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Original Article

Almansi-type boundary conditions for electric potential inducing flexure
in linear piezoelectric beams

F. dell'lsola, L. Rosa

Dipartimento Ingegneria Strutturale ¢ Geotecnica, Universita di Roma “La Sapienza” Via Eudossiana n. 18, 1-00184 Roma Italia

Using the recent results found in [1, 2] we prove that it is possible to induce flexur in linear
piezoelectric beams by means of quadratic Almansi type boundary conditions for the electric
potential. Beams constituted by transversely isotropic piezoelectric materials whose symmetry
axis is parallel to the axis of the beam are considered. Our choice of boundary conditions for
the electric potential has been suggested by the results found in [1, 3]. An explicit expression
of material parameters that influenc flexur is given in terms of piezoelectric moduli.

1 Introduction

In a recent paper Batra and Yang [2] demonstrated the validity of the Saint-Venant (SV) principle for linear
piezoelectricity. Their results open the related question of findin the solutions of the SV-Almansi problem
for a SV cylinder constituted by linear Transversally Isotropic Piezoelectric (TIP) material. We assume that
the material symmetry axis is parallel to the axis of the cylinder. However it is implicitly implied by the
results found in [3] that for homogeneous electrical and mechanic boundary conditions — on the lateral wall
of the cylinder — one should expect a very weak coupling between mechanical and electrical phenomena.

Under the Clebsch-SV hypothesis expressed by Eq. (29), we prove that, in absence of an external electric
fiel orthogonal to the axis of the cylinder (z-axis), the only electro-mechanical coupling occurs under pure
extension and compression. On the other hand, when the boundary value of the electric potential varies along
the z-axis, very interesting coupling effects can arise. Indeed in the case of Almansi-type boundary conditions
-quadratic in z- we fin that coupling of electrical and mechanical effects occurs in flexure

The considered prismatic beam in the reference configuratio occupies a volume C which is the Cartesian
product of a plane section C; times a straight line segment | :=[—L, L]. We will call lateral wall the Cartesian
product 9C,; x | and baseghe sets C, x {—L} and C, x {L}. In this paper we assume that this space is fille
by a TIP material, and then formulate the Clebsch-SV hypothesis on stress in order to apply the semi-inverse
method of SV to solve an Almansi-type problem. In particular we prove that it is possible to control the SV
flexur and Poisson effect in SV compression and extension.

The balance equations describing the local equilibrium for piezoelectricity can be found, for instance, in
[2, 4,8, 9]

pvT =0, bvD=0, (1)

where T is the Cauchy stress tensor and D is the electric displacement vector.

In the Almansi-SV problem suitable boundary conditions on the lateral wall of the prismatic beam must
be added to these equations describing the nature of mechanical and electrical interactions of the bar with the
external world. We limit our analysis to the case of unloaded lateral walls (n L. 9C, x |):

Tn|acw><| =0. (2)
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Moreover we will consider two kind of electrostatic interactions through the lateral wall:

i) the case in which the cylinder is in contact with a medium with low permittivity so that outside the
prismatic bar the normal component of the electric induction vector vanishes [2]

D~n|acﬂ><| :07 (3)

ii) the case in which conductors at an assigned potential (z is the coordinate along the axis of C) envelop
the cylinder

Ploc, x1 = ol )+ 2p1(r ) T Z20a(r ), T € OCy; @)

this is an Almansi-type boundary condition (see [5]).

We do not specify the boundary conditions on the bases. Indeed, up to some scalar constants they will be
determined. The solution to the SV problem for linear elastic prismatic beams depends on six scalar constants
(see for instance [10]) which are in one-to-one correspondence with the resultant force and torque applied
on the bases. We will show that for a linear piezoelectric SV cylinder some extra constants are needed to
determine the flu of the electric displacement vector through the bases.

The geometry of the problem allows for a very useful decomposition of the 3-d displacement vector field
into a direct sum of vectors parallel to the axis | and vectors lying in the plane section C, orthogonal to I.
Following [11] we decompose all the tensor algebra and tensor differential operators correspondingly. In this
way the calculations are substantially simplifie in comparison to the original Almansi-SV problem [6, 10].

