Joachim Escher 
  
Matthieu Hillairet 
  
AND Philippe Laurenc ¸ot 
  
Christoph Walker 
  
GLOBAL WEAK SOLUTIONS FOR A DEGENERATE PARABOLIC SYSTEM MODELING THE SPREADING OF INSOLUBLE SURFACTANT

We prove global existence of a nonnegative weak solution to a degenerate parabolic system, which models the spreading of insoluble surfactant on a thin liquid film.

Introduction

It is a widely used approach in the study of the dynamical behavior of viscous thin films to approximate the full fluid mechanical system by simpler model equations, using e.g. lubrication theory and cross-sectional averaging. In most of such models surface tension effects may then become significant, or even dominant. Therefore, also the influence of surfactant, i.e. surface active agents on the free surface of thin films, is of considerable importance. A surfactant lowers the surface tension of the liquid and the resulting gradients of surface tension induce so-called Marangoni stresses which in turn cause a spreading of the surfactant on the interface. We investigate here a model in which the surfactant is assumed to be insoluble. In addition we include gravity but neglect effects of capillarity and van der Waals forces. Writing h(t, x) for the film thickness and Γ(t, x) for the concentration of surfactant at time t > 0 and position x ∈ (0, L), Jensen and Grotberg derived in [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF][START_REF] Jensen | The spreading of heat or soluble surfactant along a thin liquid film[END_REF] the following system:

∂ t h = ∂ x Gh 3 3 ∂ x h - h 2 2 ∂ x σ(Γ) in Q ∞ , (1.1) 
∂ t Γ = ∂ x Gh 2 2 Γ ∂ x h + (D -h Γ σ ′ (Γ)) ∂ x Γ in Q ∞ . (1.2)
Here Q ∞ := (0, ∞) × (0, L) denotes the time-space domain of the unknowns h and Γ, with L being the spatial horizontal latitude of the system. We further impose no-flux boundary condition for h and Γ, i.e. ∂ x h = ∂ x Γ = 0 on (0, ∞) × {0, L} , (1.3) as well as initial conditions for these quantities:

(h, Γ)(0) = (h 0 , Γ 0 ) in (0, L) , (1.4) where h 0 and Γ 0 are given. Equation (1.1) for the height function h is a consequence of the conservation of momentum and the kinematic boundary condition, reflecting the model assumption that the velocity of the free interface balances the normal component of the liquid, cf. [START_REF] Escher | Thin film equations with soluble surfactant and gravity: modeling and stability of steady states[END_REF][START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF][START_REF] Jensen | The spreading of heat or soluble surfactant along a thin liquid film[END_REF]. Equation (1.2) is an advection-transport equation for the surfactant concentration on the interface in which D is a non-dimensional surface diffusion coefficient, assumed to be positive and constant. The positive constant G represents a gravitational force. Of considerable importance in the modeling is the surface tension σ(Γ), a decreasing function of the surfactant concentration. Several equations of state giving the dependence of the surface tension σ upon the surfactant concentration Γ, including

σ(Γ) = σ s -β Γ or σ(Γ) = σ s -β ln 1 ± Γ Γ ∞ ,
may be found in the literature, see [START_REF] Chang | Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[END_REF][START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF][START_REF] Milliken | The effect of surfactant on the transient motion of Newtonian drops[END_REF] and the references therein. In this paper, for technical reasons we assume that

σ ∈ C 3 ([0, ∞)) , σ(0) > 0 , 0 < σ 0 ≤ -σ ′ ≤ σ ∞ , (1.5) 
which is satisfied in particular by the first example above. A straightforward consequence of (1.5) is the fact that σ grows at most linearly:

|σ(r)| ≤ σ(0) + σ ∞ r , r ≥ 0 . (1.6)
Observe that the coupled system (1.1), (1.2) is degenerate parabolic in the sense that parabolicity is lost if h or Γ vanish. While modeling issues related to surfactant spreading on thin liquid films have attracted considerable interest (e.g., see [START_REF] De Wit | Nonlinear evolution equations for thin liquid films with insoluble surfactant[END_REF][START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF][START_REF] Jensen | The spreading of heat or soluble surfactant along a thin liquid film[END_REF][START_REF] Matar | Nonlinear evolution of thin free viscous films in the presence of soluble surfactant[END_REF] and the references therein), much less research has been dedicated to analytical aspects. In [START_REF] Renardy | A singularly perturbed problem related to surfactant spreading on thin films[END_REF][START_REF] Renardy | On an equation describing the spreading of surfactants on thin films[END_REF][START_REF] Renardy | A degenerate parabolic-hyperbolic system modeling the spreading of surfactants[END_REF] local existence results are shown. In [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] global existence of weak solutions is derived for a variant of (1.1), (1.2) without gravity but including a fourth order term in h modeling capillarity effects. Local asymptotic stability of steady states (being simply the positive constants) is investigated in [START_REF] Escher | Thin film equations with soluble surfactant and gravity: modeling and stability of steady states[END_REF] for the case of soluble surfactant. These results in particular show that, starting with initial values near steady states, problem (1.1)-(1.4) admits a unique global positive classical solution.

Our aim here is to prove the existence of global nonnegative weak solutions to (1.1)-(1.4) for arbitrary nonnegative initial values. The core of our analysis is the fact that system (1.1)- (1.3) possesses an energy functional entailing various a priori estimates on (h, Γ). We regularize (1.1)- (1.4) appropriately to obtain a uniformly parabolic system with coefficients (depending nonlinearly on (h, Γ)) being regular enough to apply abstract semi-group theory to prove well-posedness of the regularized system. This approach warrants that the thereby constructed nonnegative solutions exist globally provided they are a priori bounded in W 1 2 . The aforementioned energy estimates provide such bounds and inherit also compactness properties in suitable function spaces to the family of regularized solutions, which allows us to extract a subsequence converging to a weak solution.

In fact, we shall establish the following result: Theorem 1.1. Let D, G > 0 and suppose (1.5). Given nonnegative h 0 , Γ 0 ∈ W 2 2 (0, L) satisfying ∂ x h 0 (x) = ∂ x Γ 0 (x) at x = 0 and x = L, there exists a global weak solution to (1.1)-(1.4), i.e. a pair of nonnegative functions (h, Γ) such that h(0) = h 0 , Γ(0) = Γ 0 , h ∈ L ∞ (0, T ; L 2 (0, L)) ∩ L 5 (0, T ; C 1/5 ([0, L])) , h 5/2 ∈ L 2 (0, T ; W 1 2 (0, L) , Γ ∈ L ∞ (0, T ; L 1 (0, L)) ∩ L 2 (0, T ; C([0, L])) , ∂ x σ(Γ) ∈ L 1 ((0, T ) × (0, L)) ,

j f := - 2 5 G 3 ∂ x h 5/2 + 3h 4G ∂ x σ(Γ) ∈ L 2 ((0, T ) × (0, L)) , j s := - G 5 ∂ x h 5/2 + √ h ∂ x σ(Γ) ∈ L 2 ((0, T ) × (0, L)) ,
for all T > 0, and

d dt L 0 h ψ dx = G 3 L 0 ∂ x ψ h 3/2 j f dx , d dt L 0 Γ ψ dx = L 0 ∂ x ψ -D ∂ x Γ + √ h Γ j s dx , for all ψ ∈ W 1 ∞ (0, L).
In addition, introducing the function φ defined by φ ′′ (r) = -σ ′ (r)/r for r > 0 and φ(1) = φ ′ (1) = 0, the weak solution (h, Γ) satisfies

h(t) 1 = h 0 1 , Γ(t) 1 = Γ 0 1 , t ≥ 0 , (1.7) 
L 0 (t) + t 0 D 0 (s) ds ≤ L 0 (0) , t ≥ 0 , (1.8) 
with

L 0 (t) := L 0 G 2 |h(t, x)| 2 + φ(Γ(t, x)) dx , and 
2D 0 (t) := G j f (t) 2 2 + j s (t) 2 2 + G 2 75 ∂ x (h 5/2 )(t) 2 2 + 1 4 h(t) ∂ x σ(Γ)(t) 2 2 + 8σ 0 D ∂ x Γ(t) 2 2 
.

Observe that the notion of weak solutions is readily obtained by testing (1.1)-(1.4) against ψ ∈ W 1 ∞ (0, L) and integrating with respect to the spatial variable. Also, the weak formulation ensures the time continuity of h and Γ (for some suitable weak topology with respect to space), so that the initial data (h, Γ)(0) = (h 0 , Γ 0 ) are meaningful. Observe finally that, thanks to the "energy inequality" (1.8), we actually have an improved regularity on Γ, namely √ Γ ∈ L 2 (0, T ; W 1 2 (0, L)). Remark 1.2. Theorem 1.1 is actually valid under the weaker assumption h 0 , Γ 0 ∈ W 1 2 (0, L), the proof being similar to the one given below using an additional (but classical) regularization of the initial data.

We close the introduction by outlining the content of our paper. Section 2 is devoted to a regularized version of the original system (1.1)- (1.4). Roughly speaking, the coupling terms in (1.1)-(1.2) being of the same order as the diagonal terms (so that we are dealing with somehow a full diffusion matrix), we have to mollify them in order to be able to apply the abstract theory developed in [START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF] for quasilinear parabolic systems. The regularization is then crucial to establish global existence. First, we derive the local well-posedness and a priori estimates then ensure the global well-posedness. Various compactness properties of the family of regularized solutions are established in Section 3, allowing us to recover a weak solution in the sense of Theorem 1.1. In the Appendix we collect some tools used for the compactness arguments in Section 3.

A regularized problem

For ε ∈ (0, 1) and f ∈ L 2 (0, L), let N ε (f ) be the unique solution in W 2 2 (0, L) to the elliptic boundary-value problem

N ε (f ) -ε 2 ∂ 2 x N ε (f ) = f in (0, L) , ∂ x N ε (f )(0) = ∂ x N ε (f )(L) = 0 . (2.1)
Clearly,

N ε ∈ L(L 2 (0, L), W 2 2 (0, L)) ∩ L(C γ ([0, L]), C γ+2 ([0, L])) , γ > 0 ,
is a positive operator. We define the following functions

a 1 (r) := G r 3 3 , a 2,ε (r) := (r - √ ε) 2 2 , r ≥ 0 , (2.2) b 2,ε (r) := r -ε , r ≥ 0 , (2.3) 
and notice that

G a 2 2,ε (r) ≤ η r a 1 (r) , r ≥ √ ε , with η := 3 4 . (2.4) 
We next fix η 1 ∈ (η, 1) and define

α 0 (r, s) := η 1 s + (1 -η 1 ) r , α 1 (r) := r 0 a 1 (ρ) dρ , r ≥ 0 , s ≥ 0 , (2.5) 
and

β 1 (r) := r 0 ρ |σ ′ (ρ)| dρ , r ≥ 0 . (2.6)
The regularized problem reads

∂ t h ε = ∂ x a 1 (h ε ) ∂ x h ε - a 2,ε (h ε ) N ε (h ε ) √ h ε ∂ x Σ ε (h ε , Γ ε ) in Q ∞ , (2.7) 
∂ t Γ ε = ∂ x G a 2,ε (h ε )b 2,ε (Γ ε ) α 0 (h ε , N ε (h ε )) h ε a 1 (h ε ) ∂ x N ε (α 1 (h ε )) (2.8) +∂ x D β ′ 1 (Γ ε ) β ′ 1 (N ε (Γ ε )) -α 0 (h ε , N ε (h ε )) Γ ε σ ′ (Γ ε ) ∂ x Γ ε in Q ∞ , ∂ x h ε = ∂ x Γ ε = 0 on (0, ∞) × {0, L} , (2.9) (h ε , Γ ε )(0) = (h 0,ε , Γ 0,ε ) in (0, L) , (2.10) 
where

Σ ε := Σ ε (h ε , Γ ε ) solves Σ ε -ε 2 ∂ x (N ε (h ε ) ∂ x Σ ε ) = σ(Γ ε ) in Q ∞ , ∂ x Σ ε = 0 on (0, ∞) × {0, L} . (2.11)
This problem admits a unique global strong solution:

Theorem 2.1. Let h 0 , Γ 0 ∈ W 2 2 (0, L) be nonnegative functions satisfying ∂ x h 0 (x) = ∂ x Γ 0 (x) = 0 at x = 0, L. For ε ∈ (0, 1) set h 0,ε := h 0 + √ ε , Γ 0,ε := Γ 0 + ε . (2.12)
Then there is a unique global nonnegative solution

(h ε , Γ ε ) with h ε , Γ ε ∈ C 1 (0, ∞), L 2 (0, L) ∩ C (0, ∞), W 2 2 (0, L) ∩ C [0, ∞), W 1 2 (0, L) to the regularized problem (2.7)-(2.10). Moreover, h ε (t, x) ≥ √ ε , Γ ε (t, x) ≥ ε , (t, x) ∈ [0, ∞) × (0, L) .
The remainder of this section is dedicated to the proof of this theorem.

