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ABSTRACT

Checking safety properties is mandatory in the validation
process of critical software. When formal verification tools
fail to prove some properties, testing is necessary. Genera-
tion of counterexamples violating some properties is there-
fore an important issue, especially for tricky programs the
test cases of which are very difficult to compute. We propose
in this paper different constraint based dynamic strategies
for generating structural test cases that violate a postcon-
dition of C or JAVA programs. These strategies have been
evaluated on standard benchmarks and on real applications.
Experiments on a real industrial Flasher Manager controller
and on the public available implementation of the Traffic
Collision Avoidance System (TCAS) show that our system
outperforms state of the art model checking tools and con-
straint based test generation systems.

Keywords
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1. INTRODUCTION
In modern critical systems, software is often the weak-

est link. Thus, more and more attention is devoted to the
software verification process[2]. In practice, software ver-
ification includes formal proofs, functional and structural
testing, manual code review and analysis. When formal ver-
ification tools fail to prove the postconditions of a program,
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this job is often done by hand in practice. Moreover, for-
mal verification can only prove property violation or sat-
isfaction on an abstract model which does not capture all
implementation features, and which is often of limited size.
Thus, testing is always necessary, and automatic generation
of counterexamples violating a property is an important is-
sue. The point is that such test cases may be very difficult
to generate on tricky programs and real applications. In real
time applications, generating test cases for realistic time pe-
riods is still an open challenge.

In this paper we propose new constraint based dynamic
strategies for generating structural test cases that violate
a postcondition of C or JAVA programs. Our approach is
based on the following observations:

• when the program is in an SSA-like form1, a faulty
path can be built in a dynamic way. In other words, we
do not need to explore the CFG (Control Flow Graph)
in a top down (or bottom up) way but we can just
collect compatible blocks in a non-deterministic way.

• A significant part of the program may have no impact
on a given property2. Especially, parts of program that
neither contain variables of the required property, nor
variables connected to variables of the required prop-
erty, can be ignored when we search for a counterex-
ample.

The Dynamic Postcondition-Variables driven Strategies
(DPVS) we have defined take advantage of these two ob-
servations. Informally speaking, DPVS works with a con-
straint store S and a queue of variables Q. Q is initialized
with the variables in the property of the postcondition for
which we are searching a counterexample, whereas S is ini-
tialized with the negation of this property. As long as Q is
not empty, DPVS removes the first variable v and searches
for a program block where variable v is defined. All new vari-
ables (except input variables) of this definition are pushed
1SSA (Static Single Assignment) form is an intermediate
representation used in compiler design: it is a semantics-
preserving transformation of a program in which every vari-
able is assigned exactly once [8].
2We assume here that the postcondition is a conjunction of
properties.



on Q. The definition of variable v as well as all conditions
required to reach the definition of v are added to the con-
straint store S. If S is inconsistent, DPVS backtracks and
searches for another definition; otherwise the dual condition
to one added to S is cut off to prevent DPVS from loosing
time in exploring trivially inconsistent paths. When Q is
empty, the constraint solver searches for an instantiation of
the input variables that violates the property, that’s to say
a counterexample.

We have explored different dynamic ordering of the queue
of variables: FIFO, LIFO, heap ordered by the level of the
variable in the compacted control flow graph. We obtained
the best results with the LIFO ordering and the heap. Heap
ordering promotes variables that are defined early in the
program. The intuition behind the LIFO strategy is the
following one: collecting as much information as possible
on a given variable enforces the constraints on its domain
and reduces the search space. In other words, we have a
great chance to detect inconsistencies as early as possible
by following the thread of a variable which occurs in the
postcondition.

We also tried different combinations of finite domain con-
straint (CP) solvers and linear programming (LP) solvers.
None of these combinations is consistently better than oth-
ers but the results are somewhat predictable: when the do-
mains of the variables are small, CP behaves better; when
numerous linear expressions occur, LP is usually better.

We evaluated DPVS on standard benchmarks as well as
on two real applications:

• The well-known public available implementation of the
Traffic Collision Avoidance System (TCAS);

• A real industrial application, called Flasher Manager,
a controller that drives several functions related to the
flashing lights of a car.

On these real applications, DPVS outperforms state of the
art model checking tools and constraint based test genera-
tion systems.

1.1 Related work
Modern path-oriented structural test data generators (eg.,

PathCrawler [21], Dart [12] and CUTE3are based on path
selection, symbolic execution and concolic execution. They
are very efficient for test coverage monitoring and measure-
ments but they are not designed to find the test data that
violate some property; of course, they could do it by per-
forming an exhaustive search but this would be very costly.

Bounded model-checkers [10] like Blast4 or CBMC5 can
find counterexamples to properties over C programs [11,
16]. Bounded model checkers transform the program and
the postcondition in a big formula and use SAT and SMT
solvers to prove that the property holds or to find a coun-
terexample.