We prove that when boundary condition (3) applies it is possible to electrically control the Poisson effect.
For boundary condition (4) the elliptic problem for the displacement fiel is coupled with the elliptic problem
determining the electric potential. Postponing the study of these problems to further investigations we prove
that for a particular choice of boundary condition (4) and for SV cylinders with rectangular cross sections,
flexura displacement (“flexio inégale” following Saint Venant) can be controlled by means of the applied
potential difference.

2 Constitutive equations
Because of the decomposition of the reference placement of the body as C, x | we can identify a generic

point in the beam by means of the pair (r.,z) with r, € C; and z the coordinate along |. We decompose
vectors and tensors as follows:

r ze, +r,, u=u,e, +u,, E=E,e +E,, &)
D = Dg+D,, Y=3+(0e+e0(+ne e, (6)

where U is the displacement vector, E the electric field D the electric displacement vector, €, the unit
vector in the direction of the symmetry axes |, = denotes the projection onto C,, r is the position vector
from an arbitrary origin 0 € C,, Y and ¢ are respectively a second order tensor fiel and a vector fiel in
C, and 7 is a scalar field In the following (see constitutive equations) we will need the decomposition of
transversely-isotropic tensors of rank two, three and four. Let €, be the axes of symmetry, then we get [1, 3]:

C = 24,0+ AN, ®I1,+a; (POl +1TOP)+

(PR 1 +1 ®P)+203P @ P, (7)
= = ﬁllw®ez+ﬁ2(lrr|]ez+ez®|w)+ﬁ3p®eb (8)
24 = Ayl + P, ©)

where | is the identity operator in R?, | is the identity operator in C,, and P = &, ® &, is the projector along
the symmetry axes |. Furthermore, u, A, oj, Gi(i = 1,2,3), 71 and ~, are scalar coefficients The action of
the previous tensors are determined as follows (using the following convention: C - a= Zj Cija, (C-B)k =

Zj Cij Bjk, C:B= Zij Cij Bji 7)5
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(AOB):C=A-C-B" | (A®B):C=A(C:B), (10)
(AOa):B=A-(B"-a) , (A®a):B=A-(B-a), (11)
AOab=A -byea , (Aab=A@a-hb). (12)
. . . . . . 2x2 2x1
Having these in mind we may defin the following block matrix representations < 12 1x1 ) :
i og
T:= 1
( 7_T o > ’ ( 3)
5 o¢ )
XY= , 14
( o (9
2uE + (M () + axn]l » ¢
c:.xy = A 15
( T aatr () +an ) (4
- (Br + B2)C )
=) = A , 16
( (£)+ Bn (1o
—_ /81 EZI ™ ﬂZ ETr )
= E = , 17
( BET  BiE, (an
E
s9E = ( MEr > , 18
( 12E; (18)
where a =2 () + ap + a3).
TIP materials obey the following constitutive equations [1-3]:
T = C:Y+Z:E, (19)
D = YhE-Z:5 (20)
Thus we fin
1 ( 2wEH M)+ am+ BiE]l a1+ BEx 1)
a (T + RHETD aptr (Z) +an+ BE;
< D~ > _ ( Y1Ex = (61 + 52)¢ > (22)
D, 1E; — Botr (LX) — Bsn
For what concerns the gradient operator we have the following decomposition
GRAD(p) = '€+ grad(y), (23)
GrAD(U) = grad(u,)+grad(u,)®e +u. ®e +Ue Qe (24)

(here and in the following we write GRAD (DIV ) for the gradient (divergence) operator that acts in R3, grad (div)
for the one that acts in C, and, finally the ’ stands for 9,. Moreover we will denote with A, the restriction
of Laplacian operator A to C;).

We assume that the electric fiel E and the infinitesima deformation tensor X' are the gradient of a
potential ¢ and of the displacement vector u, respectively,

E

(grade, ¢')

i Sym(grad(uz))  (uf + grad (1)) /2 ) (25)

Sym(GraD(U)) = ( (ul, + grad (uy)) /2 u,
We will also need the following compatibility theorem (see for instance [12]):

— Let f be a scalar fiel on C,

f | = Synyrad(u) _ .
3 u/{ g% = Skwgrad(u) = Af =0, grad(g) = xgrad(f). (26)
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Here, * denotes the (counter clockwise) 7 /2-rotation operator in the plane including C,. Theorem (26) states
that if a spherical tensor fiel is the symmetric part of the gradient of a vector field then its Laplacian is
vanishing and can be uniquely completed by a skew part which is its rotation gradient.

