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FACTORIZATION FOR NON-SYMMETRIC OPERATORS AND
EXPONENTIAL H-THEOREM

M.P. GUALDANI, S. MISCHLER, C. MOUHOT

Abstract. We present a factorization method for estimating resolvents of non-
symmetric operators in Banach or Hilbert spaces in terms of estimates in another
(typically smaller) “reference” space. This applies to a class of operators writing
as a “regularizing” part (in a broad sense) plus a dissipative part. Then in the
Hilbert case we combine this factorization approach with an abstract Plancherel
identity on the resolvent into a method for enlarging the functional space of decay
estimates on semigroups. In the Banach case, we prove the same result however
with some loss on the norm. We then apply these functional analysis approach to
several PDEs: the Fokker-Planck and kinetic Fokker-Planck equations, the linear
scattering Boltzmann equation in the torus, and, most importantly the linearized
Boltzmann equation in the torus (at the price of extra specific work in the latter
case). In addition to the abstract method in itself, the main outcome of the paper
is indeed the first proof of exponential decay towards global equilibrium (e.g. in
terms of the relative entropy) for the full Boltzmann equation for hard spheres,
conditionnally to some smoothness and (polynomial) moment estimates. This
improves on the result in [12] where the rate was “almost exponential”, that is
polynomial with exponent as high as wanted, and solves a long-standing conjecture
about the rate of decay in the H-theorem for the nonlinear Boltzmann equation,
see for instance [10, 27].
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ues, upper and lower bounds, 35Q84 Fokker-Planck equations, 76P05 Rarefied gas
flows, Boltzmann equation [See also 82B40, 82C40, 82D05].
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1. Introduction

This paper deals with the study of decay properties of linear semigroups and their
link with spectral properties. Let us give a brief sketch of the question we address.
Consider two Banach spaces E ⊂ E , and two unbounded closed linear operator L
and L resp. on E and E with spectrum Σ(L),Σ(L) ( C. They generate two C0-
semigroups S(t) and S(t) resp. in E and E . Also assume that L|E = L, and E is
dense in E .

The theoretical question we address in this work is the following: Can one de-
duce (quantitative) informations on Σ(L) and S(t) in terms of informations
on Σ(L) and S(t)?

More precisely, we provide here an answer where (i) the spectral gap property of
L in E can be shown to hold for L in the space E and consequently (ii) explicit
estimates on the rate of decay of the semigroup S(t) can be computed from the ones
on S(t). Our results hold for a class of operators L which split as L = A+B, where
A is maps E into E and B’s spectrum is well localized. We then show that linear
Boltzmann-like and Fokker-Planck equations fall in that class and therefore their
spectral-gap property can be extended from the linearization space (the weighted
L2 space, where the strong decay is prescribed by the equilibrium) to larger Hilbert
or Banach spaces (for example with polynomial decay). It is worth mentioning that
we provide results in the non spatiallly homogeneous situation, and that the method
is optimal in terms of the rate of decay (no loss on the way from E to E , as would
be the case in, say, some interpolation approach).

Enlarging the functional space for the spectral properties of linear operators is
useful in nonlinear PDE analysis when the stability theory for the associated lin-
earized equation is not compatible (that it, is established in a space too small) with
the functional space in which the nonlinear PDE is well posed. The applications
concern existence and uniqueness of stationary solution (thanks to perturbative or
implicit function argument, see for instance [19, 2]) as well as the proof of long time
convergence to the equilibrium (see for instance [22, 19]). In this paper we construct
a general abstract approach whereas previous papers were dealing with particular
cases. Within this general framework we give new results for the space homogeneous
Fokker-Planck and linear Boltzmann equations, and more importantly we are able
to tackle the corresponding space inhomogeneous (or kinetic) equations as well as
the full (we mean again space inhomogeneous) Boltzmann equation. We also refer
to the note [23] where some results of this paper were announced.

The main outcome of this paper is thus a proof of the exponential convergence
to equilibrium for the full Boltzmann equation in the torus. This question goes
back to the famous H-theorem of Boltzmann, and a functional inequality version
of it (linear control of the relative entropy in terms of the entropy production func-
tional) was conjectured by Cercignani [10] in the spatially homogeneous case (see
also [11]). This conjecture has motivated important works from the early 1990’s on:
see [9, 8, 29, 6, 30] (in the spatially homogeneous case). While it has been shown
to be false in general [6], it has given a formidable impulse to the works on the
Boltzmann equation in the last two decades. It has been shown to be almost true in



FACTORIZATION FOR NON-SYMETRIC OPERATORS AND EXPONENTIAL H-THEOREM 3

many cases in the spatially homogeneous cases in [30] (in the sense that polynomial
inequalities relating the relative entropy and the entropy production hold for a power
as close to 1 as wanted), and was an important inspiration for the work [12] in the
inhomogeneous case. However, due to the fact Cercignani’s conjecture is false even
in the homogeneous case [6], these important progresses in the far from equilibrium
regime were unable to prove the natural conjecture about the exponential decay of
the relative entropy in order to prove H-theorem with the correct time scale. This
has motivated the work [22] which answers this question, but only in the spatially
homogeneous case.

Here we finally answer this question for the full Boltzmann equation for hard
spheres (or cutoff hard potentials), in the same setting as in [12], that is under some
a priori regularity assumptions (Sobolev norms and polynomial moments bounds).
This is based on the idea of connecting the nonlinear theory in [12] with the linearized
theory developped in [24] and it makes crucial use of our new method for enlarging
the space of decay estimates on semigroups. This hence answers the main question
raised by Villani in [27, Subsection 1.8, page 62].

Let us mention that there is a huge gap between the spatially homogeneous case
(where the equation is coercive and the linearized semigroup is self-adjoint or sec-
torial depending on the functional space) and the spatially inhomogeneous case
(where the equation is hypocoercive and its linearized is neither sectorial, nor even
hypoelliptic).

The plan of the paper is the following. In section 2 we state and prove the abstract
factorization theorem for unbounded closed operators. Section 3 is devoted to the
links between estimates on the resolvent and decay estimates on the semigroup and
only in section 4 we can assemble the preceding elements into new estimates showing
enlargement of the functional space of the decay of semigroups. In sections 5 and 6
we apply the abstract method to the linear Boltzmann and Fokker-Planck equations
(either spatially homogeneous or in the torus). Finally in section 7 we consider the
nonlinear Boltzmann equation. Using the abstract factorization approach for the
linearized Boltzmann equation in the torus plus some additional specific work, we
prove that one can “connect” the nonlinear theoy and the linearized theory in order
to prove the exponential decay of the relative entropy.

If the reader is searching for a quick overview of our method, a possibility is to
go directly to the statement of Corollary 4.2 which is the “concrete” version of the
abstract method for most applications, and then to the section 6 for an easy and
very short application of the method to the linear Boltzmann equation.

Acknowledgments: The third author wishes to thank Thierry Gallay for numerous
stimulating discussions about the spectral theory of non-self-adjoint operators, and
also for pointing out the recent preprint [17]. The authors wish to thank the funding
of the ANR project MADCOF for the visit of MPG in Université Paris-Dauphine
in spring 2009 where this work was started. The third author wishes the thank the
Award No. KUK-I1-007-43, funded by the King Abdullah University of Science and
Technology (KAUST) for the funding provided for his repeated visits at Cambridge
University.
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2. The factorization theorem

Let us start with some notations. For some given Banach spaces X and Y we
denote by B(Y → X) the space of bounded linear operators from Y to X , we denote
by B(X) = B(X → X) in the case when X = Y , and we denote by C (X) the
space of closed unbounded linear operators on X with dense domain.

For Λ ∈ C (X) we denote by D(Λ) its domain, by N(Λ) its null space, by M(Λ) =
limk→∞N(Λk) its algebraic null space, by R(Λ) its range and by Σ(Λ) its spectrum,
so that for any ξ ∈ C\Σ(Λ) the operator Λ−ξ is invertible and the resolvent operator
(Λ− ξ)−1 is well defined, belongs to B(X) and has range equal to D(Λ).

For a given real number a ∈ R, we define the half complex plane ∆a := {z ∈
C, ℜe z > a}. We recall that for any isolated eigenvalue η ∈ Σ(Λ) in the sense that
Σ(Λ)∩ {ζ ∈ C, |ζ − η| ≤ r} = {η} for some r > 0, we define ΠΛ,η the projection on
closure of the algebraic eigenspace associated to η by (see [18, III-(6.19)])

(2.1) ΠΛ,η :=
i

2π

∫

|ζ−η|=r

(Λ− ζ)−1 dζ.

Remind that Eη := R(ΠΛ,η) is finite dimensional iff there exists α0 ∈ N∗ such that
N((Λ− η)α) = N((Λ− η)α0) for any α ≥ α0, so that M(Λ− η) = N((Λ− η)α0). In
that case, we say that η is a discrete eigenvalue.

In this section we consider E ⊂ E two Banach spaces such that E is dense in E , and
two operators L ∈ C (E) and L ∈ C (E) such that L|E = L. The associated resolvent
operators are denoted by R(ξ) := (L− ξ)−1 for ξ /∈ Σ(L) and R(ξ) := (L− ξ)−1 for
ξ /∈ Σ(L).

Theorem 2.1. Assume there are some real numbers a ∈ R, some complex numbers
ξ1, . . . , ξk ∈ ∆a, k ∈ N (with the convention {ξ1, . . . , ξk} = ∅ if k = 0) such that one
has

(H1) Localization of the spectrum of L: Σ(L) ∩∆a = {ξ1, ..., ξk};
(H2) Decomposition of L: there exist two closed unbounded operators A and B

on E (with domains containing Dom(L)) such that L = A+ B, and
(i) Σ(B) ∩∆a = ∅;
(ii) A ∈ B(E → E);
(iii) there is some ξ0 ∈ ∆a such that L − ξ0 is invertible in E .

Then L satisfies

(i) Σ(L) ∩∆a = {ξ1, ..., ξk};
(ii) for any ξ ∈ ∆a\{ξ1, ..., ξk} the following bound for the resolvent operator

holds:

(2.2) ‖R(ξ)‖
B(E) ≤

∥
∥(B − ξ)−1

∥
∥

B(E)
+ ‖R(ξ)‖

B(E)

∥
∥A(B − ξ)−1

∥
∥

B(E→E)
.

