
HAL Id: hal-00495886
https://hal.science/hal-00495886

Preprint submitted on 29 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Theoretical and Experimental Review of SystemC
Front-ends

Kevin Marquet, Matthieu Moy, Bageshri Karkare

To cite this version:
Kevin Marquet, Matthieu Moy, Bageshri Karkare. A Theoretical and Experimental Review of Sys-
temC Front-ends. 2010. �hal-00495886�

https://hal.science/hal-00495886
https://hal.archives-ouvertes.fr

A Theoretical and Experimental Review of

SystemC Front-ends

Kevin Marquet Matthieu Moy

Verimag, Université Joseph Fourier/Grenoble INP, Grenoble, France

first.last@imag.fr

Bageshri Karkare

Abstract—SystemC is a widely used tool for prototyping
Systems-on-a-Chip. Being implemented as a C++ library, a plain
C++ compiler is sufficient to compile and simulate a SystemC
program. However, a SystemC program needs to be processed
by a dedicated tool in order to visualize, formally verify, debug
and/or optimize the architecture. In this paper we focus on the
tools (called front-ends) used in the initial stages of processing
SystemC programs. We describe the challenges in developing
SystemC front-ends and present a survey of existing solutions.
The limitations and capabilities of these tools are compared for
various features of SystemC and intended back-end applications.
We present typical examples that front-ends should ideally be
able to process, and give theoretical limitations as well as
experimental results of existing tools.

I. INTRODUCTION

SystemC is a C++ class library which facilitates modeling

of systems at various levels of abstractions ranging from

functional description to cycle-accurate modeling. The abil-

ity to design at higher abstraction levels is valuable due to

increasing complexity of system design. Being a C++ library,

SystemC provides typical high-level language features which

make the task of system design easier and faster than

lower-level hardware description languages. It also offers

the concepts of timing and concurrency which are essential

for hardware modeling. Therefore, it has become the de

facto standard for modeling embedded systems, and has

been approved as a standard by the IEEE consortium [1].

Writing SystemC programs is mainly motivated by the

need to obtain the hardware platform earlier, allowing early

software development. SystemC was primarily used for sim-

ulation, allowing validation of platforms functionality, and

embedded software development. A typical C++ compiler

suffices to generate an executable that performs simulation.

However, as the complexity of embedded software and

model have grown, the need has appeared for various other

applications (like formal verification, visualization, ...), that

require not only an execution of the platform, but also an

access to its architecture and an abstract representation

of its source code like an Abstract Syntax Tree. Typical

applications of a SystemC front-end are visualization, in-

trospection, optimization of simulation, verification and

synthesis, as detailed below. For such applications, initial

processing of a SystemC program is done by front-end tools.

Depending on the target application, three issues have

to be addressed by a SystemC front-end. First, retrieving

the architecture of the platform. In a SystemC simulation,

this architecture is obtained at run-time, by executing C++

statements that create and link SystemC components. This

phase is called the elaboration. In figure 1, the sc_main

function gives an example of such statements. Second,

extracting the control structure of processes and recogniz-

ing SystemC specific constructs (the process function in

the example). At last, making the link between the two,

recognizing communications between components in the

control structure.

SC_MODULE(Component) {

sc_core::sc_out<bool> out;

sc_core::sc_in<bool> in;

bool isHead;

void process() {

/* Dynamic behavior of the process.

May use in.read(), out.write() and

arbitrary C++ statements ...*/

}

SC_CTOR(Component) { // constructor

SC_THREAD(process); // process declaration

}

};

int sc_main (int argc, char *argv[]) {

sc_signal<bool> s1("s1"), s2("s2"), s3("s3");

Component C1("C1"), C2("C2"), C3("C3");

C1.out(s1); C2.out(s2); C3.out(s3);

C1.in(s3); C2.in(s1); C3.in(s2);

C1.isHead = true;

sc_start(200, SC_NS); // start simulation

return 0;

}

Fig. 1. Elab-only: a simple example

This paper recalls possible applications of SystemC front-

ends (sections II), and the challenges in developing such

tools (section III). The main contribution is a theoretical

(section IV) and experimental (section V) comparison of

existing approaches and tools. We conclude in section VI.

The goal of this comparative study is twofold: first, a

detailed survey should help future authors of tools requiring

a front-end to pick the right tool. To the best of our

knowledge, this paper is the most comprehensive survey in

this area, both regarding the number of tools we compare,

and the level of detail of the analysis: we actually installed

and tested all the tools we mention when they are available.