3 Saint-Venant problem

In this section we derive the elliptic problems that characterize the deformation of piezoelectric SV beams
under the Clebsch Saint-Venant hypothesis.

From pivD = 0 and with Eq.20 we may deduce
dlv(grad(uz))

N1Arp — (B + ﬁz)dlv( ) — (b1 +B2) ¢+ By =0 27
with
Ao =+ BB /(t A), By =fhan/(t N) — S
Denoting
P =me - ;(51 + B2)U;
we obtain

- (& +52)d“)( )*Azsﬂﬂ +Byuy = 0. (28)

Now, we introduce the Clebsch Saint-Venant hypothes1s

T=0. (29)
With it and by means of (21) one may deduce
~ o) B
t = — — E 30
(%) uaATT e aEr (30)
o = A177+BlEZ, (31)
T = ai(t5hE;., (32)
“2Ap+NE = [+ HiE]l (33)

in which A; = 2(a; + aa + 3) — a3 /(u+ A), By = B3 — Braa/(n+ ).
From pivT =0 we fin

o' +divr=0,7=0 = " =0. 34)
Consequently, from (31)
Al Al
E=_ "o mo_ m 35
v B, n = ¥ B, u, (35)
and from (25, 33)
X=An", = Symgrad(u?)) =Amn"l,. (36)

where

A= =1/12u 1 oz = 61 |

From 7/ = 0, by using (32) and (25), there follows

"

ux ar oy /
+ + =
aq 5 grad ( 5 u, 62g0> 0 (37)
and, if 0, = a1U; + 25
ajgrad(u)) + grad(grad(t;)) =0 = Skw(grad(u?))=0. (38)

Consequently, by (36) and (38)



On Almansi-type boundary conditions in linear piezoelectric beams 119
a1 AL + grad(grad(tit)) = 0. (39)
Equations (36),, (38), and (26) imply that " (r ., z) is a function of z only.

Let h(z) = —a1 A4’ (2); if we calculate the trace of (39), differentiate (28) with respect to z and substitute
the expression for div(u))) as obtained by (36),, then we obtain

A0, = 2h(2), (40)
N, A A
Azt = (As(Br +B2) + B B2)h(2). (41)
Applying, next, condition (26) to (36), and (38), yields
AU+ B A =0. (42)

In view of the definition of 0, and @ and by using (40) and (41), the last equation becomes
[a2F1 + 381G ]h(2) =0 (43)
with
2% = 26:(A(Br + B) + Y — Bo)
Ten + Ba(Br + 52) ’

_ Bt Bt ai(ABit B) + RN —By)
Mar+ 361+ 52) .

If the material modulus (in square brackets) appearing in (43) is non-vanishing, then (43) requires that

1 -

1 -

h(z) = 0. (44)

This will be assumed in the sequel so that, because of (35), we have

w'=0, ¢"=0=0/=0 " =0. (45)
Thus we have found
grad(grad(ti,)) = 0 (46)
whose general integral is
0y(r 7, 2) = V(2) - T + b(2); (47)

differentiating this twice with respect to z we fin
0 =V'(@)- 12 +b"(2) =0, (48)

where (45); has also been used. This is an r-polynomial, and so we must set

V(z)=0, b"(z)=0, (49)
from which
V(Z) = V| +V,Z, b(z) = b; + b,z. (50)
Again with the aid of (45) we get
0 1 2 z’ 0 1 2 z’
uzZUZ(FW)+Uz(rw)Z+Uz(H)2, uz:uz(rw)+uz(r7r)2+uz(r7r)27 (51
72 - _ ~ 72
Y= @O(rﬂ)+@l(rw)2+¢2(rﬂ) 2 ) Y= @O(rﬂ)+cpl(r7r)2+902(r7r) 2 ) (52)

where owing to (47) and (50)
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0l =v,-ry+by, 2=V, I +b,. (53)

" _
T

Equation (37) implies u —(Vi +V22)/aq and, consequently,

0 | 1 22 z3
Ur(r,z) = uz(r) + Uz (rx)z — VitV ) (54)
Qg 2 3!

