Corrigendum to "Testing for unit roots with flow data and varying sampling frequency" [Journal of Econometrics 119(1) (2004) 1-18]

Marcus J. Chambers

To cite this version:

Marcus J. Chambers. Corrigendum to "Testing for unit roots with flow data and varying sampling frequency" [Journal of Econometrics 119(1) (2004) 1-18]. Econometrics, 2008, 144 (2), pp.524. 10.1016/j.jeconom.2008.04.001 . hal-00495782

HAL Id: hal-00495782

https://hal.science/hal-00495782

Submitted on 29 Jun 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Author's Accepted Manuscript

Corrigendum to "Testing for unit roots with flow data and varying sampling frequency" [Journal of Econometrics 119(1) (2004) 1-18]

Marcus J. Chambers

PII:

DOI: doi:10.1016/j.jeconom.2008.04.001
Reference:
ECONOM3011

www.elsevier.com/locate/jeconom

To appear in: Journal of Econometrics

Cite this article as: Marcus J. Chambers, Corrigendum to "Testing for unit roots with flow data and varying sampling frequency" [Journal of Econometrics 119(1) (2004) 1-18], Journal of Econometrics (2008), doi:10.1016/j.jeconom.2008.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

[^0]
Corrigendum to "Testing for Unit Roots with Flow Data and Varying Sampling Frequency" [Journal of Econometrics 119(1) (2004) 1-18]

Marcus J. Chambers
University of Essex

April 2008

Address for Correspondence: Professor Marcus J. Chambers, Department of Economics, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, England. Tel: +44 1206 872756. Fax: +441206 872724. E-mail: mchamb@essex.ac.uk.

URL: http://privatewww.essex.ac.uk/~ mchamb

Chambers (2004) considers the properties of tests for unit roots in flow data satisfying

$$
\begin{equation*}
d y(t)=\gamma y(t) d t+\sigma d w(t), \quad t>0 \tag{1}
\end{equation*}
$$

where $w(t)$ denotes a standard Wiener process and $y(0)$ is assumed to be fixed. Observations on $y(t)$ are made at intervals of length $h>0$ over the interval $0<t \leq N$ and take the form

$$
\begin{equation*}
y_{t h}=\int_{t h-h}^{t h} y(r) d r, \quad t=1, \ldots, T \tag{2}
\end{equation*}
$$

where the sample size $T=N / h$. Theorem 1 shows that, under the maintained/alternative hypothesis $\gamma \neq 0$, the observations satisfy $y_{t h}=\alpha_{h} y_{t h-h}+u_{t h}$, where $\alpha_{h}=e^{\gamma h}$, while under the null hypothesis $\gamma=0$ they satisfy $y_{t h}=y_{t h-h}+u_{t h}$. It is claimed that these relations hold for $t=1, \ldots, T$, implying that the first observation satisfies $y_{h}=\alpha_{h} y(0)+u_{h}$ under the maintained hypothesis and $y_{h}=y(0)+u_{h}$ under the null. In fact, the stated solutions only hold for $t=2, \ldots, T$, because integrating the solution to (1), given by

$$
y(t)=e^{\gamma t} y(0)+\sigma \int_{0}^{t} e^{\gamma(t-s)} d w(s), \quad t>0
$$

over the interval $(0,1]$ shows that under the alternative hypothesis the first observation satisfies $y_{h}=\gamma^{-1}\left(e^{\gamma h}-1\right) y(0)+u_{h}$, while under the null $y_{h}=h y(0)+u_{h}$. In each case the coefficient on $y(0)$ is $O(h)$ rather than $O(1)$, and here this correct treatment of the initial condition is incorporated to amend the relevant results presented in Chambers (2004).

The asymptotic analysis considers three scenarios in which the sampling frequency increases ($h \downarrow 0$) while the sample size $T \uparrow \infty$ in each case; these are further classified into two cases concerning $y(0)$, namely: (1) $y(0)=0$; and (2) $y(0) \neq 0$. It is also convenient to index each of h, N and T by a generic index $n \uparrow \infty$, in which case $T_{n}=N_{n} / h_{n}$. The three scenarios are: (a) $N_{n}=N$ (fixed) and $h_{n} \downarrow 0$; (b) $N_{n} \uparrow \infty$ and $h_{n} \downarrow 0$ such that $h_{n} N_{n}^{1 / 2} \uparrow \infty$; and (c) $N_{n} \downarrow 0$ and $h_{n} \downarrow 0$. The motivation for considering these is discussed in the original article.

