
HAL Id: hal-00495874
https://hal.science/hal-00495874

Submitted on 29 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PinaVM: a SystemC Front-End Based on an Executable
Intermediate Representation

Kevin Marquet, Matthieu Moy

To cite this version:
Kevin Marquet, Matthieu Moy. PinaVM: a SystemC Front-End Based on an Executable Intermediate
Representation. International Conference on Embedded Software, Oct 2010, Scottsdale, United States.
pp.79. �hal-00495874�

https://hal.science/hal-00495874
https://hal.archives-ouvertes.fr

PinaVM: a SystemC Front-End Based on an Executable
Intermediate Representation

Kevin Marquet
Verimag

Univ. Joseph Fourier
Grenoble, France

Kevin.Marquet@imag.fr

Matthieu Moy
Verimag

Grenoble INP
France

Matthieu.Moy@imag.fr

ABSTRACT
SystemC is the de facto standard for modeling embedded
systems. It allows system design at various levels of ab-
stractions, provides typical object-orientation features and
incorporates timing and concurrency concepts. A SystemC
program is typically processed by a SystemC front-end in
order to verify, debug and/or optimize the architecture. De-
signing a SystemC front-end is a difficult task and existing
approaches suffer from limitations. In this paper, we present
a new approach that addresses most of these limitations. We
detail this approach, based on an executable intermediate
representation. We introduce PinaVM, a new, open-source
SystemC front-end and implementation of our contributions.
We give experimental results on this tool.

Categories and Subject Descriptors
SD B.4.4 [Models]: Formal—Input/Output and Data Com-
munications; I.6.4 [Validation and Analysis]: Model—
Simulation and Modeling ; D.2.4 [Verification]: Program—
Software Engineering

General Terms

Keywords
Modelisation, Validation, SystemC, System on Chip

1. INTRODUCTION
SystemC is a C++ class library which facilitates modeling of
systems at many different levels of abstractions ranging from
functional description to cycle-accurate modeling. Ability to
design at higher abstraction levels is valuable due to increas-
ing complexity of system design. SystemC is a widely ac-
cepted system description language and has been approved
as a standard by the IEEE consortium [1]. Being a C++
library, SystemC provides typical object-oriented features
which make the task of system design easier and faster. It
also offers the concepts of timing and concurrency which are
essential for hardware modeling.

SystemC is primarily used for simulation. A typical C++

compiler suffices to generate an executable that performs
simulation. However, during system design process, a Sys-
temC program may have to be processed for other purposes,
e.g. for generating a graphical layout of the system. For such
applications, initial processing of SystemC program is done
by front-end tools.

Writing a SystemC front-end is different from writing a
front-end for a language. Traditional techniques such as
lex/yacc are not sufficient since SystemC is indeed a library,
that builds an important part of the program at run-time:
a SystemC program describes a set of communicating mod-
ules, connected together through communication channels,
and the layout of the modules and channels is build after
the program is started, in a phase called the elaboration
phase. After the elaboration phase is over, the program
calls the function st_start(), which starts the simulation.
A SystemC front-end must therefore consider the elabora-
tion code in a particular way: the relevant information is
not the code itself, but the data-structure it builds, that is,
the architecture.

There exists a myriad of SystemC front-ends, but we will see
that none of them are really satisfactory. Most have severe
limitations, and the least limited are either unavailable or
hard to install and use. Also, none of the existing tools
provide a Static Single Assignment (SSA) [7] form, which
is gaining popularity in the compiler’s community, and also
proved its efficiency for formal verification [4, 11].

The contributions of this paper are the following:

• A novel approach for the development of SystemC front-
ends, relying on a just-in-time compiler (JIT) compiler
to execute fragments of the program code on-the-fly
during the analysis,

• The description of a tool called PinaVM applying this
approach, that has strictly fewer limitations than each
of its predecessors,

• The first SystemC front-end providing a simple SSA
form as output.

The tool itself is open-source, and available from http://

gitorious.org/pinavm.

We first introduce SystemC in section 2. Then, we recall in
section 3 the motivations and challenges in the development
of a SystemC front-end. Section 4 presents our approach,

http://gitorious.org/pinavm
http://gitorious.org/pinavm

and our solution to these challenges. Section 5 presents
briefly the LLVM compiler infrastructure, on which is based
our tool. Section 6 details the technical aspect of our solu-
tion, and section 7 gives the experimental results.

2. SYSTEMC
A SystemC program defines an architecture, i.e. a set of
components and connections between them. Components
have a behavior defined by one or several processes. The
SystemC library provides different mechanisms allowing syn-
chronization between processes.

SC_MODULE(mytop) {
// SystemC event , instantiated
// as usual C++ object.
sc_event e;

// Process bodies
void myFctP () {

. . .

wait(e);
. . .

}
void myFctQ () {

. . .

e.notify ();
. . .

}

// Constructor
SC_CTOR(mytop) {

SC_THREAD(myFctP);
SC_THREAD(myFctQ);

}
}

Figure 1: A basic SystemC module

Processes explicitly suspend themselves through two kinds
of wait instructions: a process may wait for some time to
elapse, or for an event to occur. So, synchronization of pro-
cesses is based on the following SystemC specific constructs:

wait(int) Stops executing the current process, yields back
the control to the scheduler and makes the current
process to wait the given duration.

wait(event) Stops executing the current process, yields back
the control to the scheduler and makes the current pro-
cess to wait for the specified event to occur.

event.notify() Make processes waiting for the specified event
eligible. This does not stop the execution of the cur-
rent process.

As an example, figure 1 shows a SystemC module containing
one process waiting for an event, and another notifying it.

Other primitives can be used such as delayed notification,
but we do not consider them in this paper as it does not
change the complexity of designing a SystemC front-end:
we are interested in the syntax of constructs, and the way
the syntax refers to the architecture of the platform, but the
front-end does not need to be aware of the purely run-time
semantics.