Remarks 2.2. (1) In words, assumption (H2) means that one may decompose
L as L = A + B where A has a “good localization/regularization property”
(in the generalized sense of the “change of space” (H2)-(ii)) and B has a
“good spectral property” (in the sense that (H2)-(i) holds).
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(2) One may relax (H2)-(i) into Σ(B) ∩∆a ⊂ {ξ1, ..., ξk}.
(3) One may relax (H2)-(ii) into the fact that A (B − ξ)−1 is bounded from E

to E for any ξ ∈ ∆a\{ξ1, ..., ξk}.
(4) In the theorem (and the previous remarks) one may replace ∆a\{ξ1, ..., ξk}

by any nonempty open connected set Ω ⊂ C.
(5) One may replace (H2)-(iii) by

(H2)-(iii’) ‖(B − λ)−1‖B(E) ≤ K/(λ − a) for some K, a > 0 and for any λ ∈ R,
λ > a.

Indeed, assuming (H2)-(iii’) one may find ξ0 ∈ R, ξ0 > a such that ‖A (B−
ξ0)

−1‖B(E) < 1 and then L − ξ0 = (IdE +A (B − ξ0)
−1) (B − ξ0) is invertible

as the product of two invertible operators, which proves (H2)-(iii).

Proof of Theorem 2.1. Define Ω := ∆a\{ξ1, ..., ξk} and for ξ ∈ Ω

U(ξ) := B(ξ)−1 − R(ξ)AB(ξ)−1,

where R(ξ) = (L− ξ)−1 and B(ξ) := B − ξ.
By assumptions (H1), (H2)-(i) and (H2)-(ii), B(ξ)−1 : E → E , AB(ξ)−1 : E →

E and R(ξ) : E → E are bounded operators. Introduce now the canonical injection
J : E → E . Taking into account that R = J R, A = J A, L J = J L, the following
identity holds:

(L− ξ)R(ξ)AB(ξ)−1 = (L − ξ) J R(ξ)AB(ξ)−1 = J (L− ξ)R(ξ)AB(ξ)−1

= J IdE AB(ξ)−1 = J AB(ξ)−1 = AB(ξ)−1.

The operator U is a right-inverse of L − ξ since U(ξ) : E → E is a well-defined
bounded operator, and

(L − ξ)U(ξ) = (A+ B(ξ))B(ξ)−1 − (L − ξ)R(ξ)AB(ξ)−1

= AB(ξ)−1 + IdE − (L − ξ)R(ξ)AB(ξ)−1

= AB(ξ)−1 + IdE −AB(ξ)−1 = IdE .

As a consequence, L − ξ is onto. Moreover, if L − ξ is invertible we have R(ξ) :=
(L− ξ)−1 = U(ξ) and then R(ξ) satisfies the announced estimate (2.2). In order to
prove that L− ξ is invertible we may argue as follows using assumption (H2)-(iii).
It is well known that L − η invertible implies that L − ξ is invertible for any ξ ∈ C

such that

|ξ − η| < ‖R(η)‖−1
B(E)

and

(2.3) R(ξ) = R(η)
∞∑

n=0

(η − ξ)nR(η)n.

For a given ξ ∈ Ω we fix a path γ from ξ0 to ξ, that is a continuous function
γ : [0, 1] → Ω such that γ(0) = ξ0, γ(1) = ξ. Thanks to assumption (H2)-(ii) and
the summation representation (2.3) for the operator (B − ξ)−1 we first deduce that

sup
{
‖A (B − γ(t))−1‖B(E→E); t ∈ [0, 1]

}
<∞,
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and then next that

inf
{

‖U(γ(t))‖−1
B(E) ; t ∈ [0, 1]

}

> 0.

We conclude that L − ξ is invertible, so that Σ(L) ∩∆a ⊂ {ξ1, . . . , ξk}.

Finally, sinceN(L−ξj) ⊂ N(L−ξj) for any j = 1, . . . , k, we also have {ξ1, . . . , ξk} ⊂
Σ(L) ∩∆a. �

Let us give quickly a sufficient condition in the spirit of this abstract section for
answering the natural question about whether the geometric eigenspaces of L and
L associated with ξ1, . . . , ξk are the same.

Proposition 2.3. Assume that L satisfies (H1) with k ≥ 1, (H2)-(i) and (H2)-
(ii), as well as

(B − ξj)[Dom(L)] ⊃ A[Ej] for some j ∈ {1, ... , k}.

Then one has N(L − ξj) = N(L− ξj).

Proof of Proposition 2.3. The equation

g ∈ Dom(L), (L − ξj) g = 0,

implies (B − ξj) g = −A g and from our assumption there exists h ∈ Dom(L) such
that (B − ξj) h = −A g. As a consequence, we have (B − ξj) (g − h) = 0 and from
assumption (H2)-(ii) we obtain g = h ∈ Dom(L) and (L − ξj) g = 0, so that
g ∈ N(L− ξj). �

3. Semigroup decay versus resolvent estimates

Consider X a Banach space and Λ ∈ C (X). We shall make use of the following
new assumptions:

(H1’) Localization of the spectrum: Σ(Λ) ∩∆a = {ξ1, ... , ξk} for some a ∈ R,
k ∈ N, and some discrete eigenvalues ξ1, ..., ξk ∈ ∆a (isolated with finite
dimension) with the convention {ξ1, ..., ξk} = ∅ if k = 0.

(H3) Line control on the resolvent: there exists some real numbers a ∈ R,
K ∈ (0,∞) such that

sup
y∈R

‖R(a + i y)‖
B(X) ≤ K.

(H3’) Sectorial control on the resolvent: there exists some real numbers a ∈ R,
K, θ ∈ (0,∞) such that

sup
y=±θ (x−a), x≤a

‖R(x+ i y)‖
B(X) ≤ K ′.

(H4) Mild control on the semigroup: Λ generates a C0-semigroup of bounded
operators etΛ on X , and more precisely there exists b ∈ R, Cb ≥ 0 such that

∀ t ≥ 0
∥
∥etΛ

∥
∥

B(X)
≤ Cb e

b t.
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(H5) Accurate decomposition of the semigroup: there holds

(3.1) ∀ t ≥ 0,

∥
∥
∥
∥
∥
etΛ −

k∑

j=1

et Tj Πj

∥
∥
∥
∥
∥

B(X)

≤ Cã e
ã t,

for some ã ∈ R, k ∈ N, some constant Cã ≥ 1, some finite dimensional
projection operators Π1 , ..., Πk such that Πi Πj = 0 for any i 6= j and such
that they all commute with the semigroup etΛ, some operators of the form
Tj = ξj IdXj

+ Nj with ξj ∈ ∆ã, Xj := ΠjX , Nj ∈ B(Xj) is a nilpotent
operator.

Theorem 3.1. Consider a Banach space X and Λ ∈ C (X).

(1) (General Banach case) Assume that (H1’) and (H3) hold for the same
real a ∈ R as well as (H4). Then for any ã > a there exists a constant
Cã ≥ 1 (explicitly computable as a function of ã, a, b, Cb and K) such that

(3.2) ∀ t ≥ 0,

∥
∥
∥
∥
∥
etΛ −

k∑

j=1

etΛΠΛ,ξj

∥
∥
∥
∥
∥

B(Y→X)

≤ Cã e
ã t,

where Y = D(Λ)∩D(Λ2) endowed with the norm ‖f‖Y := ‖f‖X + ‖Λf‖X +
‖Λ2f‖X .

(2) (General Hilbert case) Assume that (H1’) and (H3) hold for the same
real a ∈ R as well as (H4). Assume furthermore that X is a Hilbert space.
Then (H5) holds for any ã > a and where Πj = ΠΛ,ξj is the spectral projector
associated to ξj.

(3) (Sectorial case) Assume that (H1’) and (H3’) hold for the same real a.
Then (H5) holds for any ã > a and where again Πj = ΠΛ,ξj is the spectral
projector associated to ξj.

(4) (Partial reversed implication) Assume that (H5) holds. Then Λ satisfies
(H1’), (H3) for any a ∈ (ã,minj ℜe ξj), (H4) for any b ≥ maxj ℜe ξj and
ΠΛ,ξj = Πj for any 1 ≤ j ≤ k.

Remarks 3.2. (1) In a Hilbert space, we see that the assumptions (H1), (H3),
(H4) on the one hand, and the assumption (H5) on the other hand are
“almost” equivalent, in the sense that we must chose ã > a for the direct
implication, or a > ã for the reversed one.

(2) One could replace (H3) in this theorem by

(3.3)

∫ ∞

0

∥
∥etΛ

∥
∥

B(X)
e−b′ t dt ≤ Cb′ .

Indeed, (H3) implies (3.3) for any b′ > b, and in the proof we only use (3.3).
(3) After finishing writing this paper, we were informed of the recent paper [17]

which uses an idea similar to the proof below of point (2) of Theorem 3.1:
use a Plancherel identity on the resolvent in Hilbert spaces in order to obtain
explicit rates of decay on the semigroup in terms of bounds on the resolvent.
Let us also add that this idea was more or less “well-known” in the spectral
theory community (as is also acknowledged in [17]), even if it seems hard to
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find a reference where it is done in a quantitative way as here and in [17].
In the present paper however, the focus is on the combination of this method
with our factorization theorem in order to modify the space for the decay
estimate on the semigroup.

Proof of Theorem 3.1.

Proof of point (1). Assume first that {ξ1, . . . ξk} = ∅. Starting from the identity

∀ z /∈ Σ(Λ), R(z) = z−1
[
− Id +R(z) Λ

]

we deduce from (H2) that for any f ∈ Dom(Λ)

‖R(a+ is)f‖ ≤
(1 +K)

|a+ is|
(‖f‖X + ‖Λf‖X) → 0 as |s| → ∞(3.4)

and it follows from the density of Dom(Λ) in X that

∀ f ∈ X, ‖R(z)f‖X → 0, z = a+ is, |s| → ∞.

Then consider for M > 0

IM(f) :=

∫ a+iM

a−iM

eztR(z)f dz.

Since R is differentiable on the segment [a − iM, a + iM ] with R′(z) = R(z)2, we
compute by integration by parts

IM(f) =
e(a+iM) t

t
R(a + iM)f −

e(a−iM) t

t
R(a− iM)f −

∫ a+iM

a−iM

ezt

t
R(z)2f dz.

(3.5)

We use (see for instance [26, Chapter 1, Section 1.7] and [31, Theorem 1.1]) the
representation

etΛf =
1

2iπ

∫ a+i∞

a−i∞

eztR(z) f dz := lim
M→∞

1

2iπ
IM(f).