Constraint Logic Programming (CLP) was used for test
generation of programs (e.g., [15, 17, 22, 1]) and provides
a nice implementation tool extending symbolic execution
techniques [3]. Gotlieb et al showed how to represent im-
perative programs as constraint logic programs: InKa [15]
was a pioneer in the use of CLP for generating test data for

3see http://osl.cs.uiuc.edu/~ksen/cute/
4see htp://www.cs.ucla.edu/~rupak/blast/
5see http://www.cprover.org/cbmc

C programs. Denmat et al developped TAUPO, a successor
of InKa which uses dynamic linear relaxations [9]. It in-
creases the solving capabilities of the solver in the presence
of non-linear constraints but the authors only published ex-
perimental results for a few academic C programs.

Euclide [13] is also a successor of InKa. It has three main
functions: structural test data generation, counterexample
generation and partial program proving for critical C pro-
grams. Euclide builds the constraints in an incremental way
and combines standard constraint programming techniques
and specific techniques to handle floating point numbers and
linear constraints.

CPBPV [5, 6, 7] is a constraint-based framework the goal
of which is to verify the conformity of a program with its
specification, that is, to demonstrate that the specification is
a consequence of the program under the boundness restric-
tions. The key idea in CPBPV is to use constraint stores
to represent both the specification and the program, and
to non-deterministically explore execution paths of bounded
length over these constraint stores. CPBPV provides a coun-
terexample when the program is not conforming to the spec-
ification.

The point is that the search strategies of Euclide and
CPBPV are not well adapted for searching a counterexam-
ple. Indeed, CPBPV is based on a top down exploration
of the bounded feasible paths because it has been designed
for partial program verification. Euclide –which has been
designed for test data generation– explores dynamically the
feasible alternatives but also in a top down way. When the
goal is only to find a counterexample on a large and com-
plex program, both strategies may become very expensive.
At the opposite, DPVS is a dynamic bottom up strategy
which has been designed to find counterexamples on tricky
programs.

1.2 Outline of the paper
Section 2 shows how our approach works on a small ex-

ample and introduces the new search algorithms we have
defined. Section 3 describes the benchmarks and applica-
tions we used to validate our approach. Section 4 reports
experiments results and presents further research directions.

2. DPVS, THE NEW CONSTRAINT BASED

SEARCH STRATEGIES
In this section, we first describe in very general terms the

principles of our approach and describe the search process
on a small example. Then, we detail the search algorithm.

2.1 A small Example
Consider a program P with a precondition pred and a

property prop of the postcondition of P . Let G be the CFG
of P . Let V (e) denotes the temporary variables of expres-
sion e, that’s to say all variables which occur in e except the
input variables. def [x, u] denotes the definition of variable
x in block u. As said before, DPVS works with a constraint
store S and a queue of variables Q. For seek of simplicity
we consider here only the LIFO ordering of the queue. Q
is initialized with V (prop), the temporary variables of prop-
erty prop whereas S is initialized with the constraints of
pred and the negation of prop. As long as Q is not empty,
DPVS removes the first variable v and search for a block u
where variable v is defined and pushes variables V (def [v, u])



on Q. The constraints derived from def [v, u] as well as the
constraints derived from the conditions required to reach the
definition of v are added to the constraint store S. If the
solver detects an inconsistency in S, DPVS backtracks and
searches for another definition; otherwise the dual condition
to one added to S is cut off to prevent DPVS from loosing
time in exploring trivially inconsistent paths. When Q is
empty, the constraint solver searches for a solution, that’s
to say an instantiation of the input variables that violates
property prop. If no solution exists, we have to backtrack.

Now, let us illustrate this process on a very small example,
the program foo displayed on Figure 1. This program has
two postconditions: p1 : c >= d + e and p2 : f > −b ∗ e.

The CFG of the program foo is displayed in Figure 2.
Note that the program has been transformed in an SSA-like
form6. Before searching a counterexample, we compute a
compact form of the CFG where the nodes that are trivially
not related to the property to prove are removed (see Figure
3).

Now, assume we want to prove property p1. Figures 4 and
5 depict the paths explored by DPVS. The search process
first selects node (4) where variable a0 is defined. To reach
node (4), the condition in node (0) must be true. Thus, this
condition is added to the constraint store S and the other
alternative is cut off. At this stage, S contains the following
constraints: {c1 < d0 +e0∧c1 = c0 +d0 +e0∧c0 = a0∧a0 ≥
0} which can be simplified to {a0 < 0 ∧ a0 ≥ 0}. This
constraint store is inconsistent and thus DPVS selects node
(8) where variable c0 is also defined. To reach node (8),
the condition in node (0) must be false. Thus, the negation
of this condition is added to the constraint store S and the
other alternative is cut off. Now, constraint store S contains
the following constraints: {c1 < d0 + e0 ∧ c1 = c0 +d0 + e0 ∧
c0 = b0∧a0 < 0∧d0 = 1∧e0 = −a0} which can be simplified
to {a0 < 0∧ b0 < 0}. This constraint store is consistent and
the solver will compute a solution, e.g., {a0 = −1, b0 = −1}.
These values of the input variables are a test case which
demonstrates that program foo violates property p1.

This small example illustrates how DPVS works. It can
also help to understand the intuition behind this new strat-
egy: DPVS collects the maximum of information on the
variables which occur in postcondition to detect inconsis-
tencies as early as possible; this is especially efficient when
a small sub-set of the constraint system is inconsistent.