Now from (46) and (33) we obtain div(U;) = —(aU, + B1¢")/(1r + A) from which we deduce

. . 1
divun) +zdioun] == [0t + Brip) + 2(eau; + Brea)] (55)
so that
. 1 . 1
div(uy) = Tt )\(azuzl +Bien),  div(u)) = Tt /\(Oézuzz +B1¢2) (56)
and finally by using this in (28)
A5 =—Ful — Gypy (57)
e B+ B 3161+ )
_ b1 T b _ Pilbr T P2
) = 2+ N) +B,, & 2+ N) +A.

Because of (40) , (41) and (44) and using (51); and (52), we have

Def = Anfr +20:3, = 0, A0 = A0} +2A,02 = 0 (58)
and finall
Arpr = 0, Ay =0, (59)
Arpo = —Fau; — Gy, (60)
A0l = 0, A02 =0, (61)
A0) = F3uf — Gsp, (62)

with F3 = 2A; — ajay/(p+ A) and G = 2B; — a1 32/(1 + A). We note that the functions 0. and 02, given in
(53), satisfy Eq. (61).

To obtain the boundary condition for 09 we note that from (2), (21) and (25) it follows

[yl -n + (grad(0,)) - n] oc.x1 =0 (63)
and so, because of (51), and (54),
[(grad(@))) - n+ aul-n] oc.x1 =0 (64)
To determine the field u® and ul we use
Uy + By’
Syn(grad (u;))=— 7 ”
ymigrad (uo) = == T
from which we conclude that
'+ U2 + By
Syngrad(u®)) = — ‘2% P symgrad(uly) = — Y2z TP 65
ymgrad(wy) = = ¢ LU symgraduly = 2 LT (63)
In accordance with (26) we can set
oy QU+ Bipr L U+ Bip
symgrad(up)) = =", ¢ AL Symigrad(ul) = -0 LA (66)

Skw(grad(uz)) = *g1, Skw(grad(uy,)) = *g», (67)
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where because of (26)

*grad(ozgu% + B1¢2)
2+ )

>s<gl’ad(ozguz1 + B1p1)

2(u+A) ’ (68)

grad(g) = — grad(g:) = —

In this way, once the problem for the potential ¢ is solved, one can calculate g; and g, and fin U and ul.
This we will do in the following for two classes of boundary conditions,

D nloc,x1 =0, ©(fr,2)=o(rz)+2p1(I ) +Z2*pa(r )l = € OCs.

4 Piezoelectric beam in contact with low permitivity medium: D- n|sc_xi= 0

From D - n|sc_x1 = 0 the following boundary conditions emerge

+
grad@y-n = 7Pl n, (69)
+
grad@n-n = =Py, (70)
+
grad@)n = - P, @
so that, from Egs. (59) and (61), the relations
- +
&= —ﬁlzﬂzvl-rﬁ@?, (72)
U = Vi-rr+hy, (73)
~ +
Bo- P (74)
0 = Vafth (75)
and consequently
1 ﬁl + ﬂz ~0>
= b+« , 76
O e (3 b 7
1 by —23:¢"
u = v+ b B2y ’ 77
o Nayt B2(br + 52)
1 51 + ﬁZ ~0
= b+« , 78
& mm+mwuﬁ»< 2 i 79
1 — 26,89
2 o= v+ 12 =264, (79)
o Tar+ (B + 52)
can be derived. The compatibility condition for Neuman’s problem yields two conditions
/ o = / /All,lz2 + Bl<,02 =0 / D3/ = / B2U22 +A2(p2 = 0. (80)
Cr Cr Cr Cr
which are equivalent to
+
b2:7V2~I'B, (,582612 /82V2~I'B (81)
aj
with
rg = ! / r
B AC,r c. T