2.1.

Local well-posedness. We first focus our attention on the local solvability of the regularized problem. Given ε ∈ (0, 1) fixed we use the notation

V γ B := W γ 2,B (0, L) ∩ C([0, L], D 0 ) with D 0 := (ε 2 , ∞) and γ > 1/2, where W γ 2,B := W γ 2,B (0, L) coincides with the fractional Sobolev space W γ 2 := W γ 2 (0, L) if γ ≤ 3/2 or is the linear subspace thereof consisting of those u ∈ W γ 2 satisfying the Neumann boundary conditions ∂ x u(0) = ∂ x u(L) = 0 if γ > 3/2. Observe that V γ B is open in W γ 2,B and that h 0,ε , Γ 0,ε ∈ V 2 B .
In the following we use the notation C 1-to indicate that a function is locally Lipschitz continuous.

The proof of the next result about Nemitskii operators can be found, e.g., in [START_REF] Amann | Existence and regularity for semilinear parabolic evolution equations[END_REF]Sect.15]:

Lemma 2.2. Given g ∈ C 2 (D 0 ), let g # (u)(x) := g(u(x)), x ∈ (0, L), for u : (0, L) → D 0 . Then g # ∈ C 1-(V γ B , W γ 2 ) for γ ∈ (1/2, 1).
We shall also use the following continuity result about pointwise multiplication of real-valued functions. [START_REF] Amann | Multiplication in Sobolev and Besov spaces[END_REF]Thm.4.1], and assertion (iii) is proved in [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF] (see also [START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF]Eq.(8.3)]).

Lemma 2.3. (i) If γ ≥ 0, then pointwise multiplication C γ ([0, L]) × C γ ([0, L]) → C γ ([0, L]) is con- tinuous. (ii) If γ > 1/2, then pointwise multiplication W γ 2 × W γ 2 → W γ 2 is continuous. (iii) If s > γ ≥ 0, then pointwise multiplication C s ([0, L]) × W γ 2 → W γ 2 is continuous. Proof. While assertion (i) is obvious, assertion (ii) is a consequence of
The next proposition guarantees a nonnegative maximal solution to the regularized problem (2.7)-(2.10). The crucial point is that, though the local solution which we construct belongs to W 2 2,B (0, L), an a priori estimate in W 1 2 is sufficient to obtain global existence, see (2.13) below. Proposition 2.4. The regularized problem (2.7)-(2.10) admits a unique maximal strong solution (h ε , Γ ε ) on the maximal interval of existence J := J (ε). The solution possesses the regularity

h ε , Γ ε ∈ C 1 J \ {0}, L 2 (0, L) ∩ C J \ {0}, W 2 2,B (0, L) ∩ C J , W 1 2 (0, L) . Moreover, if for each T > 0 there is some c(T, ε) > 0 such that min h ε (t, x) , Γ ε (t, x) ≥ ε 2 + c(T, ε) -1 , h ε (t) W 1 2 + Γ ε (t) W 1 2 ≤ c(T, ε) (2.13) 
for t ∈ J ∩ [0, T ] and x ∈ (0, L), then J = [0, ∞), i.e. the solution exists globally.

Proof. To establish the result we shall use the theory for quasilinear equations from [START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF]Sect.13]. We simplify the notation by omitting the subscript ε everywhere in (2.7)-(2.10) for the remainder of the proof. In the following we write u := (h, Γ) and introduce

a (u) :=   a 1 (h) 0 0 D β ′ 1 (Γ) β ′ 1 (N (Γ)) -α 0 (h, N (h))Γσ ′ (Γ)   and 
F (u) := ∂ x b (u)∂ x Σ(h, Γ) N (α 1 (h)) with b (u) :=      - a 2 (h) N (h) √ h 0 0 G a 2 (h)b 2 (Γ) α 0 (h, N (h)) ha 1 (h)      . Thus, setting A(u)w := -∂ x (a (u)∂ x w) , Bw := ∂ x w ,
we may re-write equations (2.7)-(2.10) as a quasilinear problem of the form

∂ t u + A(u)u = F (u) in (0, ∞) × (0, L) , (2.14) Bu = 0 on (0, ∞) × {0, L} , (2.15) 
u(0, •) = u 0 := (h 0 , Γ 0 ) on (0, L) .

(2.16)

We next verify the assumptions of [2, Thm. [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF].1] which then guarantees the existence of a weak solution to this quasilinear problem. Subsequently, we shall improve the regularity of the weak solution. In the following, we let ξ ∈ (0, 1/8) denote a sufficiently small number so that in particular, for γ

:= 1/2 -2ξ > 0, V 1-ξ B ֒→ C γ := C γ ([0, L]) .
(2.17) Consequently, classical elliptic regularity applied to (2.1) ensures 

N ∈ C 1-(V 1-ξ B , C γ+2 ) with N (f ) ≥ ε 2 for all f ∈ V 1-ξ B . ( 2 
h → a 1 (h) ∈ C 1-(V 1-ξ B , C γ ) , (2.19) 
and we obtain from (1.5), (2.5), (2.17), (2.18), and Lemma 2.

3(i) that (h, Γ) → α 0 (h, N (h))Γσ ′ (Γ) ∈ C 1-(V 1-ξ B × V 1-ξ B , C γ ) , (2.20) 
while (2.6), (2.17), and (2.18) entail 

Γ → β ′ 1 (Γ) β ′ 1 (N (Γ)) ∈ C 1-(V 1-ξ B , C γ ) . ( 2 
u = (h, Γ) → a (u) ∈ C 1-V 1-ξ B × V 1-ξ B , (C γ ) 4 . (2.22)
Note that if u = (h, Γ) with h(x), Γ(x) > ε 2 for x ∈ (0, L), then the matrix a (u(x)) has strictly positive eigenvalues due to (1.5). Therefore, letting 2 α := 3/2 -3ξ so that γ > 2 α -1, and using the notion of [START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF]Sect.4 & 8] (in particular, see [2, Eq.(8.6)]), it follows from [2, Ex.4.3.e)] that

(A, B) ∈ C 1-V 1-ξ B × V 1-ξ B , E α((0, L)) . (2.23) That is, (A(u), B) depends Lipschitz continuously on its argument u ∈ V 1-ξ B × V 1-ξ B
and for each such u fixed it is normally elliptic with operator A(u) in divergence form having C γ -coefficients with γ > 2 α -1. We next study the regularity properties of the function F . Clearly, the function g, given by g(r) := a 2 (r)/ √ r, r > ε 2 , belongs to C 2 (D 0 ) by (2.2) so that Lemma 2.2 applies to yield

h → a 2 (h) √ h ∈ C 1-(V 1-ξ B , W 1-ξ 2
) .

Since (2.17) and (2.18) provide

h → N (h) ∈ C 1-(V 1-ξ B , C γ+2 ) , we obtain from Lemma 2.3(iii) h → a 2 (h) N (h) √ h ∈ C 1-V 1-ξ B , W 1-ξ 2 .
(2.24)

As above we have by Lemma 2.2, (2.2), (2.5), and (2.18)

h → a 2 (h) ha 1 (h) ∈ C 1-V 1-ξ B , W 1-ξ 2 , h → α 0 (h, N (h)) ∈ C 1-V 1-ξ B , W 1-ξ 2 ,
from which we deduce, using (2.3) and Lemma 2.3(ii),

u = (h, Γ) → G a 2 (h)b 2 (Γ) α 0 (h, N (h)) ha 1 (h) ∈ C 1-V 1-ξ B × V 1-ξ B , W 1-ξ 2 .
(2.25)

Since α 1 in (2.5) is smooth in D 0 , we get from (2.17) and (2.18)

[h → ∂ x N (α 1 (h))] ∈ C 1-V 1-ξ B , C 1+γ . (2.26) The operator f → f -ε 2 ∂ x (N (h)∂ x f ) is invertible in L(C γ+2 B , C γ ) for h ∈ V 1-ξ
B by (2.18) and ellipticity, and it thus follows from (2.11), (2.18), the Lipschitz continuity (in fact: analyticity) of the inversion map ℓ → ℓ -1 for linear operators, and

[Γ → σ(Γ)] ∈ C 1-(V 1-ξ B , C γ ) that (h, Γ) → ∂ x Σ(h, Γ) ∈ C 1-(V 1-ξ B × V 1-ξ B , C 1+γ ) .
Combining this with (2.24), (2.25), and (2.26) we derive from Lemma 2.3(iii)

F ∈ C 1-V 1-ξ B × V 1-ξ B , W -ξ 2 × W -ξ 2 .
(2.27)

At this point observe that W -ξ 2 = W -ξ 2,B in the notation of [START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF] (in particular, see [2, Eq.(7.5)]) since ξ < 1/2. Thus, recalling that 2 α = 3/2 -3ξ and choosing the numbers (τ, r, s, σ) in [2, Eq.(13.2)] to be (-ξ, 1ξ, 1 + ξ, 2 α) we may apply [2, Thm. [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] 

= (h 0 , Γ 0 ) ∈ V 2 B × V 2 B admits a unique maximal weak W 3/2-3ξ 2 -solution (h, Γ) in the sense of [2, Sect.13] on some interval J ; that is, u = (h, Γ) ∈ C J \ {0}, W 3/2-3ξ 2,B × W 3/2-3ξ 2,B ∩ C 1 J \ {0}, W -1/2-3ξ 2,B × W -1/2-3ξ 2,B . The solution u = (h, Γ) exists globally, i.e. J = [0, ∞), provided that (h, Γ)| [0,T ] is bounded in W 1 2 × W 1 2 and bounded away from the boundary of V 1-ξ B
for each T > 0. In particular, the solution exists globally provided (2.13) holds.

We now aim at improving the regularity of u = (h, Γ) as in [START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF]Sect.14]. Given δ > 0 and ξ > 0 still sufficiently small, set 

J δ := J ∩ [δ, ∞). Then h , Γ ∈ C J δ , W 3/2-3ξ 2,B ∩ C 1 J δ , W -1/2-3ξ 2,B , from which we derive h , Γ ∈ C ρ (J δ , W 3/2-3ξ-2ρ 2,B ) , 0 ≤ 2ρ ≤ 2 , ( 2 
t → a (u(t)) ∈ C ρ (J δ , (C µ ) 4 ) .
Hence, if we put 2μ := 2 -8ξ so that µ > 2μ -1, we obtain similarly to (2.23) from [2, Ex.4.3.e), Eq.(8.6)] that (A(u), B) ∈ C ρ J δ , E μ((0, L)) .