2.2 Algorithm
We now detail algorithm DPVS (see algorithm 2.2). As

an initial step, we compute :

• du[x]: the set of blocks where variable x is defined;

• ancc[u]: the set of ancestors of u which are conditional
nodes;

• dr[u, v]: a boolean which is true (resp. false) when the
condition of ancestor v of node u has to be true (resp.
false) to reach u.

DPVS uses also the following data structures:

6Let us recall that we only consider here bounded programs.
By bounded program, we mean program where the size of
the arrays, and the number of iterations of the loops are
bounded. We take advantage of the boundness property to
simplify the φ−functions when building the SSA form.

void foo(int a, int b)
1. int c, d, e, f ;
2. if(a >= 0) {
4. if(a < 10) {
5. f = b− 1;
6. }
7. else {
8. f = b− a;
9. }
10. c = a;
11. if(b >= 0) {
12. d = a; e = b;
13. }
14. else {
15. d = a; e = −b;
16. }
17. }
18. else {
19. c = b; d = 1; e = −a;
20. if(a > b) {
21. f = b + e + a;
22. }
23. else {
24. f = e ∗ a− b;
25. }
26. }
27. c = c + d + e;
28. assert(c >= d + e); // property p1

29. assert(f >= −b ∗ e); // property p2

Figure 1: Program foo
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Figure 2: CFG of program foo in SSA-like form
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Figure 3: Compacted CFG for p1

Figure 4: Search process for p1, step 1

Figure 5: Search process for p1, step 2

• M : set of marked variables (a variable is marked if it
has already been put into the queue); M is initialized
with ∅ ;

• S: the constraint store which is initialized with
const(pred ∧ ¬(prop)) where const is a function that
transforms an expression in SSA form into a set of
constraints;

• Q: the set of temporary variables which is initialized
with V (prop); the ordering of Q is specified by param-
eter Oq

DPVS selects a variable in Q and tries to find a coun-
terexample with its first definition; if it fails it iteratively
tries with the other definitions of the selected variable.

DPVS sets the color of conditional node u to red (resp.
blue) when condition of u is set to true (false) in the current
path. In other words, when the color is set to red (resp.
blue) the right (resp. left) successor link of u is cut off.
color[u] is initialized to blank for all nodes.

DPVS returns Sol which is either an instantiation of the
input variables of P satisfying constraint system C or ∅ if
C does not have any solution. Solutions are computed by
function solve, the finite domain solver of Comet7. Func-
tion solve is a complete decision procedure over the finite
domains. Function isfeasible, used in line 27, performs
only a partial consistency test. In other words, it detects
some inconsistencies but not all of them. However, function
isfeasible is much more faster than function solve; this is
the reason why we chose to only perform this test each time
the constraints derived from the definition of a variable are
added to the constraint store. This partial consistency check
can either be done with the finite domain solver of Comet or
with a the linear programming solver include in the Comet

framework. However, to use the LP solver a linear relaxation
of the constraint system has to be computed.

It is easy to show that Sol, the solution computed by
DPVS is actually a counterexample. Indeed, these values
of the input data satisfy the constraints generated from:

• pred, the required precondition;

• ¬prop , the negation of a conjunct of the postcondition;

• one definition of all variables in V (prop) and one def-
inition of all variables (except the input variables) in-
troduced by these definitions;

• all conditions required to reach the above mentioned
definitions.

Thus, there exists at least one executable path whitch
takes as input values sol and computes an output that vio-
lates the property prop.

Otherwise, when no solution can be found, we can state
that there does not exist any input values that violate prop-
erty prop; in other words that no counterexample can be
found.

3. BENCHMARKS AND APPLICATIONS
In this section we describe the application examples. We

start with some academic examples, then a well-known Traf-
fic Alert and Collision Avoidance System (TCAS), and last
7Comet, a trade mark of Dynadec (see http://dynadec.
com/) is an hybrid optimization platform.



Algorithm 1 : DPVS

Function DPVS(M, S, Q, Oq) returns counterexample

1: if Q = ∅ then
2: return solve(S)
3: else
4: x← POP(Q, Oq)
5: for all u ∈ du[x] do
6: Cut← FALSE; SAVE vector Color
7: S1 ← S∧ const(def [x, u])

% def [x, u] denotes the definition of x in block u

8: Vnew ← V (def [x, u]) \M
9: PUSH(Q, Vnew, Oq); add(Vnew, M)

10: for all v ∈ ancc[u] do
11: if color[v] = blank then {%no branch is cut off}
12: Vnew ← V (condition[v]) \M
13: PUSH(Q, Vnew, Oq); add(Vnew, M)
14: if dr[u, v] then {% Condition must be true}
15: S1 ← S1∧ cons(condition[v]))
16: color[v]← red % Cut the right branch
17: else {% Condition must be false}
18: S1 ← S1 ∧ ¬ cons(condition[v])
19: color[v]← blue % Cut the left branch
20: end if

21: else

22: if (color[v] = red ∧ dr[u, v])
∨ (color[v] = blue ∧ ¬(dr[u, v])) then

{%no branch is reachable}
23: Cut← TRUE
24: end if

25: end if

26: end for
27: if ¬Cut ∧ isfeasible(S1) then
28: result← DPVS(M, S1, Q, Oq)
29: if result 6= ∅ then
30: return result
31: end if
32: end if
33: RESTORE vector Color
34: end for
35: return ∅
36: end if

a real time industrial application component: a controler
that drives several functions related to the flashing lights of
a car.