From (3.4)-(3.5) this representation formula can be rewritten as

(3.6) etΛf = −
1

2iπ

∫ a+i∞

a−i∞

ezt

t
R(z)2f dz := −

1

2iπ
lim

M→∞

∫ a+iM

a−iM

ezt

t
R(z)2f dz.

Then we use the identity

∀ z /∈ Σ(Λ), R(z) = z−1
[
− Id +R(z) Λ

]

to deduce

∥
∥etΛf

∥
∥
X
≤ C

eat

t

1

2π

(

lim
M→∞

∫ a+iM

a−iM

dz

|a+ iz|2

)
(
‖f‖X + ‖Λ f‖X + ‖Λ2 f‖X

)

which concludes the proof.
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Proof of (2). As in the proof of point 1, we start from the representation formula
(3.6). Let f ∈ Dom(Λ) ⊂ X and φ ∈ Dom(Λ∗) ⊂ X∗ (where X∗ denotes the dual
space of X and Λ∗ the adjoint operator of Λ). Let us estimate

〈
φ, etΛf

〉
= −

1

2iπ

∫ a+i∞

a−i∞

ez t

t

〈
φ,R(z)2f

〉
dz,

:= −
1

2iπ
lim

M→∞

∫ a+iM

a−iM

ez t

t

〈
φ,R(z)2f

〉
dz.(3.7)

Applying Cauchy-Schwartz inequality, assumption (H3) and the identity

R(a+ is) = R(b+ 1 + is) + (a− b− 1)R(a+ is)R(b+ 1 + is),

we get
∣
∣
∣
∣

∫ a+iM

a−iM

ezt

t
(φ,R(z)2f) dz

∣
∣
∣
∣
≤
eat

t

∫ M

−M

‖R(a + is)∗φ‖ ‖R(a+ is)f‖ ds

≤
(

1 + |b+ 1− a|K
)2 eat

t

∫ M

−M

‖R(b+ 1 + is)∗φ‖ ‖R(b+ 1 + is)f‖ ds

≤
(

1 + |b+ 1− a|K
)2 eat

t

(∫ M

−M

‖R(b+ 1 + is)∗φ‖2 ds

)1/2

×

(∫ M

−M

‖R(b+ 1 + is)f‖2 ds

)1/2

.

Plancherel’s identity in X (this is where we need that X is a Hilbert space) and
assumption (H2) imply:

∫

R

‖R(b+ 1 + is)f‖2 ds = 2π

∫ +∞

0

∥
∥e−(b+1) t etΛf

∥
∥
2
dt

≤

(∫ +∞

0

∥
∥e−(b+1) t etΛ

∥
∥2 dt

)

‖f‖2

≤

(∫ +∞

0

Cb e
−t dt

)

‖f‖2 = Cb ‖f‖
2
X.

Since (Hilbert space) X∗ ∼ X and ‖etΛ‖ = ‖
(
etΛ
)∗

‖, we have similarly
∫ M

−M

‖R(b+ 1 + is)∗φ‖2 ds ≤

∫ +∞

0

∥
∥e−(b+1) t

(
etΛ
)∗
φ
∥
∥2 dt ≤ Cb ‖φ‖

2
X∗ .

Gathering the estimates above, we get

∣
∣
〈
φ, etΛf

〉∣
∣ ≤ (1 + |b+ 1− a|K)2Cb

︸ ︷︷ ︸

:=C

eat

t
‖φ‖X∗ ‖f‖X

which implies
∥
∥etΛ

∥
∥ ≤

C ea t

t
,

and concludes the proof (by combining this last estimate with (H4) for t ≤ 1).
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Suppose now that the set of isolated eigenvalues {ξ1, . . . , ξk} is not empty. In this
case, the representation is

etΛ =
k∑

j=1

eξj tΠj +
1

2iπ

∫ a+i∞

a−i∞

ez t

t
R(z)2 dz,

and we proceed as above for the second term in the right-hand side.

Proof of point (3). The proof is classical and can be found in [26, Theorem 7.7 Chap
1] for instance.

Proof of point (4). On the one hand, define

Π0 := Id−Π1 − · · · − Πk and S0(t) := S(t) Π0.

Its generator is ΛΠ0 and assumption (H5) together with the Hille-Yosida theorem
(see [26, Theorem 5.3]) implies then ∆a ∩ Σ(ΛΠ0) = ∅ and that the resolvent
operator associate to ΛΠ0 satisfies (H3). On the other hand, since ΛΠj acts on a
finite dimensional space, by the Jordan decomposition, one can find ηj,1, ..., ηj,kj and
projectors (Πj,i) such that

Πj = Πj,1 + ...+Πj,kj , Πj,iΠj,ℓ = 0 ∀ i 6= ℓ,

where ΛΠj,i is a matrix with only eigenvalue ηj,i (writing as a diagonal part plus
some nilpotent part) for any 1 ≤ i ≤ kj and 1 ≤ j ≤ k. Using assumption (H5)
again, we have by composing by Πj

(3.8)
∥
∥etΛΠj Πj − et Tj Πj

∥
∥

B(X)
≤ Cã e

ã t

and next by composing by Πj,i

(3.9)
∥
∥etΛΠj,i Πj,i − et Tj Πj,i

∥
∥

B(X)
≤ Cã e

ã t.

By comparing the large time behavior t→ +∞ of the two semigroups we obtain that
necessarily ηj,i = ξj for any 1 ≤ i ≤ kj , so that we can take kj = 1. In other words
{ξ1, ..., ξk} are discrete eigenvalues of Λ with associated eigenspaces Ej := ΠjX
which is nothing but (H1’).

Moreover by writing

et Tj = et ξj
(
Pj,0 + t Pj,1 + · · ·+ tkj Pj,kj

)

for some new projectors (Pj,i) such that

Pj = Pj,1 + ... + Pj,kj , Pj,i Pj,ℓ = 0 ∀ i 6= ℓ,

and writing a similar decomposition of the semigroup generated by the matrix ΛΠj,
we easily deduce ΛΠj = Tj. We conclude that (H3) and (H4) hold by gathering
(through a direct sum) the informations obtained on each subspace ΠjX , 0 ≤ j ≤ k.

Finally, define Π := Π1−· · ·−Πk so that Π0 = Id−Π, and Π̃ := ΠΛ,ξ1+ · · ·+ΠΛ,ξk

so that Π̃0 = Id− Π̃. By applying point (1) to Λ, we have

∀ t ≥ 0,
∥
∥
∥etΛ

(

Id− Π̃
)∥
∥
∥

B(Y→X)
≤ Cα e

α t,
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for any α > ã. Composing by Π0 we deduce with the help of (H5)

∀ t ≥ 0, ‖etΛΠ̃ Π0‖B(Y→X) ≤
∥
∥
∥etΛΠ0 − etΛΠ̃ Π0

∥
∥
∥

B(Y→X)
+
∥
∥etΛΠ0

∥
∥

B(Y→X)
≤ Cα e

α t,

which implies (since the norms ‖·‖Y and ‖·‖X are equivalent on the finite dimensional

subspace Π̃X , and Π0 and Π̃ commute)

∀ t ≥ 0,
∥
∥
∥etΛΠ̃Π0

∥
∥
∥

B(X)
≤ Cα e

α t.

That last estimate together with the fact that ΛΠ̃Π0 is the restriction to the sub-
space Π̃Π0X of the matrix ΛΠ̃ with spectrum Σ(ΛΠ̃) = {ξ1, . . . , ξk} yields Π̃ Π0 = 0.

Similarly, we obtain Π Π̃0 = 0 and then

Π = Π Π̃0 +Π Π̃ = Π̃Π0 + Π̃Π = Π̃.

That last identity implies

k∑

j=1

eΛ t ΠΛ,ξj = eΛ t Π̃ = eΛ tΠ =

k∑

j=1

eTj tΠj .

Coming back to the complex plane integral definition of ΠΛ,ξj we finally get that
eΛ t ΠΛ,ξj = eTj tΠj and therefore ΠΛ,ξj = Πj. �

We end this section by some recalls on the classical notion of dissipative operators
together with the statement of a variant of the Lumer-Phillips theorem. The latter
provides a very popular alternative method in order to prove assumption (H5) for a
given operator. Its conclusion is stronger (the constant in front of the exponential is
Cã = 1, that is the operator is a contraction up to a translation) but its assumptions
are also more restrictive. Nevertheless, in all the applications we have in mind, it is
the starting point from which we can develop our space enlargement method of the
spectral gap decay estimate.

Definition 3.3. Consider X a Banach space, Λ ∈ C (X) and a ∈ R. We say that
Λ− a is dissipative on a closed subspace X0 ⊂ X if

(3.10) ∀ f ∈ D(Λ) ∩X0, ∃ϕ ∈ F (f) ℜe 〈ϕ, (Λ− a) f〉 ≤ 0,

where F (f) ⊂ X ′ is the dual set of f defined by

F (f) := {ϕ ∈ X ′; 〈ϕ, f〉 = ‖f‖2X = ‖ϕ‖2X′}.

In the case when X is a Hibert space F (f) = {f} and (3.10) writes

(3.11) ∀ f ∈ D(Λ) ∩X0, ℜe (Λf, f) ≤ a ‖f‖2.

We say that Λ− a is m-dissipative is furthermore

R(Λ− a) = X.

Remark 3.4. Notice that Λ satisfies (3.10) if an only if

∀ f ∈ D(Λ), ∀λ > a ‖(λ− Λ) f‖ ≥ (λ− a) ‖f‖.

We refer to [26, Chap 1, Theorem 4.2] for a proof of this claim.
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Theorem 3.5. Consider X a Banach space, Λ ∈ C (X). Assume that there exists
a, b ∈ R and ξ1, . . . , ξk ∈ C such that a < minℜe ξj ≤ maxℜe ξj < b. Assume that
there exits a closed subspace X0 and some finite dimension subspaces X1, . . . , Xk

such that X0 ⊕X1 ⊕ · · · ⊕Xk = X and

(i) Xj ⊂M(Λ − ξj) for any j = 1, . . . , k;
(ii) X0 is invariant under the action of Λ: Λf ∈ X0 for any f ∈ X0 ∩D(Λ);
(iii) Λ− a is dissipative on X0;
(iv) Λ− b is m-dissipative on X0 or on X.

Then Λ generates a C0-semigroup of bounded operators and (H5) with ã = a and
Cã = 1.