(2.29)

Set then 2ν := 3/2 + ξ and note that, for ξ > 0 small enough,

3/2 < 2ν < 2μ < 2 and 2ρ = 2ξ > ξ = 2ν -3/2 .
(2.30) Also observe that (2.27) and [2, Eq.(7.5)] ensure 

F (u) ∈ C ρ (J δ , W -ξ 2,B × W -ξ 2,B ) ֒→ C ρ (J δ , W 2ν-2 2,B × W 2ν-2 2,B ) . ( 2 
∂ t v + A(u(t))v = F (u(t)) in (J δ \ {δ}) × (0, L) , (2.32) Bv = 0 on (J δ \ {δ}) × {0, L} , (2.33) v(0, •) = u(δ, •) on (0, L) , (2.34) 
has a unique strong W 2ν 2 -solution (in the sense of [2, Sect.11]) v ∈ C(J δ \ {δ}, W 2ν 2,B × W 2ν 2,B ) ∩ C 1 (J δ \ {δ}, W 2ν-2 2,B × W 2ν-2 2,B ) .
Hence, v and u are both weak W 3/2-3ξ 2

-solutions to (2.32)-(2.34) and thus u = v by uniqueness of weak solutions to linear problems. Making δ > 0 smaller we may replace J δ \{δ} by J δ , and using the embedding

W 3/2+ξ 2 ֒→ C 1+ξ for ξ sufficiently small, we get h, Γ ∈ C ξ (J δ , C 1+ξ ). But then u = (h, Γ) satisfies ∂ t u -∂ x a (u)∂ x u = F (u) on J δ × (0, L) subject to the boundary condition Bu = 0 with a (u) ∈ C ξ (J δ , C 1 ) and F (u) ∈ C ξ (J δ , L 2 ) from which we readily conclude that h , Γ ∈ C(J δ , W 2 2,B ) ∩ C 1 (J δ , L 2 ) with δ > 0 arbitrarily small by invoking [2, Thm.10.1] with (E 0 , E 1 ) := (L 2 , W 2 2,B
). This proves the proposition.

2.2.

Global well-posedness. Let (h ε , Γ ε ) denote the unique strong solution to (2.7)-(2.10) on the maximal interval of existence J = J (ε) provided by Proposition 2.4. We now show that (2.13) holds which implies J = [0, ∞). Introducing the abbreviations

H ε := N ε (h ε ) , A ε := N ε (α 1 (h ε )) , B ε := N ε (Γ ε ) , Σ ε := Σ ε (h ε , Γ ε ) , (2.35) 
and subsequently omitting the subscript ε everywhere in (2.7)-(2.10) to simplify notation, the strong solution (h, Γ) = (h ε , Γ ε ) thus satisfies

∂ t h = ∂ x a 1 (h) ∂ x h - a 2 (h) √ H √ h ∂ x Σ in J \ {0} × (0, L) , (2.36) 
∂ t Γ = ∂ x G a 2 (h)b 2 (Γ) α 0 (h, H) ha 1 (h) ∂ x A (2.37) +∂ x D β ′ 1 (Γ) β ′ 1 (B) -α 0 (h, H) Γ σ ′ (Γ) ∂ x Γ in J \ {0} × (0, L) , ∂ x h = ∂ x Γ = 0 on J \ {0} × {0, L} , (2.38) (h, Γ)(0) = (h 0 , Γ 0 ) in (0, L) .
(2.39)

We begin with some obvious consequences of the structure of (2.36)-(2.39).

Lemma 2.5. For (t, x) ∈ J × (0, L), we have

h(t, x) ≥ √ ε , Γ(t, x) ≥ ε , (2.40) h(t) 1 = h 0 1 , Γ(t) 1 = Γ 0 1 . (2.41) Proof. Since a 2 ( √ ε) = b 2 (ε) = 0 by (2.
2) and (2.3) and since h 0 ≥ √ ε and Γ 0 ≥ ε by (2.12), the assertion (2.40) is a straightforward consequence of the comparison principle applied separately to (2.36) and (2.37). We next integrate (2.36) and (2.37) over (0, t) × (0, L) and use (2.38) to obtain (2.41).

In the next lemma, we collect several properties of H, Σ, A, and B.

Lemma 2.6. We have, for (t, x) ∈ J × (0, L),

H(t) p ≤ h(t) p , p ∈ [1, ∞] , √ ε ≤ H(t, x) , (2.42) ∂ x H(t) 2 2 + 2 ε 2 ∂ 2 x H(t) 2 2 ≤ ∂ x h(t) 2 2 , (2.43) ε 2 ∂ x H(t) ∞ ≤ h(t) 1 , (2.44) A(t) p ≤ α 1 (h(t)) p , p ∈ [1, ∞] ,
(2.45)

∂ x A(t) 2 2 + 2 ε 2 ∂ 2 x A(t) 2 2 ≤ ∂ x α 1 (h(t)) 2 2 , (2.46) ε 2 ∂ x A(t) ∞ ≤ α 1 (h(t)) 1 , (2.47) B(t) p ≤ Γ(t) p , p ∈ [1, ∞] , ε ≤ B(t, x) , (2.48) ∂ x B(t) 2 2 + 2 ε 2 ∂ 2 x B(t) 2 2 ≤ ∂ x Γ(t) 2 2 , (2.49) ε 2 ∂ x B(t) ∞ ≤ Γ(t) 1 , (2.50) 
H(t)∂ x Σ(t) 2 2 + 2 ε 2 ∂ x (H(t)∂ x Σ(t)) 2 2 ≤ H(t)∂ x σ(Γ(t)) 2 2 , (2.51) ε 2 H(t)∂ x Σ(t) ∞ ≤ 2 σ(Γ(t)) 1 .
(2.52)

Proof. The first assertion of (2.42) follows from the classical contraction properties of N while the second is a consequence of (2.35), (2.40), and the comparison principle. We next deduce from (2.35) that

∂ x H(t) 2 2 + ε 2 ∂ 2 x H(t) 2 2 = L 0 ∂ x h(t) ∂ x H(t) dx ≤ ∂ x H(t) 2 2 + ∂ x h(t) 2 2 2 ,
from which (2.43) follows. Finally, we infer from (2.35) and the positivity of H that -ε 2 ∂ 2 x H ≤ h. For (t, x) ∈ J × (0, L), we integrate the previous inequality first over (0, x) and then over (x, L), and use the homogeneous Neumann boundary conditions to obtain

-ε 2 ∂ x H(t, x) ≤ x 0 h(t, y) dy ≤ h(t) 1 and ε 2 ∂ x H(t, x) ≤ L x h(t, y) dy ≤ h(t) 1 .
Combining these two inequalities gives (2.44).

Next, the proofs of ( ) and argue as in the proof of (2.43) to establish (2.51). Finally, consider (t, x) ∈ J × (0, L). As in the proof of (2.44), we integrate (2.11) first over (0, x) and then over (x, L), and use the homogeneous Neumann boundary conditions to obtain

-ε 2 H(t, x)∂ x Σ(t, x) ≤ x 0 (σ(Γ) -Σ)(t, y) dy ≤ σ(Γ(t)) 1 + Σ(t) 1 , ε 2 H(t, x)∂ x Σ(t, x) ≤ L x (σ(Γ) -Σ)(t, y) dy ≤ σ(Γ(t)) 1 + Σ(t) 1 .
As (2.11) implies that Σ(t) 1 ≤ σ(Γ(t)) 1 by classical approximation and monotonicity arguments, we obtain (2.52).

We next define

J f := -∂ x α 1 (h) + a 2 (h) √ H ha 1 (h) ∂ x Σ , (2.53) 
J s := α 0 (h, H) ∂ x σ(Γ) -G a 2 (h) ha 1 (h) b 2 (Γ) Γ ∂ x A , (2.54) 
and show the existence of a Liapunov functional for the regularized problem (2.36)-(2.39) inherited from the one of (1.1)-(1.4).

Lemma 2.7. Given t ∈ J , we have

L(t) + t 0 D(s) ds ≤ L(0) , (2.55) with L(t) := L 0 G 2 |h(t, x)| 2 + φ(Γ(t, x)) dx , (2.56) φ ′′ (r) = - σ ′ (r) r ≥ 0 , φ(1) = φ ′ (1) = 0 , (2.57) 2D(t) := G J f (t) 2 2 + J s (t) 2 2 + (η 1 -η) H(t)∂ x σ(Γ(t)) 2 2
(2.58)

+(1 -η 1 ) h(t)∂ x σ(Γ(t)) 2 2 + (1 -η)G ∂ x α 1 (h(t)) 2 2 +2D L 0 |∂ x σ(Γ(t))| 2 β ′ 1 (B(t))
dx .

Observe that the last term in D(t) is well-defined as 

β ′ 1 (B) ≥ σ 0 ε > 0 by (1.
dL dt = G L 0 ∂ x h -a 1 (h) ∂ x h + a 2 (h) √ H √ h ∂ x Σ dx + L 0 φ ′′ (Γ) ∂ x Γ -D β ′ 1 (Γ) β ′ 1 (B) + α 0 (h, H) Γ σ ′ (Γ) ∂ x Γ dx -G L 0 φ ′′ (Γ) ∂ x Γ a 2 (h)b 2 (Γ) α 0 (h, H) ha 1 (h) ∂ x A dx = - G 2 J f 2 2 - 1 2 J s 2 2 -D L 0 |∂ x σ(Γ)| 2 β ′ 1 (B) dx + 1 2 R f + G 2 R s , with R f := L 0 G a 2 (h) 2 H ha 1 (h) |∂ x Σ| 2 -α 0 (h, H) |∂ x σ(Γ)| 2 dx , R s := L 0 G a 2 (h) 2 ha 1 (h) b 2 (Γ) 2 Γ 2 |∂ x A| 2 -|∂ x α 1 (h)| 2 dx .
On the one hand, it follows from (2.4), (2.5), and (2.51) that

R f ≤ L 0 η H |∂ x Σ| 2 -α 0 (h, H) |∂ x σ(Γ)| 2 dx ≤ -(η 1 -η) √ H∂ x σ(Γ) 2 2 -(1 -η 1 ) √ h∂ x σ(Γ) 2 2 
.

On the other hand, (2.3), (2.4) and (2.46) give

R s ≤ L 0 η |∂ x A| 2 -|∂ x α 1 (h)| 2 dx ≤ -(1 -η) ∂ x α 1 (h) 2 2 .
Collecting the above inequalities yields Lemma 2.7 after integration with respect to time.

We next estimate the L 2 -norm of ∂ x h. While the previous estimates only depend mildly on ε, this will no longer be the case in the remainder of this section. In the following, the constants C, C j , ... are independent of the free variables. Additional dependence on, say, ε or T > 0, we express explicitly by writing C(ε), C(ε, T ), ... Lemma 2.8. We define the function A 1 by A ′ 1 = a 1 and A 1 (0) = 0. For T > 0 and t ∈ J ∩ [0, T ], we have

h(t) ∞ + ∂ x A 1 (h(t)) 2 ≤ C 1 (ε, T ) , (2.59) t 0 ∂ t α 1 (h(s)) 2 2 + ∂ x h(s) 2 ∞ ds ≤ C 1 (ε, T ) . (2.60)
Proof. Introducing a 0 (h) := h and

F 1 := - a 2 √ a 0 ′ (h) ∂ x h √ H ∂ x Σ , F 2 := a 2 (h) 2 √ h ∂ x H √ H ∂ x Σ , F 3 := - a 2 (h) √ hH ∂ x (H∂ x Σ) , equation (2.36) reads ∂ t h -∂ 2 x A 1 (h) = F 1 + F 2 + F 3 . (2.61) Recalling that α ′ 1 = √ a 1 , it follows from (2.61) that L 0 ∂ t h ∂ t A 1 (h) dx + L 0 ∂ x A 1 (h) ∂ t ∂ x A 1 (h) dx = L 0 (F 1 + F 2 + F 3 ) ∂ t A 1 (h) dx , ∂ t α 1 (h) 2 2 + 1 2 d dt ∂ x A 1 (h) 2 2 ≤ 1 2 ∂ t α 1 (h) 2 2 + 1 2 L 0 a 1 (h) (F 1 + F 2 + F 3 ) 2 dx , ∂ t α 1 (h) 2 2 + d dt ∂ x A 1 (h) 2 2 ≤ 3 3 i=1 a 1 (h) F i 2 2
.