Processes may also communicate shared variables through

and through ports connected by channels, thanks to the fol-
lowing primitives:

port.read() read in a port
port.write(data) write the given data to the port.

A module can therefore communicate with another by writ-
ing data to a port. The connection between ports is made by
a channel (i.e. a class inheriting from the sc_interface class
defined by SystemC). The SystemC library defines some
channels like sc_signal (basically a buffer of one place), or
sc_fifo (a FIFO), but channels can be defined by the pro-
grammer. As an example, figure 2 shows two modules, each
one defining a process and a port. The two ports are bound
together by a sc_signal holding an integer value. The two
processes communicate an integer value through these ports.

SC_MODULE(reader) {
sc_in <int > in;

void read() {. . . int d = in.read (); . . . }

SC_CTOR(reader) { SC_THREAD(read); }
}

SC_MODULE(writer) {
sc_out <int > out;

void write() { . . . out.write (42); . . . }

SC_CTOR(writer) { SC_THREAD(write); }
}

int sc_main(int argc , char ** argv)
{

// Instantiate modules and signal
Reader readR; Writer writeR;
sc_signal <int > channel;

// connect them together through a signal
readR.in.bind(channel);
writR.out.bind(channel);

sc_start (); // start simulation
}

Figure 2: Communication between two modules

3. SYSTEMC FRONT-ENDS

3.1 Motivations
Although a plain C++ compiler can be sufficient to run a
program written in SystemC, many applications other than
simulation require a dedicated front-end.

These applications include hardware synthesis, which is pos-
sible on a restricted subset of SystemC; optimized compila-
tion (for example, Scoot [5] shows great performance im-
provement by doing some static scheduling, many virtual
function calls can be statically resolved at the beginning
of simulation, ...); symbolic formal verification, which re-
quires some reasoning about the source code of the program;
source code instrumentation (required by some run-time ver-
ification [9] and introspection [8] tools); advanced debugging
support, and visualization. See [15] for a more comprehen-
sive discussion on the subject.

Our initial motivation for writing PinaVM was to be able

struct module1 : public sc_module {
. . .

}

int sc_main(int argc , char **argv) {
module1 * m[MAX];
for(i = 0; i < n; ++i) {

m[i] = new module1 ();
}

}

Figure 3: Example illustrating architecture depen-
dent on dynamic information

to apply the algorithm described in [4, 11] to translate a
Static Single Assignment (SSA) intermediate code into a
synchronous language for verification. Indeed, the transla-
tion scheme proposed leads to very good performance in the
proof engine, but has never been applied to actual SystemC
code by lack of a front-end (the implementation uses the
SSA form of GCC, but has no knowledge of the architec-
ture, hence cannot really deal with SystemC code). Before
PinaVM, no SystemC front-end were based on SSA. Using
LLVM was initially a way to get an SSA form as output to
the front-end, but revealed to be an excellent choice, since
it lead us to a new approach, getting rid of most of the lim-
itations of its predecessors, without introducing new ones.

3.2 Issues In Developing SystemC Front-ends
Developing a frond-end for SystemC involves some non-trivial
challenges. First, SystemC being a C++ library, all C++
features must be supported by the front-end. This can be
achieved by either writing a parser from scratch using the
language grammar (but this is known to be require a tremen-
dous effort), or by using an existing C++ front-end such as
GCC, LLVM, EDG etc.

Moreover, while traditional compiler front-ends consider static
information to be the ones available at compile-time (lexi-
cography, syntax, typing, ...), a SystemC front-end has to
consider the elaboration phase as something static: it builds
the architecture of the platform, which is an essential part of
the role of a SystemC front-end, and does not change during
simulation. The semantics of a program depends on the ar-
chitecture, as it defines the links between modules and the
communications between processes. Consider a code frag-
ment in Figure 2. A regular C++ parser can only parse
the program and generate an intermediate representation of
the code. Modules readR and writeR are connected by sig-
nal channel. A C++ parser does not derive this information:
this necessitates the need for some extra processing to deter-
mine the interconnections between modules. Some existing
solutions use static analysis, but the architecture related in-
formation may not be derivable from the static analysis of
code, since some components and their interconnections may
be generated using dynamic data. As an example, Figure 3
shows a SystemC program where modules are instantiated
in a loop.

So, on one hand one has to set up solutions to build the
architecture, on the other hand one has to detect the com-
munications between processes in their behaviors. And most
difficult part, the link has to be done, in order to establish
who is talking to whom in a communication.

Communications through channels provided by the SystemC
library are quite easy to detect, as they are mainly performed
through a set of functions given in the LRM [1]. In the case
of user-defined channels, it is much more difficult, and no ex-
isting work is able to handle this case. Even in the simplest
case, the hard point is not to detect that a communication
happens, but to know which module or process is talking
to which; and possibly which data. Those issues are more
detailed in [15].

3.3 Related works
The idea of a SystemC front-end is not new: [15] lists 13
existing front-ends, and can serve as a reference for an in-
depth comparison.

Several front-ends (including sc2v, KaSCPar, ParSyC, Sys-
temPerl) are based on traditional compilation techniques
like lex/yacc, with a dedicated grammar for SystemC. KaSC-
Par [2] is the most widely used, but our experience with it
is discouraging: it crashes on the examples provided in its
own distribution, and our questions to the authors remained
unanswered. Given the complexity of the C++ language, it
is not surprising to see that these tools have considerable
limitations with respect to C++ constructs. Other tools
reuse an existing C++ front-end (Scoot, SystemCXML are
based on limited C++ front-ends, and commercial tools like
CoCentric compiler and Semantec Design’s front-ends usu-
ally use EDG, which is a very complete C++ front-end),
but most of them extract the architecture of the platform
by doing some static analysis on the elaboration code, and
fail as soon as the elaboration code is non-trivial.

