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complete graphs
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June 30, 2010

Abstract

We consider weighted graphs, we equip them with a metric structure
given by a weighted distance, and we discuss essential self-adjointness for
weighted graph Laplacians and Schrödinger operators in the metrically non
complete case.

1 Introduction

This paper is a continuation of [To] which contains some statements about es-
sential self-adjointness of Schrödinger operators on graphs. In [To], it was proved
that on any metrically complete weighted graph with bounded degree, the Lapla-
cian is essentially self-adjoint and the same holds for the Schrödinger operator
provided the associated quadratic form is bounded from below.
Here, we will investigate essential self-adjointness mainly on metrically non com-
plete graphs.
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Let us recall that a weighted graph G is a generalization of an electrical network
where the set of vertices and the set of edges are respectively weighted with pos-
itive functions ω and c. For any given positive function p, a weighted distance
dp can be defined on G. Thus we have the usual notion of completeness for G
as a metric space. The main result of Section 3 states that the weighted graph
Laplacian ∆ω,c (see the definition below) is not essentially self-adjoint if the graph
is of finite volume and metrically non complete. The proof is derived from the
existence of the solution for a Dirichlet problem at infinity, see Section 2.
In Section 4 we establish some conditions implying essential self-adjointness.
More precisely, in the case of metrically non complete graphs, we get the es-
sential self-adjointness of ∆1,a + W provided the potential W is bounded from
below by N/2D2, where N is the maximal degree and D the distance to the
boundary. We extend this result to ∆ω,c +W for another distance which is de-
fined in terms of the edge weights as well as of the vertex weights. We use for
both results a technical tool deduced from Agmon-type estimates and inspired
by the nice paper [Nen], see also [Col-Tr].
We discuss in Section 5 the case of tree-like graphs. Under some assumptions on
a, we prove that for any potential W , ∆1,a + W is essentially self-adjoint us-
ing an extension of Weyl’s theory in the discrete case. In the particular case of
the graph N, the same result had been proved in [Ber] (p.504) in the context
of Jacobi matrices. We give some examples in Subsection 5.3 to illustrate the
links between the previous results. Moreover we establish the sharpness of the
conditions of Theorem 4.2.
In the context of essential self-adjointness problems for infinite graphs, we refer
to [Go-Sch] and [Ma] for related results.
The last section is an Appendix dealing with Weyl’s limit point-limit circle cri-
teria [RS], in the discrete case as well as in the continuous case.

Let us start with the definitions.
G = (V,E) will denote an infinite graph, with V = V (G) the set of vertices and
E = E(G) the set of edges. We write x ∼ y for {x, y} ∈ E.
The graph G is always assumed to be locally finite, that is any x ∈ V has a finite
number of neighbors, which we call the degree (or valency) of x. If the degree is
bounded independently of x in V , we say that the graph G is of bounded degree.
The space of real functions on the graph G is denoted

C(V ) = {f : V −→ R}

and C0(V ) is the subspace of functions with finite support.
We consider, for any weight ω : V −→ R⋆

+, the space

l2ω(V ) = {f ∈ C(V );
∑

x∈V

ω2
xf

2(x) < ∞}.
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It is a Hilbert space when equipped with the inner product:

〈f, g〉l2ω =
∑

x∈V

ω2
xf (x) .g (x) .

For any ω : V −→ R⋆
+, and c : E −→ R⋆

+, the weighted graph Laplacian ∆ω,c on
the graph G weighted by the conductance c on the edges and by the weigth ω on
the vertices, is defined by:

(∆ω,cf) (x) =
1

ω2
x

∑

y∼x

cx,y (f (x)− f (y))

for any f ∈ C(V ) and any x ∈ V. If ω ≡ 1, we have

(∆1,af) (x) =
∑

y∼x

ax,y (f (x)− f (y)) .

