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Abstract

This paper reconsiders a block bootstrap procedure for Quasi Maximum Likelihood estima-

tion of GARCH models, based on the resampling of the likelihood function, as proposed by

Gonçalves and White (2004). First, we provide necessary conditions and su¢ cient conditions,

in terms of moments of the innovation process, for the existence of the Edgeworth expansion

of the GARCH(1,1) estimator, up to the k�th term. Second, we provide su¢ cient conditions
for higher order re�nements for equally tailed and symmetric test statistics. In particular, the

bootstrap estimator based on resampling the likelihood has the same higher order improvements

in terms of error in the rejection probabilities as those in Andrews (2002).
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1 Introduction

It is well known that the quasi likelihood function of a GARCH (Generalized Autoregressive Condi-

tional Heteroskedasticity) model, introduced by Bollerslev (1986), depends on the entire past history

of the observables. In this case, resampling blocks of observations is not equivalent to resampling

blocks of the likelihood function. This point has been lucidly pointed out by Gonçalves and White

(2004), who indeed suggest to construct bootstrap estimators of GARCH models based on resam-

pling blocks of the likelihood function. We go a step further, and we investigate the higher order

properties of such estimators. This is accomplished in two steps. First, we establish the necessary

conditions for the existence of an Edgeworth expansion up to the k�th term. This collapses to the
existence of a minimum number of moments of the innovation process. Second, we provide su¢ cient

conditions for higher order improvements of equally tailed and symmetric t-tests based on Quasi

Maximum Likelihood Estimators (QMLE) of GARCH(1,1) parameters. This is done by providing

the su¢ cient number of moments of the innovation process needed for the moments of the actual

and bootstrap statistics to approach each other at an appropriate rate. Broadly speaking, this al-

lows to control the rate at which the di¤erence between the Edgeworth expansion of the actual and

bootstrap statistic approaches zero. Linton (1997) calculated the Edgeworth-B distribution function

for the GARCH(1,1), and we extend his setting to the Edgeworth expansion in the context of the

existence of re�nements of the bootstrap. If we were willing to assume that all the moments of the

innovation process exist, then all the assumptions in Andrews (2002) would be satis�ed and higher

order re�nements would then follow from his Theorem 2. On the other hand, for the GARCH case

we can prove re�nements for QML estimators under somewhat weaker assumptions on the existence

of moments of the score and Hessian derivatives, than those required in Andrews (2002).

In nutshell, we need (i) conditions on the parameter space of the process in order to ensure that

the GARCH process is exponentially ��mixing (see e.g. Carrasco and Chen (2002)), (ii) smoothness
of the density of the innovation process (iii) the existence of a given number of moments of the

innovation process. First, we show that under (i)-(iii) the Götze and Hipp (1994) conditions for

the existence of the Edgeworth expansion for weakly dependent observations are satis�ed. Then,

we show that (i)-(iii) su¢ ce to obtain the same higher order re�nements of Andrews (2002). Thus,

the block bootstrap, based on resampling the likelihood, leads to an error in rejection probability

and con�dence interval coverage probability of smaller order than T�1=2�� for equal-tailed t-tests for

GARCH parameters and of order smaller than T�1�� for symmetric t-tests, for � > 0; and such that

� < 
 and � + 
 < 1=2; where 
 is the parameter controlling the lengths of the block l; i.e. l ' T 
:
Needless to say, an advantage of using bootstrap estimators is that of obtaining more accurate

inference on the GARCH(1,1) parameters. Gonçalves and Kilian (2004, 2007) focused on bootstrap
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inference for conditional mean that is robust to GARCH or other unspeci�ed forms of conditional

heteroskedasticity. However, there are many cases in practice where we are interested on the GARCH

parameters themselves. From a more empirical perspective, one of the most popular application of

bootstrap estimation of GARCH parameters is in the context of risk management, and more precisely

in the evaluation of Value at Risk and Expected Shortfall. For example, Christo¤ersen and Gonçalves

(2005) rely on bootstrapping GARCH parameters in order to take into proper consideration the

contribution of parameter estimation error when evaluating Value at Risk; Mancini and Trojani

(2005) address the same issue using an estimation and bootstrap procedure robust to the presence

of outliers. Both papers rely on the residual based bootstrap approach outlined by Pascual, Romo

and Ruiz (2006).

If one knew the data generating process (DGP), then a residual based bootstrap approach, which

makes direct use of the structure of the model, seems to be more natural than a nonparametric boot-

strap approach, such as the block bootstrap. Hidalgo and Za¤aroni (2007) show the �rst order validity

of the residual-based bootstrap for ARCH(1) process, which indeed include �nite GARCH(1; 1).
Hence, it is interesting to investigate whether the residual-based bootstrap provides higher order

improvements over asymptotic normality, and whether these improvements are sharper than those

provided by the block bootstrap. This is a quite challenging task, and we leave it for future research.

Nevertheless, we outline how the arguments used by Hidalgo and Za¤aroni to show �rst order validity

cannot be directly extended to show the higher order properties of the residual-based bootstrap.

In the case of possible nonlinear Markov processes, recent papers by Andrews (2005) and Horowitz

(2003) have established that higher-order re�nements, very close to those attainable in the iid case,

can be achieved via the use of the Markov bootstrap, even in the case the underlying transition

density is unknown, and replaced by a nonparametric estimator. Though a GARCH process is not

Markov, under certain conditions is approximate Markov, as in the de�nition of Horowitz. Thus, we

have analyzed the applicability of the Markov process for the estimation of the conditional variance

parameters. If the marginal density of the innovation process is known, then the results of Andrews

(2005) apply and the Markov bootstrap provides re�nements arbitrarily close to those attainable

in the iid case. On the other hand, whenever the density of the innovation is unknown and has

unbounded support, as in the gaussian case for example, then some of the assumptions for the

existence of higher order re�nements are violated. This point has been already outlined in Horowitz

(2003).

The rest of this paper is organized as follows. Section 2 describes the implementation of the

bootstrap procedure based on the resampling of the likelihood function. Section 3 establishes the

higher order improvement of the bootstrap approximation of the coverage error of con�dence inter-

vals for GARCH parameters, and summarizes the main theoretical results. Section 4 outlines the
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di¢ culties involved in the establishment of possible higher order re�nements for the residual-based

bootstrap. Section 5 brie�y outlines the use of the Markov bootstrap, whenever the marginal density

of the innovation is unknown and has unbounded support. Section 6 reports Monte Carlo simulation

results, which provide some evidence of the improved accuracy of bootstrap, for the error in the

coverage probability. All the proofs are collected in the Appendix.

2 The Block Bootstrap: Set-Up

Suppose yt is generated by the GARCH(1,1) process,

(1) yt =
p
ht�t; ht = �

y
1 + �

y
2y
2
t�1 + �

y
3ht�1; t = 1; :::; T

where �t is iid and �
y =

�
�y1; �

y
2; �

y
3

�
is the true parameter vector.

We de�ne the log-likelihood function as if ytp
ht
were normally distributed, thus using a Gaussian

likelihood. The quasi maximum likelihood estimator, QMLE, is then de�ned as:

(2) b�T = argmax
�2�

1

T

TX
t=1

Lt (�)

where
1

T

TX
t=1

Lt (�) = �
1

2

TX
t=1

lnht(�)�
1

2

TX
t=1

y2t
ht (�)

:

Note that after a few manipulations, and imposing h0 = �0 = 0; we have that
1

ht = �1 +
�
�2�

2
t�1 + �3

�
ht�1

= �1

"
1 +

t�1X
j=1

jY
i=1

�
�2�

2
t�i + �3

�#
:(3)

From (3) it is immediate to see that resampling blocks of the observable series yt is not equivalent

to resampling blocks of the log-likelihood.