Pinapa [18] is our main source of inspiration. One of the
key idea is to execute the elaboration code, and consider the
state of memory at the end of elaboration as the architec-
ture of the platform. The result is a tool developed with
little effort, still having very few limitations. It was initially
written as part of the LusSy [17] verification chain.

PinaVM is a new tool, borrowing ideas to Pinapa, and in-
troducing new ones, which make it more general and easier
to use. In particular, we show the benefit of relying on the
LLVM infrastructure and its JIT compiler for the develop-
ment of a SystemC front-end.

4. PINAVM: GOALS AND KEY IDEAS
Our primary motivation for writing PinaVM was to provide
means to perform efficient formal and symbolic verification
of SystemC programs. We’ve seen that designing a com-
plete SystemC front-end is a difficult task and existing works
suffer from different limitations. PinaVM is our attempt
to address these limitations. Another goal is to provide a
SystemC-specific optimizing compiler, although we did not
experiment in this field yet. We are not concerned by debug
and visualization purposes, although PinaVM can serve as
a basis for such works.

Basically, PinaVM is SystemC front-end and therefore al-
lows to obtain an abstract representation from a SystemC
program. It differs from previous works in the approach (and
therefore the subset of SystemC accepted as input), and the
intermediate representation provided as output.

We reviewed the limitations of existing SystemC front-ends
in [15]. The two main sources of limitations are the com-
plexity of the C++ language, and the difficulty to extract
the architecture information. Pinapa was a first attempt
to tackle these difficulties, by using a real C++ compiler
(GCC), and executing the elaboration phase to retrieve the
architecture information. PinaVM keeps what we think are
the good ideas behind Pinapa: reuse a C++ front-end, end
execute the elaboration, which gives the interesting proper-
ties of Pinapa: very good support for C++ advanced fea-
tures, and support for arbitrarily complex code in the elab-
oration phase (including code depending on a configuration
file, command-line arguments, ...). These two points alone
makes the subset of SystemC managed by PinaVM out of
the reach of grammar-based front-end like KaSCPar, and of
other tools supporting only basic elaboration code. Hence,
we focus our comparison on Pinapa, which is the only ex-
isting work having a comparable support for complex Sys-
temC code. Still, Pinapa had a number of drawback relative
to GCC internal, the way it represents control flow (GCC
CFG) and most of all its limited approach to retrieve infor-
mation into this CFG.

4.1 GCC internals
In particular, it uses the internal API of GCC, which wasn’t
designed to be modular and reusable as a front-end. Hence,
the installation and use of Pinapa is difficult. For example,
since a single instance of GCC can’t parse two C++ files,
Pinapa doesn’t manage separate compilation properly.

Using the LLVM [12] compiler infrastructure instead of the
internal API of GCC removes the main technical drawback
of Pinapa: LLVM is designed to be usable as a library, and
we use it as such. Although its API is not fully stable, it is
clean, and the migration from a version of LLVM to another
is a painless task (we already did it for the migration from
version 2.5 to 2.6, and then to 2.7 easily). LLVM provides us
many tools that can be used by PinaVM, or together with
PinaVM, to perform various tasks in a simple way. Users
of SystemC front-ends written from scratch usually have to
stick to what the front-end provides, while we keep the con-
venience of a complete and modern compiler infrastructure
available to the user. For example, separate compilation
was an open problem with Pinapa, but it’s made trivial by
the command llvm-link. Using a public API also has an
interesting consequence: PinaVM does not need to patch
LLVM (while Pinapa relied on a patched version of GCC).
The user can install LLVM as any other library (with his
favorite package manager for example).

4.2 A low-level representation
Also, Pinapa’s output format was mostly GCC’s abstract
syntax tree (AST) decorated with SystemC-specific infor-
mation. One issue with this is that this AST contains all
C++ syntactic sugars. For example, a user of Pinapa would
get different ASTs for x = x + 1;, x++; and ++x; (GCC 3.4.6
used by Pinapa has 224 different kinds of nodes for C++
...). A lower-level representation, converting these syntactic
sugars into canonical forms is desired. Additionally, exper-
iments have shown the benefits of the Static Single Assign-
ment (SSA) form for the translation to synchronous lan-
guages [4, 11]. The intermediate format of LLVM (LLVM
bitcode) has all these properties: it is SSA, doesn’t have

more constructs than needed, and the available constructs
are as simple as they can be, while retaining the basic typ-
ing information. Technically, it has other advantages like
having a human-readable form, a binary file format, and a
data-structure representation, with the tools to convert one
of these three forms into another.

4.3 The key point: retrieving information in

the AST
Unfortunately, the benefits of LLVM and its SSA bitcode
also come with a number of challenges. The algorithm of
Pinapa to link the architecture information and the AST
is not applicable on LLVM’s bitcode, and the approach has
to be re-thought completely. For example, the statement
port.write(42);, translated into an AST, is a node of type
CALL_EXPR in GCC’s AST. It is easy to find the value 42 in
the children of this node, and Pinapa knows where to find
the information to compute a pointer to port in the tree.
This is a limitation of Pinapa as it only allows to retrieve
information stored in trees of that particular shape.

However, in LLVM’s bitcode, the computation of the argu-
ments is done with a sequence of statements, prior to the
call expression. The approach of Pinapa, relying on a fixed
form of tree, doesn’t apply here.

Indeed, during the early stages of development of Pinapa,
experiments were made with the SSA branch of GCC (which
became GCC 4.0 later), that provides an intermediate rep-
resentation similar to the one of LLVM. The conclusion was
that the SSA form had a lot of benefits, but that its low-
level nature made the treatment of SystemC constructs too
hard, if at all possible, and the experiment was abandoned.

