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Almansi-type boundary conditions for electric potential inducing flexure
in linear piezoelectric beams

F. dell’Isola, L. Rosa

Dipartimento Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza” Via Eudossiana n. 18, I-00184 Roma Italia

Using the recent results found in [1, 2] we prove that it is possible to induce flexur in linear
piezoelectric beams by means of quadratic Almansi type boundary conditions for the electric
potential. Beams constituted by transversely isotropic piezoelectric materials whose symmetry
axis is parallel to the axis of the beam are considered. Our choice of boundary conditions for
the electric potential has been suggested by the results found in [1, 3]. An explicit expression
of material parameters that influenc flexur is given in terms of piezoelectric moduli.

1 Introduction

In a recent paper Batra and Yang [2] demonstrated the validity of the Saint-Venant (SV) principle for linear
piezoelectricity. Their results open the related question of findin the solutions of the SV-Almansi problem
for a SV cylinder constituted by linear Transversally Isotropic Piezoelectric (TIP) material. We assume that
the material symmetry axis is parallel to the axis of the cylinder. However it is implicitly implied by the
results found in [3] that for homogeneous electrical and mechanic boundary conditions – on the lateral wall
of the cylinder – one should expect a very weak coupling between mechanical and electrical phenomena.

Under the Clebsch-SV hypothesis expressed by Eq. (29), we prove that, in absence of an external electric
fiel orthogonal to the axis of the cylinder (z-axis), the only electro-mechanical coupling occurs under pure
extension and compression. On the other hand, when the boundary value of the electric potential varies along
the z-axis, very interesting coupling effects can arise. Indeed in the case of Almansi-type boundary conditions
-quadratic in z- we fin that coupling of electrical and mechanical effects occurs in flexure

The considered prismatic beam in the reference configuratio occupies a volume C which is the Cartesian
product of a plane section Cπ times a straight line segment l := [−L,L]. We will call lateral wall the Cartesian
product ∂Cπ× l and basesthe sets Cπ×{−L} and Cπ×{L}. In this paper we assume that this space is fille
by a TIP material, and then formulate the Clebsch-SV hypothesis on stress in order to apply the semi-inverse
method of SV to solve an Almansi-type problem. In particular we prove that it is possible to control the SV
flexur and Poisson effect in SV compression and extension.

The balance equations describing the local equilibrium for piezoelectricity can be found, for instance, in
[2, 4, 8, 9]

DIV T = 0, DIV D = 0, (1)
where T is the Cauchy stress tensor and D is the electric displacement vector.

In the Almansi-SV problem suitable boundary conditions on the lateral wall of the prismatic beam must
be added to these equations describing the nature of mechanical and electrical interactions of the bar with the
external world. We limit our analysis to the case of unloaded lateral walls (n ⊥ ∂Cπ × l ):

Tn|∂Cπ×l = 0. (2)
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Moreover we will consider two kind of electrostatic interactions through the lateral wall:

i) the case in which the cylinder is in contact with a medium with low permittivity so that outside the
prismatic bar the normal component of the electric induction vector vanishes [2]

D · n|∂Cπ×l = 0, (3)

ii) the case in which conductors at an assigned potential (z is the coordinate along the axis of C) envelop
the cylinder

ϕ|∂Cπ×l = ϕ0(rπ) + zϕ1(rπ) + z2ϕ2(rπ), rπ ∈ ∂Cπ; (4)

this is an Almansi-type boundary condition (see [5]).

We do not specify the boundary conditions on the bases. Indeed, up to some scalar constants they will be
determined. The solution to the SV problem for linear elastic prismatic beams depends on six scalar constants
(see for instance [10]) which are in one-to-one correspondence with the resultant force and torque applied
on the bases. We will show that for a linear piezoelectric SV cylinder some extra constants are needed to
determine the flu of the electric displacement vector through the bases.

The geometry of the problem allows for a very useful decomposition of the 3-d displacement vector field
into a direct sum of vectors parallel to the axis l and vectors lying in the plane section Cπ orthogonal to l .
Following [11] we decompose all the tensor algebra and tensor differential operators correspondingly. In this
way the calculations are substantially simplifie in comparison to the original Almansi-SV problem [6, 10].