Definition 1.1 Let p : E −→ R⋆
+ be given, the weighted distance dp on the

weighted graph G is defined by

dp(x, y) = inf
γ∈Γx,y

L(γ)

where Γx,y is the set of the paths γ : x1 = x, x2, · · · , xN = y from x to y. The
length L(γ) is computed as the sum of the p-weights for the edges of the path γ:

L(γ) =
∑

1≤i≤n

pxi,xi+1

We say that the metric space (G, dp) is complete when every Cauchy sequence of
vertices has its limit in V .

Definition 1.2 We denote by V̂ the metric completion of (G, dp) and by V∞ =

V̂ \ V the metric boundary of V .

Definition 1.3 If G is a non finite graph and G0 a finite sub-graph of G, the
ends of G relatively to G0 are the non finite connected components of G \G0.

2 The Dirichlet problem at infinity

We will use in this section the distance dp defined using the weights px,y = c
− 1

2
x,y .

Let us consider the quadratic form

Q(f) = 〈(∆ω,c + 1)f | f〉l2ω =
∑

{x,y}∈E

cx,y(f(x)− f(y))2 +
∑

x∈V

ω2
xf(x)

2 .

We have
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Lemma 2.1 For any f : V → R so that Q(f) < ∞ and for any a, b ∈ V , we
have

|f(a)− f(b)| ≤
√

Q(f)dp(a, b).

Proof.–

For any {x, y} ∈ E, |f(x) − f(y)| ≤
√
Q(f)/

√
cx,y. For any path γ

from a to b, defined by the vertices x1 = a, x2, · · · , xN = b, we have
|f(a)−f(b)| ≤

√
Q(f)L(γ). Taking the infimum of the righthandside

with respect to γ we get the result.

�

Remark 2.1 Lemma 2.1 implies that any function f with Q(f) < ∞ extends to
V̂ as a Lipschitz function f̂ . We will denote by f∞ the restriction of f̂ to V∞.

Theorem 2.1 Let f : V → R with Q(f) < ∞, then there exists a unique con-
tinuous function F : V̂ → R which satisfies both conditions:

(i) (F − f)∞ = 0

(ii) (∆ω,c + 1)(F|V ) = 0

Proof.–

We will denote by Af the affine space of continuous functions G :

V̂ → R which satisfy Q(G) < ∞ and (G− f)∞ = 0.
Q is lower semi-continuous for the pointwise convergence on V as

defined by Q = supQα with Qα(f) = sum of a finite number of terms
in Q.

Let Q0 := infG∈Af
Q(G) and Gn be a corresponding minimizing

sequence. The Gn’s are equicontinuous and pointwise bounded. From
Ascoli’s Theorem, this implies the existence of a locally uniformly
convergent subsequence Gnk

→ F . Using semi-continuity, we have
Q(F ) = Q0.

If x ∈ V and δx is the Dirac function at the vertex x, we have

d

dt |t=0
Q(F + tδx) = 2ω2

x[(∆ω,c + 1)F (x)]

and this is equal to 0, because F is the minimum of Q restricted to
Af .

Uniqueness is proved using a maximum principle.

�
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3 Non essentially self-adjoint Laplacians

Theorem 3.1 Let ∆ω,c be a weighted graph Laplacian and assume the following
conditions:

(i) (G, dp) with px,y = c
− 1

2
x,y is NON complete,

(ii) there exists a function f : V → R with Q(f) < ∞ and f∞ 6= 0.

Then ∆ω,c is non essentially self-adjoint.

Proof.–

Because ∆ω,c is ≥ 0 on C0(V ), it is enough (see Theorem X.26 [RS])
to build a non zero function F : V → R which is in l2ω(V ) and satisfies

(∆ω,c + 1)F = 0 . (1)

The function F given by Theorem 2.1 will be the solution of equation
(1) the limit of which at infinity is f∞.

�

Remark 3.1 The assumptions of Theorem 3.1 are satisfied if (G, dp) is non com-
plete and

∑
ω2
y < ∞: it is enough to take f ≡ 1.

They are already satisfied if G has a non complete “end” of finite volume.