Sketch of the proof of Theorem 3.5. The operator Λ|Xj
, j = 1, . . . , k, generates

a semigroup which writes Sj(t) := eTj t where Tj = ξj IdXj
+ Nj , Nj nilpotent

operator on Xj . We remark that Λ − b is m-dissipative on X0 due to (iv) and
X0 ⊕X1 ⊕ · · ·⊕Xk = X . Then the classical Lumer-Phillips theorem (see [26, Chap
1, Theorem 4.3]) implies that Λ|X0

generates a semigroup S0(t). To conclude, we
define

S(t) := S0(t)P0 + · · ·+ Sk(t)Pk,

where Pj is the projector on Xj. Using that each Pj commutes with Λ, it is easily
checked that S(t) = etΛ by decomposing f ∈ D(Λ) as f = f0 + · · · + fk with
fj ∈ Xj ∩D(Λ) so that f0 ∈ D(Λ) and computing the time derivative of S(t) f . �

4. Spectral gap estimates

In this section we combine the results obtained so far in order to prove that one
can enlarge the functional space of decay estimates on semigroups.

Theorem 4.1. Assume that L satisfies (H1’) and

∀ t ≥ 0,

∥
∥
∥
∥
∥
et L

(

Id−
k∑

j=1

Πj

)∥
∥
∥
∥
∥

B(E)

≤ Ca e
a t,

where Πj = ΠL,ξj , 1 ≤ j ≤ k denotes the (finite dimensional) spectral projectors of
the eigenvalue ξj ∈ ∆a, and L satisfies (H4) as well as the decomposition assumption
(H2)-(ii), that is there exist two closed unbounded operators A and B (with domains
containing Dom(L)) such that L = A+B and A ∈ B(E → E). Then we distinguish
the following cases:

(i) (Sectorial framework) B satisfies an assumption of type (H3’): more
precisely there exists some real numbers a ∈ R and K ′, θ ∈ (0,∞) such that

sup
y=±θ (x−a), x≤a

∥
∥(B − (x+ i y))−1

∥
∥

B(X)
≤ K ′.

Then L is sectorial (with explicit estimates) and for any ã > a there exists
an explicit constant Cã ≥ 1 such that

(4.1) ∀ t ≥ 0,

∥
∥
∥
∥
∥
etL

(

Id−
k∑

j=1

Πj

)∥
∥
∥
∥
∥

B(E)

≤ Cã e
ã t.
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(ii) (Hilbert space framework) E is an Hilbert space and B satisfies an as-
sumption of type (H3): more precisely there exists some real numbers a ∈ R

and K ∈ (0,∞) such that

(4.2) sup
y∈R

∥
∥(B − (a+ i y))−1

∥
∥

B(X)
≤ K.

Then L satisfies (H1) and for any ã > a there exists an explicit constant
Cã ≥ 1 such that

∀ t ≥ 0,

∥
∥
∥
∥
∥
etL

(

Id−
k∑

j=1

Πj

)∥
∥
∥
∥
∥

B(E)

≤ Cã e
ã t.

(iii) (General Banach space framework) E is a Banach space and B satis-
fies again an assumption of type (H3) in the form (4.2). Then L satisfies
(H1)and for any ã > a there exists an explicit constant Cã ≥ 1 such that

∀ t ≥ 0,

∥
∥
∥
∥
∥
etL

(

f −
k∑

j=1

Πjf

)∥
∥
∥
∥
∥
E

≤ Cã e
ã t
(
‖f‖E + ‖Lf‖E + ‖L2f‖E

)
.

Proof of Theorem 4.1. The proof is immediate.
For the case (i) we combine uniform estimates on the resolvent of L for ξ ∈ {y =

±θ (x − a), x ≤ a} together with the sectorial estimate (H3’) assumed on B to
deduce by Theorem (2.1) sectorial estimates on L for ξ ∈ {y = ±θ (x− a), x ≤ a}.
We conclude by applying Theorem 3.1, point (3).

For the case (ii) we combine uniforme estimates on the resolvent of L for {ℜe ξ =
a} together with the estimate (H3) assumed on B to deduce by Theorem (2.1)
uniform estimates of type (H3) on the resolvent of L for {ℜe ξ = a}. We conclude
by applying Theorem 3.1, point (2).

For the case (iii) we combine uniforme estimates on the resolvent of L for {ℜe ξ =
a} together with the estimate (H3) assumed on B to deduce by Theorem (2.1)
uniform estimates of type (H3) on the resolvent of L for {ℜe ξ = a}. We conclude
by applying Theorem 3.1, point (1). �

In the following corollary we give a kind of “practical” case of application for
PDEs, where the small space E is a Hilbert space where the operator is self-adjoint
and dissipative (typically L2(µ−1) where µ is the stationary distribution), and where
one has some conservation law in the larger Banach space E in which we want to
apply our space enlargement method.

Corollary 4.2 (Application to PDEs).
Consider a Hilbert space E and a Banach space E such that E ⊂ E and E is dense
in E . Consider two unbounded closed operators with dense domain L on E and L
on E such that L|E = L.

• Assume in E:
(i) There are G1, . . . , Gn ∈ E linearly independent, and λ1, . . . , λn ∈ ∆α

for some α ∈ R, such that Gj ∈ M(L − λj) and ‖Gj‖E = 1 for any
1 ≤ j ≤ n (note that the λj are not necessarily distinct).
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(ii) Defining ψj(f) := 〈f,Gj〉E Gj for any 1 ≤ j ≤ n, the space

E0 := {f ∈ E; ∀ j = 1, . . . , n, ψj(f) = 0}

is invariant under the action of L, and E = E0 ⊕ Span {G1, . . . , Gn}.
(iii) L− α is dissipative on E0 for some scalar product 〈〈·, ·〉〉E on E equiv-

alent to 〈·, ·〉E:

∀ f ∈ D(L) ∩ E0, 〈〈(L− α) f, f〉〉E ≤ 0.

(iv) L− b is m-disssipative in E0 or E for some b ≥ α.
• Assume in E :

(v) L decomposes as L = A + B, A,B ∈ C (E), with A bounded from E to
E and B − α is dissipative.

(vi) There exists Ψj ∈ B(E → E) such that Ψj|E = ψj.

Then, {λ1, . . . , λn} = Σ(L)∩∆a, G1, . . . , Gn is a base of the algebraic eigenspaces
of L associated to the eigenvalues λ1, . . . , λn, and, introducing the notation ξ1, . . . , ξk
for the distinct eigenvalues, that is {ξ1, . . . , ξk} = {λ1, . . . , λn} and ξj 6= ξi for i 6= j,
we have ΠL,ξj |E = ΠL,ξj for any 1 ≤ j ≤ k. Moreover, the space

E0 := {f ∈ E ; ∀ j = 1, . . . , n, Ψj(f) = 0}

is invariant under the action of L and for any a > α there exists Ca ≥ 1 such that
for any f ∈ X ∩ E0 there holds:

∀ t ≥ 0
∥
∥etL f

∥
∥
E
≤ Ca e

a t ‖f‖X ,

where X = E if E is a Hilbert space and X = D(L2)∩D(L) endowed with the norm
of the graphs of L and L2 if E is a Banach space.

Remark 4.3. Note that in the case where L is self-adjoint in the small space E
(which however is not always satisfied in the following applications, in particular for
inhomogeneous kinetic models), then there can be no nilpotent part in the action of
the operator in the eigenspaces.

Proof of Corollary 4.2. First from (i), (ii), (iii), (iv) and Theorem 3.5, the operator
L satisfies (H1’), generates a semigroup etL on E and more precisely satisfies the
bound

∀ t ≥ 0,

∥
∥
∥
∥
∥
et L

(

Id−
k∑

j=1

Πj

)∥
∥
∥
∥
∥

B(E)

≤ Ca e
a t.

Next, because A|E ∈ B(E), the operator B|E = L − A|E also generates a semi-
group on E. We claim that

(4.3) ∀ f ∈ E, ∀ t ≥ 0 ‖etBf‖E ≤ eC t ‖f‖E ,

for some constant C ∈ R. Indeed, for any f ∈ D(L) we may compute (in the case
where E is a Hilbert space)

d

dt

∥
∥etBf

∥
∥
2

E
= 2ℜe

〈
B etBf, etBf

〉
≤ 2α

∥
∥etBf

∥
∥
2

E
,

and we deduce (4.3) with C = α. In the general Banach case, we can argue as
follows. For any ε > 0 we introduce the norm ‖f‖ǫ := ‖f‖E + ǫ ‖f‖E so that ‖ · ‖ǫ is
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equivalent to ‖ · ‖E (for any ǫ > 0). Define C := α + ‖A‖B(E→E). Using the second
definition recalled in Remark 3.4 and the fact that L − α is dissipative in E, it is
clear that B−C is m-dissipative in the Banach space (E, ‖ ·‖ǫ). The Lumer-Phillips
theorem says that B − C generates a semigroups of contractions on (E, ‖ · ‖ǫ), in
particular for any f ∈ E, t ≥ 0,

∥
∥et (B−C)f

∥
∥
E
+ ǫ

∥
∥et (B−C)f

∥
∥
E
≤ ‖f‖E + ǫ ‖f‖E.

Letting ǫ goes to 0, we obtain (4.3). Together with a density argument, this implies
that B generates a C0-semigroup on E and more precisely B − C is m-dissipative
on E . Using again that A ∈ B(E) we deduce then that L = A + B generates a
C0-semigroup and more precisely that L satisfies (H4) with a growth rate smaller
than b = C + ‖A‖B(E).

Because of Remark 3.4, the line control (4.2) on the resolvent of B on any line
{ξ = a + i y, y ∈ R}, a > α, is consequence of the fact B − α is dissipative. The
assumptions of Theorem 4.1 being fulfilled, we deduce that for any f ∈ X

∀ t ≥ 0

∥
∥
∥
∥
∥
etL f −

k∑

j=1

eL tΠL,ξj f

∥
∥
∥
∥
∥
E

≤ Ca e
a t ‖f‖X .

where by definition ΠL,ξj is the spectral projection on the eigenspace associated to
the eigenvalue ξj in E through the integral formula (2.1).