Thus, we need to resample b blocks of length l from the loglikelihood Lt; setting bl = T: Hereafter, let

Ii; i = 1; :::; b denote identical and independent draws from a discrete uniform on 0; 1; :::; T � l: Thus,
for each i = 1; ::; b Ii = j, with j = 0; 1; :::; T�l; with equal probability 1=(T�l+1):Now, for all � 2 �;
de�ne L�1 (�) ; L

�
2 (�) ; :::; L

�
T�l+1 (�) ; :::; L

�
T (�) to be equal to LI1+1 (�) ; LI1+2 (�) ; ::::; LIb+1 (�) ; :::; LIb+l (�) :

Note, that we use the same random draws Ii for any � 2 �: In general, resampling the data or re-
sampling the likelihood is equivalent. However, in the GARCH case, the (quasi) likelihood function

1Note that if either h0 or �0 are di¤erent from zero, then the expression in (3) holds up to a term converging to

zero exponentially as t!1:
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depends on the entire past history of the observables. In this case, resampling blocks of observa-

tions is not equivalent to resampling blocks of the likelihood function. This point has been lucidly

pointed out by Gonçalves and White (2004), who indeed suggest to construct bootstrap estimators

of GARCH model based on resampling blocks of the likelihood function. We use the moving blocks

bootstrap (MBB) of Künsch (1989) as in Gonçalves and White (2004).

It should be pointed out that, if we were just interested in �rst order validity, then we could have

set l = 1 and relied on the iid nonparametric bootstrap. In fact, as the score is a martingale di¤erence

sequence, bootstrap samples based on iid resampling of the log-likelihood would have ensured that

the �rst two bootstrap moments properly mimic the correspondent sample moments. However, as

for re�nements, we need to match higher moments, and in this case the fact that the score is a

martingale di¤erence sequence does not help.

We now use the resample log-likelihood in order to construct the bootstrap estimator b��T , that is:
b��T = argmax

�2�

1

T

TX
t=1

�
L�t (�)�

�
E�
�
rL�t (b�T )��0 �� :

Note that the recentering term,
�
E�
�
rL�t (b�T )��0 �; ensure that the score, evaluated at b�T ; has zero

mean.

De�ne the Hessian and the variance of the score as By and Ay respectively, where

By = E
�
�r2

�Lt(�
y)
�

and

Ay = V ar

 
1p
T

TX
t=1

r�Lt(�
y)

!
= E

�
r�Lt(�

y)r�Lt(�
y)0
�
:

Also, de�ne the sample analogs of By and Ay; that is

bBT = � 1
T

TX
t=1

r2
�Lt(

b�T )

(4) bAT = 1

T

TX
t=1

r�Lt(b�T )r�Lt(b�T )0:
Our objective is to provide higher order re�nements of the approximation of the coverage error for

the t-statistic

(5) t�i;T =
p
T
� bB�1 bA bB�1��1=2

ii

�b�i;T � �yi� ;
for i = 1; 2; 3:

5
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De�ne the bootstrap analogs of bBT and bAT as bB�T and bA�T ; where
bB�T = 1

T

TX
t=1

r
�
rL�t (b��T )� E� �rL�t (b��T )��

and

(6) bA�T = 1

T

TX
t=1

�
rL�t (b��T )� E� �rL�t (b��T )���rL�t (b��T )� E� �rL�t (b��T )��0 :

The bootstrap analog of t�i;T is then given by:

(7) et�i;T = pT � bB��1T
bA�T bB��1T

��1=2
ii

�b��i;T � b�i;T� :
AsrLt(�y) is a martingale di¤erence sequence, bAT is a consistent estimator of V ar � 1p

T

PT
t=1r�Lt(�

y)
�
:

However, as within each block, rL�t (b�T ) is correlated with its neighbours, bA�T cannot be a consistent
estimator for V ar�

�
1
T

PT
t=1rL�t (b�T )� : Hence et�i;T cannot have a standard normal limiting distri-

bution, under the bootstrap probability law. A consistent estimator of V ar�
�
1
T

PT
t=1rL�t (b�T )� is

instead given by:

eA�T =
b

T (T � l + 1)

T�lX
i=0

lX
j=1

lX
m=1

��
rLi+j(b�T )� E� �rL�i+j(b�T )��

�
�
r�Li+m(b�T )� E� �rL�i+m(b�T )��0� :(8)

Now, let b�T;ii = � bB�1T bAT bB�1T �1=2
ii
; e��T;ii = � bB��1T

eA�T bB��1T

�1=2
ii
and following Hall and Horowitz (1996),

de�ne the adjustment term as

� �i;T = b�T;ii=e��T;ii;
and the adjusted t-statistics as:

(9) t��i;T =
p
T
� bB��1T

bA�T bB��1T

��1=2
ii

�b��i;T � b�i;T� � �i;T :
3 The Block Bootstrap: Re�nements

De�ne the vectors containing the centered score, the centered outer product and all their derivatives

up to order d1;k as:

(10)

fi;t;d1;k (�) =
�
r�iLt (�); :::;r

d1;k
�i

�
r�Lt (�)

�
;r�iLt (�)r�iLt (�)

0
; :::;rd1;k

�i

�
r�Lt (�)r�Lt (�)

0��
;

6
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where r�iLt (�) = r�iLt (�)� E (r�iLt (�)) ;

r�iLt (�)r�iLt (�)
0
= r�iLt (�)r�iLt (�)

0�E
�
r�iLt (�)r�iLt (�)

0� ; and d1;k depends on k; which is
the number of terms in the Edgeworth expansion, i.e. d1;k � k + 3:
In what follows, we rely on the following assumption:

Assumption A: (i) The parameter space � is a compact subset of R3+ such that

� = f�1; �2; �3; �1; �2; �3 > 0; �2 + �3 < 1g. (ii) �y =
�
�y1; �

y
2; �

y
3

�
; b�T = �b�1T ;b�2T ;b�3T� are in the

interior of � (iii) �t is iid(0; �
2
�) and it has a positive continuous density:

Assumption A ensures that yt and ht(�
y) are strictly and covariance stationary ��mixing processes,

with exponentially decaying mixing coe¢ cients (see e.g. Carrasco and Chen (2002)). Let N y be

a neighbourhood of �y; then for any � 2 N y; fi;t;d1;k (�) is also ��mixing process with exponential
decay.

In Lemma A1 in the Appendix, we show that Assumption A ensures that the Götze and Hipp

(1994) Cramer type conditions hold. Hence, in order to prove the existence of the k�th term of the

Edgeworth expansion for the statistic in (5) we need to show the existence of enough moments for

the components of fi;t;d1;k (�) ; for i = 1; 2; 3: This is accomplished in Theorem 1, where we provide

necessary and su¢ cient conditions for the existence of the k�th term of the Edgeworth expansion

for the t-statistic in (5).

Hereafter, let
�
1 +

Pk
i=1 T

�i=2�i (@=@z)
�
�(z) denote the Edgeworth expansion of t�i up to order k

(see e.g. p.142 in Andrews 2001). We have:

Theorem 1: Let Assumptions A hold. Then

(11) lim
T!1

T k=2 sup
z2R

�����P (t�i � z)�
 
1 +

kX
i=1

T�i=2�i (@=@z)

!
�(z)

����� = 0
(i) only if E

�
�
2(k+2)(k+4)
t

�
<1

(ii) and if E
�
�
2(k+3)(k+5)
t

�
<1:

Theorem 1 provides a set of necessary and a set of su¢ cient conditions for the existence of the k-th

term of the Edgeworth expansion of the statistics. Needless to say, for k = 2; 3 (i) is also a necessary

condition for obtaining higher order re�nements for equally-tailed and symmetric t-tests respectively.