We are mainly interested in tools usable to build research

products, and therefore focus on front-ends which are

distributed, with friendly licensing policy. Second, compar-

ing the advantages and limitations of existing approaches

should help building the next generation of SystemC front-

ends. Besides, part of the conclusion of our study is that

all the tools available today have drawbacks, and we are

working on a new one which should overcome most of

them.

II. APPLICATIONS OF A SYSTEMC FRONT-END

The main possible uses of a SystemC front-end are:

Visualization: GUI tools for system design provide graph-

ical visualization of the architecture and may also

provide a facility to edit the design. For graphical

visualization, it is sufficient to run the elaboration

and display the architecture. A full front-end can be

required for more advanced features like source code

browsing or graphical editing facility.

Introspection: Introspection is the process of extracting

meta-data, i.e. the structural and run-time character-

istics of a system. Structural data may include the

module names, hierarchy information etc, while the

runtime data includes dynamic information such as

the number of process invocations, event generations

etc. Using data introspection, a piece of code within

the platform can access information about the objects

containing the platform during simulation, which can

ease design space exploration. Examples of tools for

SystemC introspection include ReSP [2] and [3].

Optimization of simulation: Once the elaboration phase

completed, the architecture of the system is known.

This knowledge can be used to perform some op-

timization. For instance, speeding up the simulation

with static scheduling [4], [5], or parallelizing it [6].

Verification: Typically, verification of hardware systems is

performed using dynamic validation techniques such

as simulation. In order to perform formal verification

of the model using existing tools (such as model

checkers), the SystemC front-end is required to extract

both a detailed representation of process bodies, and

the architecture (typically, one cannot reason formally

about a statement like port.write(...); unless know-

ing which interface the port is bound to). Most Sys-

temC formal verifiers read SystemC code with a front-

end, and formalize its semantics to produce the input

language of a model-checker [7], [8].

Synthesis: Some SystemC models can be synthesized into

gate-level descriptions. A synthesizer for SystemC

works like a compiler, and obviously requires exhaus-

tive information about the source code. Examples of

academic synthesizers are [9], [10].

III. ISSUES IN DEVELOPING SYSTEMC FRONT-ENDS

SystemC being a C++ library, a C++ front-end can parse

a SystemC program, but for most applications other than

basic simulation, this is insufficient to build a front-end.

We now detail the issues of designing a SystemC front-

end. First, retrieve the architecture of the system, second

represent the C++ control structure in an abstract way, and

the most difficult part: link those two structures.

A. Architecture

A SystemC system first defines an architecture, i.e. a set of

components and connections between them. Components

have a behavior defined by one or several processes and

communicate with each other through ports. SystemC pro-

vides synchronization mechanisms like events and signals.

A SystemC program describes all these concepts using

C++ objects declared in the SystemC library, and instanti-

ated during the elaboration phase (i.e. at the beginning of

execution). The first goal of a SystemC front-end is to re-

trieve this architecture. A regular C++ parser can only parse

the program and generate an intermediate representation

of the code. However, it cannot capture the meaning of

the program in terms of components and interconnections,

since this information is built at runtime. Such information

is vital in some back-ends such as verification tools. Con-

sider a code fragment in Figure 1, where three modules

form a circular chain communicate through the use of

boolean signals. A C++ parser can give a representation

of the elaboration code, but not does not compute this

information directly.

There are mainly two approaches to get the architecture:

either execute the elaboration phase, and get the result

of this execution, or parse it, and infer the result without

executing it. The latter is usually done with static analysis

of the elaboration code to determine the interconnections

between modules, and would ideally require a full C++

interpreter.

Figure 2 illustrates a more complex case where com-

ponents are instantiated in a loop and, consequently, the

number of processes depends on a variable.

int sc_main(int argc, char **argv) {

module1 *m[MAX];

for(i = 0; i < MAX; ++i) {

m[i] = new module1();

}

}

Fig. 2. Architecture dependent on dynamic information

B. Dealing with C++

A SystemC program contain different processes; a front-

end allows to build an Intermediate Representation (IR) from

these processes. Various kinds of IR can be imagined de-

pending on the goal of the tool, but it needs to contain both

SystemC-specific treatments and others. SystemC being a

C++ library, all C++ features must be supported by the front-

end. This can be achieved by either writing a parser from

scratch using the language grammar (which is non-trivial

in the case of C++), or by using an existing C++ front-end

such as GCC, LLVM, EDG etc. The IR representing SystemC

programs can be of various forms, typically an Abstract

Syntax Tree or a Control Flow Graph. The choice of the IR

can be important, as it must contain enough information

to serve the purpose of the back-end.