This paper proposes a solution to this problem. Our pro-
posal is to push the idea of “execution” one step further. We
do not only execute the elaboration phase, but also small
portions of code that are used to build the arguments of func-
tions. In the example above, port.write(42);, the piece of
code to build the implicit argument port computes a pointer
to port using a pointer to the current module, this. Since the
later is known after the elaboration phase, we can execute
this piece of code with the actual value of this as input, and
get a pointer to the port involved in the port.write(42);

statement. The key point here is the executability of the
bitcode. Technically, we rely on the JIT (Just In Time com-
pilation) capabilities of LLVM for this task.

This bidirectional link between the representation of the
source code and the dynamic data-structure can be seen as
adding some reflexivity to SystemC: the code of PinaVM,
and of its back-end, runs after the elaboration, hence, dur-
ing the execution of the program it analyzes. The function-
ality provided by PinaVM are essentially “given a process
handle, which contains a pointer to a compiled function, get
a pointer to the intermediate representation of this func-
tion”, and “given a reference to an object in the intermedi-
ate representation, get a pointer to the actual object”. In-
deed, tools targeting the addition of reflexivity features to
SystemC use a similar approach [8]. Our solution is partly
based on LLVM.

Bitcode
Front
ends

Back
ends

C

C++

...

Optimizer

JIT
compilation

Code
Generation

Figure 4: The LLVM Infrastructure

5. LLVM: LOW LEVEL VIRTUAL MACHINE

LLVM [12] is a compiler infrastructure. Its central point is
an language-independent Intermediate Representation (the
LLVM bitcode, or LLVM IR), generated by front-ends from
source languages. The bitcode can be modified by optimiza-
tion passes, and can be used by various back-ends to either
generate code statically, or perform Just-In-Time compila-
tion, or even bitcode interpretation (See Figure 4 for an
illustration). Among the qualities of LLVM, we can cite:

• The language-independant intermediate representation
is a bitcode in Static Single Assignment (SSA) form.

• The LLVM IR is not an internal format devoted to
change with each new version of LLVM. It is a well-
documented format that can be exploited by different
tools of the LLVM infrastructure (for example, loading
a bitcode file is trivial using the LLVM library).

• It is Open Source and supported by Apple, two points
which guarantee the durability of this compiler.

• Its license is very permissive, and does not impact the
user’s code (as opposed to the GPL, used by GCC,
used by Pinapa).

C++ can be compiled to LLVM bitcode by two means.
First, the LLVM front-end C++, called clang, can be used.
However, CLang’s support for C++ is still incomplete, and
is not able to parse complicated programs such as SystemC
libraries. Second, a GCC back-end for LLVM bitcode exists:
llvm-gcc. llvm-gcc can compile any C or C++ program
supported by GCC to LLVM bitcode.

The LLVM representation is an SSA based bitcodes format
(including about 50 different bitcodes). It is rather low-
level, but is completely typed: type of variables, functions’
parameters, functions’ return are directly available. Pointer
types exist and allow to represent C pointers very simply.
However, the representation keeps no information related to
objects at all. It has no notion of inheritance for instance.
It is not a blocking problem, although it complicates things
a bit.

An LLVM bitcode is a set of basic-blocks, starting with a label
(like entry:), and ending with a possibly conditional jump
(like br label %return). Basic-block contain a sequence of
instructions. Instruction usually define registers (like %0, %x,
...) as a function of previously defined registers. Each SSA
register is defined once, before being used, and is never re-
assigned. LLVM keeps the link between uses of a register
and its definition (use-def chain). An LLVM instruction

struct Component : public sc_module {
int example(int x) {

int res = x + 42;
return res;

}
};

(a) Source code in C++

define linkonce_odr i32
@_ZN9Component7exampleEi
(% struct.Component* %this , i32 %x) nounwind
{

entry:
%"alloca point" = bitcast i32 0 to i32
%0 = add nsw i32 %x, 42
br label %return

return:
ret i32 %0

}

(b) corresponding human-readable bitcode file

Figure 5: A small example of LLVM representation

contains arguments, and the definition of each argument
is directly pointed to. That means that, in the sequence
%23 = expr; call fct (%23), by parsing the parameters of
fct, we obtain a direct pointer to the instruction defining it
(in the case of a register, the instruction pointed to is the
instruction allocating it).

There does not exist a single LLVM representation for a
given program, and some optimizations can be made on it.

6. DYNAMIC COMPILATION TO RETRIEVE

STATIC INFORMATION
We now detail our solution for writing a SystemC front-end.
Three difficult parts have to be addressed in this approach.
First, how to execute the elaboration phase? Second, how
to recognize SystemC constructs in the LLVM IR? Last,
how to link them together? These questions are dealt with
respectively in sections 6.1, 6.2 and 6.3 below. The solution
makes intensive use of just-in-time compilation, which is the
main novelty of our approach. Last, section 6.5 describes our
own representation.

6.1 Executing the Elaboration Phase
The tool PinaVM itself takes an LLVM bitcode file as in-
put. To obtain this file, the user can compile the SystemC
program, replacing the usual C++ compiler by llvm-g++

(in the future, clang++ should become a viable alternative),
and the linker with llvm-link.

This bitcode file is loaded by PinaVM, and an execution
engine (based on JIT-compilation) executes the elaboration
code, hence creating new modules, process handles, ... which
are registered in global variables of the SystemC library.
We use a slightly modified version of SystemC, in which we
inserted a call to a function pinavm_callback() within the
function sc_start(), which normally starts the simulation.
Instead of starting simulation, this function comes back in
the code of PinaVM, which will then analyze the processes
before calling the back-end functions. Figure 6 illustrates
the data-flow and the different stages.

SystemC

Compilation
(llvm-g++,llvm-link)

LLVM bitcode

Execute
elaboration

Architecture

Identify
SC constructs

bitcode++

Execute
dependencies

Internal format

...
%port = expr1
%data = expr2
call write %port, %data
...

...
%port = expr1
%data = expr2
SCWrite
- data ??
- port ??
...