Hereafter, z�t�i;T ;�=2
and z�jt�i;T j;�

denote the (1 � �)=2 bootstrap quantile for t��i;T and the (1� �)
quantile for

��t��i;T �� respectively. As usual, z�t�i;T ;�=2 and z�jt�i;T j;� are constructed from the empirical

distribution of the bootstrap statistic t��i;T :

We have:

Theorem 2: Let Assumption A hold. Let �+
 < 1=2 and � < 
; where 
 is the parameter controlling

the block size, i.e. l ' T 
: If E
�
�
2(d1;k+d2;k+2)(k+2)p
t

�
< 1; where d1;k � k + 3; d2;k � k + 1; and

7
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p > k=2
2(1=2���
) ; then:

(i) for k = 2;

P
�
t�i;T < �z�t�i;T ;�=2 or t�i;T > z

�
t�i;T ;1��=2

�
= �+ o

�
T�(1=2+�)

�
(ii) for k = 3;

P
�
jt�i;T j < z�jt�i;T j;�

�
= �+ o

�
T�(1+�)

�
:

From Theorem 2, it is immediate to say that we obtain the same higher order re�nements for the

error in rejection probability (ERP), as in Andrews (2002). As an immediate corollary, we also have

that the bootstrap error in the coverage probability (ECP) is of order smaller than T�(1=2+�) for the

equal-tailed test and of T�(1+�) for the symmetric test, with � < 1=4: It is interesting to note that, in

the exponentially mixing GARCH(1,1) case, the only conditions we need for higher order re�nements

are in terms of smoothness of the density and of existence of a su¢ cient number of moments of the

innovation process.

4 The Residual-Based Bootstrap

The residual-based bootstrap is based on iid resampling of the centered residuals. Let b�t = yt=h1=2t �b�T� ;
we resample, with replacement, from the empirical distribution of b�t; and obtain the sequence ��t ;
where ��1 is equal to b�t�T�1PT

t=1 b�t; t = 1; :::; T with equal probability 1=T: ��1; ��2; :::; ��T are de�ned
analogously, so that ��t ; is iid conditional on sample. We then proceed as follows:

Fix y0; h0, =) bh�1 = b�1;T + b�2;Ty20 + b�3;Th0
y�1 =

bh�1=21 ��1bh�2 = b�1;T + b�2;Ty�21 + b�3;Tbh�1
y�2 =

bh�1=22 ��2

and so on, until sequences y�t ; h
�
t ; t = 1; :::; T are formed.

Now, de�ne the bootstrap QML estimator as:

e��T = argmax
�2�

TX
t=1

L
�(RS)
t (�)

= argmax
�2�

 
�1
2

TX
t=1

lnh�t (�)�
1

2

TX
t=1

y�2t
h�t (�)

!
;

where the superscript (RS) denotes the fact that the bootstrap likelihood is based on the residual

bootstrap approach.

8
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This residual based bootstrap procedure has been recently suggested by Pascual, Romo and Ruiz

(2006). See also Christo¤ersen and Gonçalves (2005), for an application to Value at Risk evaluation

with GARCH models.

In the case of correctly speci�ed ARMA models, the asymptotic �rst order validity, as well as re-

�nements, of the residual-based bootstrap have been already established (see e.g. Inoue and Kilian

(2002), Kreiss and Franke (1992), and Bose (1988)).

Robinson and Za¤aroni (2006) establish conditions for strong consistency and asymptotic normality

of QML estimators of ARCH(1) models: Now ARCH(1) models encompass GARCH(1,1) models.
In particular, the ARCH(1) model allows for a higher degree of memory, including also long-memory
behavior. Hidalgo and Za¤aroni (2007; hereafter HZ) take a step further and establish the �rst order

validity of their residual-based bootstrap analogs.

Below, we outline the key steps in the HZ proof for the residual-based bootstrap �rst order validity,

and sketch the further steps one should follow in order to establish higher order re�nements. In fact,

the interesting question is whether the residual based-bootstrap may provide sharper re�nements

than the block-bootstrap does. This is a rather involved issue, and we leave it for further research.

The key point is that we can express ht; the score, and the hessian, as well as their bootstrap

analogs, as a function on entire past of squared innovations. For notational simplicity we just focus

on ht: Recalling equation (3); it�s bootstrap analog is given by:

ht(�) = �1 +
�
�2�

2
t�1 + �3

�
ht�1

= �1

"
1 +

t�1X
j=1

jY
i=1

�
�2�

2
t�i + �3

�#

h�t (�) = �1 +
�
�2�

�2
t�1 + �3

�
h�t�1

= �1

"
1 +

t�1X
j=1

jY
i=1

�
�2�

�2
t�i + �3

�#
(12)

Thus one can write h�t (�
y); as h�t (�

y) = h
�
��2t�1; �

�2
t�2; :::; �

�2
1 ; �

y� ; Now,
E�

 
1

T

TX
t=1

h�t (�
y)

!

' 1

T T

TX
i1=1

TX
i2=1

:::

TX
iT=1

h
�b�2i1 ;b�2i2 ; :::;b�2iT � ;

as any permutation and combination can occur with equal probability 1=T:2

2Note the abuse of notation. As we are resampling from centered residuals, more correctly we should have�b�i1 � T�1Pt b�t�2 ; though for notational simplicity we simply write b�2i1 :
9
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Let h�t;M(�
y) be a truncated version of h�t (�

y); i.e. h�t;M(�
y) = h

�
��2t�1; �

�2
t�2; :::; �

�2
t�M ; 0; :::; 0

�
; HZ

proof (see Lemmas 6.13-6.15) for �rst order asymptotic validity is based on three arguments. The

�rst argument is that the process can be truncated, and the truncation error approaches zero fast

enough, i.e.

E�

 
1

T

TX
t=1

�
h�t (�

y)� h�t;M(�y)
�!

= Op
�
M�d� ;

where d > 1 depends on the degree of memory of the process. Note that,

E�

 
1

T

TX
t=1

h�t;M(�
y)

!
=

1

TM

TX
i1=1

TX
i2=1

:::

TX
iM=1

h
�b�2i1 ;b�2i2 ; :::;b�2iM � = VT;M ;

where VT;M de�nes a V -statistic. De�ne, the U�statistic UT;M as

UT;M =

�
T

M

��1 X
1�i1�:::�iM�T

h
�b�2i1 ;b�2i2 ; :::;b�2iM � :

The second argument is that V�statistics are very accurately approximated by U�statistics, in fact
by e.g. Theorem 5.1 in Grams and Ser�ing (1973),

E (jVT;M � UT;M jr) = O(T�r); for r > 0:

Finally, the third argument is that, by the law of large numbers for U�statistics,

E

 
UT;M �

1

T

TX
t=1

ht;M(�
y)

!
= O

�
M

T

�
:

The same applies if we replace �y with b�T : The point is that, as for �rst order validity, it su¢ ces to
match the Hessian and the variance of the score. As the score is a martingale di¤erence sequence,

it all collapses to match sample and bootstrap sample �rst moments. In fact, as we outline below,

things get more complicated once we move to higher moments.

The question is whether we can also obtain re�nements for the residual-based bootstrap and whether

they are sharper than those obtained via the block-bootstrap.

A crucial condition for bootstrap re�nements is that the "distance" between the Edgeworth

expansion of the statistic and that of its bootstrap counterpart approaches zero at fast enough rate,

which in turn de�nes the "sharpness" of re�nements. This collapses to check the speed at which

the distance between higher moments of the statistic and its bootstrap counterpart approaches zero.