Remark 3.2 Theorem 3.1 is not valid for the Riemannian Laplacian: if X is
a closed Riemannian manifold of dimension ≥ 4, x0 ∈ X and Y = X \ x0, the
Laplace operator on Y is essentially self-adjoint (see [Col1]) and Y has finite
volume.

Question 3.1 In Theorem 3.1, what is the deficiency index of ∆ω,c in terms of
the geometry of the weighted graph?

4 Schrödinger operators for metrically non com-

plete graphs

We consider a Schrödinger operator H = ∆1,a + W such that (G, dp), with

pxy = a
− 1

2
xy , is non complete as a metric space; it means that there exists Cauchy

sequences of vertices without limit in the set V . We will assume that G is of
bounded degree, and we denote the upper bound by N .

Definition 4.1 For a vertex x ∈ V , we denote by D(x) the distance to the
boundary V∞ defined by

D(x) = inf
z∈V∞

dp(x, z).

Lemma 4.1 We have, for any edge {x, y},

|D(x)−D(y)| ≤ dp(x, y) ≤ a
− 1

2
x,y . (2)
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4.1 Agmon-type estimates

Lemma 4.2 Let v be a solution of Hv = 0 and let f ∈ C0(V ). Then

〈fv ,H(fv)〉 =
∑

{x,y}∈E

ax,yv(x)v(y)(f(x)− f(y))2 . (3)

Proof.–

For the reader’s convenience we recall here the computation made in
[To]:

〈fv ,H(fv)〉 =
∑

x∈V

f(x)v(x)

(∑

y∼x

ax,y(f(x)− f(y))v(y)

)

where we used the fact that Hv(x) = 0. An edge {x, y} contributes
to the sum twice. The total contribution is f(x)v(x) ax,y(f(x) −
f(y))v(y) + f(y)v(y)ay,x(f(y)− f(x))v(x) so

〈fv ,H(fv)〉 =
∑

{x,y}∈E

ax,y(f(x)−f(y)) (f(x)v(x)v(y)− f(y)v(y)v(x))

�

Theorem 4.1 Let λ a real number and v a solution of (H − λ)v = 0 . Assume
that v belongs to l2(V ) and that there exists a constant c > 0 such that, for all
u ∈ C0(V ),

〈u|(H − λ)u〉 ≥ N

2

∑

x∈V

max

(
1

D(x)2
, 1

)
|u(x)|2 + c‖u‖2, (4)

then v ≡ 0.

Proof.–

This theorem is based on Lemma 4.2 applied to H − λ. Let us

consider ρ and R satisfying 0 < ρ <
1

2
and 1 < R < +∞. For

any ε > 0, we define the function fε : V → R by fε = Fε(D) with
Fε : R

+ → R the continuous piecewise affine function defined by

Fε(u) =





0 for u ≤ ε
ρ(u− ε)/(ρ− ε) for ε ≤ u ≤ ρ
u for ρ ≤ u ≤ 1
1 for 1 ≤ u ≤ R
R + 1− u for R ≤ u ≤ R + 1
0 for u ≥ R + 1
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ρ R R + 12ρ 1

F (u)

u
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0

Figure 1: The function F

Using Lemma 4.2, Remark 4.1 and the inequalities

v(x)v(y) ≤ 1

2
(v(x)2 + v(y)2) ,

the lefthandside of Equation (3) is bounded as follows

〈fεv|(H − λ)(fεv)〉 ≤
1

2

∑

x∈V

v(x)2Φε(x) ,

with

Φε(x) =
∑

y∼x

(fε(x)− fε(y))
2

d(x, y)2
≤ Nρ2

(ρ− ε)2

where the second inequality uses the fact that fε is
ρ

ρ− ε
−Lipshitz.

This implies

〈fεv|(H − λ)(fεv)〉 ≤
Nρ2

2(ρ− ε)2
‖v‖2l2 . (5)

On the other hand, due to assumption (4) the lefthandside of
Equation (3) is bounded from below as follows:

〈fεv|(H − λ)(fεv)〉 ≥
N

2

∑

ρ≤D(x)≤R

v(x)2 + c‖fεv‖2l2 . (6)

We put together Equation (5) and (6). Then we do ε → 0. After
that, we do ρ → 0 and R → ∞. We get v ≡ 0.