Thread 0 → (data d0,
port m0)

Thread i → (data di,
port mi)

Figure 6: PinaVM: Architecture and Data-Flow

In order for this to work, when the user compiles and link his
SystemC program (with llvm-g++ and llvm-link), the Sys-
temC library should not be linked with this bitcode file, leav-
ing the SystemC symbols and pinavm_callback undefined.
Then, during loading, the unresolved symbols it contains are
resolved with the defined ones of PinaVM, which contains
the complete SystemC library. This way, the global variables
of the SystemC library (typically, the list of processes, the
list of SC_MODULEs, ...) are shared between PinaVM and the
loaded program: the list of processes, for example, is filled-in
by the program, and later read by PinaVM. When the JIT-
ed code calls pinavm_callback(), the function is resolved to
the function defined in the compiled code of PinaVM.

A consequence of this is that the compiler used to generate
the bitcode (i.e. llvm-g++ currently) has to be ABI compat-
ible with the compiler used to compile PinaVM. Currently,
this is not a problem, since llvm-g++ is based on GCC 4.2,
and there have been no ABI change in GCC since version
4.0. In the future, llvm-g++ will be implemented as a GCC
plugin [3], hence, it will be easy to use the same g++ ex-
ecutable to compile PinaVM and to generate the bitcode.
Future changes in the ABI of GCC are therefore not likely
to cause any problem (this was indeed a limitation of Pinapa,
which can not be compiled with a version of GCC greater
or equal to 4.0).

Another option would be to execute the elaboration phase
natively (i.e. compile it with the usual compiler, and link
it against PinaVM or load it dynamically, as Pinapa does).
Loading a bitcode file and using the JIT compiler have the
advantage of requiring only one input file, which is used by

PinaVM both to get the architecture and the body of pro-
cesses. But more importantly, the JIT compiler maintains
a bidirectional map between native code and the source bit-
code, which allows one to get a bitcode structure from a
pointer to function.

6.2 Finding SystemC constructs in LLVM IR
So, on one hand we have an architecture, given by the execu-
tion of the elaboration phase. On the other, we have the be-
havior of processes, given by the compilation of the SystemC
program. These behaviors are composed of any C++ code
in which some statements correspond to SystemC specific
constructs, allowing processes to communicate. In order to
establish precisely communications between processes, one
first step is to detect these constructs in processes’ behav-
ior. These constructs are briefly described in section 2 and
are basically synchronization (wait for time, wait for event,
notify an event) and communication means (write data to a
port, read in a port).

The difficult part here is that a simple line of code in the
SystemC program can be compiled to dozens of low-level
lines of SSA code in the LLVM IR. Table 7 presents the
code generated for a port.write(int). Inlined, such pieces
of llvm bitcodes can be hard to isolate. The first thing we
do is to compile without inlining, so that the use of SystemC
constructs are isolated in a limited set of functions represent-
ing. Therefore, the code corresponding to those constructs
is compiled once, in the body of a function, and detecting a
communication only means to detect calls to these functions.

The LLVM IR includes call and invoke bitcodes that can be
easily found. In addition, although LLVM bitcodes are low-
level, all type information remains as well as the (mangled)
name of functions. Therefore, constructs are easily found.
Constructs currently managed by PinaVM are summed up
in table 1, which also gives the name, mangled by GCC,
of the corresponding C++ functions. For communication
primitives, although one different function exist for each
kind of channel and each type of data held by the channel,
only the example of accesses to a sc_signal<int> is given.

Thereafter, the goal is to detect the calls to that “API”. For
a wait(int:t), it is rather easy to parse the code and identify
a call to function whose mangled name is
"_ZN7sc_core9sc_module4waitEi".

However, finding functions calls is not enough, we also need
to compute the values given as parameters to functions calls.
Indeed, let us consider the instruction port.write(42). Iden-
tifying the module called through this instruction requires to
know which port is written to. Afterwards, the correspon-
dence between this port and the target is known thanks to
the information retrieved at the end of the elaboration (see
previous section).

In the instruction port.write(42), the compiled code is equiv-
alent to a function call write(port, 42). The value written
is not important but in order to identify precisely the com-
munication, it is necessary to identify the port parameter.
However, obtaining values given as parameters is difficult, as
they can be the result of any arbitrary computations. Figure
8 gives a simple example to illustrate this difficulty. Consid-

% "alloca point" = bitcast i32 0 to i32
% 0 = getelementptr inbounds %"struct.sc_core ::sc_inout <int >"* %this , i32 0, i32 0
% 1 = getelementptr inbounds
% "struct.sc_core ::sc_port <sc_core :: sc_signal_inout_if <int >,1,SC_ONE_OR_MORE_BOUND >"*
% 0, i32 0, i32 0
% 2 = call %"struct.sc_core :: sc_signal_inout_if <int >"*

@_ZN7sc_core9sc_port_bINS_18sc_signal_inout_ifIiEEEptEv
(%"struct.sc_core ::sc_port_b <sc_core :: sc_signal_inout_if <int > >"* %1)

% 3 = getelementptr inbounds %"struct.sc_core :: sc_signal_inout_if <int >"* %2, i32 0, i32 1
% 4 = getelementptr inbounds %"struct.sc_core :: sc_signal_in_if <bool >"* %3, i32 0, i32 0
% 5 = getelementptr inbounds %"struct.sc_core :: sc_interface"* %4, i32 0, i32 0
% 6 = load i32 (...)*** %5, align 4
% 7 = getelementptr inbounds i32 (...)** %6, i32 4
% 8 = load i32 (...)** %7, align 1
% 9 = bitcast i32 (...)* %8 to void (%"struct.sc_core :: sc_signal_in_if <bool >"*, i32*)*
call void %9(%"struct.sc_core :: sc_signal_in_if <bool >"* %3, i32* %value_)

Figure 7: SSA code for sc in::write(int data)

Synchronization
Wait on time ZN7sc core9sc module4waitEi
Wait on event ZN7sc core9sc module4waitERKNS 8sc eventE
Notify event ZN7sc core8sc event6notifyEv

Communication
Write into port ZN7sc core8sc inoutIiE5writeERKi
Read into port ZNK7sc core5sc inIiE4readEv

Table 1: Main SystemC constructs handled by PinaVM

%port = expr
%data = expr
call myfct %port , %data

Figure 8: Getting the value of arguments

ering that expr can be computed in an arbitrarily complex
manner, constant propagation made by compilers does not
help to figure it out in the general case. We distinguish port

between the following cases:

• constant if the parameter is a constant, it is quite
easy to retrieve it.