We prove that when boundary condition (3) applies it is possible to electrically control the Poisson effect.
For boundary condition (4) the elliptic problem for the displacement fiel is coupled with the elliptic problem
determining the electric potential. Postponing the study of these problems to further investigations we prove
that for a particular choice of boundary condition (4) and for SV cylinders with rectangular cross sections,
flexura displacement (“flexio inégale” following Saint Venant) can be controlled by means of the applied
potential difference.

2 Constitutive equations

Because of the decomposition of the reference placement of the body as Cπ × l we can identify a generic
point in the beam by means of the pair (rπ, z) with rπ ∈ Cπ and z the coordinate along l . We decompose
vectors and tensors as follows:

r = zez + rπ, u = uzez + uπ, E = Ezez + Eπ, (5)
D = Dzez + Dπ, Σ = Σ̂ + ζ ⊗ ez + ez ⊗ ζ + ηez ⊗ ez, (6)

where u is the displacement vector, E the electric field D the electric displacement vector, ez the unit
vector in the direction of the symmetry axes l , π denotes the projection onto Cπ , rπ is the position vector
from an arbitrary origin o ∈ Cπ, Σ̂ and ζ are respectively a second order tensor fiel and a vector fiel in
Cπ and η is a scalar field In the following (see constitutive equations) we will need the decomposition of
transversely-isotropic tensors of rank two, three and four. Let ez be the axes of symmetry, then we get [1, 3]:

C = 2µIπ � Iπ + λIπ ⊗ Iπ + α1 (P� I + I � P) +
+α2 (P⊗ I + I ⊗ P) + 2α3P ⊗P, (7)

Ξ = β1Iπ ⊗ ez + β2 (Iπ � ez + ez ⊗ Iπ) + β3P⊗ ez, (8)
Σd = γ1Iπ + γ2P, (9)

where I is the identity operator in R3, Iπ is the identity operator in Cπ and P = ez ⊗ ez is the projector along
the symmetry axes l . Furthermore, µ, λ, αi , βi (i = 1, 2, 3), γ1 and γ2 are scalar coefficients The action of
the previous tensors are determined as follows (using the following convention: C · a =

∑
j Cij aj , (C · B)ik =∑

j Cij Bjk , C : B =
∑

ij Cij Bji ,):
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(A � B) : C = A · C · BT , (A ⊗ B) : C = A(C : B), (10)
(A � a) : B = A · (BT · a) , (A ⊗ a) : B = A · (B · a), (11)
(A � a) b = (A · b)⊗ a , (A ⊗ a) b = A(a · b). (12)

Having these in mind we may defin the following block matrix representations
(

2× 2 2× 1
1× 2 1× 1

)
:

T :=
(

T̂ τ

τT σ

)
, (13)

Σ :=
(

Σ̂ ζ

ζT η

)
, (14)

C : Σ =
(

2µΣ̂ + [λtr (Σ̂) + α2η]Iπ α1ζ

α1ζ
T α2tr (Σ̂) + αη

)
, (15)

Ξ: Σ =
(

(β1 + β2)ζ
β2tr

(
Σ̂
)
+ β3η

)
, (16)

Ξ: E =
(

β1EzIπ β2Eπ

β2ET
π β3Ez

)
, (17)

Σd.E =
(

γ1Eπ

γ2Ez

)
, (18)

where α = 2 (α1 + α2 + α3).
TIP materials obey the following constitutive equations [1–3]:

T = C : Σ +Ξ : E, (19)
D = Σd: E − Ξ : Σ. (20)

Thus we fin

T =
(

2µΣ̂ + [λtr (Σ̂) + α2η + β1Ez]Iπ α1ζ + β2Eπ

α1ζ
T + β2ET

π α2tr
(
Σ̂
)
+ αη + β3Ez

)
, (21)

(
Dπ

Dz

)
=
(

γ1Eπ − (β1 + β2)ζ
γ2Ez − β2tr

(
Σ̂
)− β3η

)
. (22)

For what concerns the gradient operator we have the following decomposition

GRAD(ϕ) = ϕ′ez + grad(ϕ), (23)
GRAD(u) = grad(uπ) + grad(uz)⊗ ez + u′π ⊗ ez + u′zez ⊗ ez (24)

(here and in the following we write GRAD (DIV ) for the gradient (divergence) operator that acts in R3, grad (div)
for the one that acts in Cπ and, finally the ′ stands for ∂z. Moreover we will denote with ∆π the restriction
of Laplacian operator ∆ to Cπ).