�

4.2 Essential self-adjointness

Theorem 4.2 Consider the Schrödinger operator H = ∆1,a + W on a graph

G = (V,E) such that (G, dp), with px,y = a
− 1

2
x,y , is non complete as a metric space.

For a vertex x ∈ V , we denote by D(x) the distance from x to the boundary V∞.
We assume the two following conditions:

7



(i) G is of bounded degree and we denote the upper bound by N ,

(ii) there exists M < ∞ so that

∀x ∈ V, W (x) ≥ N

2D(x)2
−M . (7)

Then the Schrödinger operator H is essentially self-adjoint.

Remark 4.1 In the case where (V, dp) is complete, we have D(x) = ∞ and so
W ≥ −M , this result is already proved in [To].

Proof.–

We have, for any u ∈ C0(V )

〈u|Hu〉 ≥
∑

x∈V

W (x)|u(x)|2,

so using assumption (7) we get:

〈u|(H − λ)u〉 − N

2

∑

x∈V

1

D(x)2
|u(x)|2 ≥

∑

x∈V

−(M + λ)‖u‖2 .

Then choosing for example

λ = −M − 1

we get the inequality (4) with c = 1, and the proof follows from
Theorem 4.1.

�

Theorem 4.3 Consider the Schrödinger operator H = ∆ω,c +W on a graph G,

define αx,y = min{ωx, ωy} and assume that (G, dp), with pxy =
αx,y√
cx,y

, is non

complete as a metric space.
We assume the following conditions:

(i) G is of bounded degree and we denote the upper bound by N ,

(ii) there exists M < ∞ so that

∀x ∈ V, W (x) ≥ N

2D(x)2
−M . (8)

Then the Schrödinger operator H is essentially self-adjoint.
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Remark 4.2 In the particular case when
∑

ω2
x < ∞, the Laplacian H = ∆ω,c

does not satisfy the assumption (8) so this result is coherent with Theorem 3.1.

Remark 4.3 The exponent of D(x) in (8) is sharp. In fact, one can find a

potential W such that W (x) ≥ k

D(x)2
where k <

N

2
and weights ω and c such

that H = ∆ω,c +W is non essentially self-adjoint. See Example 5.3.2 .

Proof.–

The proof follows the previous scheme. Lemma 4.2 still holds pro-
vided we change ax,y into cx,y and 〈, |, 〉 into 〈, |, 〉l2ω . Theorem 4.1 is
replaced by

Theorem 4.4 Let v be a solution of (H − λ)v = 0. Assume that v
belongs to l2ω(V ) and that there exists a constant c > 0 such that, for
all u ∈ C0(V ),

〈u|(H − λ)u〉l2ω ≥ N

2

∑

x∈V

max

(
1

D(x)2
, 1

)
ω2
x|u(x)|2 + c‖u‖2l2ω , (9)

then v ≡ 0.

Proof.–

We construct the function fε = Fε(D) as previously, the
distance D is now associated to the new metric dp.
Using Lemma 4.2, Remark 4.1, the inequalities v(x)v(y) ≤
1
2
(v(x)2 + v(y)2) and the definition of αx,y we get

〈fεv|(H − λ)(fεv)〉l2ω ≤ 1

2

∑

x∈V

v(x)2ω2
xΦε(x) ,

with

Φε(x) =
∑

y∼x

(fε(x)− fε(y))
2

dp(x, y)2
≤ Nρ2

(ρ− ε)2

where the second inequality uses the fact that fε is
ρ

ρ− ε
−Lipshitz.

This implies

〈fεv|(H − λ)(fεv)〉l2ω ≤ Nρ2

2(ρ− ε)2
‖v‖2l2ω . (10)

On the other hand, due to assumption 4 the lefthandside
of Equation 3 is bounded from below as follows:
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〈fεv|(H − λ)(fεv)〉l2ω ≥ N

2

∑

ρ≤D(x)≤R

ω2
xv(x)

2 + c‖fεv‖2l2ω .