In order to conclude we have to prove that ΠL,ξj f = Πj for any f ∈ E , where we
define

Πj :=
∑

ℓ

Πj,ℓ Πj,ℓ :=
∑

i, λi=ξj , d(Gi)=ℓ

Ψi

and d(Gi) stands for the smallest q ∈ N such that (L − λi)
qGi = 0. First, for

f ∈ E ∩ Y , we write for some polynomial function Pj,ℓ(t)
∥
∥
∥
∥
∥

k∑

j=1

eL t ΠL,ξj f −
k∑

j=1

∑

ℓ

eξj t Pj,ℓ(t) Πj,ℓ f

∥
∥
∥
∥
∥
E

≤

≤

∥
∥
∥
∥
∥

k∑

j=1

eL tΠL,ξj f − etLf

∥
∥
∥
∥
∥
E

+

∥
∥
∥
∥
∥
etLf −

k∑

j=1

∑

ℓ

eξj t Pj,ℓ(t) Πj,ℓ f

∥
∥
∥
∥
∥
E

≤ Ca e
at,

because ΠL,ξj = Πj as a consequence of the first step and point (4) in Theorem 3.1.
When the ξj are real numbers, the fact that Pj,ℓ has exactly degree ℓ implies that
all the the functions eξj t Pj,ℓ(t) have different growth when t → ∞. By induction,
we deduce that ΠL,ξjf = Πjf for any 1 ≤ j ≤ k. With similar arguments (and
taking into account the frequency of oscillation) we have the same conclusion in the
general case where the eigenvalues are not purely real. Because both semigroups are
continuous on E the same identity holds on the whole space E . �

Remarks 4.4. (1) The assumptions made on E in Corollary 4.2 are nothing
but those made on E in Theorem 3.5 and are then equivalent (up to a slight
translation of value of a ∈ R) to know an accurate decomposition (H5) of
the semigroup etL.
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(2) In section 5 and 6 below, we apply our space enlargement of the decay of
semigroups from E to E ⊃ E. Since the conditions on E are already known
results and condition (ii)-(vi) is a straightforward consequence of the conser-
vation laws of the equation in E , the only thing we have to do in the following
application is to exhibit a suitable decomposition L = A + B for which (v)
holds.

5. Application to Fokker-Planck equations

5.1. The space homogeneous Fokker-Planck equation. Consider the equation

∂tf = Lf := ∇v · (∇vf + F f) , f(·, 0) = fin(·),(5.1)

for f = f(t, v), t ≥ 0, v ∈ Rd and F = F (v) ∈ Rd which takes the form

(5.2) F = ∇vφ+ U.

Assume

(FP1) The potential φ : Rd → R satisfies: µ(dv) := e−φ(v) dv is a probability
measure and (strong version of the Poincaré inequality) for some ν > 0 and
for any f such that

∫
f dv = 0 one has

(5.3)

∫ ∣
∣
∣
∣
∇

(
f

µ

)∣
∣
∣
∣

2

µ(dv) ≥ ν

∫

f 2
(
1 + |∇φ|2

)
µ−1(dv).

(FP2) The additional force field U satisfies

∀ v ∈ Rd, ∇ · U = 0, ∇vφ · U = 0, |U | ≤ C (1 + |∇φ|) .

It is immediate to check that L(µ) = 0 and

〈Lf, f〉L2(µ−1) :=

∫

Lf f µ−1(dv) = −

∫

|∇(f/µ)|2 µ(dv) ≤ 0.

Let us first recall more or less well-known results about the spectrum and spectral
gap properties of the Fokker-Planck equation in the space L2(µ−1).

Theorem 5.1. Assume that F satisfies (FP1)-(FP2). Then in the space E =
L2(µ−1), the operator L satisfies: there exists λ > 0 such that Σ(L) ⊂ {z ∈
C | Re(z) ≤ −λ} ∪ {0}, the null space of L is exactly Rµ, and any solution to
the initial value problem (5.1-5.2) for any initial datum fin ∈ E satisfies

∀ t ≥ 0, ‖f(t)− µ 〈fin〉‖E ≤ e−λ t ‖fin − 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dv.

Remark 5.2. Equation (5.3) is a strenghtened version of the classical Poincaré
inequality

∫ ∣
∣
∣
∣
∇

(
f

µ

)∣
∣
∣
∣

2

µ(dv) ≥ ν

∫

f 2 µ−1(dv).

The latter is satisfied for instance under the so-called Bakry-Emery condition Hess (φ) ≥
ν Id (see [4, 28, 3]).
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A (more or less well-known) sufficient condition for the strenghtened form (5.3)
is for instance α|∇φ|2 − 2∆φ ≥ c for α ∈ (0, 1) and c ∈ R and for any |v| ≥ R for
some R > 0 (see [25] for a quantitative proof).

Let us now consider a weight function m(v) := e−θ(φ(v)) with θ ∈ C2 and the
associated Hilbert space E = L2(m−1) such that E ⊂ E . The new result is a
spectral gap estimate in this larger space under some specific assumptions on m.
Let us denote by L the operator (5.1-5.2) in the space E .

Assume that m satisfies:

(FP3) The function

ψ(v) :=
1

2m
∇v ·

(

µ∇v

(
m

µ

))

satisfies

ψ(v) −−−−→
|v|→∞

−∞.

Remarks 5.3. (1) Other technical assumptions could have been chosen for the
function m in the proof below, however the formulation (FP3) seems to
us the most natural one since it is based on the comparison of the Fokker-
Planck operators for two different force field. In any case, the core idea in
the decomposition in the proof below is that a coercive B in E is obtained by
a negative local perturbation of the whole operator.

(2) Remark that by mollification the smoothness ofm could be relaxed: if m is not
smooth but m̃ is smooth, satisfies (FP3) and is such that c1m < m̃ ≤ c2m,
then

‖ft−µ‖L2(m) ≤ c2 ‖ft−µ‖L2(m̃) ≤ C e−λ1 t ‖fin − µ‖L2(m̃) ≤ C ′ e−λ1 t ‖fin − µ‖L2(m) .

Many interesting φ and m sastisfy our assumptions (we omit the proof which is
straightforward calculations):

Proposition 5.4. One has

ψ(v) =
1

2

[
|∇vφ|

2 (θ′(φ)2 − θ′(φ)− θ′′(φ)
)
+∆vφ (1− θ′(φ))

]

and admissible potentials and weights for (FP1)-(FP3) are for instance

(i) φ(v) = C 〈v〉s, s ≥ 1 and θ(z) = zα, α ∈ (0, 1) with s(1 + α) > 2;
(ii) φ(v) = C 〈v〉s, s ≥ 1 and θ(z) = k log z with s > 2 and ks > d+ s− 2.

Theorem 5.5. Assume that F satisfies (FP1)-(FP2) andm satisfies (FP3). Then
for any λ1 with 0 < λ1 < λ (where λ is given in Theorem 5.1) such Σ(L) ⊂ {z ∈
C | ℜe(z) ≤ −λ1}∪ {0} and there exists Cλ1

∈ [1,∞) such that, for any initial data
fin ∈ E , equation (5.1-5.2) has a solution f ∈ E such that

∀ t ≥ 0 ‖f(t)− µ 〈fin〉‖E ≤ Cλ1
e−λ1 t ‖fin − µ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dv.
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Remarks 5.6. (1) The case of equality λ1 = λ could easily been obtained by
considering a more detailed expansion of the semigroup for the first eigen-
values in the use of Theorem 5.1, and showing that the eigenspaces are the
same in E and E .

(2) One could prove variant of this theorem for some Banach large space E such
as L1(m−1) (under some different conditions on m).

(3) Let us make a last important remark. One could have thought to another
natural method of proof by interpolation: using the exponential relaxation in
E together with a uniform bound in L1 (by mass conservation and preserva-
tion of nonnegativity) one could (hopefully) try to obtain some rate of decay
in some intermediate spaces. This method would yield probably quite com-
plicated rates. Moreover it would not be satisfactory in at least two aspects:
first it would not recover optimal rate of decay, and second, most importantly,
it would not apply to semigroups which do not preserve sign and
therefore the L1 norm, such as those obtained by linearization (e.g.
the linearized Boltmann equation in section 7).

Proof of Theorem 5.5. We prove that one can apply Corollary 4.2 with n = 1
(1-dimensional null space spanned by µ), E = L2(µ−1), E = L2(m−1) and ψ(f) =
〈f, µ〉E µ. Because theorem 5.1 implies that assumptions (i), (ii), (iii) and (iv) hold
and the mass conservation along the flow implies that assumption (vi) holds, the
only thing to do is to verify the operator spiting assumption (v).

Let us write the following splitting:

L = Ls + Las, Ls = ∇v · (∇vf + f ∇vφ) , Las = ∇v (U f)

on E and similarly L = Ls + Las on the space E . The operator Ls is symmetric in
E, since

〈Lsf, g〉E = −

∫

∇

(
f

µ

)

· ∇

(
g

µ

)

µ dv

and the operators Las and Las are both anti-symmetric in resp. E and E by imme-
diate computation (using (FP2) and that m is a function of φ).

One can compute

〈Lsf, f〉E = −

∫ ∣
∣
∣
∣
∇v

(
f

m

)∣
∣
∣
∣

2

mdv +

∫

f 2 ψ(v)m−1(dv).

Consider χ ∈ C∞
c (Rd), 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1), ‖χ‖∞ ≤ 1 and define

χR(v) = χ(R−1 v), R ≥ 1. Consider R such that ψ(v) ≤ 0 for |v| ≥ R and M such
that |ψ(v)| ≤ M/2 for |v| ≤M . We then define the decompositions L = A+B with

Af := χRM f and Bf := Lf − χRM f.
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The operator A is clearly bounded from E into E thanks to the cutoff function,
and for ξ with real part a:

〈(B − ξ)f, f〉E = 〈(L− ξ)f, f〉E −

∫

χRM f 2m−1(dv)

= 〈(Ls − ξ)f, f〉E −

∫

χRM f 2m−1(dv)

= −

∫ ∣
∣
∣
∣
∇v

(
f

m

)∣
∣
∣
∣

2

mdv +

∫

f 2 (ψ(v)−M χR −ℜe ξ) m−1(dv).

We then use that ψ(v) − M χR ≤ 0 and ψ(v) −M χR → −∞ as |v| → ∞ to
deduce that (taking maybe larger M and R)

(ψ(v)−M χR −ℜe ξ) ≤ −C < 0

which proves that B − a is dissipative. �

5.2. The kinetic Fokker-Planck equation. Consider the equation

∂tf = Lf := ∇v · (∇vf + v f)− v · ∇xf +∇xΦ · ∇vf, f(·, 0) = fin(·),(5.4)

for f = f(t, x, v), t ≥ 0, x, v ∈ Rd and Φ = Φ(x) ∈ Rd.
Assume

(FP1’) The potential Φ : Rd → R satisfies: π(dx) := e−Φ(x) dx is a probability
measure and (strong version of the Poincaré inequality) for some ζ > 0 and
for any f = f(x) ∈ L2(π−1) such that ∈ f dx = 0

(5.5)

∫ ∣
∣
∣
∣
∇

(
f

π

)∣
∣
∣
∣

2

π(dx) ≥ ζ

∫

f 2
(
1 + |∇Φ|2

)
π−1(dx).