• depends on dynamic data In the general case, it is
impossible to obtain the information needed precisely,
as values could depend on dynamic content. Different
executions of the same piece of code can actually refer
to different value of the parameter.

• only dependant on architecture If the data we
need to know is only dependant on the architecture, it
might be possible to get it. Typically, port.write(42);
is equivalent to this->port.write(42); in C++, port

depends on the value of this, which isn’t known at
compile time, but corresponds to the address of a mod-
ule, which is known after the elaboration phase. How-
ever, this might not be easy, as data can be stored in
structures, or accessed through complex control flow.
We now detail the algorithm used to retrieve parame-
ters in such a case.

6.3 Linking architecture and CFG
The objective is to retrieve the address of ports and events
in SystemC constructs. These are parameters given as pa-
rameters to the SystemC function. In the LLVM IR, they
are computed, before that call, by a sequence of bitcodes.
The key idea of this paper is to analyse these instructions,
determine which ones are useful to compute these addresses,

and build a new LLVM function containing only these in-
structions and returning the target value. Once built, this
function can be executed.

The algorithm used to retrieve parameters’ values is given
by function buildFct(), in figure 9. The principle of this
algorithm is detailed below:

• basic blocks are cloned and the association (original
block → cloned block) is kept in ValueMap. The new
blocks are added to the new function when they are
created.

• all basic blocks and instructions necessary to compute
the target parameter are marked by function
markUsefulInstructions(). This is done recursively this
way:

– initially, the target instruction is pushed onto the
stack, and while the stack is not empty, the first
instruction is popped.

– the uses of this value are pushed onto the stack
and added to the usedInstructions as well as the
associated basic block to usedBlocks. This is done
by function mark() and only if the instruction is
used before the call using the target value (be-
cause instructions after this one have no impact
on the computation of the target value.

– the same is done for the arguments of the current
instruction

• at last, useful instructions are cloned and added to
cloned basic blocks. The link between instructions in
the cloned blocks is done by function RemapInstructions

which use for this task the association between original
and cloned values stored in the ValueMap.

The uses of instructions are directly available in the LLVM
representation as it contains use-def chains between them.

Stack stack;
Set usedInstructions , usedBlocks;

bool mark(Value* v) {
if (! usedInstructions.contains(v)) {

usedInstructions.push(argAsInst);
stack.push(argAsInst);

}
block = v->getparent ();
if (usedBlocks.contains(block))

used_bb.push(block);
}

void markUsefulInstructions () {
while (! stack.empty ()) {

Value* value = stack.pop();
foreach Use use in value ->getUses () {

if (isDefinedBeforeTargetInst(use))
mark(use);

}
foreach Arg arg in value ->getUses () {

if (isDefinedBeforeTargetInst(use))
mark(use);

}
}

}

void cloneBlocks () {
foreach BasicBlock bb in origFct.getBlocks () {

if (usedBlocks.contains(bb)) {
BasicBlock *NewBB = createBasicBlock ();
valueMap.insert(bb, NewBB);

}
}

}

void buildFct(Value* targetValue) {
clones = cloneBlocks ();
Stack.push(targetValue);
markUsefulInstructions ();

foreach BasicBlock bb in origFct.getBlocks () {
if (usedBlocks.contains(bb)) {

foreach Instruction inst in bb {
if (used_instructions.contains(inst)) {

clonedInst = inst.clone ();
RemapInstruction(clonedInst , valueMap);
valueMap.insert(inst , clonedInst);

}
}

}
createRet ();

}
}

Figure 9: Algorithm to retrieve parameters’ values

The result of this algorithm is therefore a function which
takes as parameter a SystemC module and return the value
wanted. This function can be natively compiled by the Just-
In-Time compiler (JIT) provided by the LLVM, then ex-
ecuted. Or it can be directly interpreted by LLVM. The
result of this execution gives the value of the parameter we
want (typically the port involved in a port.write(...)) or
the event in a wait or notify statement).

As we said earlier, this approach only works for static data.
In the case where the result of the function depends on dy-
namic information, it is not possible to execute the function
built. However, this is a more general problem and not a
limitation of our approach.

Our implementation in PinaVM suffers from a limitation:
our analysis is limited to function bounds. We do not handle
the case where data on which depends the computation of
the address of a port are given as parameters. In the case,

where these data are decidable, an inter-procedural analysis
could be used to improve things. Or we could inline the
called function. However, this case is rare and existing works
have no solution either for such cases.

Although the functioning described above is well-suited to
get basic types such as integers involved in a call wait(t:int)
for instance, this is not enough considering other constructs.
Indeed, in a call to event.notify(), applying the algorithm
will get us the pointer to the event. We need, from this ad-
dress, to get the module notified through this call. In this
goal, we need to access the information about the architec-
ture, computed during the elaboration phase.

6.4 User-defined communication channels
When channels connecting two ports are defined by the pro-
gram itself and not provided by the SystemC library, things
are more complicated. In this case, the function called can-
not be detected statically because it is not known in advance.
A solution would be to let the user define the name of the
function, but it is not working: a user-defined channel in-
herits from the sc_interface class and the defined virtual
methods appear as pointer to functions in the LLVM repre-
sentation. Our approach allows to solve this problem. The
idea is as follows:

1. When a call to a function pointer is encountered, we
get the type of the first argument, which is the type of
the object called.

