Amemiya A Ronald Takeshi 
  
John F Gallant 
  
Cheng Geweke 
  
Peter Hsiao 
  
Arnold Robinson 
  
Zellner 
  
Aït-Sahalia Yacine 
  
H Badi 
  
M W Baltagi 
  
Marcus J Brandt 
  
Songnian Chambers 
  
Manfred Chen 
  
Miguel A Deistler 
  
Jean-Marie Delgado 
  
Sylvia Dufour 
  
Eric Fruhwirth- -Schnatter 
  
John C Ghysels 
  
Javier Ham 
  
Han Hidalgo 
  
Yongmiao Hong 
  
Bo E Hong 
  
Maxwell L Honoré 
  
Yuichi King 
  
G M Kitamura 
  
Chung-Ming Koop 
  
Naoto Kuan 
  
Kajal Kunitomo 
  
Q Lahiri 
  
Tong Li 
  
Oliver Li 
  
James G Linton 
  
Robert Mackinnon 
  
Rosa L Mcculloch 
  
Franz C Matzkin 
  
Dale J Palm 
  
Nicholas Poirier 
  
B M Polson 
  
Ingmar Pötscher 
  
Peter C Prucha 
  
Eric Reiss 
  
Frank Renault 
  
Robin Schorfheide 
  
Fallaw Sickles 
  
G J Sowell 
  
Herman Van Den Berg 
  
Dijk Van 
  
H Quang 
  
Edward Vuong 
  
Tom Vytlacil 
  
Andrew Wansbeek 
  
Weiss 
  
Professor Marcus J Chambers 
  
  
  

    Corrigendum to "Testing for unit roots with flow data and varying sampling frequency" [Journal of Econometrics 119(1) (2004) 1-18]

Marcus J.

A c c e p t e d m

a n u s c r i p t [START_REF] Chambers | Testing for unit roots with flow data and varying sampling frequency[END_REF] considers the properties of tests for unit roots in flow data satisfying dy(t) = γy(t)dt + σdw(t), t > 0,

where w(t) denotes a standard Wiener process and y(0) is assumed to be fixed. Observations on y(t) are made at intervals of length h > 0 over the interval 0 < t ≤ N and take the form

y th = th th-h y(r)dr, t = 1, . . . , T, (2) 
where the sample size T = N/h. Theorem 1 shows that, under the maintained/alternative hypothesis γ = 0, the observations satisfy y th = α h y th-h + u th , where α h = e γh , while under the null hypothesis γ = 0 they satisfy y th = y th-h + u th . It is claimed that these relations hold for t = 1, . . . , T , implying that the first observation satisfies y h = α h y(0) + u h under the maintained hypothesis and y h = y(0) + u h under the null. In fact, the stated solutions only hold for t = 2, . . . , T , because integrating the solution to (1), given by

y(t) = e γt y(0) + σ t 0 e γ(t-s) dw(s), t > 0,
over the interval (0, 1] shows that under the alternative hypothesis the first observation satisfies y h = γ -1 (e γh -1)y(0) + u h , while under the null y h = hy(0) + u h . In each case the coefficient on y(0) is O(h) rather than O(1), and here this correct treatment of the initial condition is incorporated to amend the relevant results presented in [START_REF] Chambers | Testing for unit roots with flow data and varying sampling frequency[END_REF]. Two least squares regressions are considered in [START_REF] Chambers | Testing for unit roots with flow data and varying sampling frequency[END_REF] based on data indexed by n of the form y nt = y thn . The first is given by y nt = α n y nt-1 + u nt while the second includes an intercept and is of the form y nt = μ + αn y nt-1 + ũnt . All results in [START_REF] Chambers | Testing for unit roots with flow data and varying sampling frequency[END_REF] concerning α n when y(0) = 0 are correct as are all the results for αn because the second regression eradicates the effects of y(0) regardless of its value. It is therefore only the results for the regression without an intercept when y(0) = 0 that need amending i.e. those for α n in Case (2).

Under the null hypothesis γ = 0 the data satisfy y nt = y nt-1 + u nt , t = 2, . . . , T n ; y n1 = h n y(0) + u n1 ,

(3) implying that y nt = t j=1 u nj + h n y(0); the original article used y nt = t j=1 u nj + y(0). It is

  The asymptotic analysis considers three scenarios in which the sampling frequency increases (h ↓ 0) while the sample size T ↑ ∞ in each case; these are further classified into two cases concerning y(0), namely: (1) y(0) = 0; and (2) y(0) = 0. It is also convenient to index each of h, N and T by a generic index n ↑ ∞, in which case T n = N n /h n . The three scenarios are: (a) N n = N (fixed) and h n ↓ 0; (b) N n ↑ ∞ and h n ↓ 0 such that h n N 1/2 n ↑ ∞; and (c) N n ↓ 0 and h n ↓ 0. The motivation for considering these is discussed in the original article.
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The amended parts of Theorem 2, and Lemma A.1 upon which it is based, are:

Theorem 2. Let {{y nt } Tn t=1 } ∞ n=1 denote a triangular array of random variables generated by (3). Then, as n ↑ ∞ and h n ↓ 0, when y(0) = 0:

denote a triangular array of random variables generated by (3). Then, as n ↑ ∞ and h n ↓ 0, when y(0) = 0:

n ↑ ∞, the limits in Case (1) apply;

(c) If N n ↓ 0, 1

Proof of Lemma A.1. The objective is to express the sample moments in terms of the random function

where

The results follow straightforwardly from these expressions. 2

Under the alternative hypothesis γ = 0 the data satisfy

implying that y nt = t j=1 e (t-j)γhn u nj + γ -1 e tγhn (1 -e -γhn )y(0); the original article used

A c c e p t e d m a n u s c r i p t

y nt = t j=1 e (t-j)γhn u nj + e tγhn y(0). It is convenient to define the functionals Θ(N, y(0), J) = σ 2 N J(1) 2 -2 3 + 2σN 1/2 e γN y(0)J( 1)

where J(r) = r 0 e (r-s)γN dW (s). The amended parts of Theorem 3 and Lemma A.2 are:

Theorem 3. Let {{y nt } Tn t=1 } ∞ n=1 denote a triangular array of random variables generated by (6). Then, as n ↑ ∞ and h n ↓ 0, when y(0) = 0:

denote a triangular array of random variables generated by (6). Then, as n ↑ ∞ and h n ↓ 0, when y(0) = 0:

A c c e p t e d m a n u s c r i p t

Proof of Lemma A.2. Defining y n0 = γ -1 (e γhn -1)y(0), some algebra yields where

)e γNn y(0). The results then follow by examining each case in turn and also utilising Lemma A.3 (taking c = γN n ).

2

The results in Theorems 2 and 3 enable the consistency properties of tests for unit roots based on the normalised estimators to be established. The amended part of Theorem 4 is:

Theorem 4. Let {{y nt } Tn t=1 } ∞ n=1 denote a triangular array of random variables generated by ( 6), and consider testing the null hypothesis γ = 0 against a fixed alternative γ = 0. Then, as n ↑ ∞ and h n ↓ 0, when y(0) = 0:

From a qualitative point of view it is now clear that it is not possible to consistently test for a unit root in cases (a) and (c). As shown by [START_REF] Perron | Test consistency with varying sampling frequency[END_REF] for the case of a stock variable, an increasing span of data is also required with flow variables for consistent unit root testing based on the statistics considered here.