(2.62)

To estimate the term involving F 1 , we write

a 1 (h) F 1 2 = a 2 √ a 0 ′ (h) ∂ x A 1 (h) a 1 (h) √ H ∂ x Σ 2 ≤ a 2 √ a 0 ′ (h) 1 a 1 (h) ∞ ∂ x A 1 (h) 2 √ H ∂ x Σ ∞ ,
and observe that (1.6), (2.41), (2.42), and (2.52) ensure that

√ H ∂ x Σ ∞ ≤ H ∂ x Σ ∞ ε 1/4 ≤ 2 σ(Γ) 1 ε 9/4 ≤ C(ε) (1 + Γ 1 ) ≤ C(ε) ,
while we infer from (2.2) and (2.40) that

a 2 √ a 0 ′ (h) 1 a 1 (h) ∞ = 3 G 3h 2 -2 √ εh -ε 4h 3 ∞ ≤ C √ ε .
Consequently,

a 1 (h) F 1 2 ≤ C(ε) ∂ x A 1 (h) 2 .
(2.63)

We next turn to the term involving F 2 and deduce from (2.4) and (2.42) that

a 1 (h) F 2 2 = a 2 (h) 2 ha 1 (h) a 1 (h) ∂ x H H 3/2 H∂ x Σ 2 ≤ a 2 (h) 2 ha 1 (h) ∞ a 1 (h) 2 ∂ x H ∞ ε 3/4 H∂ x Σ ∞ ≤ η 4Gε 3/2 1/2 a 1 (h) 2 ∂ x H ∞ H∂ x Σ ∞ .
Owing to (1.6), (2.41), (2.44), and (2.52), we obtain

a 1 (h) F 2 2 ≤ C(ε) a 1 (h) 2 h 1 ε 2 2 σ(Γ) 1 ε 2 ≤ C(ε) a 1 (h) 2 .
Since

a 1 (h) = 4A 1 (h) h ≤ 4A 1 (h) √ ε (2.64) by (2.
2) and (2.40), we end up with 

a 1 (h) F 2 2 ≤ C(ε) A 1 (h) ∞ . ( 2 
a 1 (h) F 3 2 = a 2 (h) ha 1 (h) a 1 (h) √ H ∂ x (H∂ x Σ) 2 ≤ η Gε 1/2 1/2 a 1 (h) 1/2 ∞ ∂ x (H∂ x Σ) 2 ≤ C(ε) a 1 (h) 1/2 ∞ √ H∂ x σ(Γ) 2 ε , whence a 1 (h) F 3 2 ≤ C(ε) D 1/2 A 1 (h) 1/2 ∞ . ( 2 
∂ t α 1 (h) 2 2 + d dt ∂ x A 1 (h) 2 2 ≤ C(ε) ∂ x A 1 (h) 2 2 + A 1 (h) 2 ∞ + D A 1 (h) ∞ .
(2.67)

Owing to (2.2) and A ′ 1 = a 1 , we have, for (t, x) ∈ J × (0, L),

0 ≤ LA 1 (h(t, x)) ≤ A 1 (h(t)) 1 + L 3/2 ∂ x A 1 (h(t)) 2 ≤ G 12 
1/4 L 0 h(t, y) A 1 (h(t, y)) 3/4 dy + L 3/2 ∂ x A 1 (h(t)) 2 ≤ G 12 
1/4 h 1 A 1 (h(t)) 3/4 ∞ + L 3/2 ∂ x A 1 (h(t)) 2 ,
and we thus infer from (2.41) and Young's inequality that

0 ≤ LA 1 (h(t, x)) ≤ 3L 4 A 1 (h(t)) ∞ + G h 0 4 1 48L 3 + L 3/2 ∂ x A 1 (h(t)) 2 , whence A 1 (h(t)) ∞ ≤ C (1 + ∂ x A 1 (h(t)) 2 ) , t ∈ J . (2.68)
Inserting this inequality in (2.67) gives

∂ t α 1 (h) 2 2 + d dt ∂ x A 1 (h) 2 2 ≤ C(ε) (1 + D) 1 + ∂ x A 1 (h) 2 2 ,
from which we conclude that, for t ∈ J ∩ [0, T ],

∂ x A 1 (h(t)) 2 2 + t 0 ∂ t α 1 (h(s)) 2 2 ds ≤ 1 + ∂ x A 1 (h 0 ) 2 2 exp C(ε) t + t 0 D(s) ds ,
hence by (2.55) 2.66), we obtain for t ∈ J ∩ [0, T ] and x ∈ (0, L):

∂ x A 1 (h(t)) 2 2 + t 0 ∂ t α 1 (h(s)) 2 2 ds ≤ C(ε, T ) . ( 2 
|∂ x A 1 (h(t, x))| = x 0 ∂ 2 x A 1 (h(t, y)) dy = x 0 3 i=1 F i -∂ t h (t, y) dy ≤ L 0 1 a 1 (h) |∂ t α 1 (h)| + 3 i=1 a 1 (h) |F i | dy ≤ C(ε) ∂ t α 1 (h) 2 + 3 i=1 a 1 (h) F i 2 ≤ C(ε) ∂ t α 1 (h) 2 + ∂ x A 1 (h) 2 + A 1 (h) ∞ + D 1/2 A 1 (h) 1/2 ∞ ,
and we infer from (2.68) and (2.69) that

∂ x A 1 (h(t)) ∞ ≤ C(ε, T ) 1 + ∂ t α 1 (h(t)) 2 + D(t) 1/2 .
Using next (2.55) and (2.69) we obtain

t 0 ∂ x A 1 (h(s)) 2 ∞ ds ≤ C(ε, T ) 1 + t 0 ∂ t α 1 (h(s)) 2 2 + D(s) ds ≤ C(ε, T ) .
Since

|∂ x h| = |∂ x A 1 (h)| a 1 (h) ≤ 3 Gε 3/2 ∂ x A 1 (h) ∞ by (2.
2) and (2.40), the estimate (2.60) follows from the above analysis and (2.69).

We now improve the estimates on Γ and begin with an L ∞ -bound. Lemma 2.9. Given T > 0 and t ∈ J ∩ [0, T ], we have

Γ(t) ∞ ≤ C 2 (ε, T ) .
(2.70)

Proof. Let T > 0 and t ∈ J ∩ [0, T ] be given. Define again a 0 (h) = h,

q := - a 2 (h) a 0 (h)a 1 (h) α 0 (h, H) ∂ x A and q 1 := ∂ x q ,
and the parabolic operator

Pw := ∂ t w -∂ x D β ′ 1 (Γ) β ′ 1 (B) -α 0 (h, H) Γσ ′ (Γ) ∂ x w + G q ∂ x w + G q 1 b 2 (w) ,
so that (2.37) also reads PΓ = 0 in J \ {0} × (0, L) .

(2.71) We next observe that q 1 = q 11 + q 12 + q 13 with

q 11 := - a 2 √ a 0 a 1 ′ (h) ∂ x h α 0 (h, H) ∂ x A , q 12 := - a 2 (h) 2 a 0 (h)a 1 (h) η 1 ∂ x H + (1 -η 1 )∂ x h α 0 (h, H) ∂ x A , q 13 := - a 2 (h) a 0 (h)a 1 (h) α 0 (h, H) ∂ 2 x A .
By (2.40), (2.42), (2.47), and (2.59), we have 

q 11 ∞ ≤ 3ε G 1/2 h - √ ε h 3 ∞ ∂ x h ∞ (η 1 H ∞ + (1 -η 1 ) h ∞ ) 1/2 ∂ x A ∞ ≤ C(ε) ∂ x h ∞ h 1/2 ∞ α 1 (h) 1 ε 2 , that is, q 11 ∞ ≤ C(ε, T ) ∂ x h ∞ . ( 2 
q 12 ∞ ≤ η 4G 1/2 η 1 ∂ x H ∞ + (1 -η 1 ) ∂ x h ∞ ε 1/4 ∂ x A ∞ ≤ C(ε) h 0 1 ε 2 + ∂ x h ∞ α 1 (h) 1 ε 2 , that is, q 12 ∞ ≤ C(ε, T ) (1 + ∂ x h(t) ∞ ) . ( 2 
|q 13 | ≤ η G 1/2 h 1/2 ∞ |α 1 (h) -A| ε 2 ≤ C(ε, T ) ( α 1 (h) ∞ + A ∞ ) ≤ C(ε, T ) α 1 (h) ∞ ,
and thus q 13 ∞ ≤ C(ε, T ) .

(2.74) Combining (2.72), (2.73), and (2.74), we conclude that

q 1 (t) ∞ ≤ C(ε, T ) (1 + ∂ x h(t) ∞ ) , which by (2.60) gives t 0 q 1 (s) ∞ ds ≤ C(ε, T ) , t ∈ J ∩ [0, T ] . (2.75) 
Now, let Q be the solution to the ordinary differential equation

dQ dt (t) -G q 1 (t) ∞ b 2 (Q(t)) = 0 , t ∈ J , (2.76) 
with initial condition Q(0) := Γ 0 ∞ ≥ ε. We clearly have Q(t) ≥ ε for t ∈ J and

PQ(t) = G ( q 1 (t) ∞ + q 1 (t, x)) b 2 (Q(t)) ≥ 0 , (t, x) ∈ J \ {0} × (0, L) .
Recalling (2.71), the comparison principle entails that 

Γ(t, x) ≤ Q(t) , (t, x) ∈ J × [0, L] . (2.77) Since b 2 (Q) ≤ Q,
∈ J ∩ [0, T ], Γ(t) ∞ ≤ Q(t) ≤ Q(0) exp G t 0 q 1 (s) ∞ ds ≤ C(ε, T ) ,
as expected.

The final step of the proof of Theorem 2.1 is an L 2 -estimate on ∂ x Γ.

Lemma 2.10. For T > 0 and t ∈ J ∩ [0, T ], we have

∂ x Γ(t) 2 ≤ C 3 (ε, T ) . ( 2 

.78)

Proof. Introducing a 0 (h) = h and γ := ∂ x β 1 (Γ), it follows from (2.6) and (2.37) that

∂ t β 1 (Γ) -β ′ 1 (Γ) ∂ x G a 2 (h)b 2 (Γ) α 0 (h, H) a 0 (h)a 1 (h) ∂ x A + D β ′ 1 (B) + α 0 (h, H) γ = 0 .
Differentiating with respect to x we obtain

∂ t γ -∂ x β ′ 1 (Γ) ∂ x G a 2 (h)b 2 (Γ) α 0 (h, H) a 0 (h)a 1 (h) ∂ x A + D β ′ 1 (B) + α 0 (h, H) γ = 0 .
Since γ(t, x) = 0 for (t, x) ∈ J × {0, L} by (2.38), we deduce from the above equation that 1 2

d dt γ 2 2 + L 0 D β ′ 1 (B) + α 0 (h, H) β ′ 1 (Γ) |∂ x γ| 2 dx = 5 i=1 Y i , (2.79) 
with