Hereafter, let f �i;t;d1;k

�b�T� be the bootstrap analog of fi;t;d1;k ��y� evaluated at b�T ; de�ned as in Section
3. Also, with an abuse of notation, let f �t

�b�T� be a generic element of f �i;t;d1;k �b�T� :
10
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In a nutshell, to have an improvement in the error in coverage probability (ECP) of T�� ; we need

that (e.g. Andrews 2002):

(13) T aP

 �����T�(m)E�
 

1

T 1=2

TX
t=1

f �t

�b�T�!m � T�(m)E 1

T 1=2

TX
t=1

ft
�
�y
�!m����� > T��

!
! 0;

where �(m) = 0 if m is even and �(m) = 1=2 if m is odd, a = 3=2 and m = 4 for equally tailed

test, and a = 2; m = 5 for symmetric tests. Needless to say, the residual-based block bootstrap will

provide sharper re�nements if � > �; where � is de�ned in Theorem 2 above. Now, as convergence

in r�mean implies converges in probability, the statement in (13) is implied by
(14)

T aE

 
T �

�����T�(m)E�
 

1

T 1=2

TX
t=1

f �t

�b�T�!m � T�(m)E 1

T 1=2

TX
t=1

ft
�
�y
�!m�����

r!
= o(1); for some r > 0:

Now, f �t
�b�T� writes as

f �t

�b�T� = f ���2t�1; ��2t�2; :::; ��21 ;b�T� ;
and de�ne its truncated version as

f �t;M

�b�T� = f ���2t�1; ��2t�2; :::; ��2t�M ;b�T� :
The left hand side of (14) is majorized by I�T + II

�
T + III

�
T ; where

I�T = T
aE

 
T �

�����T�(m)E�
 

1

T 1=2

TX
t=1

f �t

�b�T�!m � T�(m)E� 1

T 1=2

TX
t=1

f �t;M

�b�T�!m
�����
r!

II�T = T
aE

 
T �

�����T�(m)E�
 

1

T 1=2

TX
t=1

f �t;M

�b�T�!m � T�(m)E 1

T 1=2

TX
t=1

ft;M
�
�y
�!m�����

r!

III�T = T
a

 
T �

�����T�(m)E
 

1

T 1=2

TX
t=1

ft;M
�
�y
�!m

� T�(m)E
 

1

T 1=2

TX
t=1

ft
�
�y
�!m�����

r!
:

It is immediate to see that the case of m = 1 can be treated along the same lines of HZ. Now, given

(3) and (10), for 0 < � < 1;

I�T = T
aO
�
T�(m)(r�m)T &��M

�
,

so that it is enough to set M = T "; for " > 0 arbitrarily small to ensure that I�T = o(1): The same

order of magnitude applies to III�T : The di¢ cult part is II
�
T :

We need to compute E�
�

1
T 1=2

PT
t=1 f

�
t;M

�b�T��m : For sake of simplicity, we begin by considering the
case of m = 2: By noting that

E�
�
f
�
��2t�1; �

�2
t�2; :::; �

�2
t�M ;

b�T� f ���2t���1; ��2t���2; :::; ��2t���M ;b�T��
= 0 for j� j > M;

11
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E�

 
1

T 1=2

TX
t=1

f �t;M

�b�T�!2

' 1

T

MX
�=�M

T�MX
t=2M

E�
�
f
�
��2t�1; �

�2
t�2; :::; �

�2
t�M ;

b�T� f ���2t���1; ��2t���2; :::; ��2t���M ;b�T��
=

1

T

MX
�=�M

T�MX
t=2M

1

T �
1

TM

T�MX
i1

:::

T�MX
i�

:::

T�MX
iM

:::

T�MX
i�+M

f
�b�2i1 ; :::;b�2i� ; :::;b�2iM ;b�T�

�f
�b�2i� ; :::;b�2iM ; :::;b�2iM+�

;b�T� :
Hereafter, let � (1) � mini�M j� ij ; � (m) � maxi�M j� ij ; � (1) � � (2) � ::: � � (m): Thus, for a generic m;

E�

 
1

T 1=2

TX
t=1

f �t;M

�b�T�!m

' 1

Tm=2�1

MX
�1=�M

:::

MX
�m=�M

E�
�
f
�
��22M��1 ; :::; �

�2
M��1 ;

b�T�
�:::� f

�
��22M��m ; :::; �

�2
M��m ;

b�T�� 1�max
i�m

� i �min
i�m

� i �M
�

=
1

Tm=2�1

0X
�1=�M

:::

0X
�m=�M

1

TM+� (m)

T�MX
i1=2M

:::

T�MX
i
�(1)

=2M

:::

T�MX
i
�(m)

=2M

:::

:::

T�MX
iM=2M

:::

T�MX
i
M+�(1)

=2M

:::

T�MX
i
M+�(m)

=2M

�
f
�b�2i1 ; :::;b�2i�(1) ; :::;b�2i�(m) ; :::;b�2iM ;b�T�

�:::� f
�b�2i

�(m)
; :::;b�2iM ; :::;b�2i�(1)+M ; :::;b�2i�(m)+M ;b�T��

+
1

Tm=2�1

MX
�1=1

:::

MX
�m=1

1

TM+� (m)

T�MX
j1=2M

:::

T�MX
j
�(1)

=2M

:::

T�MX
j
�(m)

=2M

:::

:::

T�MX
jM=2M

:::

T�MX
j
M+�(1)

=2M

:::

T�MX
j
M+�(m)

=2M

�
f
�b�2j1 ; :::;b�2j�(1) ; :::;b�2j�(m) ; :::;b�2jM ;b�T�

�:::� f
�b�2j

�(m)
; :::;b�2jM ; :::;b�2j�(1)+M ; :::;b�2j�(m)+M ;b�T��

It is immediate to see that, contrary to the case of m = 1; E�
�

1
T 1=2

PT
t=1 f

�
t;M

�b�T��m cannot be

expressed as a V�statistic, and thus the arguments used by HZ do no longer directly apply.
In fact, we can write

E�

 
1

T 1=2

TX
t=1

f �t;M

�b�T�!m

=
1

Tm=2�1

0X
�1=�M

:::

0X
�m=�M

eV1;T;M+� (m) +
1

Tm=2�1

MX
�1=1

:::

MX
�m=1

eV2;T;M+� (m) ;

12
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where for i = 1; 2 eVi;T;M+� (m) is not a V�statistic withM+� (m) elements, as di¤erent indexes appear

with di¤erent frequency, as for example b�2i
�(m)

; :::;b�2iM appears m�times, while b�2i1 ; :::;b�2i�(1) appears
only once. Hence, we cannot directly rely on the same argument used by Hidalgo and Za¤aroni for

showing �rst order validity.

As m is �nite, we believe it is possible to �nd a sharp enough bound for II�T ; however this is a

rather challenging task and we leave it for future research.

5 The Markov Bootstrap

For nonlinear, �nite order markov processes it has been already established that the Markov bootstrap

can provide higher order re�nements very close to those available for iid observations. Andrews

(2005) has considered the case in which the transition density is known in closed form, so that the

Markov bootstrap is indeed a parametric bootstrap, while Horowitz (2003) has considered the case

in which the transition density is unknown. More precisely, Andrews (2005) suggests to recursively

resample the data from the likelihood evaluated at the estimated parameters. Thus, the bootstrap

sample is generated by the same conditional distribution as the original sample, but with the "true"

parameters replaced by the estimated parameters. However, this approach is not directly applicable

in our context, as it is well known that yt; as de�ned in (1) is non markovian, though (yt; �2t ) are

jointly markovian. Nevertheless, if we knew the marginal density of the �; say �� (�) ; then we could
draw from it T iid observations, and use them to recursively construct ht

�b�T� and yt in the same
manner outlined in the previous section. In this case, the only di¤erence between the DGP and the

bootstrap DGP is the latter is generated using b�T instead of �y: As a consequence, we could obtain
higher order re�nements along the same lines as in Andrews. Needless to say, this is not particularly

useful, as in general we do not know the marginal density of the errors.

