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Chambers (2004) considers the properties of tests for unit roots in flow data satisfying

dy(t) = γy(t)dt + σdw(t), t > 0, (1)

where w(t) denotes a standard Wiener process and y(0) is assumed to be fixed. Observations

on y(t) are made at intervals of length h > 0 over the interval 0 < t ≤ N and take the form

yth =
∫ th

th−h
y(r)dr, t = 1, . . . , T, (2)

where the sample size T = N/h. Theorem 1 shows that, under the maintained/alternative

hypothesis γ 6= 0, the observations satisfy yth = αhyth−h + uth, where αh = eγh, while under

the null hypothesis γ = 0 they satisfy yth = yth−h + uth. It is claimed that these relations

hold for t = 1, . . . , T , implying that the first observation satisfies yh = αhy(0) + uh under

the maintained hypothesis and yh = y(0) + uh under the null. In fact, the stated solutions

only hold for t = 2, . . . , T , because integrating the solution to (1), given by

y(t) = eγty(0) + σ

∫ t

0
eγ(t−s)dw(s), t > 0,

over the interval (0, 1] shows that under the alternative hypothesis the first observation

satisfies yh = γ−1(eγh − 1)y(0) + uh, while under the null yh = hy(0) + uh. In each case the

coefficient on y(0) is O(h) rather than O(1), and here this correct treatment of the initial

condition is incorporated to amend the relevant results presented in Chambers (2004).

The asymptotic analysis considers three scenarios in which the sampling frequency in-

creases (h↓0) while the sample size T ↑∞ in each case; these are further classified into two

cases concerning y(0), namely: (1) y(0) = 0; and (2) y(0) 6= 0. It is also convenient to index

each of h, N and T by a generic index n↑∞, in which case Tn = Nn/hn. The three scenarios

are: (a) Nn = N (fixed) and hn ↓ 0; (b) Nn ↑∞ and hn ↓ 0 such that hnN
1/2
n ↑∞; and (c)

Nn ↓0 and hn ↓0. The motivation for considering these is discussed in the original article.

Two least squares regressions are considered in Chambers (2004) based on data indexed

by n of the form ynt = ythn . The first is given by ynt = α̂nynt−1 + ûnt while the second

includes an intercept and is of the form ynt = µ̃ + α̃nynt−1 + ũnt. All results in Chambers

(2004) concerning α̂n when y(0) = 0 are correct as are all the results for α̃n because the

second regression eradicates the effects of y(0) regardless of its value. It is therefore only the

results for the regression without an intercept when y(0) 6= 0 that need amending

i.e. those for α̂n in Case (2).

Under the null hypothesis γ = 0 the data satisfy

ynt = ynt−1 + unt, t = 2, . . . , Tn; yn1 = hny(0) + un1, (3)

implying that ynt =
∑t

j=1 unj +hny(0); the original article used ynt =
∑t

j=1 unj + y(0). It is
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convenient to define the following functionals (where W (r) is a Wiener process on r ∈ [0, 1]):

P (N, y(0),W ) =
Nσ2

2

(
W (1)2 − 2

3

)
+ N1/2σy(0)W (1),

Q(N, y(0),W ) = N2σ2
∫ 1

0
W (r)2dr + 2N3/2σy(0)

∫ 1

0
W (r)dr + Ny(0)2,

Z(W ) =
1
2

(
W (1)2 − 2

3

)
∫ 1
0 W (r)2dr

.

The amended parts of Theorem 2, and Lemma A.1 upon which it is based, are:

Theorem 2. Let {{ynt}Tn
t=1}∞n=1 denote a triangular array of random variables generated by

(3). Then, as n↑∞ and hn ↓0, when y(0) 6= 0:

(a) If Nn = N ,
1
hn

(α̂n − 1) ⇒ P (N, y(0),W )
Q(N, y(0),W )

;

(b) If Nn ↑∞ and hnN
1/2
n ↑∞, Tn(α̂n − 1) ⇒ Z(W );

(c) If Nn ↓0,
N

1/2
n

hn
(α̂n − 1) ⇒ σW (1)

y(0)
.

Lemma A.1. Let {{ynt}Tn
t=1}∞n=1 denote a triangular array of random variables generated

by (3). Then, as n↑∞ and hn ↓0, when y(0) 6= 0:

(a) If Nn = N ,
1
h2

n

Tn∑
t=1

ynt−1unt ⇒ P (N, y(0),W ),
1
hn

Tn∑
t=1

y2
nt−1 ⇒ Q(N, y(0),W );

(b) If Nn ↑∞ and hnN
1/2
n ↑∞, the limits in Case (1) apply;

(c) If Nn ↓0,
1

h2
nN

1/2
n

Tn∑
t=1

ynt−1unt ⇒ σy(0)W (1),
1

hnNn

Tn∑
t=1

y2
nt−1

p→ y(0)2.