Let us denote

µ(v) :=
1

(2π)−d/2
e−|v|2/2,

and

γ(x, v) := π µ =
1

(2π)−d/2
e−|v|2/2−Φ(x)

which is a probability measure on Rd × Rd.
Let us first recall a recent result proved in [14, 13] for the kinetic Fokker-Planck

equation in the space L2(γ−1).

Theorem 5.7. Assume that Φ satisfies (FP1’). Then in the space E = L2(γ−1),
the operator L satisfies: there exists C > 0 and λ > 0 such that Σ(L) ⊂ {z ∈
C | Re(z) ≤ −λ} ∪ {0}, the null space of L is exactly Span({γ}), and any solution
to the initial value problem (5.4) for any initial datum fin ∈ E satisfies

∀ t ≥ 0, ‖f(t)− γ 〈fin〉‖E ≤ C e−λ t ‖fin − γ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dx dv.
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Let us denote e(x, v) = |v|2/2 + Φ(x) and consider some weight m = e−θ(e) with
θ ∈ C2 and the associated Hilbert space E = L2(m−1) such that E ⊂ E . The new
result is a spectral gap estimate in this larger space under some specific assumptions
on m. Let us denote by L the operator (5.4) in the space E .

Assume that m satisfies:

(FP3’) The function

Ψ(x, v) :=
1

2m
∇v ·

(

γ∇v

(
m

γ

))

satisfies

Ψ(x, v) −−−−−−→
|e(x,v)|→∞

−∞.

Theorem 5.8. Assume that Φ satisfies (FP1’) and m satisfies (FP3’). Then for
any λ1 with 0 < λ1 < λ (where λ is given in Theorem 5.7) such Σ(L) ⊂ {z ∈
C | ℜe(z) ≤ −λ1}∪ {0} and there exists Cλ1

∈ [1,∞) such that, for any initial data
fin ∈ E , equation (5.4) has a solution f ∈ E such that

∀ t ≥ 0 ‖f(t)− γ 〈fin〉‖E ≤ Cλ1
e−λ1 t ‖fin − γ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dx dv.

Remarks 5.9. (1) Again one could obtain the case of equality λ1 = λ for the
rate of convergence by considering a more detailed expansion of the semigroup
for the first eigenvalue.

(2) It would be straightforward (and simpler) to adapt the previous theorem in
the case of the kinetic Fokker-Planck equation in the periodic torus x ∈ T d.

(3) Another possible modification could be to extend the decay estimate to larger
Banach L1-type weighted spaces but it would require specific additional work,
since the operator A in the decomposition below does not map L1 into L2

whatever the weights. We refer to section 7 where it is done for the linearized
Boltzmann equation.

Proof of Theorem 5.8. Again we prove that one can apply Corollary 4.2 with n = 1
(1-dimensional null space spanned by γ), E = L2(γ−1), E = L2(m−1) and ψ(f) =
〈f, γ〉E γ.

Let us write the following splitting:

L = Ls + Las, Ls = ∇v · (∇vf + v f) , Las = −v · ∇xf +∇xΦ · ∇vf

on E and similarly L = Ls + Las on the space E . The operator Ls is symmetric in
E, since

〈Lsf, g〉E = −

∫

∇

(
f

γ

)

· ∇

(
g

γ

)

γ dx dv

and the operators Las and Las are both anti-symmetric in resp. E and E by imme-
diate computation (using that −v · ∇xe +∇xΦ · ∇ve = 0 and that m is a function
of e).
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One can compute

〈Lsf, f〉E = −

∫ ∣
∣
∣
∣
∇v

(
f

m

)∣
∣
∣
∣

2

mdxdv +

∫

f 2 ψ(v)m−1(dx dv).

Consider χ ∈ C∞
c (Rd), 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1), ‖χ‖∞ ≤ 1 and define

χR(v) = χ(R−1 v), R ≥ 1. Consider R such that Ψ(x, v) ≤ 0 for |e(x, v)| ≥ R
and M such that |Ψ| ≤ M/2 for |e(x, v)| ≤ M . We then define the decomposition
L = A+ B with

Af := χR(e)M f and Bf := Lf − χR(e)M f.

The operator A is clearly bounded from E into E thanks to the cutoff function.
For the invertibility of B − ξ we compute

〈(B − ξ)f, f〉E = 〈(L− ξ)f, f〉E −

∫

χRM f 2m−1(dx dv)

= 〈(Ls − ξ)f, f〉E −

∫

χR(e)M f 2m−1(dx dv)

= −

∫ ∣
∣
∣
∣
∇v

(
f

m

)∣
∣
∣
∣

2

mdv +

∫

f 2 (Ψ(e)−M χR(e)−ℜe ξ) m−1(dv).

We then use that Ψ(e)−M χR(e) ≤ 0 and ψ(e)−M χR(e) → −∞ as |e| → ∞ to
deduce that (taking maybe larger M and R)

(Ψ(e)−M χR(e)− ℜe ξ) ≤ −C < 0

which proves that B − a is dissipative. �

6. Application to the linear Boltzmann equation

6.1. The space homogeneous linear Boltzmann equation. Let us consider as
a first example the spatially homogeneous linear Boltzmann equation

(6.1) ∂tf = Lf :=

∫

Rd

(k(v, v∗) f(v∗)− k(v∗, v) f(v)) dv∗

for f = f(t, v), t ≥ 0, v ∈ Rd and k(v, v∗) ≥ 0.
Assume

(LBE1) There is µ = µ(v) probability measure such that

k(v, v∗) = b(v, v∗)µ(v) and 0 < b∗ ≤ b(v, v∗) = b(v∗, v) ≤ b∗ <∞.

Remark 6.1. More general setting without detailed balance could be considered
within framework. We do not try to optimize the assumptions here but rather show
how our method apply to Boltzmann equations.

It is well-known that

〈Lf, f〉E = −
1

2

∫

b(v, v∗)

(
f(v)

µ(v)
−
f(v∗)

µ(v∗)

)2

dv dv∗

and that the homogeneous linear Boltzmann equation with such a kernel has a
spectral gap in the Hilbert space E = L2(µ−1):
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Theorem 6.2. Assume that k satisfies (LB1). Then in the space E = L2(µ−1),
the operator L satisfies: there exists λ > 0 such that Σ(L) ⊂ {z ∈ C | Re(z) ≤
−λ} ∪ {0}, the null space of L is exactly Rµ, and any solution to the initial value
problem (6.1) for any initial datum fin ∈ E satisfies

∀ t ≥ 0, ‖f(t)− µ 〈fin〉‖E ≤ e−λ t ‖fin − µ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dv.

Let us now consider a measurable weight function m(v) > 0 and the associated
Hilbert space E = L2(m−1) such that E ⊂ E . The new result is a spectral gap
estimate in this larger space under some specific assumptions on m. Let us denote
by L the operator (6.1) in the space E .

Assume that m satisfies:

(LB2) The L1 norm is bounded from above by the norm E times some constant and
the norm E is controlled from above by the norm E times some constant.

Theorem 6.3. Assume that k satisfies (LB1) and m satisfies (LB2). Then there
exists a positive constant λ1 with 0 < λ1 ≤ λ (where λ is given in Theorem 6.2)
such Σ(L) ⊂ {z ∈ C | ℜe(z) ≤ −λ1} ∪ {0} and there exists Cλ1

∈ [1,∞) such that,
for any initial data fin ∈ E , equation (6.1) has a solution f ∈ E such that

∀ t ≥ 0 ‖f(t)− µ 〈fin〉‖E ≤ Cλ1
e−λ1 t ‖fin − µ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dv.

Proof of Theorem 6.3. We only sketch the proof which is similar to the one of
Theorem 5.5 for the spatially homogeneous Fokker-Planck equation.

We use the decomposition L = A+ B with

Af :=

∫

k(v, v∗) f(v∗) dv∗ and Bf :=

∫

k(v, v∗) f(v) dv∗.

The fact that A is bounded from E to E is clear:

‖Af‖2E =

∫

(Af)2 µ−1 ≤

∫ (∫

b∗ |f(v∗)| dv∗

)2

µ(v) dv

≤ (b∗)2 ‖f‖2L1 ≤ C ‖f‖2E

Finally dissipativity of B is clear from the fact that Bf = ν(v) f with ν ≥ ν0 > 0. �

6.2. The space inhomogeneous linear Boltzmann equation in the torus.
Consider

(6.2) ∂tf = Lf :=

∫

Rd

(k(v, v∗) f(v∗)− k(v∗, v) f(v)) dv∗ − v · ∇xf

for f = f(t, x, v), t ≥ 0, x ∈ Td (d-dimensional torus), v ∈ Rd and k(v, v∗) ≥ 0.
Assume (LB1) on k again.
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Remark 6.4. Again more general settings could be considered: most importantly
the case of a confining potential in x ∈ Rd. We leave this interesting question for a
follow-up paper.

Let us denote

µ(v) :=
1

(2π)−d/2
e−|v|2/2,

and assume without loss of generality that the torus has unit measure. Then µ is a
probability measure on Rd × Rd.

Let us first recall a recent result proved in [14, 13] for the kinetic Fokker-Planck
equation in the space L2(µ−1).

Theorem 6.5. Assume that k satisfies (LB1) and Φ satisfies (LB3). Then in the
space E = L2(γ−1), the operator L satisfies: there exists λ > 0 and C > 0 such that
Σ(L) ⊂ {z ∈ C | Re(z) ≤ −λ} ∪ {0}, the null space of L is exactly Rµ, and any
solution to the initial value problem (6.2) for any initial datum fin ∈ E satisfies

(6.3) ∀ t ≥ 0, ‖f(t)− µ 〈fin〉‖E ≤ C e−λ t ‖fin − µ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dx dv.

Consider some weight m = m(v) and the associated Hilbert space E = L2(m−1)
such that E ⊂ E . The new result is a spectral gap estimate in this larger space
under some specific assumptions on m. Let us denote by L the operator (6.2) in the
space E .

Assume that m satisfies:

(LB2’) The L1 norm (in x and v) is bounded from above by the norm E times some
constant and the norm E (in x and v) is controlled from above by the norm
E (in x and v) times some constant.