2. If this is not a subtype of sc_interface, do nothing.
3. Else, we build and execute a function giving the ad-

dress of the function called. This is done exactly the
same way as described in previous section.

4. From this address, we get the corresponding compiled
code, thanks to the just-in-time compiler which has
a map associating LLVM representation of functions
(Function*) and compiled code.

5. From the representation obtained, we see if it is a read-
/write communication.

6.5 Intermediate representation
Once SystemC constructs have been identified and linked
to the architecture, we build an intermediate representa-
tion that is largely based on the LLVM representation. It is
composed, as in the LLVM representation, of the CFG, with
basic-blocks comprising SSA instructions, but also comprises
SystemC constructs. Figure 10 illustrates the representation
given by PinaVM on a 1-bit adder. One can see the normal
basic blocks in white squares. The circles represent Sys-
temC constructs and contains all information that have been
retrieved from the architecture, notably the source ports,
channels and target ports for communication.

As the same function can be used by several different pro-
cesses, a construct contains in fact a set of tuples (process →

communication).

7. EXPERIMENTAL RESULTS
In order to evaluate our approach, we experimented PinaVM
on real SystemC examples. We give three types of experi-
mental results. First, and most important point, we expose
the ability of PinaVM to handle real SystemC code (and not

sc_event end;
int x = 0, y = 0;
sc_in <bool > xPort , yPort;
sc_out <bool > carry;

bool carry;

do {
x = xPort.read ();
wait (42);

} while (x == 0) {

do {
y = yPort.read ();
wait (42);

} while (y == 0);
carry = x | y;
if (carry == 0)

carry.write(false);
else

carry.write(true);
end.notify ();

x = xPort.read()

icmp...
br...

wait(42)

y = yPort.read()

icmp... br...

wait(42)

carry = ...

carry.write
(true)

carry.write
(false)

end.notify()

Figure 10: PinaVM intermediate representation

a subset) compared to existing works. Then, we briefly give
experimental results related to resource consumption. At
last, we give preliminary results on verification back-ends.

7.1 Capabilities of PinaVM
One of our main goals with PinaVM is to address the limi-
tations of existing solutions concerning the subset of Sys-
temC programs handled. In [15], we described a set of
SystemC examples illustrating these limitations and typi-
cal cases front-ends, available at [13] should ideally be able
to take in charge. We experimented on these examples and
were able to handle almost all cases, showing that our ap-
proach is more powerful than existing solutions.

Table 2 shows the ability of PinaVM to extract an interme-
diate formal representation from the given examples, com-
pared to Pinapa. We only compare to Pinapa in this table
because, amongst the tools we experimented, it presented
the best results, thanks to the execution of the elaboration.
For each tool and each example, this table indicates ✓ if
the example could be analyzed, ✍ if the example could be
analyzed but with (small) adaptation of the test-case, ≈ if
it works partially. The concerned case is detailed below,
Easily if the example could not be analyzed, but could be
managed with a small implementation work, Doable if the
example could not be analyzed, if this is not a theoretical
limitation of the approach, but requires a huge implementa-
tion to work. And ✘ if the example could not be analyzed
and if it is a fundamental limitation of the approach.

In this table, we can see that PinaVM is clearly able to
handle a larger subset of SystemC programs than others.
The bigger difference is illustrated by the ”fifo” example. In
this example, sc_interfaces used by modules to communi-
cate are defined by the user and can not be detected stat-
ically because functions called are pointers, as detailed in
section 6.4.

In the “elab pointer”, write() statements are performed in
a loop, and the written module depends on an index. This

Pinapa PinaVM
elab-only ✓ ✓

elab-easy ✓ ✓

elab-easy-int ✓ ✓

elab-easy-uint ✓ ✓

elab-easy-array ✓ ✓

elab-easy-sc stop ✓ ✓

elab-port-bool ✓ ✓

elab-pointer ≈ ≈

elab-instances ✍ ✓

elab-clock Easily ✓

signal ✍ ✓

event ✓ ✓

fifo ✘ Easily

RAM Doable ✓

Table 2: Capabilities of PinaVM compared

kind of communications depending on dynamic data are not
determinable in the general case. In this case, Pinapa and
PinaVM back-ends generate the code computing the recip-
ient of the communication, introducing a potential loss of
precision. In PinaVM, we use LLVM features to unroll loops.
This improves a bit the solution, but this problem is a more
general one, since arbitrary loops cannot be unrolled stati-
cally. A lot of work is done around this in the field of real-
time systems, especially concerning computation of worst
case execution time [19].

In the ”RAM”example, Pinapa experience experimental prob-
lems that would require a huge work to solve, although the-
oretically feasible.

7.2 Existing back-ends
A SystemC front-end should provide a usable intermediate
format; In our case, as we mainly target verification tools, we
were able to write back-ends to different verification back-
ends. A first one to Promela, the input language for the
SPIN model-checker; there was no problems implementing
this and the translation was shown to be particularly ef-
ficient [14] . A second one is being implementing to the
abstract interpreter of B. Jeannet et al. [10] and we are
automating the work described in [6].

7.3 Resources consumption
At last, we evaluate PinaVM experimentally in terms of re-
sources’ consumption. We measured the time and memory
necessary to analyze examples presented in section 2. Table
3 gives the time needed to compile the example “RAM”with
LLVM compared to the time needed by GCC, showing that
compiling with LLVM take about the same time as compil-
ing with GCC. The time needed by PinaVM is also given
and corrrespond to the time needed to compile. We do not
report the values for other examples as they are very similar.

GCC LLVM PinaVM
1.9s 1.8s +1.7s

Table 3: Time needed by our approach
Although those examples are not significant, in terms of
complexity, our results shows that the resources needed are
very low. In addition, it is to be considered that the com-
plexity in time is linear with the size of the code. In addition,
in the benchmark used in our translation to Promela, the

time needed to translate to Promela is negligible compared
to the time needed by Spin to verify the program.