Y 1 := - L 0 β ′ 1 (Γ) ∂ x γ -D β ′′ 1 (B) β ′ 1 (B) 2 ∂ x B + η 1 ∂ x H + (1 -η 1 ) ∂ x h γ dx , Y 2 := -G L 0 β ′ 1 (Γ) ∂ x γ a 2 √ a 0 a 1 ′ (h) ∂ x h b 2 (Γ) α 0 (h, H) ∂ x A dx , Y 3 := -G L 0 β ′ 1 (Γ) ∂ x γ a 2 (h) a 0 (h)a 1 (h) b ′ 2 (Γ) β ′ 1 (Γ) γ α 0 (h, H) ∂ x A dx , Y 4 := -G L 0 β ′ 1 (Γ) ∂ x γ a 2 (h) a 0 (h)a 1 (h) b 2 (Γ) η 1 ∂ x H + (1 -η 1 ) ∂ x h 2 α 0 (h, H) ∂ x A dx , Y 5 := -G L 0 β ′ 1 (Γ) ∂ x γ a 2 (h) a 0 (h)a 1 (h) b 2 (Γ) α 0 (h, H) ∂ 2 x A dx .
We now estimate each of the terms Y i , 1 ≤ i ≤ 5, separately for T > 0 and t ∈ J ∩ [0, T ]. By (2.41), (2.44), (2.48), (2.50), and (2.70), we have

|Y 1 | ≤ β ′ 1 (Γ) ∂ x γ 2 β ′ 1 (Γ) 1/2 ∞ D β ′′ 1 (B) β ′ 1 (B) 2 ∞ ∂ x B ∞ + ∂ x H ∞ + ∂ x h ∞ γ 2 ≤ C(ε, T ) Γ 1 ε 2 + h 1 ε 2 + ∂ x h ∞ γ 2 β ′ 1 (Γ) ∂ x γ 2 ,
that is, 

|Y 1 | ≤ ε 5 β ′ 1 (Γ) ∂ x γ 2 2 + C(ε, T ) 1 + ∂ x h 2 ∞ γ 2 2 . ( 2 
|Y 2 | ≤ G β ′ 1 (Γ) ∂ x γ 2 ( β ′ 1 b 2 )(Γ) ∞ a 2 √ a 0 a 1 ′ (h) ∞ ∂ x h ∞ α 0 (h, H) 1/2 ∞ ∂ x A 2 ≤ C(ε, T ) β ′ 1 (Γ) ∂ x γ 2 3ε G 1/2 h - √ ε h 3 ∞ ∂ x h ∞ h 1/2 ∞ ∂ x α 1 (h) 2 ≤ C(ε, T ) ∂ x h ∞ β ′ 1 (Γ) ∂ x γ 2 , so that |Y 2 | ≤ ε 5 β ′ 1 (Γ) ∂ x γ 2 2 + C(ε, T ) ∂ x h 2 ∞ , (2 
|Y 3 | ≤ ηG β ′ 1 (Γ) ∂ x γ 2 1 β ′ 1 (Γ) ∞ γ 2 α 0 (h, H) 1/2 ∞ ∂ x A ∞ ≤ C(ε, T ) h 1/2 ∞ α 1 (h) 1 ε 2 γ 2 β ′ 1 (Γ) ∂ x γ 2 , whence |Y 3 | ≤ ε 5 β ′ 1 (Γ) ∂ x γ 2 2 + C(ε, T ) γ 2 2 . ( 2 
|Y 4 | ≤ ηG β ′ 1 (Γ) ∂ x γ 2 ( β ′ 1 b 2 )(Γ) ∞ ∂ x H ∞ + ∂ x h ∞ ε 1/4 ∂ x A 2 ≤ C(ε, T ) h 1 ε 2 + ∂ x h ∞ ∂ x α 1 (h) 2 β ′ 1 (Γ) ∂ x γ 2 ,
that is,

|Y 4 | ≤ ε 5 β ′ 1 (Γ) ∂ x γ 2 2 + C(ε, T ) 1 + ∂ x h 2 ∞ , (2.83) 
and

|Y 5 | ≤ ηG β ′ 1 (Γ) ∂ x γ 2 ( β ′ 1 b 2 )(Γ) ∞ α 0 (h, H) 1/2 ∞ ∂ 2 x A 2 ≤ C(ε, T ) h 1/2 ∞ ∂ x α 1 (h) 2 ε β ′ 1 (Γ) ∂ x γ 2 , (2.84) 
that is, 

|Y 5 | ≤ ε 5 β ′ 1 (Γ) ∂ x γ 2 2 + C(ε, T ) . ( 2 
d dt γ 2 2 + √ ε L 0 β ′ 1 (Γ) |∂ x γ| 2 dx ≤ 1 2 d dt γ 2 2 + L 0 D β ′ 1 (B) + α 0 (h, H) β ′ 1 (Γ) |∂ x γ| 2 dx ≤ ε L 0 β ′ 1 (Γ) |∂ x γ| 2 dx + C(ε, T ) 1 + ∂ x h 2 ∞ 1 + γ 2 2 .
Thus, on J ∩ [0, T ] we have 1 2

d dt γ(t) 2 2 ≤ C(ε, T ) 1 + ∂ x h(t) 2 ∞ 1 + γ(t) 2 2 .
Thanks to (2.60), the above differential inequality entails that γ(t) 

C(ε, T ) such that h(t) W 1 2 + Γ(t) W 1 2 ≤ C(ε, T ) , t ∈ J ∩ [0, T ]
, from which we deduce that J = [0, ∞) according to (2.13). This completes the proof of Theorem 2.1.

Existence of weak solutions

Pick ε ∈ (0, 1/2). By Theorem 2.1, Lemma 2.5, and Lemma 2.7, there is a unique global strong solution (h ε , Γ ε ) to (2.36)-(2.39) with initial conditions (h 0,ε , Γ 0,ε ) given by (2.12) and satisfying

h ε (t, x) ≥ √ ε , Γ ε (t, x) ≥ ε , (t, x) ∈ Q ∞ , (3.1) h ε (t) 1 = h 0 1 + L √ ε , Γ ε (t) 1 = Γ 0 1 + Lε , t ≥ 0 , (3.2) 
and

L ε (t) + t 0 D ε (s) ds ≤ L ε (0) , t ≥ 0 , (3.3) 
with (2.57), respectively. We first deduce from (3.3) several estimates which provide us the compactness of (h ε , Γ ε ).

L ε (t) := L 0 G 2 |h ε (t, x)| 2 + φ(Γ ε (t, x)) dx , t ≥ 0 , (3.4) 2D ε (t) := G J f,ε (t) 2 2 + J s,ε (t) 2 2 + (η 1 -η) H ε (t)∂ x σ(Γ ε (t)) 2 2 (3.5) +(1 -η 1 ) h ε (t)∂ x σ(Γ ε (t)) 2 2 + (1 -η)G ∂ x α 1 (h ε (t)) 2 2 +2D L 0 |∂ x σ(Γ ε (t))| 2 β ′ 1 (B ε (t)) dx , the functions J f,ε , J s,ε , H ε , A ε , B ε , Σ ε ,
3.1. Compactness. Observe that the definition (2.57) of φ and the property (1.5) of σ imply that σ 0 (r ln rr + 1) ≤ φ(r) ≤ σ ∞ (r ln rr + 1) , r ≥ 0 , (3.6) φ(r) ≤ max {φ(0), φ(r + 1)} ≤ σ ∞ + φ(r + 1) , r ≥ 0 .

(3.7)

An easy consequence of (3.4) and (3.7) is that

L ε (0) = L 0 G (h 0 (x) + √ ε) 2 2 + φ(Γ 0 (x) + ε) dx ≤ L 0 G (h 0 (x) + 1) 2 2 + σ ∞ + φ(Γ 0 (x) + ε + 1) dx ≤ L 0 G (h 0 (x) + 1) 2 2 + σ ∞ + φ(Γ 0 (x) + 2) dx , L ε (0) ≤ C 4 . (3.8) 
This allows us to derive some uniform estimates with respect to ε.

Lemma 3.1. Given t ≥ 0, we have

h ε (t) 2 + L 0 Γ ε (t, x) | ln Γ ε (t, x)| dx ≤ C 5 , (3.9) 
t 0 J f,ε (s) 2 2 + J s,ε (s) 2 2 ds ≤ C 5 , (3.10) 
t 0 L 0 |∂ x α 1 (h ε )| 2 + √ ε + h ε + H ε + 1 β ′ 1 (B ε ) |∂ x σ(Γ ε )| 2 dxds ≤ C 5 , (3.11) 
t 0 h 5/2 ε (s) 2 W 1 2 + h ε (s) 5 ∞ ds ≤ C 5 (1 + t) . (3.12)
Proof. Recalling that r| ln r| ≤ 1/e for r ∈ [0, 1], we deduce from (3.6) that

σ 0 r| ln r| ≤ φ(r) + σ 0 r + σ 0 e , r ≥ 0 . (3.13)
Owing to the nonnegativity of D ε , it follows from (3.2), (3.3), (3.8), and (3.13) that 

G 2 h ε (t) 2 2 + σ 0 L 0 Γ ε (t, x) | ln Γ ε (t, x)| dx ≤ L ε (t) + σ 0 Γ ε (t) 1 + σ 0 L e ≤ L ε (0) + σ 0 ( Γ 0 1 + Lε) + σ 0 L e ≤ C ,
C ≥ t 0 L 0 |α ′ 1 (h ε )| 2 |∂ x h ε | 2 dxds = G 3 t 0 L 0 h 3 ε |∂ x h ε | 2 dxds = 4G 75 t 0 L 0 ∂ x h 5/2 ε 2 dxds .
We next argue as in the proof of (2.68) to establish that

h ε 5 ∞ ≤ C h ε 5 1 + ∂ x h 5/2 ε 2 2 ,
and (3.12) follows from (3.2) and the above two inequalities.

We now turn to the compactness properties of (Γ ε ) ε with respect to the space variable and first establish a preliminary result. Recall that

B ε = N ε (Γ ε ) with N ε defined in (2.1). Lemma 3.2. Given t ≥ 0, we have L 0 B ε (t, x) | ln B ε (t, x)| dx ≤ C 6 .
(3.14)

Proof. Let j be the convex function defined by j(r) := r ln rr for r ≥ 0 with conjugate function j * (r) := e r , r ≥ 0. Then rs ≤ j(r) + j * (s) and j(r) ≤ rj ′ (r) , (r, s) ∈ [0, ∞) 2 .

(3.15)

We infer from the definition of B ε , the convexity of j, and (3.15) that

L 0 j(B ε ) dx ≤ L 0 B ε j ′ (B ε ) dx ≤ L 0 B ε j ′ (B ε ) + ε 2 j ′′ (B ε ) |∂ x B ε | 2 dx = L 0 j ′ (B ε ) B ε -ε 2 ∂ 2 x B ε dx = L 0 j ′ (B ε ) Γ ε dx ≤ L 0 (j(Γ ε ) + j * (j ′ (B ε ))) dx = L 0 (Γ ε ln Γ ε -Γ ε + B ε ) dx .
Since Γ ε and B ε are nonnegative and B ε 1 ≤ Γ ε 1 by (2.48) and (3.1), we end up with

L 0 j(B ε ) dx ≤ L 0 Γ ε ln Γ ε dx ≤ L 0 Γ ε | ln Γ ε | dx ,
from which we deduce (3.14) with the help of (3.2), (3.9), and the elementary inequality r| ln r| ≤ r ln r + 2/e, r ≥ 0.

We next define the function ω ℓ ∈ C([0, L]) by ω ℓ (0) = 0 and

ω ℓ (Lδ) := [ln (̺(δ))] -1/2 , δ ∈ (0, 1] , (3.16) 
where ̺(δ) > 1 denotes the unique solution to

̺(δ) ln (̺(δ)) = 1 δ for δ ∈ (0, 1] . (3.17)
Introducing the subset X of C([0, L]) by

X := f ∈ C([0, L]) : [f ] X := sup x =y |f (x) -f (y)| ω ℓ (|x -y|) < ∞ , (3.18) 
and noticing that it is a Banach space equipped with the norm

f → f X := f ∞ + [f ] X ,
we have the following result:

Lemma 3.3. Given t ≥ 0, we have t 0 ∂ x σ(Γ ε (s)) 2 1 + σ(Γ ε (s)) 2 X ds ≤ C 7 . (3.19)
In addition, letting Q T := (0, T ) × (0, L) for T > 0, the family

(∂ x σ(Γ ε )) ε is relatively weakly sequentially compact in L 1 (Q T ) (3.20)
and

T 0 Γ ε (s) 2 X ds ≤ C 8 (T ) . (3.21)
Proof. For t ≥ 0 and 0 ≤ y < x ≤ L, we note that

|σ(Γ ε (t, x)) -σ(Γ ε (t, y)| ≤ x y |∂ x σ(Γ ε (t, z))| dz ≤ L 0 |∂ x σ(Γ ε (t, z))| 2 β ′ 1 (B ε (t, z)) dz 1/2 x y β ′ 1 (B ε (t, z)) dz 1/2 . (3.22)
We infer from (1.5), (2.6), and (3.14) that, for R > 1,

x y β ′ 1 (B ε (t, z)) dz ≤ σ ∞ x y B ε (t, z) dz ≤ σ ∞ x y 1 [0,R] (B ε (t, z)) + 1 (R,∞) (B ε (t, z)) B ε (t, z) dz ≤ σ ∞ R |x -y| + σ ∞ ln R L 0 1 (R,∞) (B ε (t, z)) B ε (t, z) | ln B ε (t, z)| dz ≤ σ ∞ R |x -y| + σ ∞ C 6 ln R .
Choosing R = ̺(|x -y|/L) and using (3.17), we conclude that

x y β ′ 1 (B ε (t, z)) dz ≤ C ln ̺(|x -y|/L) = C ω ℓ (|x -y|) 2 .
Recalling (3.22), we have shown that

|σ(Γ ε (t, x)) -σ(Γ ε (t, y)| ≤ C ω ℓ (|x -y|) L 0 |∂ x σ(Γ ε (t, z))| 2 β ′ 1 (B ε (t, z)) dz 1/2 . Consequently, [σ(Γ ε (t))] 2 X ≤ C L 0 |∂ x σ(Γ ε (t, z))| 2 β ′ 1 (B ε (t, z))
dz .