The SystemC library defines different functions allowing

synchronization and communication between processes.

Through these operations, SystemC processes can wait

a given time (wait(t)), write through communication

channels (port.write(data)), wait and notify events

(wait(e)/e.notify()). A SystemC front-end must be

able to detect these operations and mark them as special

in the IR.

A SystemC front-end should be able to retrieve these Sys-

temC constructs. As function calls, those specific constructs

are easy to detect. A harder task is to capture the semantics:

the difficulty here is not only to find those constructs but

to establish which components are involved. This requires

to make the link between the control structure and the

architecture.

C. Linking architecture and control

For instance, if a process performs a

port.write(data), it is easy to analyze that a

component writes a data to someone. Determining the

target component as well as the data is more difficult,

depending on the complexity of the code computing

port and data. Consider the architecture described in

figure 2 where components are instantiated in a loop. If a

process performs modules[i].out.write(data), an

ideal SystemC front-end would be able to retrieve which

module is concerned by the writing. This requires that

the architecture has been retrieved as well as the control

structure (with SystemC special constructs), but also to

make the link between them. In the current example, this

means evaluating modules[i].out which is difficult. In

the same manner, the semantics of a wait(t) instruction

depends on t, which can be the result of a complex code.

IV. EXISTING TOOLS AND APPROACHES FOR SYSTEMC

FRONT-ENDS

We now present existing front-ends, their capabilities

with respect to their goals.

A. Tools Using a Dedicated Grammar for SystemC

A first approach to parse SystemC programs is to consider

SystemC as a language, therefore rely on a specific grammar

considering SystemC classes and methods as keywords. The

first drawback of this method is due to the complexity of

the C++ grammar and typing rules. As seen in section III-B,

a SystemC program may contain any arbitrary C++ code,

therefore this approach requires to implement the whole

C++ grammar in addition of the SystemC constructs, which

is known to require a huge effort. As a consequence, the

solutions based on this approach, presented below, are

highly incomplete with respect to C++, and require to re-

write SystemC designs with given guidelines. Generally,

this excludes some C++ specific features such as dynamic

memory allocation, pointers, recursion, loops with variable

bounds etc.

A more fundamental issue is that a purely static analysis

solution can only handle programs where the architecture

is built in a simple way (see section III-A).

• ParSyC: Developed by University of Bremen, ParSyC [9]

is a SystemC parser using PCCTS [11] (Purdue Com-

piler Construction Tool Set); it is a part of an integrated

environment for system design called SyCE [12].

ParSyC generates an Abstract Syntax Tree (AST) which

is then converted to an intermediate representation.

The intermediate representation is close to the Abstract

Syntax Tree but is built using classes corresponding

to the constructs in the SystemC code. It acts as a

starting point for other tools in SyCE, such as ViSyC

which is used for visualization and DeSyC which is

used for automatic debugging. The SyCE suite also

contains CheckSyC [13] which is a verification tool for

formal equivalence checking, property checking and

generating checkers for simulation or synthesis.

• KaSCPar: There are two tools in the KaSCPar [14] suite:

SC2AST and SC2XML. SC2AST is essentially a C++

front-end with dedicated grammar rules for SystemC

constructs. It generates the Abstract Syntax Tree for the

given SystemC application. SC2XML first generates the

AST using SC2AST and then generates an elaborated

description of the application. This elaborated descrip-

tion contains two parts: functional and structural. The

functional part contains information about the threads,

constructors etc (mainly the control structure). The

structural part is obtained by parsing the AST and

contains the hierarchically composed system structure

including connections between system elements. The

suite uses the GNU preprocessor to expand the Sys-

temC macros.

KaSCPar is a partially open-source tool. The source

code for SC2XML, which is the more interesting com-

ponent of the suite, is not available.

• sc2v: sc2v [10] is an open source tool for automatic

translation of SystemC models to synthesizable Verilog

code. It is written using lex and yacc tools, and targets

only an RTL subset of SystemC.