3.1 Academic examples

3.1.1 Tritype program

The tritype program is a standard benchmark in test case
generation and program verification since it contains numer-
ous non-feasible paths: only 10 paths correspond to actual
inputs because of complex conditional statements in the pro-
gram. This program takes three positive integers as inputs
(the triangle sides) and returns 2 if the inputs correspond
to an isosceles triangle, 3 if they correspond to an equilat-
eral triangle, 1 if they correspond to some other triangle,
and 4 otherwise. The tritype program and its specification
in JML8 is shown in Figure 11 in the appendix. Note that
in JML corresponds to the value returned by the program.
Note also the role of local variable “trityp”: It determines
how many sides are equal and which are the equal sides.

We also consider two variations of the Tritype program:

1. Triperimeter : returns the perimeter of the triangle
when the inputs correspond to a triangle, and −1 oth-
erwise.

2. Tritimes: returns the product of the inputs.

Both Triperimeter and Tritimes have the same control
flow graph as Tritype, and their specifications also have the
same conditional form. The difference is the final value as-
signed to variable trityp. For example, in line 25 of Figure
11, trityp takes value 2 ∗ j + i for Triperimeter and value
j ∗j ∗ i for Tritimes because this line corresponds to the case
where sides j and k are equal.

These two variations are more challenging than the Tri-
type program itself: Triperimeter returns a linear expression
on the inputs and Tritimes returns a non linear expression
on the inputs. On the contrary, Tritype returns a constant.

For these three programs, we also considered some faulty
versions where an error has been introduced in the control
structure (see line 22 in Figure 11).

3.1.2 Binary search

The second academic example illustrates difficulties of ver-
ifying and testing programs with arrays and loops. It is a
binary search program that determines whether a value v
is present in a sorted array t. This program is depicted in
Figure 10 in the appendix.

3.2 Traffic Alert and Collision Avoidance Sys-
tem

This application concerns a public software component
of a Traffic Alert and Collision Avoidance System (TCAS).
TCAS is an on-board aircraft conflict detection and reso-
lution embedded system intended to alert the pilot to the
presence of nearby aircraft. This critical system is well docu-
mented and well-known in the literature [18, 4]. We consider
here the program and the specifications that were written by
Arnaud Gotlieb [13, 14] starting from a preliminary version
given in [19]. We summarize here their main characteristics.

The program contains 173 lines of C code including nested
conditionals, logical operators, type definitions, macros and

8See http://www.cs.ucf.edu/leavens/JML/



function calls. The main function under verification takes
14 global variables as inputs. 10 safety properties have been
identified and formalized in the litterature (see [13] for a
complete presentation of these properties). For instance,
Figure 12 in appendix depicts the C program with a specifi-
cation to ensure that the “Safe advisory selection” property
is satisfied. This property means that a downward resolu-
tion advisory is never issued when a downward manoeuvre
does not produce an adequate separation from the nearby
aircraft.

3.3 The Flasher Manager
This last benchmark is taken from a real time industrial

software component9. It illustrates how we handle proper-
ties over several time periods. The complexity of the C code
is comparable to the complexity of TCAS benchmark; how-
ever, we have to check a property for several executions of
the code.

3.3.1 Description of the module

The Flasher Manager is the controller that drives several
functions related to the flashing lights of a car. The flashing
lights serve several purposes:

1. Under normal operation, when the driver wishes to in-
dicate a direction change, the CBWS_HAZARD_R or CBWS_-
HAZARD_L boolean inputs rise from 0 to 1. The correspond-
ing light (driven by the CMD_FLASHER_R or CMD_FLASHER_L
output respectively) shall then oscillate between an on/off
state over a period of 3 time-units (typically 3 seconds).
Then, when the input falls back to 0, the corresponding
output light shall stop flashing. This is called the Flash-
ers_left and Flashers_right functions.

2. The driver has the ability to lock and unlock the car from
the distance using a RF-key. The state of the open and
close buttons of the key is reported to Boolean inputs:
RF_KEY_UNLOCK and RF_KEY_LOCK respectively. The man-
ager has to indicate the state of the doors to the user using
the following convention:

• If the unlock key is pressed while the car is unlocked,
nothing shall happen.

• If the unlock key is pressed when the car is locked,
both lights shall flash with a period of 10 time-units
during 20 time-units (slow flashes). This is the Warn-
ing_slow function.

• If the lock button is pressed while the car is unlocked,
both lights shall go on for 10 time-units, and then
shall go off.

• If the lock button is pressed while the car is locked,
both lights shall flash during 60 time-units with a pe-
riod of 1 time-unit (quick flashes for a long time). This
is the Warning_fast function. It is typically used to
locate the car in an over-filled place.

3. Finally the driver has the ability to press the warning but-
ton. When a WARNING is present (reflected in the value of
the WARNING input), both lights shall flash with a period of
3 time-units. This is called the Warning function.