Integrating the above inequality with respect to time and using (3.11) give

t 0 [σ(Γ ε (s))] 2 X ds ≤ C 9 . (3.23)
It also follows from (1.5), (2.48), (3.2), and (3.11) that, for T > 0,

T 0 ∂ x σ(Γ ε (t)) 2 1 dt ≤ T 0 L 0 |∂ x σ(Γ ε (t, z))| 2 β ′ 1 (B ε (t, z)) dz L 0 β ′ 1 (B ε (t, z)) dz dt ≤ σ ∞ C 5 sup t∈[0,T ] { B ε (t) 1 } ≤ σ ∞ C 5 sup t∈[0,T ] { Γ ε (t) 1 } ≤ C ,
which, together with (1.6), (3.2), (3.23), Poincaré's inequality, and the embedding of W 1 1 (0, L) in L ∞ (0, L) completes the proof of (3.19).

Consider next T > 0 and a measurable subset E of Q T with finite measure. Arguing as above, we deduce from (1.5) and (3.11) that, for R > 1,

E |∂ x σ(Γ ε )| dxdt ≤ C E B ε dxdt 1/2 ≤ C E 1 [0,R] (B ε ) + 1 (R,∞) (B ε ) B ε dxdt 1/2 ≤ C R |E| + 1 ln R Q T 1 (R,∞) (B ε ) B ε | ln B ε | dxdt 1/2 .
Owing to (3.14), we conclude that

E |∂ x σ(Γ ε )| dxdt ≤ C R |E| + 1 ln R 1/2
, and thus lim sup

δ→0 sup ε,|E|≤δ E |∂ x σ(Γ ε )| dxdt ≤ C ln R 1/2 .
Letting R → ∞ entails (3.20) by the Dunford-Pettis theorem.

Finally, by (1.5), we have

σ 0 |r -s| = σ 0 (r -s) ≤ σ(s) -σ(r) = |σ(r) -σ(s)| , r ≥ s ≥ 0 , so that [Γ ε (t)] X ≤ [σ(Γ ε (t))] X σ 0 and Γ ε (t) ∞ ≤ σ(0) + σ(Γ ε (t)) ∞ σ 0 , t ≥ 0 ,
and (3.21) follows at once from (3.19).

The next result deals with the time compactness of (h ε ) and (Γ ε ).

Lemma 3.4. Let T > 0. Then

(∂ t h ε ) ε is bounded in L 5/4 (0, T ; W 1 2 (0, L) ′ ) , (3.24) (∂ t Γ ε ) ε is bounded in L 18/17 (0, T ; W 1 18/17 (0, L) ′ ) . (3.25)
Proof. By (2.36) and (2.53), we have

∂ t h ε = ∂ x a 1 (h ε ) J f,ε . As (J f,ε ) ε is bounded in L 2 (Q T ) by (3.10) and ( a 1 (h ε )) ε is bounded in L 10/3 (0, T ; L ∞ (0, L)) by (3.12), the family a 1 (h ε ) J f,ε ε is bounded in L 5/4 (0, T ; L 2 (0, L)
) and (3.24) readily follows from this property.

Next, owing to (2.6) and (2.54), equation (2.37) also reads

∂ t Γ ε = ∂ x -α 0 (h ε , H ε ) Γ ε J s,ε -D ∂ x σ(Γ ε ) β ′ 1 (B ε ) Γ ε β ′ 1 (B ε ) . (3.26) 
On the one hand, it follows from Hölder's inequality, (2.42), (3.2), and (3.9) that

T 0 α 0 (h ε , H ε ) Γ ε J s,ε 16/15 8/7 dt ≤ T 0 α 0 (h ε , H ε ) 8/15 2 Γ ε 16/15 8 J s,ε 16/15 2 dt ≤ T 0 h ε 8/15 2 Γ ε 14/15 ∞ Γ ε 2/15 1 J s,ε 16/15 2 dt ≤ C T 0 Γ ε 2 ∞ dt 7/15 T 0 J s,ε 2 2 dt 8/15 
.

We then deduce from (3.10) and (3.21) that

α 0 (h ε , H ε ) Γ ε J s,ε ε is bounded in L 16/15 (0, T ; L 8/7 (0, L)) . (3.27) 
On the other hand, it follows from (1.5), (2.35), and (2.48) that

Γ ε β ′ 1 (B ε ) ≤ Γ ε √ σ 0 B ε ≤ B ε + ε 2 |∂ 2 x B ε | √ σ 0 B ε ≤ B ε σ 0 + ε 3/2 √ σ 0 ∂ 2 x B ε . (3.28) Since ε 2 ∂ 2 x B ε 3 ≤ Γ ε 3 + B ε 3 ≤ 2 Γ ε 3 by (2.35
) and (2.48), we deduce from (2.49), (3.2), and Hölder's inequality that

ε 3/2 ∂ 2 x B ε 9/4 9/4 ≤ ε 27/8 ∂ 2 x B ε 3/2 2 ∂ 2 x B ε 3/4 3 ≤ ε 3/8 ∂ x Γ ε 2 2 2 3/4 (2 Γ ε 3 ) 3/4 ≤ C ε 1/2 ∂ x Γ ε 2 2 3/4 Γ ε 1/2 ∞ Γ ε 1/4 1 ≤ C L 0 ε 1/2 |∂ x Γ ε | 2 dx + Γ ε 2 ∞
.

Thanks to (3.11) and (3.21), the above inequality implies that

T 0 ε 3/2 ∂ 2 x B ε 9/4 9/4 dt ≤ C(T ) . As B ε 9/4 9/4 = B ε 9/8 9/8 ≤ Γ ε 9/8 9/8 ≤ Γ ε 1/8 ∞ Γ ε 1 ≤ C Γ ε 1/8 ∞ by (2.48) and (3.2), we infer from (3.21) that ( 
√ B ε ) ε is bounded in L 9/4 (Q T )
and conclude that the right-hand side of (3.28) is bounded in L 9/4 (Q T ). Consequently, (3.11), we end up with

Γ ε β ′ 1 (B ε ) ε is bounded in L 9/4 (Q T ) . (3.29) Recalling that ∂ x σ(Γ ε )/ β ′ 1 (B ε ) ε is bounded in L 2 (Q T ) by
∂ x σ(Γ ε ) Γ ε β ′ 1 (B ε ) ε is bounded in L 18/17 (Q T ) . (3.30) 
The claim (3.25) is now a straightforward consequence of (3.26), (3.27), and (3.30).

Thanks to the previous analysis, we have the following compactness properties on the families

(h ε ) ε and (Γ ε ) ε . Lemma 3.5. For each T > 0 and ϑ ∈ [0, 1/5), (h ε ) ε is relatively compact in L 5 (0, T ; C ϑ ([0, L])) , (3.31) (Γ ε ) ε is relatively compact in L 2 (0, T ; C([0, L])) .
(3.32)

Proof. For (t, x, y) ∈ (0, ∞] × (0, L) 2 , we have

|h ε (t, x) -h ε (t, y)| ≤ h ε (t, x) 5/2 -h ε (t, y) 5/2 2/5 ≤ |x -y| 1/5 ∂ x h 5/2 ε (t) 2/5 2 ,
and we infer from (3.12) that (3.20), and Lemma 3.5, there are functions h, g 1 , Γ, g, J f , and J s and a sequence (ε k ) k , ε k → 0, such that, for all T > 0 and ϑ ∈ [0, 1/5),

(h ε ) ε is bounded in L 5 (0, T ; C 1/5 ([0, L])) . ( 3 
h ε k -→ h in L 5 (0, T ; C ϑ ([0, L])) and a.e. in Q T , (3.34) ∂ x α 1 (h ε k ) ⇀ g 1 in L 2 (Q T ) , (3.35) Γ ε k -→ Γ in L 2 (0, T ; C([0, L])) and a.e. in Q T , (3.36) ∂ x σ(Γ ε k ) ⇀ g in L 1 (Q T ) , (3.37) 
J f,ε k ⇀ J f in L 2 (Q T ) , (3.38) 
J s,ε k ⇀ J s in L 2 (Q T ) . (3.39) 
An obvious consequence of (

) is that h ≥ 0 , Γ ≥ 0 , g 1 = ∂ x α 1 (h) , g = ∂ x σ(Γ) , (3.40) h(t) 1 = h 0 1 , Γ(t) 1 = Γ 0 1 , t ≥ 0 . (3.41) 3.1), (3.2), (3.34), and (3.36 
The next step is to investigate the convergence of (H ε k ) k , (Σ ε k ) k , (A ε k ) k , and (B ε k ) k in the light of (3.34) and (3.36). For that purpose, we need the following preliminary results. Lemma 3.6. Consider s 1 ∈ (0, 1). There is C 9 = C 9 (s 1 ) > 0 such that, for all ε > 0,

N ε (w) C s 1 ≤ C 9 w C s 1 , w ∈ C s 1 ([0, L]) , (3.42) 
the operator N ε being defined in (2.1).

Proof.

Interpreting

N ε = 1 ε 2 1 ε 2 -∂ 2 x -1
as a resolvent on C s 1 of the negative Laplacian subject to homogeneous Neumann boundary conditions and noting that the latter has zero spectral bound, the assertion readily follows from [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]Cor. 3.1.32] and [13, Def. 2.0.1].

Lemma 3.7. Consider 0 < s 0 < s 1 < 1. There are numbers ϑ ∈ (0, 1), C 10 > 0, and p ≥ 2, all depending on s 0 and s 1 , such that

w C s 0 ≤ C 10 w ϑ C s 1 w 1-ϑ p , w ∈ C s 1 ([0, L]) . (3.43) 
Proof. Let s 0 < σ 0 < σ 1 < s 1 and let ν ∈ (0, 1) and p ≥ 2 be such that s 1 = σ 1 +2ν and s 0 ≤ σ 0 -1/p. On the one hand, since

C ν ([0, L]) is continuously embedded in L p (0, L) and C 1+ν ([0, L]) is continu- ously embedded in W 1 p (0, L), interpolation theory guarantees that (C ν ([0, L]), C 1+ν ([0, L])) σ 1 +ν,∞ is continuously embedded in L p (0, L), W 1 p (0, L) σ 1 +ν,∞ , where (•, •) σ 1 +ν,∞ denotes the real interpolation method. Since C ν ([0, L]), C 1+ν ([0, L]) σ 1 +ν,∞ = C σ 1 +2ν ([0, L]) and L p (0, L), W 1 p (0, L) σ 1 +ν,∞ = B σ 1 +ν
p,∞ (0, L) by [2, (5.1), (5.21), (5.22) ] and

B σ 1 +ν p,∞ (0, L) is continuously embedded in B σ 1 p,1 (0, L) which is itself continuously embedded in B σ 1 p,p (0, L) = W σ 1 p (0, L) by [2, (5.
3), (5.5)], we have shown that

w W σ 1 p ≤ C(s 1 , σ 1 , p) w C s 1 , w ∈ C s 1 ([0, L]) . (3.44) 
On the other hand, we have

w W σ 0 p ≤ C(σ 0 , σ 1 , p) w σ 0 /σ 1 W σ 1 p w (σ 1 -σ 0 )/σ 1 p , w ∈ W σ 1 p (0, L) , while the choice of p implies that W σ 0 p (0, L) is continuously embedded in C s 0 ([0, L]
) by [2, (5.1), (5.3), (5.5), (5.8)]. Consequently, A useful consequence of (3.34), Lemma 3.6, and Lemma 3.7 is the convergence of (H ε k ) k . Lemma 3.8. Given T > 0, we have

w C s 0 ≤ C(s 0 , σ 0 , p) w W σ 0 p ≤ C(s 0 , σ 0 , σ 1 , p) w σ 0 /σ 1 W σ 1 p w (σ 1 -σ 0 )/σ 1 p , w ∈ W σ 1 p (0, L) .
H ε k -→ h in L 5 (0, T ; C([0, L]
)) and a.e. in Q T .