Two least squares regressions are considered in Chambers (2004) based on data indexed by n of the form $y_{n t}=y_{t h_{n}}$. The first is given by $y_{n t}=\widehat{\alpha}_{n} y_{n t-1}+\widehat{u}_{n t}$ while the second includes an intercept and is of the form $y_{n t}=\tilde{\mu}+\tilde{\alpha}_{n} y_{n t-1}+\tilde{u}_{n t}$. All results in Chambers (2004) concerning $\widehat{\alpha}_{n}$ when $y(0)=0$ are correct as are all the results for $\tilde{\alpha}_{n}$ because the second regression eradicates the effects of $y(0)$ regardless of its value. It is therefore only the results for the regression without an intercept when $y(0) \neq 0$ that need amending i.e. those for $\widehat{\alpha}_{n}$ in Case (2).

Under the null hypothesis $\gamma=0$ the data satisfy

$$
\begin{equation*}
y_{n t}=y_{n t-1}+u_{n t}, \quad t=2, \ldots, T_{n} ; \quad y_{n 1}=h_{n} y(0)+u_{n 1} \tag{3}
\end{equation*}
$$

implying that $y_{n t}=\sum_{j=1}^{t} u_{n j}+h_{n} y(0)$; the original article used $y_{n t}=\sum_{j=1}^{t} u_{n j}+y(0)$. It is
convenient to define the following functionals (where $W(r)$ is a Wiener process on $r \in[0,1]$):

$$
\begin{aligned}
P(N, y(0), W) & =\frac{N \sigma^{2}}{2}\left(W(1)^{2}-\frac{2}{3}\right)+N^{1 / 2} \sigma y(0) W(1) \\
Q(N, y(0), W) & =N^{2} \sigma^{2} \int_{0}^{1} W(r)^{2} d r+2 N^{3 / 2} \sigma y(0) \int_{0}^{1} W(r) d r+N y(0)^{2} \\
Z(W) & =\frac{\frac{1}{2}\left(W(1)^{2}-\frac{2}{3}\right)}{\int_{0}^{1} W(r)^{2} d r}
\end{aligned}
$$

The amended parts of Theorem 2, and Lemma A. 1 upon which it is based, are:
Theorem 2. Let $\left\{\left\{y_{n t}\right\}_{t=1}^{T_{n}}\right\}_{n=1}^{\infty}$ denote a triangular array of random variables generated by (3). Then, as $n \uparrow \infty$ and $h_{n} \downarrow 0$, when $y(0) \neq 0$:
(a) If $N_{n}=N, \frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-1\right) \Rightarrow \frac{P(N, y(0), W)}{Q(N, y(0), W)}$;
(b) If $N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty, T_{n}\left(\widehat{\alpha}_{n}-1\right) \Rightarrow Z(W)$;
(c) If $N_{n} \downarrow 0, \frac{N_{n}^{1 / 2}}{h_{n}}\left(\widehat{\alpha}_{n}-1\right) \Rightarrow \frac{\sigma W(1)}{y(0)}$.

Lemma A.1. Let $\left\{\left\{y_{n t}\right\}_{t=1}^{T_{n}}\right\}_{n=1}^{\infty}$ denote a triangular array of random variables generated by (3). Then, as $n \uparrow \infty$ and $h_{n} \downarrow 0$, when $y(0) \neq 0$:
(a) If $N_{n}=N, \frac{1}{h_{n}^{2}} \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} \Rightarrow P(N, y(0), W), \frac{1}{h_{n}} \sum_{t=1}^{T_{n}} y_{n t-1}^{2} \Rightarrow Q(N, y(0), W)$;
(b) If $N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty$, the limits in Case (1) apply;
(c) If $N_{n} \downarrow 0, \frac{1}{h_{n}^{2} N_{n}^{1 / 2}} \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} \Rightarrow \sigma y(0) W(1), \frac{1}{h_{n} N_{n}} \sum_{t=1}^{T_{n}} y_{n t-1}^{2} \xrightarrow{p} y(0)^{2}$.

Proof of Lemma A.1. The objective is to express the sample moments in terms of the random function $X_{n}(r)=T_{n}^{-1 / 2} h_{n}^{-3 / 2} \sum_{j=1}^{\left[T_{n} r\right]} \Rightarrow \sigma W(r)$ as $n \uparrow \infty$. It can be shown that

$$
\begin{align*}
& \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t}=\frac{N_{n} h_{n}^{2}}{2} X_{n}(1)^{2}-\frac{h_{n}^{2} N_{n}}{2} \frac{1}{T_{n}} \sum_{t=1}^{T_{n}}\left(u_{n t}^{h}\right)^{2}+N_{n}^{1 / 2} h_{n}^{2} y(0) X_{n}(1) \tag{4}\\
& \sum_{t=1}^{T_{n}} y_{n t-1}^{2}=N_{n}^{2} h_{n} \int_{0}^{1} X_{n}(r)^{2} d r+2 h_{n} N_{n}^{3 / 2} y(0) \int_{0}^{1} X_{n}(r) d r+N_{n} h_{n} y(0)^{2} \tag{5}
\end{align*}
$$

