

Theorem 7.1 Let P a Schrodinger operator on a graph G . We assume that
(Pf, )z > 0 for any function f in Cy (V) \ {0} . Then there exist weights: w
onV and c on E such that P is unitarily equivalent to the Laplacian A, . on the
graph G .
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