For the case in which the transition density of a Markov process is unknown, Horowitz (2003)

has suggested to draw the observations from a kernel density estimator. For one-dimensional Markov

processes of order q; Horowitz shows that the error in the bootstrap estimate of one-sided and

symmetrical probabilities are OP (T�1+") and OP
�
T�3=2+"

�
; respectively, where " > 0 can be set

arbitrarily small.

The key point in Horowitz result, stated in his Lemma 14, is that the cumulants of the original

and bootstrap statistics di¤er only of a term of order T�1=2+"; which re�ects the uniform rate at which

the estimated conditional density converges to the true one, provided one uses a "enough" higher

order kernel. In fact, because of the markov property, all moments, as well as smooth functions of

them, can be computed via the transition density. Thus it is enough to control the error between

the estimated and the true conditional density, in a uniform manner.

13
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It is easy to see that ��mixing GARCH processes, with exponentially decaying mixing coe¢ -

cients, are approximate Markov, according to the de�nition of Horowitz (2003, Section 4.3).

Though, one of the assumption in Horowitz, i.e. Assumption 4, requires that yt has bounded

support. In the GARCH context, if the innovation has unbounded support, as in the case of normal

innovation e.g., then also yt has unbounded support and Assumption 4 is violated. Needless say, the

boundedness of the support is part of a set of su¢ cient conditions, and therefore we cannot claim it is

indeed necessary. We leave the study of possible higher order re�nements via the Markov bootstrap

for future research.

6 Simulation results

Table 2 in Gonçalves and White (2004, p. 209) reports the coverage rates of nominal 95% symmetric

percentile intervals for an ARCH(1) process, both using asymptotic theory and the block bootstrap.

They consider sample sizes T equal to 200 and 500 and, for � = 0 (in their notation, � implies

that �t in (1) follows a iidN (0; 1) distribution). We extend their simulation experiment to the

case of a GARCH(1,1) model as in (1), where the true parameter vector is given by
�
�y1; �

y
2; �

y
3

�0
=

(0:8; 0:1; 0:8)0 ; and �t is either iidN(0; 1) or a t�distribution with 5 degrees of freedom (t5): We use

the MBB of Künsch (1989). Since our model is a GARCH(1,1), a more complicated process than

the simulated ARCH(1) of Gonçalves and White (2004, page 209, Table 2), we report results for

sample sizes 300 and 500. The number of Monte Carlo replications is set equal to 4000. Table 1

reports the results of coverage rates of nominal 95% symmetric percentile-t intervals both using the

QML asymptotic approximation (ASYM) and our block bootstrap procedure (Bboot). We report the

con�dence intervals (C. I.) for �2 and �3: For the block bootstrap procedure (Bboot), we have used

999 bootstrap replications. We provide the results for block sizes l = 1; 5; 10; 25 and 50: When the

block size is equal to 1; the block bootstrap only ensures �rst order validity; and then the di¤erence

in the empirical coverage rate will illustrate the degree to which higher-order improvements help3.

Pascual, Romo and Ruiz (2006, Tables 1 and 2, p. 2299-2300) provide simulation results for a normal

and a t5 innovation process in the GARCH(1,1) context. Their simulation results provide evidence of

the good performance of the residual based bootstrap procedure, although as far as we know, there

are no theoretical results available in the literature that support the existence of re�nements with

this type of bootstrap.

3We are very grateful to one of the referees for pointing this out.
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Table 1: Empirical coverage rates of nominal 95% symmetric percentile-t intervals for GARCH(1,1)

Bboot

�t T C. I. for � ASYM l = 1 l = 5 l = 10 l = 25 l = 50

iidN(0; 1) 300 �2 85.7 86.1 89.7 90.4 89.3 90.2

�3 81.1 83.3 90.2 91.1 87.4 89.2

500 �2 92.8 91.1 92.7 92.6 93.2 91.4

�3 87.2 88.1 89.5 93.7 93.1 92.2

t5 300 �2 81.3 82.1 84.1 85.3 86.1 85.4

�3 76.1 78.3 79.2 78.1 79.1 79.4

500 �2 88.1 89.3 90.1 89.7 90.3 91.2

�3 83.1 84.2 85.1 87.1 86.1 87.4

From Table 1, it is immediate to see that when �t is iidN(0; 1); the empirical coverage of ASYM

is substantially below the nominal one, specially for �3; even with samples of 500 observations. Also,

for sample of 300 observations, the empirical coverage of ASYM is substantially below the nominal

one for both �2 and �3:

The bootstrap empirical coverages for �2 and �3 seem to be rather robust to the choice of the

block size, provided l � 10: The improvements in coverage of the block bootstrap relative to �rst

order asymptotics are noticeable, specially for �3 for 500 observations, and for both �2 and �3 in

the case of 300 observations. This shows the usefulness of the block bootstrap in this context. The

simulation results of Table 1 when �t is drawn from iidN(0; 1) innovations, all the moments of �t
exist, and thus conditions in Theorem 2 are satis�ed. Moreover, when l = 1; the bootstrap only

ensures �rst order validity. Indeed, as expected, the improvements over asymptotic normality, are

smaller than in the case of l � 10: This demonstrates once again the usefulness of the block-bootstrap
in providing re�nements when the block size is carefully chosen.

Finally, Table 1 also reports the results for the case in which the innovations are drawn from t-

distribution with 5 degrees of freedom. Hence, the conditions in Theorems 1 and 2 about the existence

of a su¢ cient number of moments, are clearly violated. Even if the block bootstrap performs much

worse than in the case of normal innovations, it still provides some improvement over asymptotic

normality.

15
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7 Appendix

The proof of Theorem 1 and Theorem 2 below require the following Lemma, which ensures that the

Götze and Hipp conditions (1994) for the existence of the Edgeworth expansion hold for the GARCH

case.

Lemma A1:

Let Assumption A hold and assume that E
�
�
4(d1;k+2)
t

�
< 1. Then there exist constants K1 < 1

and � > 0 such that for arbitrarily large & > 1 and all integers m 2
�
��1; T

�
and � 2 Rdim

�
ft;d1;k

�
with � < k�k < T & :

(15) E

�����E
 
exp

 
i� 0

2m+1X
t=1

ft;d1;k
�
�y
�!
j
�
�j : jj �mj > K1

	!����� � exp (��) ;
where �j is the innovation process in (1), i =

p
�1 and ft;d1;k

�
�y
�
=
�
f1;t;d1;k ; f2;t;d1;k ; f3;t;d1;k

�
and for

� = 1; 2; 3 f�;t;d1;k is the vector containing the unique components of the score and the outerproduct

and their derivatives through order d1;k, evaluated at �
y and de�ned in (10).

Proof of Lemma A1:

We proceed in two steps. First we show that we can express ft;d1;k
�
�y
�
as a function of all the past

innovation, i.e., we can write

(16) ft;d1;k
�
�y
�
:= �

�
�i�j : j > 0; �

y� ; i 2 Z:
Then, we show that ft;d1;k�

y satis�es conditions (i)-(iii) in Lemma 2.3 in Götze and Hipp (1994), and

hence the statement follows.

We begin by showing (16). Recall that the element of ft;d1;k
�
�y
�
are the derivatives of the centered

score and Hessian up to order d1;k: Now, straightforward calculations give:

r�Lt(�
y) =

r�ht(�
y)

ht(�
y)

�
�2t � 1

�
;

r2
�Lt(�

y) =
1

2
(�2t � 1)

�
r2
�ht(�

y)

ht(�
y)

� r�ht(�
y)r�ht(�

y)0

h2t (�
y)

�
� 1
2
�2t
r�ht(�

y)r�ht(�
y)0

h2t (�
y)

r3
�Lt
�
�y
�

=
1

2

�
�2t � 1

� r3
�ht
�
�y
�

ht
�
�y
� �

r�ht
�
�y
�
�
r2

�ht
�
�y
�
�

h2t
�
�y
� +

2
�
r�ht

�
�y
�
�
r�ht

�
�y
�

r�ht

�
�y
�
�
�

h3t
�
�y
� !