(11)
We put together Equation (10) and (11). Then we do

ε → 0. After that, we do ρ → 0 and R → ∞. We get v ≡ 0.

�

Then Theorem 4.4 follows from the following inequality, for any
u ∈ C0(V ) :

〈u|Hu〉l2ω ≥
∑

x∈V

W (x)ω2
x|u(x)|2,

so

〈u|(H − λ)u〉l2ω − N

2

∑

x∈V

1

D(x)2
ω2
x|u(x)|2 ≥

∑

x∈V

−(M + λ)‖u‖2l2ω .

�

5 Schrödinger operators on “tree-like” graphs

5.1 Introduction

Definition 5.1 The graph N is the graph defined by V = {0, 1, 2, · · · } and E =
{{n, n+ 1} | n = 0, 1, · · · }.

Definition 5.2 We will call an infinite graph G = (V,E) tree-like if there exists
a finite sub-graph G0 of G so that G\G0 is the union of a finite number of disjoint
copies Gα of the graph N (the ends of G relatively to G0 according to Definition
1.3).

For example, the graph Z, defined similarly to N, is tree-like.
A Laplace operator L = ∆1,a on G is defined on each end Gα of G by

Lαfn = −aαn,n+1fn+1 + (aαn−1,n + aαn,n+1)fn − aαn−1,nfn−1 ,

where the aαn−1,n’s are > 0. If W : V → R, we will consider Schrödinger operators
H on C0(G) defined by H = ∆1,a +W .

Lemma 5.1 Let G0 be a finite sub-graph of G. The operator H = ∆1,a +W on
G is essentially self-adjoint if and only if it is essentially self-adjoint on each end
of G relatively to G0. More precisely, the deficiency indices n± are the sum of
the corresponding deficiency indices of the ends.

10



We will need the following Lemma which is a consequence of Kato-Rellich
Theorem, see [Go-Sch], Proposition 2.1 :

Lemma 5.2 If A and B are 2 unbounded symmetric operators with the same
domains and A − B is bounded, then the deficiency indices of A and B are the
same.

Proof.–

We give here an alternative proof to this result.
The domains of both closures coincide: the “graph-norms” ‖Au‖l2+

‖u‖l2 and ‖Bu‖l2 + ‖u‖l2 are equivalent on H. The domains of
the adjoints coincide too. Let K = D(A⋆)/D(Ā) and QA(u, v) =
i (〈A⋆u|v〉 − 〈u|(A⋆v〉) which is well defined on K. We know that this
Hermitian form is non degenerate and hence the dimension of the
positive eigenspace is constant along the curve A+ t(B −A).

�

Using Lemma 5.2, we can prove Lemma 5.1:
Proof.–

We will consider the operator Hred where we replace the entries ax,y
of H with {x, y} ∈ E(G0) by 0. The claim of the Lemma is clear
for Hred because it is the direct orthogonal sum of the Schrödinger
operators of the ends and a finite rank l2−bounded matrix. We can
then use Lemma 5.2 because H −Hred is bounded.

�

Remark 5.1 It follows from Lemma 5.1 that, concerning essential self-adjointness
questions for tree-like graphs, it is enough to work on the graph N. We have

(Hf)0 = −a0,1f1 + a0,1f0 +W0f0.

This implies that the space of solutions of (H − λ)u = 0 on N is of dimension
1 and any solution so that f0 vanishes is ≡ 0. We will consider also solutions
“near infinity”, i.e. (fn)n≥0 satisfies ((H − λ)f)n = 0 for n ≥ 1; this space is of
dimension 2.

5.2 Main result

It is known ([Dod]) that H = ∆1,a +W is essentially self-adjoint provided ∆1,a

is bounded as an operator on l2(G) and W bounded from below. For tree-like
graphs, we have the following result, which holds for any potential W :

11



Theorem 5.1 1. If
1

an−1,n
/∈ l1(N) , (12)

the Schrödinger operator H = ∆1,a +W with domain C0(N) is essentially
self-adjoint for any potential W .