• A front-end [15] for the Behavioral Synthesizable Sys-

temC subset (BSSC) has been developed with the goal

of providing an easily customizable and extendable

SystemC parser. BSSC is closer to C than to C++,

and the parser supports only basic constructs of C++.

Supporting full C++ would require a major effort. Also,

although the paper states that the tool is open-source,

neither the tool nor the source code is not available.

• SystemC-Perl, or SystemPerl [16] for short, is an ex-

tended version of SystemC language facilitating auto-

matic expansion of text to avoid needless repetitions in

the code. The entire suite comes with a preprocessor

which expands the SystemPerl files into C++ code or

stand-alone SystemC code. The suite also contains

a netlist extractor which describes the hierarchical

interconnections among SystemC modules.

In case of SystemPerl, the user is expected to provide

hints in the program for the preprocessor to identify

the constructs to be expanded. Netlist extraction does

not involve processing of procedure bodies. Thus, Sys-

temPerl is not useful for typical back-end applications.

B. Tools Based on existing C++ front-end

Some works are based on a full, existing C++ front-end,

addressing in this way the problem of the complexity of

C++ of grammar-based tools:

• Proprietary tools: Semantic Designs use a SystemC

front-end which supports full C++ syntax, builds Ab-

stract Syntax Tree and provides facilities to process the

syntax tree. Synopsys developed a SystemC front-end

which is used in the SystemC compiler CoCentric. It

parses the constructors and the main function, as well

as the body of the modules with the EDG C++ front-

end, and infers the structure of the program from the

syntax tree of the constructors. Unfortunately, the tool

is not available for download or for evaluation. To the

best of our knowledge, the approach they use has not

been published.

• SCOOT: SCOOT [5] is a model extractor for SystemC

based on a C++ front-end developed by the authors.

It includes static scheduling tools, allowing source-to-

source optimizations, and integrates verification back-

ends to the CBMC model-checker and the SATABS tool.

The intermediate format extracted from the SystemC

program is basically a CFG annotated with information

related to the architecture. Static analysis techniques

are used to determine the module hierarchy, sensitivity

lists for processes and port bindings. The source code

of this tool or the details of the analysis techniques

used in the front-end are not available.

• SystemCXML: SystemCXML [17] project aims at re-

trieving structural information of SystemC models. It

uses Doxygen to interpret the SystemC source and

generates an intermediate description in XML. This

intermediate description called ASLD (Abstract Syn-

tax Language Definition) captures SystemC structural

information such as hierarchy, ports, signals, types

etc. SystemCXML cannot not derive the architecture

information from SystemC programs. The SystemC

coverage of this tool is limited by the Doxygen markups

used. The output of SystemCXML is useful in back-end

applications such as visualization, but the IR used to

represent the source code includes only tags meant for

pretty-printing the code, not for further analysis.

• Quiny: Unlike the above approaches, Quiny [18] uses

an unmodified C++ compiler, but modifies the SystemC

library to use the operator overloading feature of C++

to return the expressions instead of evaluating the

operation at run-time. Thus, the intermediate code as

well as the architecture information is produced by

compiling and running the platform.

Since not all language constructs can be overloaded,

this requires redefinition of keywords such as if,

else etc. in order to modify their execution-time

behavior. Also some C++ operators such as ?: are not

and can not be handled. This limits the usefulness of

this tool.

C. Hybrid (Static/Dynamic) Approaches

• Pinapa: Pinapa [19] uses a hybrid approach where

on the one hand the SystemC program is parsed

using GCC to get the Abstract Syntax Tree and on

the other hand the elaboration phase is executed to

get the architecture information. Outputs of these two

separate phases (i.e. the in-memory data structures)

are linked together so that a single output intermediate

form can be produced for the intended application

such as verification or visualization.

Pinapa can parse any arbitrary SystemC program, but

it cannot generate useful output for some constructs

such as pointers to SystemC objects or complex array

index expressions.

While we think the approach of Pinapa is good, the

tool is not easy to use because of technical issues (lack

of modularity of GCC in particular) and non-technical

ones (license issues prevent the distribution of Pinapa

in a compiled form).

• In a recent work [3] by the authors of ParSyC projects,

a hybrid technique is briefly presented which uses a

PCCTS based parser (supporting a subset of C++) to

collect the static information and a code generator to

evaluate run time information.

Some tools need only the architecture of the platform,

and can use a purely dynamic approach (execute the

elaboration and get the result). Such tools are not strictly

speaking front-ends and are omitted here and included only

in [20] by lack of space. [20] also includes a summary of

the front-end applications and theoretical capabilities in the

form of a table.