Figure 6 shows a simplified Simulink model of the Flasher
Manager (i.e. input/outputs) and Figure 7 shows a more
detailed model.

9This example comes from a car manufacturer and has
been provide by Geensys (see http://www.geensys.com/
?Home&l=en.

 

Figure 6: Simplified Simulink model of the Flasher

Manager

Some functions of the Flasher Manager are more impor-
tant than others and must be served first. This results in
some priority relations. We have been asked to check the fol-
lowing property: The lights should never remain lit (p1)

3.3.2 Program under test

In order to check property (p1), the Simulink model of
the Flasher Manager is first translated into a C function10,
named function f1. Function f1 involves 81 Boolean vari-
ables including 6 inputs and 2 outputs and 28 integer vari-
ables. Function f1 contains 300 lines of code and mainly
consists of nested conditionals including linear operations
and constant assignments, as illustrated by the piece of code
displayed in Figure 8.

and1_a=((Switch5==TRUE)&&(TRUE!=Unit_Delay3_a_DSTATE));
if ((TRUE==((and1_a-Unit_Delay_c_DSTATE)!= 0))) {
rtb_Switch_b=0;
}
else {
add_a = (1+Unit_Delay1_b_DSTATE);
rtb_Switch_b = add_a;
}
superior_a = (rtb_Switch_b>=3);

Figure 8: Piece of code of the f1 function

Our aim is to check if there exists an input data sequence
that violates the property (p1) of the Flasher Manager. This
property concerns the behaviour of the Flasher Manager for
an infinite time period. Practically, we can only check a
bounded version of property (p1): we consider that the prop-
erty is violated when the lights remain on for N consecutive
time periods. We thus introduce a loop (bounded by value
N) that counts the number of times where the output of
the Flasher Manager has consecutively been true. After
the loop, if this counter is equals to N , then the property is
violated in the sense that the output has remained true for
N consecutive time periods. The value of the bound N is
fixed as great as possible as shown in section 4; its maximal
value is mainly determined by the capabilities of the tools.

10This translation is done with a proprietary tool of Geensys.



 
Figure 7: Detailed Simulink model of the Flasher Manager

The part of the C program that corresponds to this bounded
version of property (p1)is displayed in Figure 9.

// number of time where the output has been consecutively
// true int count = 0;
// consider N periods of time
for(int i=0;i<N;i++) {
// call to f1 function to compute the outputs
// according to non deterministic input values
f1();
if (Model_Outputs4)

// the output has been consecutively true one more time
count++;

else
// the output is not consecutively true
count=0;

}
// if count is less than N, then the property is verified
assert (count<N)};

Figure 9: C program under test

4. EXPERIMENTS AND DISCUSSION
In this section, we report the experiments we have done

to validate our approach and we discuss further works.

4.1 Tools
We compared performances of DPVS with CBMC, Z3,

Euclide and CPBPV*.
As said before, CBMC11 is one of the best bounded model-

11see http://www.cprover.org/cbmc

checkers. We used version 3.3.2 that calls the SAT solver
MiniSat2.

Z312 is a state of art Satisfiability Modulo Theories (SMT)
solver[20] developed at Microsoft Research. Z3 supports lin-
ear real and integer arithmetic, fixed-size bit-vectors, exten-
sional arrays, uninterpreted functions, and quantifiers. Z3
is integrated with a number of program analysis, testing,
and verification tools from Microsoft Research. Experiments
were performed with Z3 2.4.

CPBPV* is an optimized version of CPBPV [6, 7] which
is implemented in Comet13. Like CPBPV it uses constraint
stores to represent both the specification and the program,
and to explore execution paths of bounded length over these
constraint stores. However, contrary to CPBPV, it works on
a compacted CFG. A preliminary bound propagation step
is also performed.

Euclide [13] is constraint-based testing framework designed
for structural test data generation, counterexample genera-
tion and partial program proving for critical C programs.
We could not evaluate Euclide on the flasher manager ap-
plication. Indeed, due to a bug, Euclide could not handle
this C program14. Performances of Euclide on the TCAS

12see http://research.microsoft.com/en-us/um/
redmond/projects/z3/

13Comet is a software platform for solving complex combina-
torial optimization problems. Comet combines the method-
ologies used for constraint programming, linear and integer
programming, constraint-based local search, and dynamic
stochastic combinatorial optimization with a new, rich lan-
guage for modeling and searching (see http://dynadec.
com/technology/

14We have contacted the authors but they could not fix this



application are the one reported by the authors in [13]. The
author’s experiments were performed on a an Intel Core Duo
2.4GHz clocked PC with 2GB of RAM, a very similar com-
puter to the one we used.

DPVS is implemented in Comet. We report here experi-
ments for two variable orderings : LIFO and Heap. We tried
different combinations of finite domain constraint solvers
and linear programming solvers. We report results for two
combinations:

• CP-CP: the finite domain constraint solver is used
both to check the (partial) consistency at each node
and to search a solution;

• LP-CP: A linear programming solver is used to check
the (partial) consistency of a linear relaxation of the
constraint system at each node, and the finite domain
constraint solver is used to search a solution.