2. If G is tree-like and if for each end Gα, 1/a
α
n−1,n /∈ l1(N), then H = ∆1,a+W

with domain C0(V ) is essentially self-adjoint for any potential W .

Remark 5.2 The condition (12) is sufficient but not necessary. See Example
5.3.2 .

Proof.–

The proof is by contradiction using Corollary 6.1 which is an analog
of Weyl’s limit point-limit circle criteria in the discrete case.

Let us consider an operator ∆1,a such that (12) is fulfilled. We
assume that any sequence u, such that (H − i)u = 0 near infinity,
is in l2(N). In particular, there exists a basis f, g of solutions of
(H − i)f = 0 with f ∈ l2(N) and g ∈ l2(N).

We have

−an,n+1 fn+1 + (an−1,n + an,n+1 + (Wn − i)) fn − an−1,n fn−1 = 0 ,

and the same holds for g. The Wronskian of f and g is the sequence
Wn = fngn−1 − fn−1gn. We have:

Wn+1 =
an−1,n

an,n+1
Wn ,

which implies

Wn =
a0,1

an−1,n
W1 ∀n ∈ N .

But since the Wronskian is in l1(N) according to the assumption that
f and g are in l2(N), we get a contradiction with the hypothesis (12).

�

5.3 Examples of Schrödinger operators

5.3.1 Example 1

Let us consider the Laplacian ∆ω,c on N, with, ∀n > 0, cn−1,n = n3 and,

∀n ≥ 0, ωn =
1

n+ 1
. We deduce from Theorem 3.1 that ∆ω,c is not essen-

tially self-adjoint. This operator (see [To] Lemma 2.1) is unitarily equivalent

12



to the Schrödinger operator H = ∆1,a + W with an−1,n =
cn−1,n

ωn−1ωn

∼ n5 and

Wn =
1

ωn

[
cn,n+1

(
1

ωn

− 1

ωn+1

)
+ cn−1,n

(
1

ωn

− 1

ωn−1

)]
∼ −3n3, which is there-

fore not essentially self-adjoint.

According to Theorem 5.1, such an operator must verify
1

an−1,n
∈ l1(N), which

is indeed the case. We notice that this operator gives also an example for the
consistency of Theorem 4.2, since the potential W does not satisfy the inequality
(7).

5.3.2 Example 2: discretization of a Schrödinger operator on R+

Let us consider the Schrödinger operator on ]0,+∞[ defined on smooth compactly

supported functions by Lf := −f”+
A

x2
f . This operator is essentially self-adjoint

if and only if A > 3/4 (see [RS] theorem X 10).
We discretize this operator in the following way: let us consider the graph

Γ = (V,E) resulting of the following dyadic subdivision of the interval (0, 1):
the vertices are the xn = 2−n and the edges are the pairs {2−n, 2−n+1} which
correspond to the intervals [2−n, 2−n+1] of length ω2

n = 2−n.
Then we define, for any

f ∈ l2ω(V ) = {f ∈ C(V ) |
∑

n∈N

2−nf 2
n < +∞}

where we set f = (fn), the quadratic form

Q(f) =
∑

n∈N

2−n

[(
fn+1 − fn

2−n

)2

+ A22nf 2
n

]
.

According to the previous definitions and if we set cn,n+1 = 2n, this quadratic
form is associated to the Schrödinger operator H = ∆ω,c + W on N with the
potential Wn := A22n.

Let us set an,n+1 =
cn,n+1

ωnωn+1
= 22n+

1

2 ; then ([To]) H is unitarily equivalent to

Ĥ = ∆1,a + Ŵ +W

with

Ŵn =
1

ωn

[
cn,n+1

(
1

ωn

− 1

ωn+1

)
+ cn−1,n

(
1

ωn

− 1

ωn−1

)]
= 22n

(
3

2
− 5

√
2

4

)
.