V. EXPERIMENTS

We now present different test-cases illustrating the chal-

lenges SystemC front-end face on as well as the importance

of each one. Then we compare the theoretical capabilities

of existing front-ends to their effective capabilities. Last, we

analyze the results and detail the difficulty, for each tool,

to handle new capabilities.

A. Examples

The examples presented here are not supposed to repre-

sent an exhaustive set of complex benchmarks for SystemC.

They are rather small tests identifying each one a single

problem we ideally want to be handled by a front-end. The

complete source code is available from the web [21].

The first example, and most simple, includes the same

architecture as the one presented previously in figure 1,

without the SC_THREAD declaration. This code allows to

test the behavior of front-ends on very simple applications

and serves as a basis for other examples.

The elab-easy uses the same simple architecture (explicit

bindings between modules) and contains simple process.

The elab-easy-int example, is the same application except

that data written through signals are integers instead of

booleans, testing this different construct. elab-easy-sc_stop

is a simple example in which a process read data during

a given time then calls sc_stop(). In order to test yet

another constructs, elab-clock include a simple process

depending on an sc_clock to wake up.

In the elab-easy-array, components are stored in arrays;

the architecture is built by iterating through these arrays.

In the elab-port-bool example, ports are stored into arrays

rather than components. The elab-pointer example ac-

cesses the array through indices depending on input values.

In the elab-instances example, we access an array of

pointer to components, filled in by a simple loop.

The signal example tests the creation of modules from

another module, rather than in the sc_main function.

The event example (not provided here, but given in [20])

just tests the recognition of events.

At last, we test the RAM platform, a bigger example

involving a CPU accessing a memory, with the use of clocks,

ports and signals.

B. Experimental Results

We experimented existing SystemC front-ends on exam-

ples described previously. Results are given in table I. For

each tool and each example, this table indicates:

• ✓ if the example could be analyzed.

• ✍ if the example could be analyzed but with (small)

adaptation of the test-case. Typically, this is often nec-

essary for grammar-based tools which do not recognize

some syntaxes.

• ≈ if it works partially. The concerned case is detailed

below.

• Easily if the example could not be analyzed, but

could be managed with a small implementation work.

• Doable if the example could not be analyzed, if this

is not a theoretical limitation of the approach, but

requires a huge implementation to work. Typically,

writing a SystemC front-end handling all C++ and

SystemC constructs is an approach that could work

but is absolutely not realistic.

• L if the example could not be analyzed, does not seem

to be a limitation of the approach, but the case of the

error could not be found (in other words, this seems

to be a bug in the tool).

• ✘ if the example could not be analyzed and if it is a

fundamental limitation of the approach.

ParSyc is not freely available, so we couldn’t try it. In

addition, the tools sc2v, SystemPerl require to write appli-

cations from scratch and do not really handle the “SystemC

language”. Those two tools appear in grey in the table, with

results corresponding to their theoretical capabilities.

C. Analysis of Results

The main result given by the table is that there does not

exist a perfect front-end able to parse any SystemC pro-

gram, retrieve the architecture and build an intermediate

format for that program.

SystemCXML experimental limitations correspond to the-

oretical ones. It does not give an intermediate representa-

tion, does not detect events, requires a strict syntax (use of

struct module (X) : struct sc_module instead

of SC_MODULE(X) does not work for instance).

KaSCPar seems to be the most widely used tool amongst

those presented, but it is not maintained anymore. We did

not receive any answer from the authors to our questions

concerning errors we encountered on our tests as well

as on the examples they provide. In addition of these

disappointing experimental results, the limitations of the

approach have been presented above.

Pinapa gives the best results, theoretically as well as ex-

perimentally. However, we required the help of the authors

to be able to install and execute examples correctly, so

the comparison is not completely fair. In the case of elab-

pointer, Pinapa managed to detect the write construct,

was unable to determine statically which module is target-

ted, but decorated the AST corresponding to this access

with the correct expression. A few more details:

• the authors corrected one bug in Pinapa to handle

elab-port-bool;

• Pinapa doesn’t follow function calls, but decorate only

SystemC constructs that appear directly in the function

registered as a process. A write() into a function whose

call is nested in an other won’t be detected.