Experiments with CBMC, Z3, CPBV ∗ on all bench-
marks but the flasher manager application were performed
on an Intel Duo Core T8300 2.4GHz clocked PC with 2GB
of RAM. Experiments on the Flasher Manager were per-
formed on an Quadcore Intel Xeon X5460 3.16GHz clocked
with 16Gb memory. All times are given in seconds.

OoM stands for “out of memory” whereas TO stands for
“time out” in the different tables. The time out was set to 3
minutes for all benchmarks.

4.2 Experiments on academic examples
We start with the academic examples. Table 1 provides

the experimental results for the Tritype program and its
variations. These benchmarks are quite easy and all solvers
found a counterexample for the faulty programs in almost
no time. For the correct programs, proving that no coun-
terexamples exist is more difficult. Indeed, all paths must
be explored, contrary to the faulty versions where the res-
olution stops as soon as the first error is found. However,
solvers that integrate a linear solver can do it for Tritype
and Triperimeter.

The correct version of the non-linear Tritimes program is
the most difficult to handle. Only the version of DPVS and
CPBPV ∗ which combine LP and CP were able to verify
the correct version of Tritimes. This can be explained by
the following reasons.

1. Decisions are efficiently tested with a linear solver;

2. Decisions are incrementally added into the constraint
store;

3. The CP solver which is called at the end of the paths
takes benefit of the decisions that have been added to
the contraint store, thanks to a substitution mecha-
nism of sub-expressions.

Points (1) and (2) ensure that infeasible paths are quickly
pruned. Let us explain point (3) on a small example. Con-
sider the specification of an isosceles triangle, that is to say,
\result = i ∗ j ∗ k. Suppose decision i = j has been taken
on a path, and thus the value returned by the program is
i ∗ i ∗ k. The constraint system will contain the three con-
straints r = i ∗ j ∗ k, i = j, ¬(r = i ∗ i ∗ k)15, and the CP
solver can easily detect the inconsistency.

bug yet.
15We do not detail here the SSA renamings.

Table 2 reports the results of the experiments on a correct
version of the Binary Search program.

CBMC, Z3 and DPVS cannot handle this benchmark.
CBMC and Z3 waste a lot of time in the unfolding process.
The strategies used by DPVS are not well adapted for this
very specific program. The LP-CP version of CPBPV* out-
performs the other checkers. CPBPV* has a top-down ap-
proach and incrementally adds the decisions taken along a
path. This strategy is particularly well adapted for the Bi-
nary Search program which has a strong precondition. This
precondition combined with the decisions taken along some
path have a strong impact on feasibility of the next condi-
tions, and help to prune infeasible paths.

Table 1: Tritype, Tritimes, Triperimeter (integer of
16 bits)

Program CBMC Z3 DPVS CPBPV* DPVS CPBPV*
3.3.2 2.3 LIFO LIFO

CP-CP CP-CP LP-CP LP-CP
Trityp-OK 0.161 0.26 TO TO 0.781 0.304
Trityp-KO 0.012 0.01 0.087 0.127 0.030 0.009
Triper-OK 0.717 1.54 TO TO 0.054 0.054
Triper-KO 0.015 0.02 0.002 0.027 0.014 0.018
Tritm-OK TO TO TO TO 1.048 0.865
Tritm-KO 0.050 0.15 0.070 0.002 0.029 0.009

Table 2: Binary search (integers of 16 bits)
Length CBMC Z3 DPVS CPBPV*

3.3.2 2.3 LIFO
(MiniSAT2) LP-CP LP-CP

4 5.732 0.78 0.529 0.107
8 110.081 TO 35.074 0.298
16 TO TO TO 1.149
32 TO TO TO 5.357
64 TO TO TO 27.714
128 TO TO TO 153.646

4.3 Experiments on TCAS
Results for TCAS application are reported in Table 3.

CBMC and Z3 have good results on this benchmark but
the combination CP-CP of DPVS yields the best results.
This can be easily explained by the fact that this bench-
mark is mainly a SAT problem (the program contains many
Booleans, and integers can only take few values). That’s
also why the combination CP-CP of CPBPV* behaves bet-
ter than the combination LP-CP of CPBPV* on this prob-
lem.

Other strategies of DPVS behave well. We did not report
the results of the strategies which use a heap because the
results are very similar to the one that use a LIFO queue.

Experiments on TCAS were performed for integers of 16
bits because we wanted to compare our results to those pub-
lished in [14]. Euclide is much more slower than the other
solvers but this may (partially) be due to the fact that the
solver is implemented in a Prolog framework.

4.4 Experiments on the Flasher Manager
CBMC, Z3 and DPVS found counterexamples that vio-

late the bounded version of property (p1)They also gener-
ated data input sequences such that the flasher lights remain
lit for N consecutive periods of time.