We assume that the electric fiel E and the infinitesima deformation tensor Σ are the gradient of a
potential ϕ and of the displacement vector u, respectively,

E =
(
gradϕ,ϕ′

)
,

Σ = Sym(GRAD(u)) =
(

Sym(grad(uπ))
(
u′π + grad (uz)

)
/2(

u′π + grad (uz)
)
/2 u′z

)
. (25)

We will also need the following compatibility theorem (see for instance [12]):

– Let f be a scalar fiel on Cπ

∃ u/
{

f I = Symgrad(u)
g∗ = Skwgrad(u) ⇒ ∆f = 0, grad(g) = ∗grad(f ). (26)
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Here, * denotes the (counter clockwise) π/2-rotation operator in the plane including Cπ . Theorem (26) states
that if a spherical tensor fiel is the symmetric part of the gradient of a vector field then its Laplacian is
vanishing and can be uniquely completed by a skew part which is its rotation gradient.

3 Saint-Venant problem

In this section we derive the elliptic problems that characterize the deformation of piezoelectric SV beams
under the Clebsch Saint-Venant hypothesis.

From DIV D = 0 and with Eq.20 we may deduce

γ1∆πϕ− (β1 + β2)div(
u′π
2
)− (β1 + β2)

div(grad(uz))
2

+ A2ϕ
′′ + B2u

′′
z = 0 (27)

with
A2 = γ2 + β2β1/(µ + λ), B2 = β2α2/(µ + λ)− β3.

Denoting

ϕ̃ := γ1ϕ− 1
2
(β1 + β2)uz

we obtain
∆πϕ̃− (β1 + β2)div(

u′π
2
) + A2ϕ

′′ + B2u
′′
z = 0. (28)

Now, we introduce the Clebsch Saint-Venant hypothesis

T̂ = 0. (29)

With it and by means of (21) one may deduce

tr
(
Σ̂
)

= − α2

µ + λ
η − β1

µ + λ
Ez, (30)

σ = A1η + B1Ez, (31)
τ = α1ζ + β2Eπ, (32)

−2(µ + λ)Σ̂ = [α2η + β1Ez] Iπ (33)

in which A1 = 2(α1 + α2 + α3)− α2
2/(µ + λ), B1 = β3 − β1α2/(µ + λ).

From DIV T = 0 we fin
σ′ + divτ = 0, τ ′ = 0 =⇒ σ′′ = 0. (34)

Consequently, from (31)

E′′
z = −A1

B1
η′′ =⇒ ϕ′′′ = −A1

B1
u′′′z (35)

and from (25, 33)
Σ̂′′ = A4η

′′Iπ =⇒ Sym(grad(u′′π)) = A4η
′′Iπ. (36)

where
A4 := −1/[2(µ + λ)]

[
α2 − β1

A1

B1

]
From τ ′ = 0, by using (32) and (25), there follows

α1
u′′π
2

+ grad
(α1

2
u′z + β2ϕ

′
)
= 0 (37)

and, if ũz := α1uz + 2β2ϕ

α1grad(u′′π) + grad(grad(ũ′z)) = 0 ⇒ Skw(grad(u′′π)) = 0. (38)

Consequently, by (36) and (38)
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α1A4η
′′Iπ + grad(grad(ũ′z)) = 0. (39)

Equations (36)2, (38)2 and (26) imply that η′′(rπ, z) is a function of z only.

Let h(z) = −α1A4η
′′(z); if we calculate the trace of (39), differentiate (28) with respect to z and substitute

the expression for div(u′′π) as obtained by (36)2, then we obtain

∆πũ′z = 2h(z), (40)

∆πϕ̃
′ = (A4(β1 + β2) +

A2A1

B1
− B2)h(z). (41)

Applying, next, condition (26) to (36)2 and (38)2 yields

α2∆πu′z + β1∆πϕ
′ = 0. (42)

In view of the definition of ũz and ϕ̃ and by using (40) and (41), the last equation becomes

[α2F1 + β1G1] h(z) = 0 (43)

with

F1 :=
2γ1 − 2β2(A4(β1 + β2) + A2A1

B1
− B2)

γ1α1 + β2(β1 + β2)
,

G1 :=
β1 + β2 + α1(A4(β1 + β2) + A2A1

B1
− B2)

γ1α1 + β2(β1 + β2)
.