Thus,
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1 ﬁl +ﬁ2 ~O)
= b+« , =0, 82
P+ BalBy + o) ( 2y T ) @ ®2)
1 by —26¢Y 1
1 _ 1 2 _
u = Vv-r,+ , u= Vo-(rp —rg). 83
Z ) yiaq + Ba(Br + 52) 2t ( e) (83)
Equations (60) and (62) can thus finall be written as
_ F
Argo = = Fvar(rx = Te), (84)
~ +
grad(po) - Nlac, x1 = A 5 b ur - Nlac, i (85)
F
A0 = = vy (rp —Te), (86)
(€3]
grad(u)) -nloc, x1 = —aiuy - Nlac, x1- (87)
As for u® and u! we fin because of (26)
1
u?‘r(r’ﬂ') = U;‘.(O) + )\Orﬂ' +/14(1) * Iy + ) [()‘1 . r7T)r7l' + (*)‘1 . r7r) * r’ﬂ']7 (88)
1 2 apVy - Igly 0
u(ry) = uz(o)— + M.+ 89
N ORIV (89)
(6%)
— Vo -(Fg —rp)rzat (Vo) xr.],
PN (CROT OISR
where 5
T VN W by + 3 (o161 — 202/3%) :
2a1(p+ ) 2ap(p+ ) mar+ 5 (B + B)

19 and 9 are integration constants.

In this way the problem is completely solved in terms of twelve arbitrary constants. As u’(0), ul(o)
and p, correspond to rigid motions that shall henceforth be disregarded and thus omitted, there remain seven
constants, six corresponding to the usual SV solution and the seventh related to the flu of the electric
displacement D through the bases. In particular we note that by assuming all the constants to vanish but ¢!
and by, we fnd

ws = 0, U2 =0, ul=0 w =0 ¢ =0, (90)

O e B <ﬁ1;ﬁ2bl+aﬁ>’ oy
_ ~0

b - %(zlltiﬁz(zﬁﬁlzf]@Y ©2)

Un = _2Oz1(0/;2+)\) {ler@?’Yl(Z]f:ﬁz(zﬁ?Zfzﬂ)z)] o ©3)

Vo= lg. %94)

V is the potential difference between the bases. Consequently the resultant force and fiel are given by

/ o / A1U£ + Bl(p/
Crxo Crxo

Y (—2A1 5, +Biay) + by (A1 +Bi (B +ﬂ2))}
A{ e + oy + o) ’ ©9)
wao D3 = /CWXO BzUé +A2g0/
&V (—2By 32 + Avry) + by (Byyr + Ao(Br + 52))}
A{ mar+ BB+ B2) ’ (56)
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where A is the area of the cross section.
Because of (96) and (93) we see that an electric fiel applied through the bases of the SV cylinder
produces an elongation whose Poisson-effect is controlled. In fact, choosing

50 _p, N1 +52(61 + B2)

7 200, — o B @7

we fin )y =0 and consequently (93)
u’ =0. (98)

This means that if we apply, between the bases, the potential difference V given by (94) in which @? is given
by (97), then the Poisson effect in extension vanishes.

We postpone the discussion of other deformation cases to a forthcoming investigation. We simply remark
here that the only change with respect to the standard SV problem -when no transversal electric fiel is
applied- concerns the elasticity constants. More interesting results are likely to arise in the deformation of
piezoelectric cylinders embedded in an external electric field as is suggested by the results obtained in the
following section.

5 Almansi type boundary condition:
ploc,xi = ¢o(fx) + 2p1(rx) + Z2pa(rz),  x € Cx

5.1 The general elliptic problem

In the considered case the following Dirichlet problem for the potential must hold:

ATrQO] =0 in C‘n’7 ©1 ‘aCﬂ'XI = 90’1\/'3 (99)
Arpr =0 in C, valac, x1 = @Y, (100)
Arpo=202+Zps  inCr,  woloc,x1 =y, (101)

with

2 - 1 (Oéle +F3 (61 +ﬁz)/2)
T\ amth@Bith) )]
_a162 + G3(6) +ﬁz)/2 _ 203, (a1F2 +F3(6; +ﬂz)/2) .