Proof of Lemma A.1. The objective is to express the sample moments in terms of the

random function Xn(r) = T
−1/2
n h

−3/2
n

∑[Tnr]
j=1 ⇒ σW (r) as n↑∞. It can be shown that

Tn∑
t=1

ynt−1unt =
Nnh2

n

2
Xn(1)2 − h2

nNn

2
1
Tn

Tn∑
t=1

(
uh

nt

)2
+ N1/2

n h2
ny(0)Xn(1), (4)

Tn∑
t=1

y2
nt−1 = N2

nhn

∫ 1

0
Xn(r)2dr + 2hnN3/2

n y(0)
∫ 1

0
Xn(r)dr + Nnhny(0)2, (5)

where uh
nt = h

−3/2
n unt. The results follow straightforwardly from these expressions. 2

Under the alternative hypothesis γ 6= 0 the data satisfy

ynt = αnynt−1 + unt, t = 2, . . . , Tn; yn1 = γ−1(αn − 1)y(0) + un1, (6)

implying that ynt =
∑t

j=1 e(t−j)γhnunj + γ−1etγhn(1 − e−γhn)y(0); the original article used

2
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ynt =
∑t

j=1 e(t−j)γhnunj + etγhny(0). It is convenient to define the functionals

Θ(N, y(0), J) = σ2N
(
J(1)2 − 2

3

)
+ 2σN1/2eγNy(0)J(1) +

(
e2γN − 1

)
y(0)2,

Φ(N, y(0), J) = σ2N2
∫ 1

0
J(r)2dr + 2σy(0)N3/2

∫ 1

0
erγNJ(r)dr +

(e2γN − 1)
2γ

y(0)2,

where J(r) =
∫ r
0 e(r−s)γNdW (s). The amended parts of Theorem 3 and Lemma A.2 are:

Theorem 3. Let {{ynt}Tn
t=1}∞n=1 denote a triangular array of random variables generated by

(6). Then, as n↑∞ and hn ↓0, when y(0) 6= 0:

(a) If Nn = N ,
1
hn

(α̂n − αn) ⇒ Θ(N, y(0), J)
2Φ(N, y(0), J)

− γ and
1
hn

(α̂n − 1) ⇒ Θ(N, y(0), J)
2Φ(N, y(0), J)

;

(b)(i) If γ > 0, Nn ↑∞ and hnN
1/2
n ↑∞,

1
hn

(α̂n − αn)
p→ 0 and

1
hn

(α̂n − 1)
p→ γ;

(b)(ii) If γ < 0, Nn ↑∞ and hnN
1/2
n ↑∞,

1
hn

(α̂n − αn)
p→ γ

(
1 + 2

3σ2
)

and

1
hn

(α̂n − 1)
p→ 2γ

(
1 + 1

3σ2
)
;

(c) If Nn ↓0,
N

1/2
n

hn
(α̂n − αn) ⇒ σW (1)

y(0)
and

N
1/2
n

hn
(α̂n − 1) ⇒ σW (1)

y(0)
.

Lemma A.2. Let {{ynt}Tn
t=1}∞n=1 denote a triangular array of random variables generated

by (6). Then, as n↑∞ and hn ↓0, when y(0) 6= 0:

(a) If Nn = N ,
1
h2

n

Tn∑
t=1

ynt−1unt ⇒ 1
2 [Θ(N, y(0), J)− 2γΦ(N, y(0), J)],

1
hn

Tn∑
t=1

y2
nt−1 ⇒ Φ(N, y(0), J);

(b)(i) If γ > 0, Nn ↑∞ and hnN
1/2
n ↑∞,

1
h2

ne2γNn

Tn∑
t=1

ynt−1unt
p→ 0,

1
hne2γNn

Tn∑
t=1

y2
nt−1

p→ 1
4γ2

(
η +

√
2γy(0)

)2
;

(b)(ii) If γ < 0, Nn ↑∞ and hnN
1/2
n ↑∞,

1
h2

nNn

Tn∑
t=1

ynt−1unt
p→ −1

2

(
1 + 2

3σ2
)
,

1
hnNn

Tn∑
t=1

y2
nt−1

p→ − 1
2γ

;

(c) If Nn ↓0,
1

hnN
1/2
n

Tn∑
t=1

ynt−1unt ⇒ σy(0)W (1),
1

hnNn

Tn∑
t=1

y2
nt−1

p→ y(0)2.

3
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Proof of Lemma A.2. Defining yn0 = γ−1(eγhn − 1)y(0), some algebra yields

Tn∑
t=1

y2
nt−1 = e−2γhnN2

nhn

∫ 1

0

(∫ r−1/Tn

0
e(r−s)γNndXn(s)

)2

dr

+ 2e−2γhnN3/2
n y(0)

(1− e−γhn)
γ

∫ 1

0
erγNn

(∫ r−1/Tn

0
e(r−s)γNndXn(s)

)
dr

+
(1− e−γhn)2(e2γNn − e2γhn)

γ2(e2γhn − 1)
y(0)2 + y2

n0,

Tn∑
t=1

ynt−1unt =
1

2eγhn

[
y2

nTn
− y2

n0 − (e2γhn − 1)
Tn∑
t=1

y2
nt−1 −

Tn∑
t=1

u2
nt

]
,

where ynTn = hnN
1/2
n

∫ 1
0 e(1−s)γNndXn(s)+ γ−1(1− e−γhn)eγNny(0). The results then follow

by examining each case in turn and also utilising Lemma A.3 (taking c = γNn). 2

The results in Theorems 2 and 3 enable the consistency properties of tests for unit roots

based on the normalised estimators to be established. The amended part of Theorem 4 is:

Theorem 4. Let {{ynt}Tn
t=1}∞n=1 denote a triangular array of random variables generated by

(6), and consider testing the null hypothesis γ = 0 against a fixed alternative γ 6= 0. Then,

as n↑∞ and hn ↓0, when y(0) 6= 0:

(a) If Nn = N , h−1
n (α̂n − 1) is not consistent.

(b) If Nn ↑∞ and hnN
1/2
n ↑∞, Tn(α̂n − 1) is consistent.

(c) If Nn ↓0, N
1/2
n h−1

n (α̂n − 1) is not consistent.

From a qualitative point of view it is now clear that it is not possible to consistently

test for a unit root in cases (a) and (c). As shown by Perron (1991) for the case of a stock

variable, an increasing span of data is also required with flow variables for consistent unit

root testing based on the statistics considered here.
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