If the material modulus (in square brackets) appearing in (43) is non-vanishing, then (43) requires that

h(z) = 0. (44)

This will be assumed in the sequel so that, because of (35), we have

u′′′z = 0, ϕ′′′ = 0⇒ ũ′′′z = 0, ϕ̃′′′ = 0. (45)

Thus we have found
grad(grad(ũ′z)) = 0 (46)

whose general integral is
ũ′z(rπ, z) = v(z) · rπ + b(z); (47)

differentiating this twice with respect to z we fin

ũ′′′z = v′′(z) · rπ + b′′(z) = 0, (48)

where (45)3 has also been used. This is an rπ-polynomial, and so we must set

v′′(z) = 0, b′′(z) = 0, (49)

from which

v(z) = v1 + v2z, b(z) = b1 + b2z. (50)

Again with the aid of (45) we get

uz = u0
z (rπ) + u1

z (rπ)z + u2
z (rπ)

z2

2
, ũz = ũ0

z (rπ) + ũ1
z (rπ)z + ũ2

z (rπ)
z2

2
, (51)

ϕ = ϕ0(rπ) + ϕ1(rπ)z + ϕ2(rπ)
z2

2
, ϕ̃ = ϕ̃0(rπ) + ϕ̃1(rπ)z + ϕ̃2(rπ)

z2

2
, (52)

where owing to (47) and (50)
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ũ1
z = v1 · rπ + b1, ũ2

z = v2 · rπ + b2. (53)

Equation (37) implies u′′π = −(v1 + v2z)/α1 and, consequently,

uπ(r , z) = u0π(rπ) + u1
π(rπ)z −

1
α1

(
v1

z2

2
+ v2

z3

3!

)
. (54)

Now from (46) and (33) we obtain div(uπ) = −(α2u′z + β1ϕ′)/(µ + λ) from which we deduce

div(u0
π) + z[div(u1

π)] = −
1

µ + λ
[
(α2u

1
z + β1ϕ1) + z(α2u

2
z + β1ϕ2)

]
, (55)

so that

div(u0
π) = −

1
µ + λ

(α2u
1
z + β1ϕ1), div(u1π) = −

1
µ + λ

(α2u
2
z + β1ϕ2) (56)

and finally by using this in (28)
∆πϕ̃ = −F2u

2
z − G2ϕ2 (57)

with
F2 =

α2(β1 + β2)
2(µ + λ)

+ B2, G2 =
β1(β1 + β2)
2(µ + λ)

+ A2.

Because of (40) , (41) and (44) and using (51)2 and (52)2 we have

∆πϕ̃
′ = ∆πϕ̃1 + z∆πϕ̃2 = 0, ∆πũ′z = ∆πũ1

z + z∆πũ2
z = 0 (58)

and finall

∆πϕ̃1 = 0, ∆πϕ̃2 = 0, (59)
∆πϕ̃0 = −F2u

2
z − G2ϕ2, (60)

∆πũ1
z = 0, ∆πũ2

z = 0, (61)
∆πũ0

z = F3u
2
z − G3ϕ2, (62)

with F3 = 2A1 − α1α2/(µ + λ) and G3 = 2B1 − α1β2/(µ + λ). We note that the functions ũ1
z and ũ2

z , given in
(53), satisfy Eq. (61).

To obtain the boundary condition for ũ0
z we note that from (2), (21) and (25) it follows[

α1u′π·n + (grad(ũz)) · n
]
∂Cπ×l

= 0 (63)

and so, because of (51)2 and (54), [
(grad(ũ0

z )) · n + α1u1π·n
]
∂Cπ×l

= 0. (64)

To determine the field u0
π and u1

π we use

Sym(grad (uπ)) = −α2u′z + β1ϕ′

2(µ + λ)
Iπ

from which we conclude that

Sym(grad(u0π)) = −
α2u1

z + β1ϕ1

2(µ + λ)
Iπ, Sym(grad(u1π)) = −

α2u2
z + β1ϕ2

2(µ + λ)
Iπ. (65)

In accordance with (26) we can set

Sym(grad(u0
π)) = −

α2u1
z + β1ϕ1

2(µ + λ)
Iπ, Sym(grad(u1π)) = −

α2u2
z + β1ϕ2

2(µ + λ)
Iπ, (66)

Skw(grad(u0
π)) = ∗g1, Skw(grad(u1π)) = ∗g2, (67)
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where because of (26)

grad(g1) = −∗grad(α2u1
z + β1ϕ1)

2(µ + λ)
, grad(g2) = −∗grad(α2u2

z + β1ϕ2)
2(µ + λ)

. (68)

In this way, once the problem for the potential ϕ is solved, one can calculate g1 and g2 and fin u0π and u1
π .