Theorem 6.6. Assume that k satisfies (LB1), Φ satisfies (LB3) and m satisfies
(LB2’). Then for any λ1 with 0 < λ1 < λ (where λ is given in Theorem 6.5) such
Σ(L) ⊂ {z ∈ C | ℜe(z) ≤ −λ1} ∪ {0} and there exists Cλ1

∈ [1,∞) such that, for
any initial data fin ∈ E , equation (5.4) has a solution f ∈ E such that

∀ t ≥ 0 ‖f(t)− µ 〈fin〉‖E ≤ Cλ1
e−λ1 t ‖fin − µ 〈fin〉‖E

where we denote

〈fin〉 :=

∫

fin dx dv.

Remarks 6.7. (1) As before the case of equality λ1 = λ for the rate of conver-
gence could be obtained by refining the expansions on the semigroup.

(2) This would be again possible to extend the decay estimate to larger Banach
L1-type weighted spaces, see section 7 where it is done for the linearized
Boltzmann equation.

Proof of Theorem 6.3. We only sketch the proof which is exactly similar to the one
of Theorem 5.8 for the spatially inhomogeneous Fokker-Planck equation (it is in fact
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even simpler since the confinement is ensured by the periodic domain and not by
some external potential).

Define the decomposition L = A+ B with

Af :=

∫

k(v, v∗) f(v∗) dv∗ and Bf :=

∫

k(v, v∗) f(v) dv∗ − v · ∇xf.

Then the operator A is again clearly bounded from E into E, and the dissipativity
of B is clear from

〈Bf, f〉E = ν(v) ‖f‖2E
since v · ∇x is anti-symmetric in E as m is a function of v. �

7. Application to the nonlinear Boltzmann equation

7.1. The Boltzmann equation. Consider the Boltzmann equation for hard poten-
tials with cutoff (including hard spheres), which writes in the spatially homogeneous
case

(7.4) ∂tf = Q(f, f)− v · ∇xf

for f = f(t, x, v), x ∈ Td (d-dimensional torus), v ∈ Rd and

(7.5) Q(f, f) =

∫

Rd

∫

Sd−1

[

f(v′∗) f(v
′)− f(v) f(v∗)

]

b(cos θ) |v − v∗|
ζ dv∗ dσ

with

v′ =
v + v∗

2
+ σ

|v − v∗|

2
, v′∗ =

v + v∗
2

− σ
|v − v∗|

2
,

and where b is a positive integrable function on the sphere Sd−1 with cos θ = σ · (v−
v∗)/|v − v∗|, and ζ ∈ (0, 1].

Assume without loss of generality that the torus has volume one. Then the unique
global equilibrium (see [12] for instance) is

µ(v) :=
1

(2π)−d/2
e−|v|2/2.

The linearized equation around this equilibrium is

(7.6) ∂tf = L(f) = C(f)− v · ∇xf

for f = f(t, x, v), x ∈ Td, v ∈ Rd and

C(f) :=

∫

Rd

∫

Sd−1

[

µ(v′∗) f(v
′) + µ(v′) f(v′∗)

− µ(v∗) f(v)− µ(v) f(v∗)
]

b(cos θ) |v − v∗|
ζ dv∗ dσ.

It is well-known that L is self-adjoint non-positive and has a spectral gap in the
Hilbert space Ē = L2(µ−1 dv) (see [7, 15, 16] and then [5] for explicit estimates).
This result would be easily extended to H1(µ−1 dv).

In [22], this spectral gap estimate on the semigroup was extended to the space
Ē := L1(ea |v|

s

dv) for a > 0 and s ∈ (0, 2). Let us denote C and L the operators
C and L when considered resp. in L1(ea |v|

s

dv) and E0 := L1(ea |v|s dx dv). Let us
denote E := H1(µ−1 dx dv).
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We shall extend the estimate of [22] to the full inhomogeneous case in the torus.
First we shall recall the decomposition of L devised in [22], then recall an hypocoer-
civity property in the torus proved in [24], then introduce a diffusive approximation
and finally combine these preliminary steps with Corollary 4.2 (in the Banach space
version) in order to extend decay estimates in L1(ea |v|

s

dx dv) in the torus, first for
the diffusive approximation, and second for the orginal equation by relaxing the
diffusion parameter (a key point is that the estimates are made uniform in terms of
the diffusion with the help of the hypocoercivity theory). In the last subsection we
shall turn to the nonlinear Boltzmann equation.

7.2. The decomposition of [22]. Let us state the key decomposition result which
was proved in [22, Propositions 2.1-2.3-2.4-2.5-2.6]:

Proposition 7.8. There exists a decomposition

(7.7)

{
Cf = Āf + B̄f,

Cf = Āf + B̄f

such that Ā and Ā (resp. B̄ and B̄) coincide on Ē ∩ Ē and such that Ā is bounded
from Ē into Ē and also from Ē into H1(µ−1 dv) and B̄− ξ and B̄ − ξ are dissipative
and invertible resp. in Ē (or H1(µ−1 dv)) and Ē , for any ℜe ξ = a for some a < 0.

7.3. Hypocoercivity in the small Hilbert space. We have the following theo-
rem from [24, Theorem 1.1]:

Theorem 7.9. In the space E = H1(µ−1 dx dv), the operator L satisfies: there
exists λ > 0 such that Σ(L) ⊂ {z ∈ C | Re(z) ≤ −λ} ∪ {0}, the null space of L
is spanned by µ, vi µ, 1 ≤ i ≤ d and |v|2 µ, and any solution to the initial value
problem (7.6) for any initial datum fin ∈ E satisfies

∀ t ≥ 0, ‖f(t)− Πfin‖E ≤ C e−λ t ‖fin −Πfin‖E

for some C ≥ 1, where we denote Πfin the orthogonal projection in L2(µ−1 dx dv)
onto the null space of L.

7.4. A diffusive approximation. Let us introduce the following approximate
equation:

(7.8) ∂tf = Lη(f) = C(f)− v · ∇xf + η∆xf

for any η > 0 and the corresponding approximate operator Lη in E . Then Theo-
rem 7.9 can be extended in the following way to this approximate equation:

Theorem 7.10. In the space E = H1(µ−1 dx dv), there exists λ > 0 such that for
any η ∈ (0, 1], the operator Lη satisfies: Σ(L) ⊂ {z ∈ C | Re(z) ≤ −λ} ∪ {0}, the
null space of L is spanned by µ, vi µ, 1 ≤ i ≤ d and |v|2 µ, and any solution to the
initial value problem (7.8) for any initial datum fin ∈ E satisfies

∀ t ≥ 0, ‖f(t)− Πfin‖E ≤ C e−λ t ‖fin −Πfin‖E

for some C ≥ 1, where we denote Πfin the orthogonal projection in L2(µ−1 dx dv)
onto the null space of L.
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Remark 7.11. Note the crucial point: the estimate from below λ on the spectral
gap is independent of the viscosity parameter η.

Proof of Theorem 7.10. Here we need to go back to the proof of [24, Theorem 1.1] in
[24, Section 2]. The core of the proof there is the construction of a norm equivalent
to H1 in the form

‖f‖2∗ = A ‖f‖2L2(µ−1) + α ‖∇xf‖
2
L2(µ−1)

+ β ‖(∇v + v/2)f‖2L2(µ−1) + γ 〈∇xf, (∇v + v/2)f〉L2(µ−1)

by choosing β > 0 big enough, then A > 0 big enough, then γ > 0 enough, then
α > 0 big enough (in the paper [24] all computations are done for h = µ−1/2f in L2

without weight, and when translating these computations in L2(µ−1) one should be
careful with ∇vh = µ−1/2(∇vf + v/2)f).

Then let us compute the action of the term η∆xf in the time-derivative of this
norm:

η 〈∆xf, f〉∗ = −Aη ‖∇xf‖
2
L2(µ−1) − α η

∥
∥∇2

xf
∥
∥2

L2(µ−1)

− β η ‖∇x(∇v + v/2)f‖2L2(µ−1) − γ η
〈
∇2

xf,∇x(∇v + v/2)f
〉2

L2(µ−1)
.

This only term of the right-hand side which is not non-positive is the fourth one,
and by taking α big enough (possibly taking an α slightly larger than in the original
proof in [24]), it can be controlled by the second and third terms of the right-hand
side, uniformly in terms of η. Finally the choice of α big enough is also uniform in
η. This concludes the proof. �

7.5. Localization of the spectrum in a larger Banach space for the approx-
imate operator. Let us consider for ℓ > 1 + d/2 the Banach space

Eℓ :=W ℓ,1
x L1

v

(
ea |v|s dx dv

)

defined by the norm

‖f‖Eℓ :=
ℓ∑

i=0

∫

Td×Rd

∣
∣∇i

xf
∣
∣ ea |v|

s

dx dv.

In this subsection we shall prove that the spectrum is unchanged from E to Eℓ.
This will allow to justify the estimates on the resolvent with loss of derivatives which
will be done in the next subsection.

Proposition 7.12. In the space Eℓ, for any η ∈ (0, 1], the operator Lη satisfies:
Σ(Lη) ⊂ {ξ ∈ C | ℜe (ξ) ≤ −λ} ∪ {0} (where λ is given by Theorem 7.10) and the
null space of Lη is spanned by {µ, v1µ, . . . , vdµ, |v|

2 µ}.

Proof of Theorem 7.12. We start from the decompositions

Lη = A +Bη, Lη = A+ Bη

with {
Af := Āf and Bηf := B̄f − v · ∇xf + η∆xf,

Af := Āf and Bηf := B̄f − v · ∇xf + η∆xf.
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Then first we prove that A is compact relatively to Bη. This is a trivial con-
sequence of the following facts: (1) the operator Ā regularizes in v and cuts large
velocities v ∈ Rd, (2) the Dirichlet form of Bη controls the L1 norm of the gradient
in x ∈ Td.

Proceeding as in the proof of [22, Proposition 3.4] (variant of Weyl’s theorem [18,
Chapter 4, Section 5] in Banach spaces based on the classification of the spectrum
by the Fredholm theory), we deduce that the essential spectrum of Lη is the same
as the one of Bη. Moreover Bη is dissipative with constant λ independent of η since

〈(Bη − ξ) f, f〉E ≤
ℓ∑

i=0

∫ (∫

(B̄ − ξ)
(
∇i

xf
)
sign

(
∇i

xf
)
ea |v|

s

dv

)

dx

and for each i and any fixed x ∈ Td we use the dissipativity of B̄ in L1(ea |v|
s

dv).
Hence the essential spectrum of Lη is included in {z ∈ C | Re(z) ≤ −λ}.