where $u_{n t}^{h}=h_{n}^{-3 / 2} u_{n t}$. The results follow straightforwardly from these expressions.
Under the alternative hypothesis $\gamma \neq 0$ the data satisfy

$$
\begin{equation*}
y_{n t}=\alpha_{n} y_{n t-1}+u_{n t}, \quad t=2, \ldots, T_{n} ; \quad y_{n 1}=\gamma^{-1}\left(\alpha_{n}-1\right) y(0)+u_{n 1} \tag{6}
\end{equation*}
$$

implying that $y_{n t}=\sum_{j=1}^{t} e^{(t-j) \gamma h_{n}} u_{n j}+\gamma^{-1} e^{t \gamma h_{n}}\left(1-e^{-\gamma h_{n}}\right) y(0)$; the original article used
$y_{n t}=\sum_{j=1}^{t} e^{(t-j) \gamma h_{n}} u_{n j}+e^{t \gamma h_{n}} y(0)$. It is convenient to define the functionals

$$
\begin{aligned}
& \Theta(N, y(0), J)=\sigma^{2} N\left(J(1)^{2}-\frac{2}{3}\right)+2 \sigma N^{1 / 2} e^{\gamma N} y(0) J(1)+\left(e^{2 \gamma N}-1\right) y(0)^{2}, \\
& \Phi(N, y(0), J)=\sigma^{2} N^{2} \int_{0}^{1} J(r)^{2} d r+2 \sigma y(0) N^{3 / 2} \int_{0}^{1} e^{r \gamma N} J(r) d r+\frac{\left(e^{2 \gamma N}-1\right)}{2 \gamma} y(0)^{2},
\end{aligned}
$$

where $J(r)=\int_{0}^{r} e^{(r-s) \gamma N} d W(s)$. The amended parts of Theorem 3 and Lemma A. 2 are:
Theorem 3. Let $\left\{\left\{y_{n t}\right\}_{t=1}^{T_{n}}\right\}_{n=1}^{\infty}$ denote a triangular array of random variables generated by (6). Then, as $n \uparrow \infty$ and $h_{n} \downarrow 0$, when $y(0) \neq 0$:
(a) If $N_{n}=N, \frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-\alpha_{n}\right) \Rightarrow \frac{\Theta(N, y(0), J)}{2 \Phi(N, y(0), J)}-\gamma$ and $\frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-1\right) \Rightarrow \frac{\Theta(N, y(0), J)}{2 \Phi(N, y(0), J)}$;
(b)(i) If $\gamma>0, N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty, \frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-\alpha_{n}\right) \xrightarrow{p} 0$ and $\frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-1\right) \xrightarrow{p} \gamma$;
(b)(ii) If $\gamma<0, N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty, \frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-\alpha_{n}\right) \xrightarrow{p} \gamma\left(1+\frac{2}{3} \sigma^{2}\right)$ and

$$
\frac{1}{h_{n}}\left(\widehat{\alpha}_{n}-1\right) \xrightarrow{p} 2 \gamma\left(1+\frac{1}{3} \sigma^{2}\right) ;
$$

(c) If $N_{n} \downarrow 0, \frac{N_{n}^{1 / 2}}{h_{n}}\left(\widehat{\alpha}_{n}-\alpha_{n}\right) \Rightarrow \frac{\sigma W(1)}{y(0)}$ and $\frac{N_{n}^{1 / 2}}{h_{n}}\left(\widehat{\alpha}_{n}-1\right) \Rightarrow \frac{\sigma W(1)}{y(0)}$.

Lemma A.2. Let $\left\{\left\{y_{n t}\right\}_{t=1}^{T_{n}}\right\}_{n=1}^{\infty}$ denote a triangular array of random variables generated by (6). Then, as $n \uparrow \infty$ and $h_{n} \downarrow 0$, when $y(0) \neq 0$:
(a) If $N_{n}=N, \frac{1}{h_{n}^{2}} \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} \Rightarrow \frac{1}{2}[\Theta(N, y(0), J)-2 \gamma \Phi(N, y(0), J)]$,

$$
\frac{1}{h_{n}} \sum_{t=1}^{T_{n}} y_{n t-1}^{2} \Rightarrow \Phi(N, y(0), J)
$$

(b)(i) If $\gamma>0, N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty, \frac{1}{h_{n}^{2} e^{2 \gamma N_{n}}} \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} \xrightarrow{p} 0$,

$$
\frac{1}{h_{n} e^{2 \gamma N_{n}}} \sum_{t=1}^{T_{n}} y_{n t-1}^{2} \xrightarrow{p} \frac{1}{4 \gamma^{2}}(\eta+\sqrt{2 \gamma} y(0))^{2} ;
$$