This we will do in the following for two classes of boundary conditions,

D · n|∂Cπ×l = 0, ϕ(rπ, z) = ϕ0(rπ) + zϕ1(rπ) + z2ϕ2(rπ)rπ ∈ ∂Cπ.

4 Piezoelectric beam in contact with low permitivity medium: D· n|∂Cπ×l = 0

From D · n|∂Cπ×l = 0 the following boundary conditions emerge

grad(ϕ̃0) · n =
β1 + β2

2
u1π · n, (69)

grad(ϕ̃1) · n = −β1 + β2
2

v1 · n, (70)

grad(ϕ̃2) · n = −β1 + β2
2

v2 · n, (71)

so that, from Eqs. (59) and (61), the relations

ϕ̃1 = −β1 + β2
2

v1 · rπ + ϕ̃0
1, (72)

ũ1
z = v1 · rπ + b1, (73)

ϕ̃2 = −β1 + β2
2

v2 · rπ + ϕ̃0
2, (74)

ũ2
z = v2 · rπ + b2 (75)

and consequently

ϕ1 =
1

γ1α1 + β2(β1 + β2)

(
β1 + β2

2
b1 + α1ϕ̃

0
1

)
, (76)

u1
z =

1
α1

v1 · rπ +
γ1b1 − 2β2ϕ̃0

1
γ1α1 + β2(β1 + β2)

, (77)

ϕ2 =
1

γ1α1 + β2(β1 + β2)

(
β1 + β2

2
b2 + α1ϕ̃

0
2

)
, (78)

u2
z =

1
α1

v2 · rπ +
γ1b2 − 2β2ϕ̃0

2
γ1α1 + β2(β1 + β2)

(79)

can be derived. The compatibility condition for Neuman’s problem yields two conditions∫
Cπ

σ′ =
∫

Cπ

A1u
2
z + B1ϕ2 = 0

∫
Cπ

D ′
3 =

∫
Cπ

B2u
2
z + A2ϕ2 = 0. (80)

which are equivalent to

b2 = −v2 · r B, ϕ̃0
2 =

β1 + β2
2α1

v2 · r B (81)

with
r B :=

1
ACπ

∫
Cπ

rπ.

Thus,
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ϕ1 =
1

γ1α1 + β2(β1 + β2)

(
β1 + β2

2
b1 + α1ϕ̃

0
1

)
, ϕ2 = 0, (82)

u1
z =

1
α1

v1 · rπ +
γ1b1 − 2β2ϕ̃0

1
γ1α1 + β2(β1 + β2)

, u2
z =

1
α1

v2 · (rπ − r B). (83)

Equations (60) and (62) can thus finall be written as

∆πϕ̃0 = −F2

α1
v2 · (rπ − r B), (84)

grad(ϕ̃0) · n|∂Cπ×l =
β1 + β2

2
u1π · n|∂Cπ×l , (85)

∆πũ0
z = −F3

α1
v2 · (rπ − r B), (86)

grad(u0
π) · n|∂Cπ×l = −α1u1π · n|∂Cπ×l . (87)

As for u0
π and u1

π we fin because of (26)

u0π(rπ) = u1π(o) + λ0rπ + µ
0
1 ∗ rπ +

1
2
[(λ1 · rπ)rπ + (∗λ1 · rπ) ∗ rπ] , (88)

u1
π(rπ) = u2π(o)−

α2v2 · r Brπ
4α1(µ + λ)

+ µ02 ∗ rπ + (89)

− α2

4α1(µ + λ)
[(v2 · (rπ − r B)rπ + (∗v2 · rπ) ∗ rπ] ,

where
λ1 = − α2

2α1(µ + λ)
v1, λ0 = − α2

2α1(µ + λ)

[
b1 + ϕ̃0

1
(α1β1 − 2α2β2)

γ1α1 + β2(β1 + β2)

]
;

µ01 and µ02 are integration constants.
In this way the problem is completely solved in terms of twelve arbitrary constants. As u0π(o), u1

π(o)
and µ10 correspond to rigid motions that shall henceforth be disregarded and thus omitted, there remain seven
constants, six corresponding to the usual SV solution and the seventh related to the flu of the electric
displacement D through the bases. In particular we note that by assuming all the constants to vanish but ϕ̃0