Table 3: TCAS (integers of 16 bits)
Property CBMC Z3 Euclide DPVS CPBPV* DPVS CPBPV*

3.3.2 2.3 (SICtus LIFO LIFO
Prolog) CP-CP CP-CP LP-CP LP-CP

P1A-OK 0.101 0.06 0.7 0.021 0.173 0.028 8.960
P1B-OK 0.063 0.05 0.7 0.019 0.211 0.030 13.737
P2A-OK 0.097 0.05 0.6 0.020 0.175 0.029 9.168
P2B-KO 0.064 0.05 0.7 0.011 0.014 0.032 0.165
P3A-KO 0.061 0.05 5.4 0.008 0.036 0.044 0.615
P3B-OK 0.066 0.05 1.2 0.011 0.100 0.027 0.4431
P4A-KO 0.075 0.05 6.8 0.008 0.045 0.042 1.446
P4B-KO 0.060 0.05 2.7 0.008 0.014 0.036 0.254
P5A-OK 0.068 0.06 0.6 0.044 0.197 0.035 20.627
P5B-KO 0.065 0.05 1.0 0.015 0.014 0.029 0.195

Table 4: Flasher Manager
N CBMC Z3 DPVS DPVS DPVS DPVS

3.3.2 2.3 HEAP LIFO HEAP LIFO
CP-CP CP-CP LP-CP LP-CP

5 0.134 0.15 0.026 0.032 0.565 0.953
10 0.447 0.5 0.055 0.068 2.484 4.134
20 1.766 3.29 0.118 0.149 9.081 15.320
30 4.231 7.83 0.194 0.248 20.847 35.066
50 12.92 27.89 0.345 0.458 57.797 96.693
75 32.747 61.83 0.602 0.842 137.104 TO
100 58.279 128.74 2.750 3.394 TO TO
150 138.192 TO 1.552 2.365 TO TO
200 OoM OoM 6.003 8.082 TO TO

For instance, here is a data input sequence that violates
this property for 5 time periods:

[(0,1,0,0,0,1),(0,1,0,0,0,1),(0,1,0,0,0,1),

(0,0,1,0,0,1),(0,0,0,0,0,1)]

where (0, 1, 0, 0, 0, 1) is the value of inputs in1 to in6 for the
first time period, (0, 1, 0, 0, 0, 1) the value of the inputs for
the second time period and so on.

Table 4 shows that the CP-CP of DPVS outperforms the
other approaches on the Flasher Manager application. The
CP-CP Heap version of DPVS is able to generate counterex-
amples for instances up to 400 time periods before running
out of memory.

CPBPV* did not manage to handle this application for
instance with n greater than 10.

Using a finite domain solver to check the partial consis-
tency is much efficient on this application than using a linear
programming solver on a linear relaxation of the constraints.
Actually, the difference of performance comes not from the
performances of the solvers but from the choice points intro-
duced by the linear relaxation. Indeed, the linear relaxation
required by the LP solver introduces many choice points.
Let us explain this point on a small example. Consider a
test such that x == y, the negation of this test corresponds
to the constraint x! = y which introduces two choice points:
x < y and x > y.

Furthermore, the domains of the integer variables are small
for this application, and the propagation step we perform re-
duces the bounds of the domain. Thus, consistency checks
with CP are very efficient.

4.5 Discussion and further works
First experiments with DPVS are very encouraging.
DPVS behaves well on academic examples and obtains

better results than Z3 and CBMC on two real applications.

Generating test cases for realistic time periods is a critical
issue in real time applications. For the Flasher Manager ap-
plication, DPVS generated counterexamples for much sig-
nificant time period than Z3 and CBMC.

These results are impressive since DPVS is still a (slow)
academic prototype whereas Z3 and CBMC are state of art
solvers. DPVS also outperforms Euclide on the TCAS ap-
plication. Of course, other experiments on real applications
are required to refine and validate the proposed approach.

Further work concerns also the extension of our prototype.
There are many restrictions on the C and Java program that
the current prototype can handle. Especially, we only handle
run-time error-free programs, that’s to say we do not handle
programs the execution of which yield errors like dividing
by zero or exceptions. We handle arrays but input data
are restricted to Booleans and integers. We are working
on an interface between the COMET solver and our own
floating point number solver[3]. Expressions can contain the
following operators: +,−, ∗, /, &&, ||, =, ==, ! (but neither
ˆ , xor nor library functions like, sin, cos,. . . ). However,
we are working on a new version with these capabilities to
be able to evaluate the proposed approach on a larger class
of programs.
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APPENDIX

/*@ requires (\forall int i; i>=0
@ && i<t.length-1;t[i]<=t[i+1])
@ ensures
@ (\result!=-1 ==> t[\result] == v) &&
@ (\result==-1 ==> \forall int k;
@ 0<=k<t.length;t[k]!=v)
@*/
1 static int binary_search(int[] t, int v) {
2 int l = 0;
3 int u = t.length-1;
4 while (l <= u) {
5 int m = (l + u) / 2;
6 if (t[m]==v)
7 return m;
8 if (t[m] > v)
9 u = m - 1;
10 else
11 l = m + 1;
12 }
13 return -1;
14 }

Figure 10: The Binary Search Program.