+
1

2
�2t

 �
r�ht

�
�y
�
�
r�ht

�
�y
�

r�ht

�
�y
�
�
�

h3t
�
�y
� �

r�ht
�
�y
�
�
r2

�ht
�
�y
�
�

h2t
�
�y
� !
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It now becomes apparent, that in the computation of r3
�Lt
�
�y
�
; by the law of iterated expectations

E

"
�2t

 �
r�ht

�
�y
�
�
r�ht

�
�y
�

r�ht

�
�y
�
�
�

h3t
�
�y
� !#

= E

"�
r�ht

�
�y
�
�
r�ht

�
�y
�

r�ht

�
�y
�
�
�

h3t
�
�y
� #

and the term of higher order for generic k is

E

 �
r�ht

�
�y
�
�
r�ht

�
�y
�

 ::
r�ht

�
�y
�
�
�

hkt
�
�y
� !

:

From Lemma 1 in Lumsdaine (1996, equations A1.1-A1.4), it follows that for i = 1; 2; 3

E

 �
r�iht(�

y)
ht(�y)

�k!
is of the same order of magnitude as E

�
y2kt�j

hkt (�y)

�
= E

�
hkt�j(�y)
hkt (�y)

�2kt�j

�
for any

j < t: Therefore, a necessary condition for E
�
r�j1 :::�jk

LT
�
�y
��
<1 is that E

�
�2kt�j

�
<1:

Indeed, this is also a su¢ cient condition. In fact, Ling and McAleer (2003, p.304) show that a su¢ -

cient condition for the existence of E
�
(r�ht(�y)�
r�ht(�y))

h2t(�y)

�
is that E(�4i ) <1: The same argument

can be used to show a su¢ cient condition for E
�
r�j1 :::�jk

LT
�
�y
��
<1 is that E

�
�2kt
�
<1:

From the expression for r�Lt(�); r2
�Lt(�); :::;rk

�Lt(�) we see that they can be expressed as ratios of

products of derivatives of ht
�
�y
�
over power of ht(�

y): Recalling that,

ht(�) = �1

h
1 +

Pt�1
j=1

Qj
i=1

�
�2�

2
t�i + �3

�i
we have that,

r�1ht = 1 +
Pt�1

j=1

Qj
i=1

�
�2�

2
t�i + �3

�
and that

r�2ht = �1
Pt�2

k=0 �
k
3

Pt�2�k
j1=0

�j13 �
2
t�j1�1

+2�1�2
Pt�3

k=0 �
k
3

Pt�2�k
j2=1

P
j1<j2

�j2�13 �2t�j1�1�
2
t�j2�1

+3�1�
2
2

Pt�4
k=0 �

k
3

Pt�2�k
j3=2

P
j2<j3

P
j1<j2

�j3�23 �2t�j1�1�
2
t�j2�1�

2
t�j3�1

+:::

+l�1�
l�1
2

Pt�l�1
k=0 �k3

Pt�2�k
jl=l�1

P
jl�1<jl

:::
P

j1<j2
�
jl�(l�1)
3 �2t�j1�1:::�

2
t�jl�1

+:::+

(t� 1) �1�t�22

P0
k=0 �

k
3

Pt�2�k
jt�1=t�2

P
jt�2<jt�1

:::
P

j1<j2
�
jt�1�(t�2)
3 �2t�j1�1::�

2
t�jt�1�1

r�1ht=h
�
t = 1=�1:

and

r�3ht = �1�2

hPt�2
k=0 k�

k�1
3

Pt�2�k
j1=0

�j13 �
2�
t�j1�1 +

Pt�2
k=0 �

k
3

Pt�2�k
j1=0

j1�
j1�1
3 �2�t�j1�1

i
+�1�

2
2

hPt�3
k=0 k�

k�1
3

Pt�2�k
j3=1

P
j1<j2

�j2�13 �2�t�j1�1�
2�
t�j2�1

17
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+
Pt�3

k=0 �
k
3

Pt�2�k
j2=1

P
j1<j2

(j2 � 1) �j2�23 �2�t�j1�1�
2�
t�j2�1

i
+�1�

3
2

hPt�4
k=0 k�

k�1
3

Pt�2�k
j3=2

P
j2<j3

P
j1<j2

�j3�23 �2�t�j1�1�
2�
t�j2�1�

2�
t�j3�1

+
Pt�4

k=0 �
k
3

Pt�2�k
j3=2

P
j2<j3

P
j1<j2

(j3 � 2) �j3�33 �2�t�j1�1�
2�
t�j2�1�

2�
t�j3�1

i
+

+:::+

+�1�
l
2

hPt�l�1
k=0 k�k�13

Pt�2�k
jl=l�1

P
jl�1<jl

:::
P

j1<j2
�
jl�(l�1)
3 �2�t�j1�1:::�

2�
t�jl�1

+
Pt�l�1

k=0 �k3
Pt�2�k

jl=l�1
P

j�1<jl
:::
P

j1<j2
(jl � (l � 1)) �jl�l3 �2�t�j1�1:::�

2�
t�jl�1

i
+

+:::+

�1�
t�1
2

Pt�2�k
jt�1=t�2

P
jt�2<jt�1

::
P

j1<j2
(jt�1 � (t� 2)) �jt�1�(t�1)3 �2�t�j1�1::�

2�
t�jt�1�1:

Thus, we can write ft;d1;k
�
�y
�
=
�
f1;t;d1;k

�
�y
�
; f2;t;d1;k

�
�y
�
; f3;t;d1;k

�
�y
��
as

(17) ft;d1;k := �
�
�t�i : i � 0

�
; t 2 Z

where �t is iid(0; �
2
�) with positive and continuous density; � is a measurable function � : RZ !

R3�2d1;k : For y 2RZ and x 2 R de�ne (y;x)t as the sequence with coordinates,

�i =

8>><>>:
yi

x

yi�1

i < t

i = t

i > t

Recalling that E
�
�4(d1;k+2)

�
<1; it follows that E

�

� �(�; x1)t�

� <1: Also, given assumption A,
ft;d1;k is ��mixing with mixing coe¢ cients decaying at an exponential rate. Hence, condition (i) in
Götze and Hipp (1994, Lemma 2.3) follows, i.e.

There exists K <1 and � > 0 such that for j 2 Z and x1; x2 2 R

E


� �(�; x1)t�� � �(�; x2)t�

 � Ke��jtj jx1 � x2j :

As all partial derivatives of the Gaussian likelihood for GARCH(1,1) models are almost surely contin-

uous provided the innovation process has a continuous positive density, then condition (ii) in Götze

and Hipp (1994, Lemma 2.3), follows, i.e.

For t 2 Z there exists �t � R, P (�t) = 1, such that for all x0 2 �t; �; � > 0; there exists � > 0

satisfying

P (y 2 RZ : 8x 2 R, jx� x0j < �;
@

@�0
ft;d1;k exists at the point (y; x)

t and���� @@�0ft;d1;k ((y; x) t)� @

@�0
ft;d1;k

�
(y; x0)

t����� � �) � 1� �:
18
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Finally, for a Gaussian likelihood, the partial derivatives, with respect to the same argument, of

the various component of ft;d1;k are not linearly dependent; also the partial derivatives of a given

component of ft;d1;k ; with respect to generic 6d1;k arguments, are not linearly dependent. Hence, (iii)

in Götze and Hipp (1994, Lemma 2.3) follows, i.e.