1
and b1, we f nd

ϕ2 = 0, u2
z = 0, u1

π = 0, u0
z = 0, ϕ0 = 0, (90)

ϕ1 =
1

γ1α1 + β2(β1 + β2)

(
β1 + β2

2
b1 + α1ϕ̃

0
1

)
, (91)

u1
z =

γ1b1 − 2β2ϕ̃0
1

γ1α1 + β2(β1 + β2)
, (92)

u0
π = − α2

2α1(µ + λ)

[
b1 + ϕ̃0

1
(α1β1 − 2α2β2)

γ1α1 + β2(β1 + β2)

]
rπ, (93)

V = lϕ1. (94)

V is the potential difference between the bases. Consequently the resultant force and fiel are given by∫
Cπ×0

σ =
∫

Cπ×0

A1u
′
z + B1ϕ

′

= A

{
ϕ̃0
1 (−2A1β2 + B1α1) + b1 (A1γ1 + B1(β1 + β2))

γ1α1 + β2(β1 + β2)

}
, (95)∫

Cπ×0

D3 =
∫

Cπ×0

B2u
′
z + A2ϕ

′

= A

{
ϕ̃0
1 (−2B2β2 + A2α1) + b1 (B2γ1 + A2(β1 + β2))

γ1α1 + β2(β1 + β2)

}
, (96)
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where A is the area of the cross section.
Because of (96) and (93) we see that an electric fiel applied through the bases of the SV cylinder

produces an elongation whose Poisson-effect is controlled. In fact, choosing

ϕ̃0
1 = b1

γ1α1 + β2(β1 + β2)
2α2β2 − α1β1

(97)

we fin λ0 = 0 and consequently (93)

u0π = 0. (98)

This means that if we apply, between the bases, the potential difference V given by (94) in which ϕ̃0
1 is given

by (97), then the Poisson effect in extension vanishes.
We postpone the discussion of other deformation cases to a forthcoming investigation. We simply remark

here that the only change with respect to the standard SV problem -when no transversal electric fiel is
applied- concerns the elasticity constants. More interesting results are likely to arise in the deformation of
piezoelectric cylinders embedded in an external electric field as is suggested by the results obtained in the
following section.

5 Almansi type boundary condition:
ϕ|∂Cπ×l = ϕ0(rπ) + zϕ1(rπ) + z2ϕ2(rπ), rπ ∈ ∂Cπ

5.1 The general elliptic problem

In the considered case the following Dirichlet problem for the potential must hold:

∆πϕ1 = 0 in Cπ, ϕ1|∂Cπ×l = ϕM
1 , (99)

∆πϕ2 = 0 in Cπ, ϕ2|∂Cπ×l = ϕM
2 , (100)

∆πϕ0 = Z2ũ
2
z + Z3ϕ2 in Cπ, ϕ0|∂Cπ×l = ϕM

0 , (101)

with

Z2 = − 1
α1

(
α1F2 + F3(β1 + β2)/2
α1γ1 + β2(β1 + β2)

)
,

Z3 = −α1G2 + G3(β1 + β2)/2
α1γ1 + β2(β1 + β2)

− 2β2
α1

(
α1F2 + F3(β1 + β2)/2
α1γ1 + β2(β1 + β2)

)
.

Once the ϕ2-problem is solved we can fin u1π (see (26)) by solving

Sym(grad(u1π) =
(
Z4ũ

2
z + Z5ϕ2

)
Iπ. (102)

Similarly, u0
π follows from

Sym(grad(u0π) =
(
Z4ũ

1
z + Z5ϕ1

)
Iπ (103)

once ϕ1 is known. Thus we have a well posed problem for ũ0
z

∆πũ0
z = Z0ũ

2
z + Z1ϕ2, grad

(
ũ0

z

) · n|∂Cπ×l = α1u1
π · n|∂Cπ×l , (104)

where

Z0 = −F3

α1
, Z1 =

2β2
α1

− α1G2 + G3(β1 + β2)/2
α1γ1 + β2(β1 + β2)

.
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5.2 A boundary value problem for a SV cylinder of rectangular cross section

Let us apply these formulas to a SV cylinder of rectangular section [0, x0]× [0, y0]. Assuming the boundary
conditions