8. CONCLUSION
We presented a new approach to the design of SystemC
front-ends, allowing to address most of the limitations of
existing works, therefore facilitating the construction of for-
mal validation tools of Systems on a Chip. This approach
is mainly based on the use of a SSA-based and executable
representation.

The proposal has been implemented in an available, open-
source tool called PinaVM, based on the compilation frame-
work LLVM. Our experimental results show that PinaVM
has a more powerful approach than existing works, allow-
ing a large subset to be processed. They also show that
PinaVM’S resources consumption is low and that PinaVM
is usable for verification purpose.

We still do not manage all SystemC constructs, and in par-
ticular, we did not implement recognition of SystemC/TLM
(Transaction Level Modeling constructs as of now. However,
their syntax is similar to the constructs we already manage,
therefore, supporting them is only a matter of implementa-
tion now.

Direct perspectives to this work include the design of valida-
tion back-ends benefiting from our intermediate representa-
tion. Actual verification back-ends of our tool show that
our representation is well-suited for verification but does
not benefit from its SSA nature. Perspectives include the
connection of our intermediate representation to verification
tools based on synchronous language (like SMV [16]), as it
has already been showed that they are naturally and ef-
ficiently translated from SSA code. A second perspective
we consider is to connect to simulators, pushing the idea of
“execution” one step even further. The idea is to optimize
the program thanks to information retrieved by PinaVM,
notably concerning inter-processes communications. This is
possible, since our intermediate representation is executable.

9. REFERENCES
[1] IEEE std 1666 - 2005 IEEE standard SystemC

language reference manual. IEEE Std 1666-2005.

[2] KaSCPar - Karlsruhe SystemC parser suite.
http://www.fzi.de/index.php/de/component/

content/article/238-ispe-sim/

4350-sim-tools-kascpar-examples.

[3] DragonEgg - using LLVM as a GCC backend, 2010.
http://dragonegg.llvm.org/.

[4] L. Besnard, T. Gautier, M. Moy, J.-P. Talpin,
K. Johnson, and F. Maraninchi. Automatic translation
of C/C++ parallel code into synchronous formalism
using an SSA intermediate form. In Ninth
International Workshop on Automated Verification of
Critical Systems (AVOCS’09). Electronic
Communications of the EASST, September 2009.

[5] N. Blanc, D. Kroening, and N. Sharygina. Scoot: A
tool for the analysis of SystemC models. In TACAS,
pages 467–470, 2008.

[6] T. Bouhadiba, F. Maraninchi, and G. Funchal. Formal
and executable contracts for transaction-level

modeling in systemc. In ACM International
Conference on Embedded Sofware (EMSOFT’09),
Grenoble, France, Oct. 2009.

[7] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
F. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 13(4):451–490, 1991.

[8] C. Genz and R. Drechsler. Overcoming limitations of
the SystemC data introspection. In DATE, 2009.

[9] C. Helmstetter, F. Maraninchi, and L. Maillet Contoz.
Full simulation coverage for SystemC transaction-level
models of systems-on-a-chip. Formal Methods in
System Design, 35(Number 2):pages 152–189, 06 2009.

[10] B. Jeannet. Relational interprocedural verification of
concurrent programs. In Software Engineering and
Formal Methods, SEFM’09. IEEE, Nov. 2009.

[11] H. Kalla, J.-P. Talpin, D. Berner, and L. Besnard.
Automated translation of c/c++ models into a
synchronous formalism. In ECBS ’06: Proceedings of
the 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based
Systems, pages 426–436, Washington, DC, USA, 2006.
IEEE Computer Society.

[12] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In CGO ’04: Proceedings of the
international symposium on Code generation and
optimization, page 75, Washington, DC, USA, 2004.
IEEE Computer Society.

[13] K. Marquet and M. Moy.
http://greensocs.sourceforge.net/pinapa/download
/files/frontends-testcases.tar.gz.

[14] K. Marquet, M. Moy, and B. Jeannet. An
asynchronous semantics of systemc in promela.
Technical Report TR-2010-7, Verimag Research
Report, 2010.

[15] K. Marquet, M. Moy, and B. Karkare. A theoretical
and experimental review of SystemC front-ends.
Technical Report TR-2010-4, Verimag Research
Report, 2010.

[16] K. L. McMillan. The SMV system, Nov. 06 1992.

[17] M. Moy, F. Maraninchi, and L. Maillet-Contoz. Lussy:
A toolbox for the analysis of systems-on-a-chip at the
transactional level. In ACSD ’05: Proceedings of the
Fifth International Conference on Application of
Concurrency to System Design, pages 26–35,
Washington, DC, USA, 2005. IEEE Computer Society.

[18] M. Moy, F. Maraninchi, and L. Maillet-Contoz.
Pinapa: an extraction tool for SystemC descriptions of
systems-on-a-chip. In EMSOFT ’05: Proceedings of
the 5th ACM international conference on Embedded
software, pages 317–324. ACM, 2005.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem—overview of
methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3):1–53, 2008.

http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://www.fzi.de/index.php/de/component/content/article/238-ispe-sim/4350-sim-tools-kascpar-examples
http://dragonegg.llvm.org/

	Introduction
	SystemC
	SystemC Front-ends
	Motivations
	Issues In Developing SystemC Front-ends
	Related works

	PinaVM: Goals and Key Ideas
	GCC internals
	A low-level representation
	The key point: retrieving information in the AST

	LLVM: Low Level Virtual Machine
	Dynamic compilation to retrieve static information
	Executing the Elaboration Phase
	Finding SystemC constructs in LLVM IR
	Linking architecture and CFG
	User-defined communication channels
	Intermediate representation

	Experimental results
	Capabilities of PinaVM
	Existing back-ends
	Resources consumption

	Conclusion
	References