We have Ĥ = ∆1,a+(A−A0)4
n with A0 =

5
√
2

4
− 3

2
(> 0). The metric graph

(N, dp) with pn,n+1 = a
−1/2
n,n+1 is non complete. The solutions u of Hu = 0 verify

4un+1 −
(
5 + 2

√
2(A− A0)

)
un + un−1 = 0 .
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The solutions are generated by αn
1 and αn

2 where α1 and α2 are the roots of

4α2 −
(
5 + 2

√
2(A−A0)

)
α + 1 = 0 .

We have |α1| < 1 and |α2| < 1 if and only if A0 −
5√
2
< A < A0.

Hence H is essentially self-adjoint (by Corollary 6.1) if and only if A ≥ A0 or

A ≤ A0 −
5√
2
.

Proposition 5.1 The discretized operator H is essentially self-adjoint if and
only if

(⋆) A ≥ 5
√
2

4
− 3

2

or A ≤ −5
√
2

4
− 3

2
.

From this result we can deduce several informations:

1. The condition (⋆) is analogous to the condition A > 3/4 in the continuous
case.

2. Proposition 5.1 implies that for A = 0 the operator H = ∆ω,c is non
essentially self-adjoint, which is a result predicted by Theorem 3.1.

3. This gives examples of essentially self-adjoint operators with 1/an ∈ l1.

4. Sharpness of the assumption (8) in Theorem 4.3

In this context, the distance dp is associated to

px,y =
αx,y√
cx,y

with αx,y = min{ωx, ωy} so we get

D(n) =
∑

p≥n

αp,p+1√
cp,p+1

=
∑

p≥n

(
2−p−1

2p

)1/2

= 2−
1

22−n2

so
1

D(n)2
= 22n−1 .

If the operator H = ∆ω,c + A4n satisfies the assumption (8), then

A >
1

2
which implies condition (⋆), since

1

2
>

5
√
2

4
− 3

2
, so Theorem 4.3

is coherent with proposition 5.1. Moreover the operator H = ∆ω,c + A4n

with A =
5
√
2

4
− 3

2
is non essentially self-adjoint, which implies that the

estimate (8) on the growth of the potential in Theorem 4.3 is sharp.
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5.3.3 Example 3

Let us consider the Laplacian ∆ω,c on N, where the coefficients verify cn−1,n = nγ

with γ > 2 and ωn = (n + 1)−β with β >
1

2
. We deduce from Theorem 3.1 that

∆ω,c is non essentially self-adjoint.
From [To] Proposition 2.1, this operator is unitarily equivalent to the Schrödinger

operator H = ∆1,a +W , with an−1,n ∼ nγ+2β and Wn ∼ −β(β + γ − 1)n2β+γ−2,
which is therefore also not essentially self-adjoint. We emphasize that W is not
bounded from below, which is predicted in [To], Theorem 3.2.

Furthermore, according to Theorem 5.1, such an operator must verify
1

an−1,n

∈
l1(N), which is indeed the case. Following the terminology of the previous sec-

tions, it means the non completeness of (N, dp) with the weights pn−1,n = a
−1/2
n−1,n .

5.3.4 Example 4

Let us consider the Laplacian H = ∆ω,c on a radial tree G = (V,E) . For any
vertex x, we denote by dist(x) the distance from x to the center 0 and define
ωx = 2−n, cx,y = 2n, with y ∼ x, dist(x) = n, dist(y) = n + 1 . We assume that
the graph G has a uniform degree N + 1.

Let us set ax,y =
cx,y
ωxωy

= 23n+1 for any edge so that dist(x) = n, dist(y) =

n+ 1; then H is unitarily equivalent to

Ĥ = ∆1,a +W

with

W (x) = 23n
(
−N +

1

4

)

for any x such that dist(x) = n .
The radial solutions u of Hu = 0 can be seen as sequences (un) and satisfy

the equation:

un+1 −
(
5

4
− N

2

)
un +

1

8
un−1 = 0 .

The solutions are generated by αn
1 and αn

2 where α1 and α2 are the roots of

α2 −
(
5

4
− N

2

)
α +

1

8
= 0 .

We have |α1| < 1 and |α2| < 1 if and only if
1

4
< N <

19

4
.