= a1y + (a2 (61 + 62) o aryr + G261+ F2)

Once the ¢,-problem is solved we can fin ul (see (26)) by solving

Sym(grad(uy) = (Z40; +Zs@2) |- (102)
Similarly, u follows from
Synmigrad(uy) = (Zs0, +Zs1) I (103)

once ¢; is known. Thus we have a well posed problem for 017
A0 =Zo0; +Z1¢pr,  grad (0F) - N|ac, xi = cqUk - Nac, x1, (104)

where
Fs 2ﬁ2 a1Gy + G3(ﬂl + ﬂz)/z

ZO:ial’ a= ar BB+ B)
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5.2 A boundary value problem for a SV cylinder of rectangular cross section

F. dell’Isola, L. Rosa

Let us apply these formulas to a SV cylinder of rectangular section [0, Xg] X [0, Yo]. Assuming the boundary

conditions

902()(70) = kOa @2(X7y0) = k17 X e [07X0]a

k_
©2(0,y) %+1W&y=wwww,yEMWL

for ¢,, we arrive at

©a(rx) =Kot k-, with k= (0, (ki —ko)/yo)

The condition 7 - N|sc, x1 = 0 allows b, to be determined, viz.,

bz=v2-rB+<ko+k-rB>(zﬁz— B;\(f‘),

from which
B«
uzszz'(rw—rB)Jr(koJfk'rB)(252— ;\1).

1
In conclusion, we have (see (66),, (67), and (26)) [recall the definitio of the * operator]
1
Ur = 5 (20 (e = TB) T+ (820 T ) 5 Ta] + 0T ] 5T+ UL(0)
with

20 =24vy + Zsk, 21 =(k-rg +ko) {25+z4 <2g2_ BX?”)]’

Zi=— Q2 _ 2300 — a1y
200+ X))’ 7 200(u+ N
For 0 the boundary value problem reads
Anl) =00 (tr —Tp)+ (25, grad(@)-nlac, «1 = —a U} - Nlac, xI

with
B
) =Zyvr +Z K, 235=(k-rg+kpy) [Zl+zo <2ﬁz— }_\?1)] .

(105)
(106)

(107)

(108)

(109)

(110)

(111)

The evaluation of the resultant forces on the bases of the cylinder in terms of the kinematic parameters
introduced is similar to what was done in [10]. We remark here that for flexur the resultant shear force takes

the form
q:=/ reo,
Cr
in which
26,A A
o' =k-(r; —rg) (Bl _ % 1> + My (e —TR),
all o5

so that g can be written as
g=x*Jg(YVv, +YK)

where A
y="" Y=B,

_26A
ay T

Jg = /(r,r —Ig)® (rx —rg)dA;

Jg is the Euler tensor of inertia.

(112)

(113)
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The above equations make evident that by fixin the resultant shear force, g, the value of v, can be con-
trolled by varying k. Moreover, because UY := (09 — 23,00)/; warping can be controlled by correspondingly
controlling the potential . Finally, once the problem for ¢; is solved, we can calculate u? and consequently
derive the full expression for U,

0 | 1 z2 z3
Ur(r,2) = Uz (rz) + Uz (r2)z — Vi, Vo). (114)
Q) 2 3!
We postpone the discussion of how the deformation of SV cylinders can be controlled by applying the
appropriate electric fiel to further investigations.

6 Conclusions

In the literature (see [7] for a detailled discussion of the results already available) all possible coupling effects
between electric and mechanic phenomena present in the SV problem have been investigated. In [2] the SV
principle is proved for linear piezoelectric materials, while in [1, 3] an exhaustive study of TIP constitutive
equations is performed. These papers implicitly suggest that more interesting coupling effects must occur
when (at least for the electric potential) Almansi-typeboundary conditions are considered.

In the present paper we proved that by simply considering quadratic Almansi-type boundary conditions for
the electric potential it is possible -in SV cylinders which are not loaded on the lateral wall- to significantl
influenc by means of the externally applied electric potential the displacement fiel that is induced by shear
forces applied on its bases. In particular we proved that it is possible to control

i) the Poisson effect-in SV deformation of a piezoelectric cylinder with lateral boundary unloaded and in
contact with a relatively low permittivity medium-by applying a potential difference between its bases;

i) the deformation of axes of a particular SV piezoelectric cylinder in flexure when its lateral boundary is
not loaded but it is in contact with a family of conductors whose potential varies quadratically with the
Z-coordinate.

While the firs effect has been partially studied in the literature, we could not fin anywhere a description of
the second.

We underline that the set of Eqs. (99—104) represents an interesting elliptic problem which, to our knowl-
edge, is not studied in the literature. In our opinion it is worth further investigation with a view to applications.
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