(3.46)

Proof. We first claim that

H ε k -→ h in L 2 (Q T ) and a.e. in Q T . (3.47) 
Indeed, it follows from (2.42), (3.9), and (3.12) that

H ε (t) 2 ≤ C 5 and t 0 H ε (s) 5 ∞ ds ≤ C 5 (1 + t) (3.48)
for t ≥ 0. We may thus assume (after possibly extracting a further subsequence) that

H ε k ⇀ h in L 2 (Q T ) (3.49)
for all T > 0. It also follows from the definition (2.35) of H ε that

H ε (t) 2 2 + ε 2 ∂ x H ε (t) 2 2 = L 0 H ε (t, x) h ε (t, x) dx , t ≥ 0 .
Consequently, given T > 0, we deduce from (3.48) that

T 0 H ε (t) -h(t) 2 2 dt ≤ T 0 H ε (t) 2 2 + ε 2 ∂ x H ε (t) 2 2 + h(t) 2 2 -2 L 0 H ε (t, x) h(t, x) dx dt ≤ T 0 L 0 [H ε (t, x) (h ε (t, x) -h(t, x)) + h(t, x) (h(t, x) -H ε (t, x))] dxdt ≤ C 5 T 1/2 T 0 h ε (t) -h(t) 2 2 dt 1/2 + T 0 L 0 h(t, x) (h(t, x) -H ε (t, x)) dxdt .
We then take ε = ε k in the above inequality and pass to the limit as k → ∞ with the help of (3.34) and (3.49) to complete the proof of (3.47), extracting possibly a further subsequence to obtain the convergence almost everywhere. Now, fix s 0 ∈ (0, 1/5) and let ϑ ∈ (0, 1) and p ≥ 2 be given by Lemma 3.7 with s 1 = 1/5. By (3.33), (3.48), Lemma 3.6 (with s 1 = 1/5), Lemma 3.7, and Hölder's inequality, we have

T 0 H ε k (t) -h(t) 5 C s 0 dt ≤ C(s 0 ) T 0 H ε k (t) -h(t) 5ϑ C 1/5 H ε k (t) -h(t) 5(1-ϑ) p dt ≤ C(s 0 ) T 0 H ε k (t) 5ϑ C 1/5 + h(t) 5ϑ C 1/5 H ε k (t) -h(t) 5(p-2)(1-ϑ)/p ∞ H ε k (t) -h(t) 10(1-ϑ)/p 2 dt ≤ C(s 0 ) T 0 h(t) 5ϑ C 1/5 ( H ε k (t) ∞ + h(t) ∞ ) 5(p-2)(1-ϑ)/p H ε k (t) -h(t) 10(1-ϑ)/p 2 dt ≤ C(s 0 , T ) T 0 ( H ε k (t) ∞ + h(t) ∞ ) 5(p-2)/p H ε k (t) -h(t) 10/p 2 dt 1-ϑ ≤ C(s 0 , T ) T 0 H ε k (t) -h(t) 5 2 dt 2(1-ϑ)/p ≤ C(s 0 , T ) T 0 H ε k (t) -h(t) 2 2 dt 2(1-ϑ)/p
, where we have used (2.42) and (3.9) to obtain the last inequality. The convergence (3.46) then follows by (3.47) thanks to the continuous embedding of

C s 0 ([0, L]) in C([0, L]).
The last result of this section is devoted to (A ε ) ε , (B ε ) ε , and (Σ ε ) ε .

Lemma 3.9. For T > 0, we have 

A ε k -→ α 1 (h) in L 2 (Q T ) and a.e. in Q T , (3.50) ∂ x A ε k ⇀ ∂ x α 1 (h) in L 2 (Q T ) , (3.51) B ε k -→ Γ in L 2 (Q T ) and a.e. in Q T , (3.52) Σ ε k -→ σ(Γ) in L 2 (Q T )
Σ ε 2 2 + ε 2 H ε ∂ x Σ ε 2 2 = L 0 σ(Γ ε ) Σ ε dx ≤ 1 2 σ(Γ ε ) 2 2 + 1 2 Σ ε 2 2 , so that (Σ ε ) ε and ε √ H ε ∂ x Σ ε ε are bounded in L 2 (Q T ) by (3.19). Consequently, (Σ ε ) ε is weakly relatively compact in L 2 (Q T ) while ε 2 √ H ε ∂ x Σ ε ε converges to zero in L 2 (Q T )
. These information along with (2.11) and (3.36) allow us to conclude that we have, after possibly extracting a further subsequence, the weak convergence in L 2 (Q T ) of (Σ ε k ) k to σ(Γ). We then argue as in the proof of (3.47) to complete the proof of (3.53).

Finally, owing to (2.46) and (3.11), (∂ x A ε ) ε is bounded in L 2 (Q T ) from which (3.51) follows by (3.50) after possibly extracting a further subsequence.

3.3. Passing to the limit in (2.36). Observing that (2.36) also reads

∂ t h ε = -∂ x a 1 (h ε ) J f,ε , we have d dt L 0 h ε ψ dx = L 0 ∂ x ψ a 1 (h ε ) J f,ε dx (3.54)
for all ψ ∈ W 1 ∞ (0, L). Now, it follows from (3.9) and (3.34) that

a 1 (h ε k ) k converges toward a 1 (h) in L 2 (Q T ) for T > 0. Combining this convergence with (3.38) yields that a 1 (h ε k ) J f,ε k k converges weakly toward a 1 (h) J f in L 1 (Q T ).
We may then pass to the limit in (3.54) and find that

d dt L 0 h ψ dx = L 0 ∂ x ψ a 1 (h) J f dx (3.55) for all ψ ∈ W 1 ∞ (0, L).
3.4. Passing to the limit in (2.37). We note that (2.37) also reads

∂ t Γ ε = -∂ x D Γ ε β ′ 1 (B ε ) ∂ x σ(Γ ε ) + α 0 (h ε , H ε ) Γ ε J s,ε . (3.56)
Let T > 0. We first identify the limit of the second term in the right-hand side of (3.56). It follows from (3.2) and (3.21) that

T 0 α 0 (h ε , H ε ) - √ h Γ ε 2 2 dt ≤ T 0 L 0 |α 0 (h ε , H ε ) -h| Γ 2 ε dxdt ≤ T 0 α 0 (h ε , H ε ) -h ∞ Γ ε ∞ Γ ε 1 dt ≤ C T 0 ( H ε -h ∞ + h ε -h ∞ ) Γ ε ∞ dt ≤ C(T ) T 0 H ε -h 2 ∞ + h ε -h 2 ∞ dt 1/2 , whence lim k→∞ T 0 α 0 (h ε k , H ε k ) - √ h Γ ε k 2 2 dt = 0 (3.57)
by (3.34) and (3.46). In addition, owing to (3.41), we have 

T 0 √ h (Γ ε -Γ) 2 2 dt ≤ T 0 h 1 Γ ε -Γ 2 ∞ dt ≤ C T 0 Γ ε -Γ 2 ∞ dt , so that lim k→∞ T 0 √ h (Γ ε k -Γ)
α 0 (h ε k , H ε k ) Γ ε k -→ √ h Γ in L 2 (Q T ) ,
which, together with (3.39), implies that

α 0 (h ε k , H ε k ) Γ ε k J s,ε k ⇀ √ h Γ J s in L 1 (Q T ) . ( 3 

.59)

We now turn to the first term of the right-hand side of (3.56) and use (2.35) to obtain

Γ ε β ′ 1 (B ε ) ∂ x σ(Γ ε ) = ∂ x σ(Γ ε ) |σ ′ (B ε )| -ε 2 ∂ 2 x B ε β ′ 1 (B ε ) ∂ x σ(Γ ε ) β ′ 1 (B ε ) . ( 3 

.60)

On the one hand, it follows from (1.5), (2.48), (2.49), and repeated use of (3.11) that

ε 2 T 0 L 0 ∂ 2 x B ε β ′ 1 (B ε ) ∂ x σ(Γ ε ) β ′ 1 (B ε ) dxdt ≤ C 5 ε 2 T 0 L 0 |∂ 2 x B ε | 2 σ 0 B ε dxdt 1/2 ≤ Cε 2 T 0 ∂ 2 x B ε 2 2 ε dt 1/2 ≤ Cε 3/2 T 0 ∂ x Γ ε 2 2 2ε 2 dt 1/2 ≤ Cε 1/2 T 0 ∂ x σ(Γ ε ) 2 2 σ 2 0 dt 1/2 ≤ Cε 1/4 T 0 √ ε ∂ x σ(Γ ε ) 2 2 dt 1/2 ≤ Cε 1/4 , so that lim ε→0 ε 2 T 0 ∂ 2 x B ε β ′ 1 (B ε ) ∂ x σ(Γ ε ) β ′ 1 (B ε ) 1 dt = 0 . (3.61) 
On the other hand, we have 

1 |σ ′ (B ε k )| ≤ 1 σ 0 and 1 |σ ′ (B ε k )| -→ 1 |σ ′ (Γ)| a.
∂ x σ(Γ ε k ) |σ ′ (B ε k )| ⇀ ∂ x σ(Γ) |σ ′ (Γ)| in L 1 (Q T ) . (3.62)
Furthermore, as σ is a Lipschitz continuous diffeomorphism with a Lipschitz continuous inverse and

∂ x σ(Γ) ∈ L 1 (Q T ), we have also ∂ x Γ ∈ L 1 (Q T ) with ∂ x Γ = ∂ x σ(Γ)/σ ′ (Γ)
. Consequently, we may pass to the limit in (3.56) and deduce from (3.59), (3.60), (3.61), and (3.62) that

d dt L 0 Γ ψ dx = L 0 ∂ x ψ -D ∂ x Γ + √ h Γ J s dx (3.63) for all ψ ∈ W 1 ∞ (0, L).
3.5. Identifying J f . Recalling (3.35), (3.40) and the formula

J f,ε = -∂ x α 1 (h ε ) + a 2,ε (h ε ) √ H ε h ε a 1 (h ε ) ∂ x Σ ε ,
the key toward the identification of the limit of J f,ε is the behavior as ε → 0 of the term involving ∂ x Σ ε . At this point, we observe that (2.51) and (3.11) guarantee that

√ H ε ∂ x Σ ε ε is bounded in L 2 (Q T )
for all T > 0, so that this quantity has weak cluster points in L 2 (Q T ). However, nothing is known so far on (∂ x Σ ε ) ε and it is yet unclear whether these cluster points can be determined in terms of h and σ(Γ). The aim of the next result is to remedy to this fact. Lemma 3.10. Given T > 0, the family (∂ x Σ ε ) ε is bounded in L 2 (0, T ; L 1 (0, L)) and relatively weakly sequentially compact in L 1 (Q T ).