The hybrid approach followed by Pinapa is interesting as it

allows to extract the architecture of any program. However,

analyzing the AST given by GCC is a limited approach,

as it does not allow to retrieve information in simple

C++ constructs dependant on purely static data (an array

indexed by an operation on constants for instance).

Although knowing the target of each communication

between two modules is undecidable in the general case, we

think it is possible to handle most of the cases. Indeed, as it

is difficult to accomplish using static analysis solutions, we

could execute pieces of code computing those information.

Additionally, the intermediate representations given by

all available solutions are more or less based on the AST.

However, it has been showed [22] that, for verification

purpose, the SSA form could give good results.

VI. CONCLUSION

We presented the motivations and challenges for the

design of SystemC front-ends. We detailed existing solutions

Pinapa SystemCXML KaSCPar Quiny Scoot SystemPerl sc2v

elab-only ✓ ✓ ✓ ✍ ✓ ✘ ✍

elab-easy ✓ ✓ L ✍ ✓ ✘ Doable

elab-easy-int ✓ ✓ L Easily ✓ ✘ Doable

elab-easy-uint ✓ ✓ L Easily ✓ ✘ Doable

elab-easy-array ✓ ✘ L Doable L ✘ ✘

elab-easy-sc_stop ✓ ✓ L Easily Easily ✘ Easily

elab-port-bool ✓ ✘ L Doable Doable ✘ ✘

elab-pointer ≈ ✘ ✘ Doable ✘ ✘ ✘

elab-instances ✍ ✘ L Doable Easily ✘ ✘

elab-clock Easily ✓ L Easily ✍ ✘ Easily

signal ✍ ✘ ✘ ✘ ✍ ✘ ✘

event ✓ ✓ L Doable ✓ ✘ Doable

fifo ✘ ✘ ✘ ✘ ✘ ✘ ✘

RAM Doable ✓ ✘ ✘ Easily ✘ ✘

TABLE I
CAPABILITIES OF SYSTEMC FRONT-ENDS

and their theoretical capabilities and limitations, and gave

experimental results. We showed that although the need to

analyze SystemC designs is increasing with the complexity

of embedded systems, available tools are not able to take

as input any arbitrary SystemC models.

Three tools give better results than others. Scoot gives

good results, but the source is not open and does not

provide its intermediate representation. In addition, the ap-

proach is limited because it is completely static. Therefore,

it is difficult to use it as a basis for a new tool although it

represents an interesting research work. For other purposes,

KaSCPar is a good choice for small examples, although it

seems to be unmaintained and has, again, the limitations

of static tools. It was notably used for verification [23],

[7]. Pinapa has the most powerful approach but experience

technical difficulty which would require a non neglectable

engineering effort. It was initially written for verification [8],

and recent work [24] base upon Pinapa to emulate SystemC

programs on a FPGA.

We also summarized good ideas in existing solutions

and added new ones to overcome remaining limitations

of existing approaches. We are currently developing a tool

called PinaVM incorporating these ideas, based on the

compiling infrastructure LLVM [25].

REFERENCES

[1] “IEEE std 1666 - 2005 IEEE standard SystemC language reference
manual,” IEEE Std 1666-2005, pp. 0_1–423, 2006.

[2] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto, “ReSP: a
non-intrusive transaction-level reflective MPSoC simulation platform
for design space exploration,” in Proceedings of the 2008 conference
on Asia and South Pacific design automation. IEEE Computer Society
Press Los Alamitos, CA, USA, 2008, pp. 673–678.

[3] C. Genz and R. Drechsler, “Overcoming limitations of the systemC
data introspection,” in DATE. IEEE, 2009, pp. 590–593.

[4] R. Buchmann, F. Petrot, and A. Greiner, “Fast cycle accurate simulator
to simulate event-driven behavior,” in Electrical, Electronic and Com-
puter Engineering, 2004. ICEEC ’04. 2004 International Conference on,
Sept. 2004, pp. 35–38.

[5] N. Blanc, D. Kroening, and N. Sharygina, “Scoot: A tool for the
analysis of SystemC models,” in TACAS, 2008, pp. 467–470.

[6] Y. Bouzouzou, “Semantics-preserving parallelization of the SystemC
scheduler for reduced simulation times,” Master’s thesis, UJF, 2007,
diplôme de Recherche Technologique.

[7] P. Herber, J. Fellmuth, and S. Glesner, “Model checking SystemC
designs using timed automata,” in CODES/ISSS ’08: Proceedings of
the 6th IEEE/ACM/IFIP international conference on Hardware/Software

codesign and system synthesis. New York, NY, USA: ACM, 2008, pp.
131–136.