/*@ requires (i>=0)&&(j>=0)&&(k>=0);
@ ensures
@ ((i+j<=k)||(j+k<=i)||(i+k<=j)) ==> \result == 4 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&((i==j)&&(j==k))

==> \result == 3 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k))
@ &&((i==j)||(j==k)||(i==k)) ==> \result == 2 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k))
@ &&!((i==j)||(j==k)||(i==k)) ==> \result == 1;
@*/
1 public static int tritype(int i, int j, int k){
2 int trityp ;
3 // not a triangle
4 if ((i==0)||(j==0)||(k==0)) trityp = 4 ;
5 else {
6 trityp = 0 ;
7 if (i==j) trityp = trityp + 1 ;
8 if (i==k) trityp = trityp + 2 ;
9 if (j==k) trityp = trityp + 3 ;
10 if (trityp==0){
11 // triangular inequality not verified
12 if ((i+j <= k)||(j+k <= i)||(i+k <= j)) trityp = 4 ;
13 else trityp = 1 ; // any triangle
14 }
15 else {
16 if (trityp > 3) trityp = 3 ; // equilateral
17 else
18 //i=j and triangular inequality verified
19 if ((trityp==1)&&(i+j>k)) trityp = 2 ;
20 else
21 //i=k and triangular inequality verified
22 if ((trityp==2)&&(i+k>j)) trityp = 2 ;

//ERROR if ((trityp==1)&&(i+k>j))
23 else
24 //j=k and triangular inequality verified
25 if ((trityp==3)&&(j+k>i)) trityp = 2 ;
26 else trityp = 4 ; // not a triangle
27 }
28 }
29 return trityp;
30 }

Figure 11: Tritype program

/@ ensures
(((Up_Separation>=Positive_RA_Alt_Thresh_2)
&& (Down_Separation<Positive_RA_Alt_Thresh_2))==>(\result!=2));
@/

int alt_sep_test(int Cur_Vertical_Sep, int High_Confidence,
int Two_of_Three_Reports_Valid, int Own_Tracked_Alt,
int Own_Tracked_Alt_Rate, int Other_Tracked_Alt,
int Positive_RA_Alt_Thresh_0, int Positive_RA_Alt_Thresh_1,
int Positive_RA_Alt_Thresh_2, int Positive_RA_Alt_Thresh_3,
int Up_Separation, int Down_Separation, int Other_Capability,
int Climb_Inhibit) {

int alt_sep = 0;
int Non_Crossing_Biased_Climb;
int Non_Crossing_Biased_Descend;
int Inhibit_Biased_Climb;
int ALIM;
int Alt_Layer_Value = 2;
int Other_RAC = 0;

if(Climb_Inhibit != 0)
Inhibit_Biased_Climb = Up_Separation + 100;
else

Inhibit_Biased_Climb = Up_Separation;

if( Alt_Layer_Value==0 ) {
ALIM = Positive_RA_Alt_Thresh_0; }
if( Alt_Layer_Value==1 ) {

ALIM = Positive_RA_Alt_Thresh_1; }
if( Alt_Layer_Value==2 ) {

ALIM = Positive_RA_Alt_Thresh_2; }
if( Alt_Layer_Value==3 ) {
ALIM = Positive_RA_Alt_Thresh_3; }

if (Inhibit_Biased_Climb>Down_Separation){
if(!(Own_Tracked_Alt<Other_Tracked_Alt) ||

((Own_Tracked_Alt<Other_Tracked_Alt) &&
(!(Down_Separation>=ALIM))))

Non_Crossing_Biased_Climb = 1;
else

Non_Crossing_Biased_Climb = 0;
}
else {

if((Other_Tracked_Alt<Own_Tracked_Alt)
&& (Cur_Vertical_Sep>=300 ) && (Up_Separation>=ALIM))

Non_Crossing_Biased_Climb = 1;
else

Non_Crossing_Biased_Climb = 0;
}

if (Inhibit_Biased_Climb>Down_Separation){
if((Own_Tracked_Alt<Other_Tracked_Alt) &&

(Cur_Vertical_Sep>=300 )
&& (Down_Separation>=ALIM))
Non_Crossing_Biased_Descend = 1;

else
Non_Crossing_Biased_Descend = 0;

}
else {

if(!(Other_Tracked_Alt<Own_Tracked_Alt)
|| ((Other_Tracked_Alt<Own_Tracked_Alt)&&

(Up_Separation>=ALIM)))
Non_Crossing_Biased_Descend = 1;

else
Non_Crossing_Biased_Descend = 0;
}

if ((High_Confidence==1)&&(Own_Tracked_Alt_Rate<=600 )&&
(Cur_Vertical_Sep>600 )&&(((Other_Capability==1)&&
(Two_of_Three_Reports_Valid==1)&&(Other_RAC==0)) ||
!(Other_Capability==1))) {

if((Non_Crossing_Biased_Climb==1)
&&(Own_Tracked_Alt<Other_Tracked_Alt)&&

(Non_Crossing_Biased_Descend==1))
alt_sep = 0 ;

else
if ((Non_Crossing_Biased_Climb==1)&&

(Own_Tracked_Alt<Other_Tracked_Alt))
alt_sep = 1 ;

else if ((Non_Crossing_Biased_Descend==1)&&
(Other_Tracked_Alt<Own_Tracked_Alt))

alt_sep = 2 ;
else

alt_sep = 0 ;
}
return alt_sep;

}

Figure 12: TCAS program with specification of
property P1A