ϕ2(x, 0) = k0, ϕ2(x, y0) = k1, x ∈ [0, x0], (105)

ϕ2(0, y) = k0 +
k1 − k0

y0
y = ϕ2(x0, y), y ∈ [0, y0], (106)

for ϕ2, we arrive at
ϕ2(rπ) = k0 + k · rπ, with k = (0, (k1 − k0)/y0). (107)

The condition τ · n|∂Cπ×l = 0 allows b2 to be determined, viz.,

b2 = v2 · r B + (k0 + k · r B)
(
2β2 − B1α1

A1

)
, (108)

from which

ũ2
z = v2 · (rπ − r B) + (k0 + k · r B)

(
2β2 − B1α1

A1

)
. (109)

In conclusion, we have (see (66)2, (67)2 and (26)) [recall the definitio of the * operator]

u1
π =

1
2
[(Ω0 · (rπ − r B)) rπ + (∗Ω0 · rπ) ∗ rπ] +Ω1rπ + µ01 ∗ rπ + u1

π(o) (110)

with

Ω0 = Z4v2 + Z5k, Ω1 = (k · r B + k0)
[

Z5 + Z4

(
2β2 − B1α1

A1

)]
,

Z4 = − α2

2α1(µ + λ)
, Z5 =

2β2α2 − α1β1
2α1(µ + λ)

.

For ũ0
z the boundary value problem reads

∆πũ0
z = Ω2 · (rπ − r B) +Ω3, grad(ũ0

z ) · n|∂Cπ×l = −α1u1π · n|∂Cπ×l (111)

with

Ω2 = Z0v2 + Z1k, Ω3 = (k · r B + k0)
[

Z1 + Z0

(
2β2 − B1α1

A1

)]
.

The evaluation of the resultant forces on the bases of the cylinder in terms of the kinematic parameters
introduced is similar to what was done in [10]. We remark here that for flexur the resultant shear force takes
the form

q :=
∫

Cπ

rπσ′, (112)

in which

σ′ = k · (rπ − r B)
(

B1 − 2β2A1

al1

)
+

A1

α1
v2 · (rπ − r B),

so that q can be written as
q = ∗JB(Yv2 + Yk) (113)

where
Y =

A1

α1
, Y = B1 − 2β2A1

α1
, JB :=

∫
(rπ − r B)⊗ (rπ − r B)dA;

JB is the Euler tensor of inertia.
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The above equations make evident that by fixin the resultant shear force, q, the value of v2 can be con-
trolled by varying k. Moreover, because u0

z := (ũ0
z −2β2ϕ0)/α1 warping can be controlled by correspondingly

controlling the potential ϕ0. Finally, once the problem for ϕ1 is solved, we can calculate u0
π and consequently

derive the full expression for uπ

uπ(r , z) = u0π(rπ) + u1
π(rπ)z −

1
α1

(
v1

z2

2
+ v2

z3

3!

)
. (114)

We postpone the discussion of how the deformation of SV cylinders can be controlled by applying the
appropriate electric fiel to further investigations.

6 Conclusions

In the literature (see [7] for a detailled discussion of the results already available) all possible coupling effects
between electric and mechanic phenomena present in the SV problem have been investigated. In [2] the SV
principle is proved for linear piezoelectric materials, while in [1, 3] an exhaustive study of TIP constitutive
equations is performed. These papers implicitly suggest that more interesting coupling effects must occur
when (at least for the electric potential) Almansi-typeboundary conditions are considered.

In the present paper we proved that by simply considering quadratic Almansi-type boundary conditions for
the electric potential it is possible -in SV cylinders which are not loaded on the lateral wall- to significantl
influenc by means of the externally applied electric potential the displacement fiel that is induced by shear
forces applied on its bases. In particular we proved that it is possible to control

i) the Poisson effect-in SV deformation of a piezoelectric cylinder with lateral boundary unloaded and in
contact with a relatively low permittivity medium-by applying a potential difference between its bases;

ii) the deformation of axes of a particular SV piezoelectric cylinder in flexure when its lateral boundary is
not loaded but it is in contact with a family of conductors whose potential varies quadratically with the
z-coordinate.

While the firs effect has been partially studied in the literature, we could not fin anywhere a description of
the second.

We underline that the set of Eqs. (99–104) represents an interesting elliptic problem which, to our knowl-
edge, is not studied in the literature. In our opinion it is worth further investigation with a view to applications.
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