For some distinct l1; :::; l6d1;k � 0;

det

 1X
t=0

@

@�lv
ft;d1;k : v = 1; :::; 6d1;k

!
6= 0:

on a set of positive P-probability.

Proof of Theorem 1:

(i) We begin with the "only if" part. As we are interested in necessary conditions it su¢ ces

to consider T 1=2
�b�i;T � �yi� : We �rst need to establish the existence of a stochastic expansion of

T 1=2
�b�i;T � �yi� up to a term of order o�T� k�1

2

�
: Given A, and assuming that E(�4t ) <1; it follows

that T 1=2
�b�i;T � �yi� is asymptotically normal (see e.g. Bollerslev and Wooldridge 1992), thus

T 1=2
�b�T � �y� = T 1=2�T = OP (1):

Let LT (�) = 1
T

PT
t=1 Lt (�) ; then the Taylor expansion of r�LT

�b�T� around �y; up to the k order
writes as

0 = r�LT
�
�y
�
+r2

�LT
�
�y
�
�T

+
1

2

0BB@
P3

j1=1

P3
j2=1

r�1�j1�j2
LT
�
�y
�
�T;j1�T;j2P3

j1=1

P3
j2=1

r�2�j1�j2
LT
�
�y
�
�T;j1�T;j2P3

j1=1

P3
j2=1

r�3�j1�j2
LT
�
�y
�
�T;j1�T;j2

1CCA

+:::+
1

k!

0BB@
P3

j1=1
:::
P3

jk=1
r�1�j1 :::�jk

LT
�
�y
�
�T;j1 � �T;j2 � :::� �T;jkP3

j1=1
:::
P3

jk=1
r�2�j1 :::�jk

LT
�
�y
�
�T;j1 � �T;j2 � :::� �T;jkP3

j1=1
:::
P3

jk=1
r�3�j1 :::�jk

LT
�
�y
�
�T;j1 � �T;j2 � :::� �T;jk

1CCA
+ek+1;T ;

where r�1�j1 :::�jk
LT
�
�y
�
denote the k + 1�th derivative with respect to �1; �j1 ; :::; �jk ; and �T;jk the

19
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jk�th component of �T : Thus,

T 1=2
�b�T � �y�

=
�
�r2

�LT
�
�y
���1 �

T 1=2r�LT
�
�y
�

+
1

2
T 1=2

0BB@
P3

j1=1

P3
j2=1

r�1�j1�j2
LT
�
�y
�
�T;j1�T;j2P3

j1=1

P3
j2=1

r�2�j1�j2
LT
�
�y
�
�T;j1�T;j2P3

j1=1

P3
j2=1

r�3�j1�j2
LT
�
�y
�
�T;j1�T;j2

1CCA+ :::

+
1

k!
T 1=2

0BB@
P3

j1=1
:::
P3

jk=1
r�1�j1 :::�jk

LT
�
�y
�
�T;j1 � �T;j2 � :::� �T;jkP3

j1=1
:::
P3

jk=1
r�2�j1 :::�jk

LT
�
�y
�
�T;j1 � �T;j2 � :::� �T;jkP3

j1=1
:::
P3

jk=1
r�1�j1 :::�jk

LT
�
�y
�
�T;j1 � �T;j2 � :::� �T;jk

1CCA
1CCA

+T 1=2ek+1;T :

Hereafter, rk
�LT

�
�y
�
is the matrix with generic element r�j1 :::�jk

LT
�
�y
�
; ji = 1; 2; 3 for all i: The

expression for r�Lt
�
�y
�
; r2

�Lt
�
�y
�
; r3

�Lt
�
�y
�
; etc. have been already provided in the proof of the

Lemma.

Recalling that, E
�
r�1�j1 :::�jk

LT
�
�y
��
< 1 is that E

�
�2kt
�
< 1; in order to have an Edgeworth

expansion for the LHS of (11) ; up to the k�th term, we need the existence of the (k+2)moment of the
(k+2) derivative of the score and the outerproduct, which in turn requires that E

�
�
2(k+2)(k+4)
t

�
<1:

(ii) We now turn to the "if" part. Given Assumption A and recalling (17), we have that there exist

a constant K; and � > 0; such that for m � 1;

(18) E
�

� ��t; �t�1; :::; �t�m; :::; �1; �0�� � ��t; �t�1; :::; �t�m; 0; :::; 0�

� � K exp (��m) :

Lemma A1 ensure that condition (15) is satis�ed. Now, let d1;k = k + 3; where d1;k is de�ned in

Lemma A1. Recalling (10), E
�
�
2(k+3)(k+5)
t

�
< 1 ensures that the k + 3�th moments of all the

component of ft;k+3 is �nite. Now, the latter condition, plus (15) and (18) ensures that (see e.g.

Götze and Hipp (1983, p.216-217) that

lim
T!1

T k=2 sup
z2R

�����P �G �ST;k+3(�y)� � z��
 
1 +

kX
i=1

T�1=2�i (@=@z)

!
�(z)

����� = 0;
where ST;k+3(�

y) = 1
T

PT
t=1 ft;k+3(�

y): Finally, by Proposition 1 in Hall and Horowitz (1996),

lim
T!1

T k=2
�
sup
z2R

��P �G �ST;k+3(�y)� � z�� P (t�i � z)�� > T�k=2� = 0:
The statement then follows.

Hereafter, let P � denoting the probability law governing the block bootstrap, E� and V ar� the

mean and variance operator under P �; also
pr�! and d�! denote convergence in probability and in

distribution under P �; conditionally on the sample.
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Proof of Theorem 2:

It is immediate to see that our set-up can be casted into Andrews (2002) set-up, with Lt (�)

playing the same role as �(Xt; �) and � = 1; as the score is a martingale di¤erence sequence. Now,

given (18), Assumption 1 in Andrews (2002) holds, and given Lemma A1 his Assumption 4 is satis�ed

too. As all the derivatives of the gaussian likelihood are continuous, and recalling that, because of

Lemma 1 in Lumsdaine (1996), E
�
r�j1 :::�jk

LT
�
�y
��
<1 if and only if E

�
�2kt
�
<1; it follows that

Assumptions 2, 3 and 5 in Andrews were satis�ed if we assumed that the innovation process has all

moments �nite. On the other hand, we have only required that E
�
�
2(d1;k+d2;k+2)(k+2)p
t

�
<1; where

d1;k � k + 3; d2;k � k + 1; and p > k=2
2(1=2���
) : The moment conditions on the likelihood derivatives

of the elements of fi;t;d1;k
�
�y
�
play a crucial role in the proof of Lemma 14 of Andrews. Here, we

proceed by showing that the moments conditions imposed on the innovation term ensure that the

statement in his Lemma 14 applies also in our context. The rest of the proof comes straightforwardly

from Andrews (2002).