Then let us show that the discrete spectrum of Lη and Lη are the same in the
region {ξ ∈ C | ℜe (ξ) > −λ}: consider an isolated eigenvalue ξ of Lη in Eℓ with
multiplicity 1 (in case of higher multiplicity a similar argument can be performed
on each Jordan block) and write the eigenvalue equation

Af = ξ f − Bηf

with ℜe (ξ) > −λ. Then by using the dissipativity of Bη in Eℓ and E and the
fact that A is bounded from Eℓ to E (it is immediate since A0 is bounded from
L1(ea |v|s dv) into H1

v (µ
−1) and by Sobolev embedding W ℓ,1

x → H1
x in the torus as

ℓ > 1 + d/2), we deduce that f ∈ E and therefore ξ is an eigenvalue of Lη in E.
The converse implication (that the eivenvalues of Lη are eigenvalues of Lη) is trivial
from the fact that these eigenvalues are known in an explicit ways (note that a more
general argument could be the use of the regularizing properties in v of A, and in x
of η∆x). �

7.6. Hypocoercivity in a larger Banach space.

Theorem 7.13. In the space Eℓ with ℓ > d/2 + 3, the semigroup of the operator L
satisfies: for any λ1 ∈ (0, λ), any solution to the initial value problem (7.6) for any
initial datum fin ∈ Eℓ satisfies

∀ t ≥ 0, ‖f(t)− Πfin‖E0 ≤ C1 e
−λ1 t

∥
∥〈v〉2 (fin − Πfin)

∥
∥
Eℓ

for some C1 ≥ 1, where we denote Π the orthogonal projection in L2(µ−1) onto the
null space of L.

Remark 7.14. As before the optimal rate λ1 = λ is reachable by refining the ex-
pansion of the semigroup.

Proof of Theorem 7.13. We first work at the level of the approximate operator Lη,
and we start from the already used representation (see for instance [26, Chapter 1,
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Section 1.7] and [31, Theorem 1.1])

(7.9) etLη

(

f − Π̃f
)

=
1

2iπ

∫ a+i∞

a−i∞

eztRη(z) f dz

= lim
M→∞

1

2iπ

∫ λ1+iM

λ1−iM

eztRη(z) f dz := lim
M→∞

1

2iπ
IM,η(f)

for any λ1 > λ and where Rη is the resolvent of Lη in Eℓ and Π̃ the spectral projector
of Lη for the eigenvalue 0 in Eℓ; this is justified in Eℓ by the localization of the sectrum
of Lη in Proposition 7.12.

Consider again the decompositions Lη = A+Bη and Lη = A+ Bη with
{
Af := Āf and Bηf := B̄f − v · ∇xf + η∆xf,

Af := Āf and Bηf := B̄f − v · ∇xf + η∆xf.

We know that for λ1 ∈ (0, λ), the resolvent Rη(ξ) of Lη with ℜe ξ = λ1 is well-
defined in Eℓ, with the representation (7.9). Moreover we have seen in the proof
of Proposition 7.12 that A is bounded from Eℓ into E and Bη − ξ is dissipative for
ℜe ξ = λ1 uniformly in terms of η. Therefore we can write the factorization formula
as in Theorem 2.1:

Rη(ξ) = − (Bη − ξ)−1 +Rη(ξ)A (Bη − ξ)−1

where Rη(ξ) is the resolvent of Lη in E.
We now estimate IM,η using that

‖Rη(ξ)‖Eℓ→E0
≤

∥
∥(Bη − ξ)−1

∥
∥
Eℓ→Eℓ

+ ‖Rη(ξ)‖E→E0
‖A‖Eℓ−2→E

∥
∥(Bη − ξ)−1

∥
∥
Eℓ→Eℓ−2

where we have used that the norm of E0 is controlled by the norm of E and the

fact that for because g ∈ Eℓ−2 we have A g ∈ W ℓ−2,1
x (H1

v ) ⊂ H
[ℓ−d/2]
x (H1

v ) ⊂ E by
ℓ− d/2 > 1.

Finally by using

‖(Bη − ξ) f‖Eℓ−2

≤
C

|ℑmξ|2
∥
∥〈v〉2f

∥
∥
Eℓ

(loss of twice the graph norm) for some constant C independent of η, we deduce
that for ℓ > d/2 + 3:

‖Rη(ξ)f‖E0 ≤
C

|ℑmξ|2
∥
∥〈v〉2f

∥
∥
Eℓ

for some constant C independent of η and therefore we obtain the decay of the
semigroup of Lη by the representation formula (7.9).

Finally it is clear (from a Gronwall estimate for instance) that the semigroup of
Lη pointwise converges to the semigroup of L in Eℓ as η → 0. Therefore we can let
the parameter η goes to 0 since the estimate does not depend on η, and we obtain
the desired estimate for the semigroup of L, which concludes the proof. �
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7.7. Relaxation for the nonlinear Boltzmann equation. Let us first give a
theorem combining existing results:

Theorem 7.15 ([12]). Let us (ft)t≥0 be a nonnegative nonzero smooth solution of
(7.4) such that for k, s big enough

sup
t≥0

(
‖f‖Hk(Td×Rd) + ‖f‖L1(1+|v|s)

)
≤ C < +∞.

Then ([21, Theorem 1.1]) for some τ , K, A, q > 0

inf
t≥τ, x∈Td

ft(x, v) ≥ K eA |v|s

and there exists an explicit function ϕ = ϕ(t) which goes to 0 as t goes to infinity
such that

∀ t ≥ 0, ‖ft −M‖W k,1
x (L1(ea|v|

s
)) ≤ ϕ(t)

where M = Πf is the Gaussian equilibrium associated with f .

Proof of Theorem [21]. This theorem is an immediate consequence of [12, Theo-
rem 2] together with lower bounds proved in [21, Theorem 1.1] and the proof that
the moments L1(ea|v|

s

), s ∈ (0, 1) appears and are then uniformly bounded in [22,
Lemma 4.7] and [20, Proposition 3.2] (in the latter paper the proof was done in the
homogeneous case, however one can integrate in x these moment estimates by using
the uniform bounds in x from above and below on f). �

Then we write the nonlinear equation for the fluctuation f =M + h as

∂th = Lh+Q(h, h)

and we use that (for some k big enough in terms of the dimension)

‖Q(h, h)‖W k,1
x (L1(ea|v|

s
)) ≤ C ‖h‖W k,1

x (L1(ea|v|
s
)) ‖h(1 + |v|γ)‖W k,1

x (L1(ea|v|
s
)).

The latter inequality is a consequence of the L1 theory:

‖Q(h, h)‖L1(ea|v|
s
) ≤ C ‖h‖L1(ea|v|

s
) ‖h(1 + |v|γ)‖L1(ea|v|

s
)

(see for instance [20]) together with the Leibniz formula for the derivatives in x, and
Sobolev embeddings.

Finally by elementary Gronwall estimates we obtain the following theorem:

Theorem 7.16. Let us (ft)t≥0 be a nonnegative nonzero smooth solution of (7.4)
such that for k, s big enough

sup
t≥0

(
‖f‖Hk(Td×Rd) + ‖f‖L1(1+|v|s)

)
≤ C < +∞.

Then for some C > 0 and λ1 ∈ (0, λ) (where λ is given by the rate of decay of the
linearized semigroup in W k,1

x (L1(ea|v|
s

)))

∀ t ≥ 0, ‖ft −M‖W k,1
x (L1(ea|v|s)) ≤ C e−λ t

where M = Πf is the Gaussian equilibrium associated with f .
In particular we deduce a proof of the exponential decay of the relative entropy:

∀ t ≥ 0,

∫

ft log
ft
M

dxdv ≤ C e−λ t.
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7.8. Other applications. Here are some natural questions left open by this study:

• The extension of Theorem 7.16 to the Boltzmann equation for non-cutoff
hard and moderately soft potentials (in the case of long-range interactions)

• The extension of Theorem 7.16 in the case of a confining potential as in
Theorem 5.8 for the kinetic Fokker-Planck equation.

Moreover two other interesting applications of our new estimates should be looked
in the futur:

• To develop a complete theory of nonlinear stability around the Maxwellian
equilibrium in W k,1

x (L1(ea|v|
s

)).
• To develop a quantitative close-to-homogeneous theory for the Boltzmann
equation, improving on the non-constructive results [1]. This is allowed
by our estimates since the functional space of the nonlinear stability (1) is
compatible with the nonlinear flow of the spatially homogeneous Boltzmann
equation.
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Mittag-Leffler. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957.

[8] Carlen, E. A., and Carvalho, M. C. Strict entropy production bounds and stability of
the rate of convergence to equilibrium for the Boltzmann equation. J. Statist. Phys. 67, 3-4
(1992), 575–608.

[9] Carlen, E. A., and Carvalho, M. C. Entropy production estimates for Boltzmann equa-
tions with physically realistic collision kernels. J. Statist. Phys. 74, 3-4 (1994), 743–782.

[10] Cercignani, C. H-theorem and trend to equilibrium in the kinetic theory of gases. Arch.
Mech. (Arch. Mech. Stos.) 34, 3 (1982), 231–241 (1983).

[11] Cercignani, C. The Boltzmann equation and its applications, vol. 67 of Applied Mathematical
Sciences. Springer-Verlag, New York, 1988.

[12] Desvillettes, L., and Villani, C. On the trend to global equilibrium for spatially inho-
mogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 2 (2005), 245–316.

[13] Dolbeault, J., Mouhot, C., and Schmeiser, C. Hypocoercivity for kinetic equations
conserving mass. ArXiv eprint 1005.1495.

[14] Dolbeault, J., Mouhot, C., and Schmeiser, C. Hypocoercivity for kinetic equations
with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347, 9-10 (2009), 511–516.



FACTORIZATION FOR NON-SYMETRIC OPERATORS AND EXPONENTIAL H-THEOREM31

[15] Grad, H. Principles of the kinetic theory of gases. In Handbuch der Physik (herausgegeben
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On leave from: CNRS & École Normale Supérieure

DMA, UMR CNRS 8553

45, rue d’Ulm

F 75230 Paris cedex 05 FRANCE

e-mail: Clement.Mouhot@ens.fr


	1. Introduction
	2. The factorization theorem
	3. Semigroup decay versus resolvent estimates
	4. Spectral gap estimates
	5. Application to Fokker-Planck equations
	6. Application to the linear Boltzmann equation
	7. Application to the nonlinear Boltzmann equation
	References