Hence (by Corollary 6.1) we get the following result:

Proposition 5.2 If N ≤ 4, then H is non essentially self-adjoint .
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Remark 5.3 We have

∑

x

ω2
x =

∑

n

ω2
nN

n =
∑

n

(
N

4
)n .

If N < 4, then
∑

x ω
2
x < ∞ so Theorem 3.1 can also be applied to get the result

since the graph is non complete with respect to the metric dp , with px,y = c
− 1

2
x,y .

6 Appendix: Weyl’s “limit point-limit circle”

criteria

6.1 The discrete case

The goal of this section is to prove the discrete version of the Weyl’s “limit point-
limit circle” criterium. Our presentation is simpler than the classical presentation
for the continuous case (see [RS], Appendix to section X.1).

Let us consider the Hilbert space H := l2(N,CN) and the formally symmetric
differential operator P defined by

Pf(0) = P0,0f(0)+P0,1f(1), ∀l ≥ 1, P f(l) = Pl,l−1f(l−1)+Pl,lf(l)+Pl,l+1f(l+1)

where

1. ∀l ≥ 1, P ⋆
l−1,l = Pl,l−1

2. ∀l ≥ 0, P ⋆
l,l = Pl,l

3. ∀l ≥ 0, Pl,l+1 is invertible

4. ∃M ∈ R so that for any f ∈ C0(N,C
N), QP (f) = 〈Pf | f〉 ≥ −M‖f‖2.

Let us define the subspace E of H as the set of l2 sequences f so that, for all
l ≥ 1, (P − i)f(l) = 0; the space E is isomorphic to the space of germs at infinity
of l2 solutions of (P − i)f = 0. Assumption 3. implies that dim E ≤ 2N . Let us
denote by K = ker(P − i) ∩ l2 and consider the following sequence

0 → K → E → C
N → 0 , (13)

where the non trivial arrow is given by f → (P − i)f(0). We have the

Theorem 6.1 The sequence (13) is exact and the deficiency indices n± = dimK
of P are given by n± = dim E −N .

Proof.–
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Assumption 4. implies (using Corollary of Theorem X.1 in [RS]) that
the deficiency indices are equal. The only non trivial point is to prove
that the arrow p : E → C

N is surjective. Let us consider P̃ a self-
adjoint extension of P which exists because n+ = n−. Let us consider
the map ρ : CN → E defined by ρ(x) = (P̃ − i)−1(x, 0, 0, · · · ). Then
p ◦ ρ = IdCN .

�

Corollary 6.1 The Schrödinger operator H = ∆1,a + W defined on C0(N) is
essentially self-adjoint if and only if there exists a sequence u such that (H−i)u =
0 near infinity (i.e. ((H − i)u)n = 0 for n large enough) which is not in l2(N).

6.2 The continuous case

A similar method works for the continuous case. Let H = − d2

dx2
+ A(x) be a

system of differential operators where A(x) is Hermitian for every x and is con-
tinuous on [0, a[ as a function of x. The differential operator H is L2-symmetric
on the Dirichlet domain

D = C∞
0 ([0, a[,CN) ∩ {u | u(0) = 0} .

We denote HD the closure of (H,D). Let us assume that n+(HD) = n−(HD)
which is true for example if A is bounded from below or if A is real-valued. Then

Theorem 6.2 If E is the space of solutions u of the differential equation
(H − i)u = 0 which are L2 near a, then n±(HD) = dim E −N .

Proof.–

Let us consider the sequence

0 → ker(HD − i) → E → C
N → 0 , (14)

where the only non trivial arrow is given by u → u(0). This sequence
is exact: we have only to prove the surjectivity of the non trivial
arrow. Let H̃ be a self-adjoint extension of HD and χ ∈ C∞

0 ([0, a[,R)
with χ(0) = 1. For any X ∈ CN , let us consider

u = χX − (H̃ − i)−1 ((H − i)(χX)) .

Then (H − i)u = 0, u(0) = V and u is L2 near a.

�
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