De�ne the bootstrap analog of (10), that is:

(19) f �i;t;d1;k (�) =
�
r�iL

�
t (�) ; :::;r

d1;k
�i

�
r�L

�
t (�)

�
;r�iL

�
tr�iL

�
t (�)

0 ; :::;rd1;k
��i

�
r�L

�
tr�L

�
t (�)

0
��
;

where r�iL
�
t (�) = r�iL

�
t (�)� E� (r�iL

�
t (�)) ; and

r�iL
�
tr�iL

�
t (�)

0 = r�iL
�
tr�iL

�
t (�)

0 � E�
�
r�iL

�
tr�iL

�
t (�)

0� : Also, de�ne
ST;i;d1;k(�

y) =
1

T

TX
t=1

fi;t;d1;k(�
y)

S�T;i;d1;k(
b�T ) = 1

T

TX
t=1

f �i;t;d1;k(
b�T )

Given A, d1 � k + 2; 
 > 0; there exists an in�nite di¤erentiable function G(�); with G(Si) = 0 and
G(S�i ) = 0; where Si = E

�
ST;i;d1;k

�
�y
��
, S�i = E

�
�
S�T;i;d1;k

�b�T�� ; such that, for k = 2; 3
(20) lim

T!1
sup
z
T k=2

��Pr (t�i;T � z)� Pr �T 1=2G �ST;i;d1;k ��y�� � z��� = 0
and

(21) lim
T!1

sup
z
T k=2

���Pr �et�i;T � z�� Pr�T 1=2G�S�T;i;d1;k(b�T )� � z���� = 0
Let	i;k;T = T 1=2

�
Si;T;d1;k(�

y)� E
�
Si;T;d1;k(�

y)
��
and	�i;k;T = T

1=2
�
S�i;T;d1;k(

b�T )� E� �S�i;T;d1;k(b�T )�� ;
and let 	i;k;T;j be the j � th element of 	i;k;T : De�ne

(22) vi;T;k = E
�
T�(m)�m�=1	i;k;T;j�

�
21
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and let vi;k = limT!1 vi;T;k; and

(23) evi;T;k = E� �T�(m)�m�=1	�i;k;T;j��
where �(m) = 1=2 if m is odd and 0 if m even, and 2 � m � k + 2: We need to show that

(24) lim
T!1

T k=2P
���T 1=2E� ��m�=1	�i;k;T;��� T 1=2E ��m�=1	i;k;T;���� > cT��� = 0

for some c > 0; and

(25) lim
T!1

T �
���T 1=2E ��m�=1	i;T;j��� lim

T!1
T 1=2E

�
�m�=1	i;T;j�

���� = 0
Hereafter, as the arguments used in the proof are the same across all i; when there is no risk on

confusion, we omit the subscript i: Let fi;t;d1;k
�
�y
�
and f �i;t;d1;k

�b�T� be de�ned as (10) and (19),
respectively. De�ne f t;k = fi;t;d1;k

�
�y
�
�E

�
fi;t;d1;k

�
�y
��
and f

�
t;k = f

�
i;t;d1;k

�b�T��E� �f �i;t;d1;k �b�T��;
also let Yj =

P
t2bj f t;k;

eYj =Pt2bj f
�
t;k; and Y

�
j =

P
t2b�j

f
�
t;k, where for j = 1; :::; Tl; Tl = T � l + 1;

bj = (j; :::; j + l � 1) j = 1; :::; b and b�j is an iid discrete uniform random variable which is equal to

bj with equal probability 1=Tl: As shown in Andrews (2002), the most di¢ cult case is that of m = 3:

Now,

T 1=2E�
�
�3�=1	

�
i;T;�

�
= T�1

bX
j1=1

bX
j2=1

bX
j3=1

E�
�
Y �j1Y

�
j2
Y �j3
�

= T�1bE�
�
Y �31
�
= T�1bT�1l

TlX
j=1

eY 3j :
If for some C <1; and for i; j = 1; 2; 3 E

��
rd1;k+d2;k
�

�
r�iLT (�)r�iLT (�)

0��3p� < C uniformly in
a neighborhood of �y; with d1;k � k + 3; d2;k � k + 1; p de�ned as below and if � + 
 < 1=2; then
from Andrews (2001),

(26) lim
T!1

T k=2P

 
T�1bT�1l

TlX
j=1

���eY mj � Y mj
��� > T��! = 0:

Given (26), in order to show (24), one has to show that B1 and B2 below approach zero, where

B1 = lim
T!1

T k=2P

 �����T�1bT�1l
TlX
j=1

�
Y 3j � E

�
Y 3j
������� > T �

!

and that

B2 = lim
T!1

T �
��T�1bE �Y 31 �� T 1=2E ��3�=1	i;T;���� :
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By Markov inequality and a double application of Yokoyama-Doukan inequality (Doukhan 1995,

p.25-30), there exists a constant C and � > 0 such that,

B1 � CT k=2+p(��1)E

�����bT�1l
TlX
j=1

�
Y 3j � E

�
Y 3j
�������

p

� C lim
T!1

T k=2+p(��1)bp=2l3p=2
�
E
��f 1;k��3p+4�� 3p(3+�)

(3+�)(3(p+�)+�)

� C lim
T!1

T k=2+p(��1)T p=2T p

�
E
��f 1;k��3p+4�� 3p(3+�)

(3+�)(3(p+�)+�)
(27)

Thus, B1 ! 0; provided p > k
2(1=2�
��) and if E

��f 1;k��3p+4� <1:
Also, by the proof of Lemma 14 in Andrews (2001), it follows that for the case of m = 5; we need

p > k=(3� 2� � 4
); requiring � + 2
 < 3=2; which is implied by � + 
 < 1=2 and E
��f 1;k��5p+4� <1:

Given (10) and the last line of (27), it su¢ ce that the �rstmp+4�-th moments of all score derivatives

up to order (d1;k + d2;k) exist: In the proof of Lemma A1 we have shown that E
��
rr1
�i
LT
�
�y
��r2�

<

1 if and only if E
�
�
2(r1+r2)
t�j

�
< 1; by the same argument, and as a straightforward conse-

quence of the chain rule E
��
rr1
�i

�
LT
�
�y
�
LT
�
�y
�0��r2�

< 1 if and only if E
�
�
2(r1+r2+1)
t�j

�
< 1:

Now, recalling that 2 � m � k + 2; setting � = 1=4; it follows that E
���f 1;k��mp+4�� < 1 and

E
��
rd1;k+d2;k
�

�
r�ilt (�)r�ilt (�)

0��mp� < 1 if E
�
�
2(d1;k+d2;k+2)(k+2)p
t

�
< 1; where d1;k � k + 3;

d2;k � k + 1; and p > k=2
2(1=2���
) : Thus, the left hand side of (27) is approaching zero, provided

E
�
�
2(2k+6)(k+2)p
t

�
<1:

As for B2; along the lines of proof of Lemma 14 in Andrews (2002), recalling that l = T 
;

T�1bE
�
Y 31
�
� T 1=2E

�
�3�=1	i;T;�

�
=

1

l
E

 
lX
i=1

f i;k

!3
� 1

T

TX
i1=1

TX
i2=1

TX
i2=1

f i1;kf i2;kf i3;k

=

l�1X
i1=�l+1

l�1X
i2=�l+1

�
1� (i1 + i2)

l

�
E
�
f 0;kf i1;kf i2;k

�
�

T�1X
i1=�T+1

T�1X
i2=�T+1

�
1� (i1 + i2)

T

�
E
�
f 0;kf i1;kf i2;k

�
:

Now,

T �

�����
l�1X

i1=�l+1

l�1X
i2=�l+1

E
�
f 0;kf i1;kf i2;k

�
�

T�1X
i1=�T+1

T�1X
i2=�T+1

E
�
f 0;kf i1;kf i2;k

������! 0
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by the Doukhan mixing inequality (1995, p.9), provided 
 > �: Also,

T ��1

�����
T�1X

i1=�T+1

T�1X
i2=�T+1

(i1 + i2)E
�
f 0;kf i1;kf i2;k

������! 0

by mixing inequality, and

T ��


�����
l�1X

i1=�l+1

l�1X
i2=�l+1

(i1 + i2)E
�
f 0;kf i1;kf i2;k

������! 0;

provided � < 
: The statement in (24) follows by the same argument used to show that B2 ! 0:

Finally, from (24) and (25) it follows that

lim
T!1

T k=2P
�
jevi;T;k � vi;kj > T �� = 0:

The statement in Lemma 14 in Andrews then follows.

�
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