[8] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy: an open tool
for the analysis of systems-on-a-chip at the transaction level,” Design
Automation for Embedded Systems, 2006, special issue on SystemC-
based systems.

[9] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and R. Drechsler,
“Parsyc: An efficient SystemC parser,” in In Workshop on Synthesis
And System Integration of Mixed Information technologies (SASIMI),
2004, pp. 148–154.

[10] J. Castillo, P. Huerta, and J. I. Martinez, “An open-source tool for
SystemC to verilog automatic translation,” vol. 37, pp. 53–58, 2007.

[11] T. J. Parr, H. G. Dietz, and W. E. Cohen, “Pccts reference manual:
version 1.00,” SIGPLAN Not., vol. 27, no. 2, pp. 88–165, 1992.

[12] R. Drechsler, G. Fey, C. Genz, and D. Große, “SyCE: An integrated
environment for system design in SystemC,” IEEE International
Workshop on Rapid System Prototyping,, vol. 0, pp. 258–260, 2005.

[13] D. Große and R. Drechsler, “Checksyc: an efficient property checker
for rtl SystemC designs,” in ISCAS (4), 2005, pp. 4167–4170.

[14] “http://www.fzi.de/index.php/de/component/content/article/
238-ispe-sim/4350-sim-tools-kascpar-examples.”

[15] D. P. Scarpazza, C. Brandolese, L. Pomante, and P. D. Felice, “Parsing
systemC: an open-source, easy-to-extend parser,” in IADIS Interna-
tional Conference on Applied Computing, 2006, pp. 25–28.

[16] “Systemperl,” http://www.veripool.org/wiki/systemperl.
[17] D. Berner, J. pierre Talpin, H. Patel, D. A. Mathaikutty, and E. Shukla,

“SystemCXML: An extensible SystemC front end using XML,” in
Forum on specification and design languages (FDL), 2005.

[18] T. Schubert and W. Nebel, “The quiny SystemC front end: Self-
synthesising designs.” in FDL. ECSI, 2006, pp. 135–143.

[19] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa: an extraction
tool for SystemC descriptions of systems-on-a-chip,” in EMSOFT ’05:
Proceedings of the 5th ACM international conference on Embedded
software. New York, NY, USA: ACM, 2005, pp. 317–324.

[20] K. Marquet, M. Moy, and B. Karkare, “A theoretical and experimental
review of SystemC front-ends,” Verimag Research Report, Tech. Rep.
TR-2010-4, 2010.

[21] “http://greensocs.sourceforge.net/pinapa/download/files/
frontends-testcases.tar.gz.”

[22] L. Besnard, T. Gautier, M. Moy, J.-P. Talpin, K. Johnson, and F. Maran-
inchi, “Automatic translation of C/C++ parallel code into synchronous
formalism using an SSA intermediate form,” in Ninth International
Workshop on Automated Verification of Critical Systems (AVOCS’09).
Electronic Communications of the EASST, September 2009.

[23] R. Behjati, H. Sabouri, N. Razavi, and M. Sirjani, “An effective ap-
proach for model checking SystemC designs,” in ACSD, J. Billington,
Z. Duan, and M. Koutny, Eds. IEEE, 2008, pp. 56–61.

[24] S. S. Sirowy, B. Miller, and F. Vahid, “Portable SystemC-on-a-chip,”
in CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis. New
York, NY, USA: ACM, 2009, pp. 21–30.

[25] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO ’04: Proceedings of
the international symposium on Code generation and optimization.
Washington, DC, USA: IEEE Computer Society, 2004, p. 75.

http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://www.veripool.org/wiki/systemperl
http://greensocs.sourceforge.net/pinapa/download/files/frontends-testcases.tar.gz
http://greensocs.sourceforge.net/pinapa/download/files/frontends-testcases.tar.gz

	Introduction
	Applications of a SystemC front-end
	Issues In Developing SystemC Front-ends
	Architecture
	Dealing with C++
	Linking architecture and control

	Existing Tools and Approaches for SystemC Front-ends
	Tools Using a Dedicated Grammar for SystemC
	Tools Based on existing C++ front-end
	Hybrid (Static/Dynamic) Approaches

	Experiments
	Examples
	Experimental Results
	Analysis of Results

	Conclusion
	References