(b)(ii) If $\gamma<0, N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty, \frac{1}{h_{n}^{2} N_{n}} \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} \xrightarrow{p}-\frac{1}{2}\left(1+\frac{2}{3} \sigma^{2}\right)$,

$$
\frac{1}{h_{n} N_{n}} \sum_{t=1}^{T_{n}} y_{n t-1}^{2} \xrightarrow{p}-\frac{1}{2 \gamma} ;
$$

(c) If $N_{n} \downarrow 0, \frac{1}{h_{n} N_{n}^{1 / 2}} \sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} \Rightarrow \sigma y(0) W(1), \frac{1}{h_{n} N_{n}} \sum_{t=1}^{T_{n}} y_{n t-1}^{2} \xrightarrow{p} y(0)^{2}$.

Proof of Lemma A.2. Defining $y_{n 0}=\gamma^{-1}\left(e^{\gamma h_{n}}-1\right) y(0)$, some algebra yields

$$
\begin{aligned}
\sum_{t=1}^{T_{n}} y_{n t-1}^{2} & =e^{-2 \gamma h_{n}} N_{n}^{2} h_{n} \int_{0}^{1}\left(\int_{0}^{r-1 / T_{n}} e^{(r-s) \gamma N_{n}} d X_{n}(s)\right)^{2} d r \\
& +2 e^{-2 \gamma h_{n}} N_{n}^{3 / 2} y(0) \frac{\left(1-e^{-\gamma h_{n}}\right)}{\gamma} \int_{0}^{1} e^{r \gamma N_{n}}\left(\int_{0}^{r-1 / T_{n}} e^{(r-s) \gamma N_{n}} d X_{n}(s)\right) d r \\
& +\frac{\left(1-e^{-\gamma h_{n}}\right)^{2}\left(e^{2 \gamma N_{n}}-e^{2 \gamma h_{n}}\right)}{\gamma^{2}\left(e^{2 \gamma h_{n}}-1\right)} y(0)^{2}+y_{n 0}^{2} \\
\sum_{t=1}^{T_{n}} y_{n t-1} u_{n t} & =\frac{1}{2 e^{\gamma h_{n}}}\left[y_{n T_{n}}^{2}-y_{n 0}^{2}-\left(e^{2 \gamma h_{n}}-1\right) \sum_{t=1}^{T_{n}} y_{n t-1}^{2}-\sum_{t=1}^{T_{n}} u_{n t}^{2}\right]
\end{aligned}
$$

where $y_{n T_{n}}=h_{n} N_{n}^{1 / 2} \int_{0}^{1} e^{(1-s) \gamma N_{n}} d X_{n}(s)+\gamma^{-1}\left(1-e^{-\gamma h_{n}}\right) e^{\gamma N_{n}} y(0)$. The results then follow by examining each case in turn and also utilising Lemma A. 3 (taking $c=\gamma N_{n}$).

The results in Theorems 2 and 3 enable the consistency properties of tests for unit roots based on the normalised estimators to be established. The amended part of Theorem 4 is:

Theorem 4. Let $\left\{\left\{y_{n t}\right\}_{t=1}^{T_{n}}\right\}_{n=1}^{\infty}$ denote a triangular array of random variables generated by (6), and consider testing the null hypothesis $\gamma=0$ against a fixed alternative $\gamma \neq 0$. Then, as $n \uparrow \infty$ and $h_{n} \downarrow 0$, when $y(0) \neq 0$:
(a) If $N_{n}=N, h_{n}^{-1}\left(\widehat{\alpha}_{n}-1\right)$ is not consistent.
(b) If $N_{n} \uparrow \infty$ and $h_{n} N_{n}^{1 / 2} \uparrow \infty, T_{n}\left(\widehat{\alpha}_{n}-1\right)$ is consistent.
(c) If $N_{n} \downarrow 0, N_{n}^{1 / 2} h_{n}^{-1}\left(\widehat{\alpha}_{n}-1\right)$ is not consistent.

From a qualitative point of view it is now clear that it is not possible to consistently test for a unit root in cases (a) and (c). As shown by Perron (1991) for the case of a stock variable, an increasing span of data is also required with flow variables for consistent unit root testing based on the statistics considered here.

Acknowledgement

I thank the Co-Editor, Peter Robinson, for his feedback which has helped to improve the presentation of the results.

References

Chambers, M.J., 2004. Testing for unit roots with flow data and varying sampling frequency. Journal of Econometrics 119, 1-18.

Perron, P., 1991, Test consistency with varying sampling frequency. Econometric Theory 7, 341-368.

[^0]: ${ }^{2}$ DOI of original article: 10.1016/S0304-4076(03)00152-0.