In order not to delay further the identification of J f , we postpone the proof of Lemma 3.10. Let T > 0. Recalling (3.53), we deduce from Lemma 3.10 that, after possibly extracting a further subsequence, we have 

∂ x Σ ε k ⇀ ∂ x σ(Γ) in L 1 (Q T ) . ( 3 
H ε k 1 + H ε k ∂ x Σ ε k ⇀ h 1 + h ∂ x σ(Γ) in L 1 (Q T ) .
On the other hand, it follows from (2.51), (3.11), and the positivity of H ε k that

H ε 1 + H ε ∂ x Σ ε ε is bounded in L 2 (Q T ) .
Combining these two properties implies, after possibly extracting a further subsequence, that

H ε k 1 + H ε k ∂ x Σ ε k ⇀ h 1 + h ∂ x σ(Γ) in L 2 (Q T ) . (3.65) 
We next observe that Lebesgue's dominated convergence theorem and (3.34) ensure that 

a 2,ε k (h ε k ) h ε k a 1 (h ε k ) -→ 3 4G in L 4 (Q T ) . Since 1 + H ε k k converges toward √ 1 + h in L 4 (Q T ) by (3.46), we end up with a 2,ε k (h ε k ) 1 + H ε k h ε k a 1 (h ε k ) -→ 3(1 + h) 4G in L 2 (Q T ) . ( 3 
J f = -∂ x α 1 (h) + 3h 4G ∂ x σ(Γ) = j f . ( 3 
(r) = rΘ ′′ (r), r ∈ R. Since ξ ε solves ξ ε -ε 2 ∂ 2 x (H ε ξ ε ) = ∂ x σ(Γ ε ) in (0, L) with ξ ε (0) = ξ ε (L) = 0 , by (2.11), we have L 0 Θ ′ (ξ ε ) ξ ε dx = -ε 2 L 0 Θ ′′ (ξ ε ) ∂ x ξ ε ∂ x (H ε ξ ε ) dx + L 0 Θ ′ (ξ ε ) ∂ x σ(Γ ε ) dx ≤ -ε 2 L 0 ∂ x Θ 1 (ξ ε ) ∂ x H ε dx + L 0 Θ ′ (ξ ε ) ∂ x σ(Γ ε ) dx .
On the one hand, performing an integration by parts and using (2.35) and the nonnegativity of Θ 1 and h ε give

-ε 2 L 0 ∂ x Θ 1 (ξ ε ) ∂ x H ε dx = L 0 Θ 1 (ξ ε ) (H ε -h ε ) dx ≤ L 0 Θ 1 (ξ ε ) H ε dx .
On the other hand, it follows from the convexity of Θ that

L 0 Θ ′ (ξ ε ) ∂ x σ(Γ ε ) dx ≤ L 0 [Θ ′ (ξ ε ) ξ ε -Θ(ξ ε ) + Θ (∂ x σ(Γ ε ))] dx .
Consequently, gathering the previous three inequalities we obtain 

L 0 Θ(ξ ε ) dx ≤ L 0 Θ 1 (ξ ε ) H ε dx + L 0 Θ (∂ x σ(Γ ε )) dx . ( 3 
Θ = Φ δ that L 0 Φ δ (ξ ε ) dx ≤ δ 2 L 0 1 δ - 1 ξ 2 ε + δ 2 H ε dx + L 0 Φ δ (∂ x σ(Γ ε )) dx .
We then pass to the limit as δ → 0 and conclude that ξ ε 1 ≤ ∂ x σ(Γ ε ) 1 . Integrating this inequality with respect to time and using (3.19) then give that (ξ ε ) ε is bounded in L 2 (0, T ; L 1 (0, L)) . Integrating over (0, T ) and using (2.51), (3.11), and (3.71), we end up with

T 0 L 0 Ψ(ξ ε ) dxdt ≤ C 5 Ψ ′′ (0) 2 + K(T ) .
Since Ψ is even and superlinear at infinity by (3.71), the previous bound implies the uniform integrability of (ξ ε ) ε in L 1 (Q T ) and the Dunford-Pettis theorem entails the expected result.

3.6. Identifying J s . We first recall that

J s,ε = α 0 (h ε , H ε ) ∂ x σ(Γ ε ) -G a 2,ε (h ε ) h ε a 1 (h ε ) b 2 (Γ ε ) Γ ε ∂ x A ε .
Let T > 0. For ψ ∈ L ∞ (Q T ) and δ ∈ (0, 1), we have We infer from (3.19) and Hölder's inequality that 

|I 1,k | ≤ ψ L∞(Q T ) T 0 α 0 (h ε k , H ε k ) - √ h ∞ ∂ x σ(Γ ε ) 1 dt ≤ C 7 ψ L∞(Q T ) T 0 α 0 (h ε k , H ε k ) - √ h
≤ √ δ ψ L∞(Q T ) T 0 h ∞ ∂ x σ(Γ ε ) 1 + h 1/2 1 √ h ∂ x σ(Γ) 2 dt ≤ √ δ ψ L∞(Q T ) C 7 T 0 h(t) 2 ∞ dt 1/2
+ C(T ) .

Since h belongs to L 5 (0, T ; L ∞ (0, L)), we conclude that 

ψ α 0 (h ε k , H ε k ) ∂ x σ(Γ ε k ) - √ h ∂ x σ(Γ) dxdt ≤ C(T ) √ δ ψ L∞(Q T ) .
Since δ is arbitrary in (0, 1), we may let δ → 0 in the previous inequality and realize that 

α 0 (h ε k , H ε k ) ∂ x σ(Γ ε k ) ⇀ √ h ∂ x σ(Γ) in L 1 (Q T ) . ( 3 
(h ε k ) h ε k a 1 (h ε k ) b 2 (Γ ε k ) Γ ε k -→ 3 4G in L 2 (Q T ) .
Combining this property with (3.51) yields 

a 2,ε k (h ε k ) h ε k a 1 (h ε k ) b 2 (Γ ε k ) Γ ε k ∂ x A ε k ⇀ 3 4G ∂ x α 1 (h) in L 1 (Q T ) . ( 3 

  .33) By the Arzelà-Ascoli theorem, C 1/5 ([0, L]) is compactly embedded in C ϑ ([0, L]) for all ϑ ∈ [0, 1/5) and it follows from (3.24), (3.33), and [20, Corollary 4] that (3.31) holds true. Similarly, X is compactly embedded in C([0, L]) (since ω ℓ (δ) → 0 as δ → 0) and we infer from (3.21), (3.25), and [20, Corollary 4] that (3.32) holds true. 3.2. Convergence. According to (3.10), (3.11),

  (3.45) Combining (3.44) and (3.45) gives (3.43) with ϑ = σ 0 /σ 1 .

  36). Gathering (3.57) and (3.58), we have established that

  .67) In particular, thanks to (3.35), (3.38), and (3.40), √ h ∂ x σ(Γ) ∈ L 2 (Q T ) . (3.68) Proof of Lemma 3.10. We put ξ ε := ∂ x Σ ε . Let Θ ∈ C 2 (R) be a nonnegative and convex function satisfying Θ(0) = 0 and define the function Θ 1 by Θ 1 (0) = 0 and Θ ′ 1

  .69)We first use(3.69) to obtain an L 1 -bound on (ξ ε ) ε . For δ ∈ (0, 1) and r ∈ R, define Φ δ (r) := √ r 2 + δ 2δ. It is a nonnegative and convex function vanishing at zero and we infer from (3.69) with

0 Ψ

 0 [START_REF] Amann | Multiplication in Sobolev and Besov spaces[END_REF].70), we need a refined version of the de la Vallée-Poussin theorem (recalled in Lemma A.2 below) which asserts that the weak compactness(3.20) of (∂ x σ(Γ ε )) ε in L 1 (Q T ) implies the existence of a nonnegative and even convex function Ψ ∈ C 2 (R) such that Ψ(0) = 0, Ψ ′ is concave on [0, ∞), x σ(Γ ε )) dxdt < ∞ and lim r→∞ Ψ(r) r = ∞ . (3.71)Then 0 ≤ Ψ ′′ (r) ≤ Ψ ′′ (0) for r ∈ R and it follows from (3.69) with Θ = Ψ that L x σ(Γ ε )) dx .

  h ε k , H ε k ) ∂ x σ(Γ ε k ) -√ h ∂ x σ(Γ) dxdt = I 1,k + I 2,k (δ) + I 3,k (δ) , h ε k , H ε k ) -√ h ∂ x σ(Γ ε k ) dxdt , I 2,k (δ) := (∂ x σ(Γ ε k ) -∂ x σ(Γ)) dxdt , I 3,k (δ) := (∂ x σ(Γ ε k ) -∂ x σ(Γ)) dxdt .

  3.19) along with (3.41) and (3.68), we find|I 2,k (δ)| ≤ ψ L∞(Q T ) |∂ x σ(Γ ε )| + |∂ x σ(Γ)|) dxdt

  sup k≥1 |I 2,k (δ)| ≤ C(T ) √ δ ψ L∞(Q T ) . (3.74) Finally, owing to (3.37), (3.40), and the boundedness of h/(1 + δh), we have lim k→∞ I 3,k (δ) = 0 . (3.75) It then follows from (3.72), (3.73), (3.74), and (3

3 . 7 .∂ x α 1 0 L 0 hh 0 H 2 k

 3710002 .77) Thanks to (3.39),(3.76), and (3.77), we have identified J s :J s = √ h ∂ x σ(Γ) -3G 4 ∂ x α 1 (h) = j s . (3.78) The energy inequality. Let T > 0. Since J f = j f and J s = j s by (3.67) and (3.78), we infer from (3.35), (3.38), (3.39), and (3.40) that (h ε k ) 2 2 dt .We next set z n,ε := min {h ε , n}∂ x σ(Γ ε ) for n ≥ 1 and ε ∈ (0, 1) and observe that 11). Fix n ≥ 1. As min {h ε k , n} k is bounded in L ∞ (Q T )and converges a.e. toward min {h, n} by (3.34), it follows from (3.37), (3.40), and Lemma A.1 that (z n,ε k) k converges weakly in L 1 (Q T ) toward min {h, n}∂ x σ(Γ)and also in L 2 (Q T ) according to (3.79) (after possibly extracting a further subsequence). We then infer from (3.79) thatT 0 L 0 min {h, n} |∂ x σ(Γ)| 2 dxdt ≤ lim inf k→∞ T 0 h ε k ∂ x σ(Γ ε k )Since the right-hand side of the above inequality does not depend on n, Fatou's lemma leads us toT |∂ x σ(Γ)| 2 dxdt ≤ lim inf k→∞ T 0 h ε k ∂ x σ(Γ ε k ) |∂ x σ(Γ)| 2 dxdt ≤ lim inf k→∞ T ε k ∂ x σ(Γ ε k ) δ ∈ (0, 1) and ε ∈ (0, 1), we define ζ δ,ε := ∂ x σ(Γ ε ) (B ε + δ)|σ ′ (B ε )|and deduce from (2.6) and (3.11) that and (3.52), ((B ε k + δ)|σ ′ (B ε k )|) -1/is bounded in L ∞ (Q T ) (by 1/ √ δσ 0 ) and converges a.e. toward ((Γ + δ)|σ ′ (Γ)|) -1/2 in Q T . Using once more (3.37), (3.40), and Lemma A.1,

  ֒→ C µ , and it thus follows from (2.28) analogously to(2.22) that

	3/2-3ξ-2ρ
	2,B

.28) by

[START_REF] Amann | Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems[END_REF] Thm.7.2]

. Taking ρ := ξ and setting µ := 1 -6ξ, we have W

  [START_REF] Dellacherie | Probabilités et Potentiel, Chapitres I à IV[END_REF],(2.6), and (2.48).

	Proof. It follows from (2.36)-(2.38) that

  .72) We next infer from (2.4), (2.40), (2.41), (2.42), (2.44), (2.47), and (2.59) that

  and φ being defined in (2.53), (2.54), (2.35), (2.11), and

  and we obtain (3.9). Next, (3.10) and(3.11) are straightforward consequences of (3.3), (3.5), and (3.8), since the lower bound (3.1) on h ε guarantees that √ h ε ≥ ε 1/4 . Recalling the definition (2.5) of α 1 , we infer from (3.11) that

  .64) On the one hand, since (H ε k /(1 + H ε k )) k is bounded due to the positivity of H ε k and converges a.e.

to h/(1 + h) by (3.47), we use once more Lemma A.1 to conclude that
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we conclude that (ζ δ,ε k ) k converges weakly toward ∂ x σ(Γ)/ (Γ + δ)|σ ′ (Γ)| in L 1 (Q T ) and also in L 2 (Q T ) by virtue of (3.80). Taking the liminf in (3.80) gives

Using again (1.5), we further deduce

The above inequality readily implies that √ Γ belongs to L 2 (0, T ; W 1 2 (0, L)) and

Collecting the above information and taking into account (3. We next recall a refined version of the de la Vallée-Poussin theorem [START_REF] Lê | Etude de la classe des opérateurs m-accrétifs de L 1 (Ω) et accrétifs dans L ∞ (Ω)[END_REF].

Lemma A.2. Let U be an open bounded subset of R m , m ≥ 1, and F a subset of L 1 (U). The following two statements are equivalent: