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Introduction

It is well known that the quasi likelihood function of a GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, introduced by Bollerslev (1986), depends on the entire past history of the observables. In this case, resampling blocks of observations is not equivalent to resampling blocks of the likelihood function. This point has been lucidly pointed out by [START_REF] Gonçalves | Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models[END_REF], who indeed suggest to construct bootstrap estimators of GARCH models based on resampling blocks of the likelihood function. We go a step further, and we investigate the higher order properties of such estimators. This is accomplished in two steps. First, we establish the necessary conditions for the existence of an Edgeworth expansion up to the k th term. This collapses to the existence of a minimum number of moments of the innovation process. Second, we provide su¢ cient conditions for higher order improvements of equally tailed and symmetric t-tests based on Quasi Maximum Likelihood Estimators (QMLE) of GARCH(1,1) parameters. This is done by providing the su¢ cient number of moments of the innovation process needed for the moments of the actual and bootstrap statistics to approach each other at an appropriate rate. Broadly speaking, this allows to control the rate at which the di¤erence between the Edgeworth expansion of the actual and bootstrap statistic approaches zero. [START_REF] Linton | An Asymptotic Expansion in the GARCH(1,1) Model[END_REF] calculated the Edgeworth-B distribution function for the GARCH(1,1), and we extend his setting to the Edgeworth expansion in the context of the existence of re…nements of the bootstrap. If we were willing to assume that all the moments of the innovation process exist, then all the assumptions in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF] would be satis…ed and higher order re…nements would then follow from his Theorem 2. On the other hand, for the GARCH case we can prove re…nements for QML estimators under somewhat weaker assumptions on the existence of moments of the score and Hessian derivatives, than those required in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF].

In nutshell, we need (i) conditions on the parameter space of the process in order to ensure that the GARCH process is exponentially mixing (see e.g. [START_REF] Carrasco | Mixing and Moment Properties of Various GARCH and Stochastic Volatility Models[END_REF]), (ii) smoothness of the density of the innovation process (iii) the existence of a given number of moments of the innovation process. First, we show that under (i)-(iii) the [START_REF] Götze | Asymptotic Distributions of Statistics in Time Series[END_REF] conditions for

the existence of the Edgeworth expansion for weakly dependent observations are satis…ed. Then, we show that (i)-(iii) su¢ ce to obtain the same higher order re…nements of [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF]. Thus, the block bootstrap, based on resampling the likelihood, leads to an error in rejection probability and con…dence interval coverage probability of smaller order than T 1=2 for equal-tailed t-tests for GARCH parameters and of order smaller than T 1 for symmetric t-tests, for > 0; and such that < and + < 1=2; where is the parameter controlling the lengths of the block l; i.e. l ' T :

Needless to say, an advantage of using bootstrap estimators is that of obtaining more accurate inference on the GARCH(1,1) parameters. Gonçalves andKilian (2004, 2007) focused on bootstrap inference for conditional mean that is robust to GARCH or other unspeci…ed forms of conditional heteroskedasticity. However, there are many cases in practice where we are interested on the GARCH parameters themselves. From a more empirical perspective, one of the most popular application of bootstrap estimation of GARCH parameters is in the context of risk management, and more precisely in the evaluation of Value at Risk and Expected Shortfall. For example, [START_REF] Christo¤ersen | Estimation Risk in Financial Risk Management[END_REF] rely on bootstrapping GARCH parameters in order to take into proper consideration the contribution of parameter estimation error when evaluating Value at Risk; [START_REF] Mancini | Robust Semiparametric Bootstrap Methods for Value at Risk Prediction under GARCH-type Volatility Processes[END_REF] address the same issue using an estimation and bootstrap procedure robust to the presence of outliers. Both papers rely on the residual based bootstrap approach outlined by [START_REF] Pascual | Bootstrap Prediction for Returns and Volatilities in GARCH Models[END_REF].

If one knew the data generating process (DGP), then a residual based bootstrap approach, which makes direct use of the structure of the model, seems to be more natural than a nonparametric bootstrap approach, such as the block bootstrap. [START_REF] Hidalgo | A Goodness of Fit Test for ARCH(1 )[END_REF] show the …rst order validity of the residual-based bootstrap for ARCH(1) process, which indeed include …nite GARCH(1; 1).

Hence, it is interesting to investigate whether the residual-based bootstrap provides higher order improvements over asymptotic normality, and whether these improvements are sharper than those provided by the block bootstrap. This is a quite challenging task, and we leave it for future research.

Nevertheless, we outline how the arguments used by Hidalgo and Za¤aroni to show …rst order validity cannot be directly extended to show the higher order properties of the residual-based bootstrap.

In the case of possible nonlinear Markov processes, recent papers by [START_REF] Andrews | High Order Improvements of the Parametric Bootstrap for Markov Processes[END_REF][START_REF] Horowitz | Bootstrap Methods for Markov Processes[END_REF] have established that higher-order re…nements, very close to those attainable in the iid case, can be achieved via the use of the Markov bootstrap, even in the case the underlying transition density is unknown, and replaced by a nonparametric estimator. Though a GARCH process is not Markov, under certain conditions is approximate Markov, as in the de…nition of Horowitz. Thus, we have analyzed the applicability of the Markov process for the estimation of the conditional variance parameters. If the marginal density of the innovation process is known, then the results of [START_REF] Andrews | High Order Improvements of the Parametric Bootstrap for Markov Processes[END_REF] apply and the Markov bootstrap provides re…nements arbitrarily close to those attainable in the iid case. On the other hand, whenever the density of the innovation is unknown and has unbounded support, as in the gaussian case for example, then some of the assumptions for the existence of higher order re…nements are violated. This point has been already outlined in [START_REF] Horowitz | Bootstrap Methods for Markov Processes[END_REF].

The rest of this paper is organized as follows. Section 2 describes the implementation of the bootstrap procedure based on the resampling of the likelihood function. Section 3 establishes the higher order improvement of the bootstrap approximation of the coverage error of con…dence intervals for GARCH parameters, and summarizes the main theoretical results. Section 4 outlines the di¢ culties involved in the establishment of possible higher order re…nements for the residual-based bootstrap. Section 5 brie ‡y outlines the use of the Markov bootstrap, whenever the marginal density of the innovation is unknown and has unbounded support. Section 6 reports Monte Carlo simulation results, which provide some evidence of the improved accuracy of bootstrap, for the error in the coverage probability. All the proofs are collected in the Appendix.

2 The Block Bootstrap: Set-Up Suppose y t is generated by the GARCH(1,1) process,

(1)

y t = p h t t ; h t = y 1 + y 2 y 2 t 1 + y 3 h t 1 ; t = 1; :::; T
where t is iid and y = y 1 ; y 2 ; y 3 is the true parameter vector. We de…ne the log-likelihood function as if yt p ht were normally distributed, thus using a Gaussian likelihood. The quasi maximum likelihood estimator, QMLE, is then de…ned as:

(2) b T = arg max 2 1 T T X t=1 L t ( ) where 1 T T X t=1 L t ( ) = 1 2 T X t=1 ln h t ( ) 1 2 T X t=1 y 2 t h t ( ) :
Note that after a few manipulations, and imposing h 0 = 0 = 0; we have that1 

h t = 1 + 2 2 t 1 + 3 h t 1 = 1 " 1 + t 1 X j=1 j Y i=1 2 2 t i + 3 # : (3)
From (3) it is immediate to see that resampling blocks of the observable series y t is not equivalent to resampling blocks of the log-likelihood. Thus, we need to resample b blocks of length l from the loglikelihood L t ; setting bl = T: Hereafter, let I i ; i = 1; :::; b denote identical and independent draws from a discrete uniform on 0; 1; :::; T l: Thus, for each i = 1; ::; b I i = j, with j = 0; 1; :::; T l; with equal probability 1=(T l+1): Now, for all 2 ; de…ne L 1 ( ) ; L 2 ( ) ; :::; L T l+1 ( ) ; :::; L T ( ) to be equal to L I 1 +1 ( ) ; L I 1 +2 ( ) ; ::::; L I b +1 ( ) ; :::; L I b +l ( ) :

Note, that we use the same random draws I i for any 2 : In general, resampling the data or resampling the likelihood is equivalent. However, in the GARCH case, the (quasi) likelihood function
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depends on the entire past history of the observables. In this case, resampling blocks of observations is not equivalent to resampling blocks of the likelihood function. This point has been lucidly pointed out by [START_REF] Gonçalves | Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models[END_REF], who indeed suggest to construct bootstrap estimators of GARCH model based on resampling blocks of the likelihood function. We use the moving blocks bootstrap (MBB) of [START_REF] Künsch | The Jackknife and the Bootstrap for General Stationary Observations[END_REF] as in [START_REF] Gonçalves | Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models[END_REF].

It should be pointed out that, if we were just interested in …rst order validity, then we could have set l = 1 and relied on the iid nonparametric bootstrap. In fact, as the score is a martingale di¤erence sequence, bootstrap samples based on iid resampling of the log-likelihood would have ensured that the …rst two bootstrap moments properly mimic the correspondent sample moments. However, as for re…nements, we need to match higher moments, and in this case the fact that the score is a martingale di¤erence sequence does not help.

We now use the resample log-likelihood in order to construct the bootstrap estimator b T , that is:

b T = arg max 2 1 T T X t=1 L t ( ) E rL t ( b T ) 0 :
Note that the recentering term, E rL t ( b T ) 0

; ensure that the score, evaluated at b T ; has zero mean.

De…ne the Hessian and the variance of the score as B y and A y respectively, where

B y = E r 2 L t ( y )
and

A y = V ar 1 p T T X t=1 r L t ( y ) ! = E r L t ( y )r L t ( y ) 0 :
Also, de…ne the sample analogs of B y and A y ; that is

b B T = 1 T T X t=1 r 2 L t ( b T ) (4) b A T = 1 T T X t=1 r L t ( b T )r L t ( b T ) 0 :
Our objective is to provide higher order re…nements of the approximation of the coverage error for the t-statistic

(5)

t i ;T = p T b B 1 b A b B 1 1=2 ii b i;T y i ;
for i = 1; 2; 3: 

B T = 1 T T X t=1 r rL t ( b T ) E rL t ( b T ) and (6) b A T = 1 T T X t=1 rL t ( b T ) E rL t ( b T ) rL t ( b T ) E rL t ( b T ) 0 :
The bootstrap analog of t i ;T is then given by: 

(7) e t i ;T = p T b B 1 T b A T b B 1 T 1=2 ii b i;T b i;T : As rL t ( y ) is a martingale di¤erence sequence, b A T is a consistent estimator of V
e A T = b T (T l + 1) T l X i=0 l X j=1 l X m=1 rL i+j ( b T ) E rL i+j ( b T ) r L i+m ( b T ) E rL i+m ( b T ) 0 : (8) Now, let b T;ii = b B 1 T b A T b B 1 T 1=2 ii ; e T;ii = b B 1 T e A T b B 1 T 1=2
ii and following [START_REF] Hall | Bootstrap Critical Values for Tests based on Generalized-Method-of-Moments Estimators[END_REF], de…ne the adjustment term as i;T = b T;ii =e T;ii ;

and the adjusted t-statistics as:

(9)

t i ;T = p T b B 1 T b A T b B 1 T 1=2 ii b i;T b i;T i;T :
3 The Block Bootstrap: Re…nements

De…ne the vectors containing the centered score, the centered outer product and all their derivatives up to order d 1;k as:

(10)

f i;t;d 1;k ( ) = r i L t ( ); :::; r d 1;k i r L t ( ) ; r i L t ( )r i L t ( ) 0 ; :::; r d 1;k i r L t ( )r L t ( ) 0 ;
where In what follows, we rely on the following assumption:

r i L t ( ) = r i L t ( ) E (r i L t ( )) ; r i L t ( )r i L t ( ) 0 = r i L t ( ) r i L t ( ) 0 E r i L t ( ) r i L t ( ) 0 ;
Assumption A: (i) The parameter space is a compact subset of R 3+ such that = f 1 ; 2 ; 3 ; 1 ; 2 ; 3 > 0; 2 + 3 < 1g. (ii) y = y 1 ; y 2 ; y 3 ; b T = b 1T ; b 2T ; b 3T are in the interior of (iii) t is iid(0; 2 )
and it has a positive continuous density:

Assumption A ensures that y t and h t ( y ) are strictly and covariance stationary mixing processes, with exponentially decaying mixing coe¢ cients (see e.g. [START_REF] Carrasco | Mixing and Moment Properties of Various GARCH and Stochastic Volatility Models[END_REF]). Let N y be a neighbourhood of y ; then for any 2 N y ; f i;t;d 1;k ( ) is also mixing process with exponential decay.

In Lemma A1 in the Appendix, we show that Assumption A ensures that the [START_REF] Götze | Asymptotic Distributions of Statistics in Time Series[END_REF] Cramer type conditions hold. Hence, in order to prove the existence of the k th term of the Edgeworth expansion for the statistic in ( 5) we need to show the existence of enough moments for the components of f i;t;d 1;k ( ) ; for i = 1; 2; 3: This is accomplished in Theorem 1, where we provide necessary and su¢ cient conditions for the existence of the k th term of the Edgeworth expansion for the t-statistic in (5).

Hereafter, let 1 + P k i=1 T i=2 i (@=@z) (z) denote the Edgeworth expansion of t i up to order k (see e.g. p.142 in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF]. We have:

Theorem 1: Let Assumptions A hold. Then (11) lim T !1 T k=2 sup z2R P (t i z) 1 + k X i=1 T i=2 i (@=@z) ! (z) = 0 (i) only if E 2(k+2)(k+4) t < 1 (ii) and if E 2(k+3)(k+5) t < 1:
Theorem 1 provides a set of necessary and a set of su¢ cient conditions for the existence of the k-th term of the Edgeworth expansion of the statistics. Needless to say, for k = 2; 3 (i) is also a necessary condition for obtaining higher order re…nements for equally-tailed and symmetric t-tests respectively.

Hereafter, z t i ;T ; =2 and z jt i ;T j; denote the (1 )=2 bootstrap quantile for t i ;T and the (1 ) quantile for t i ;T respectively. As usual, z t i ;T ; =2 and z jt i ;T j; are constructed from the empirical distribution of the bootstrap statistic t i ;T : We have:

Theorem 2: Let Assumption A hold. Let + < 1=2 and < ; where is the parameter controlling the block size, i.e. l ' T :

If E 2(d 1;k +d 2;k +2)(k+2)p t < 1; where d 1;k k + 3; d 2;k k + 1; and A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT p > k=2 2(1=2 ) ; then: (i) for k = 2; P t i ;T < z t i ;T ; =2 or t i ;T > z t i ;T ;1 =2 = + o T (1=2+ ) (ii) for k = 3; P jt i ;T j < z jt i ;T j; = + o T (1+ ) :
From Theorem 2, it is immediate to say that we obtain the same higher order re…nements for the error in rejection probability (ERP), as in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF]. As an immediate corollary, we also have that the bootstrap error in the coverage probability (ECP) is of order smaller than T (1=2+ ) for the equal-tailed test and of T (1+ ) for the symmetric test, with < 1=4: It is interesting to note that, in the exponentially mixing GARCH(1,1) case, the only conditions we need for higher order re…nements are in terms of smoothness of the density and of existence of a su¢ cient number of moments of the innovation process.

The Residual-Based Bootstrap

The residual-based bootstrap is based on iid resampling of the centered residuals.

Let b t = y t =h 1=2 t b T ;
we resample, with replacement, from the empirical distribution of b t ; and obtain the sequence t ;

where 1 is equal to b t T 1 P T t=1 b t ; t = 1; :::; T with equal probability 1=T: 1 ; 2 ; :::; T are de…ned analogously, so that t ; is iid conditional on sample. We then proceed as follows:

Fix y 0 ; h 0 , =) b h 1 = b 1;T + b 2;T y 2 0 + b 3;T h 0 y 1 = b h 1=2 1 1 b h 2 = b 1;T + b 2;T y 2 1 + b 3;T b h 1 y 2 = b h 1=2 2 2
and so on, until sequences y t ; h t ; t = 1; :::; T are formed. Now, de…ne the bootstrap QML estimator as:

e T = arg max 2 T X t=1 L (RS) t ( ) = arg max 2 1 2 T X t=1 ln h t ( ) 1 2 T X t=1 y 2 t h t ( ) ! ;
where the superscript (RS) denotes the fact that the bootstrap likelihood is based on the residual bootstrap approach.

This residual based bootstrap procedure has been recently suggested by [START_REF] Pascual | Bootstrap Prediction for Returns and Volatilities in GARCH Models[END_REF]. See also [START_REF] Christo¤ersen | Estimation Risk in Financial Risk Management[END_REF], for an application to Value at Risk evaluation with GARCH models.

In the case of correctly speci…ed ARMA models, the asymptotic …rst order validity, as well as re-…nements, of the residual-based bootstrap have been already established (see e.g. [START_REF] Inoue | Bootstrapping Autoregressive Processes with Possible Unit Roots[END_REF], [START_REF] Kreiss | Bootstrapping Stationary Autoregressive Moving-Average Models[END_REF], and [START_REF] Bose | Edgeworth Correction by Bootstrap in Autoregressions[END_REF]). [START_REF] Robinson | Pseudo Maximum Likelihood Estimation of ARCH(1) Models[END_REF] establish conditions for strong consistency and asymptotic normality of QML estimators of ARCH(1) models: Now ARCH(1) models encompass GARCH(1,1) models.

In particular, the ARCH(1) model allows for a higher degree of memory, including also long-memory behavior. [START_REF] Hidalgo | A Goodness of Fit Test for ARCH(1 )[END_REF] hereafter HZ) take a step further and establish the …rst order validity of their residual-based bootstrap analogs.

Below, we outline the key steps in the HZ proof for the residual-based bootstrap …rst order validity, and sketch the further steps one should follow in order to establish higher order re…nements. In fact, the interesting question is whether the residual based-bootstrap may provide sharper re…nements than the block-bootstrap does. This is a rather involved issue, and we leave it for further research.

The key point is that we can express h t ; the score, and the hessian, as well as their bootstrap analogs, as a function on entire past of squared innovations. For notational simplicity we just focus on h t : Recalling equation (3); it's bootstrap analog is given by:

h t ( ) = 1 + 2 2 t 1 + 3 h t 1 = 1 " 1 + t 1 X j=1 j Y i=1 2 2 t i + 3 # h t ( ) = 1 + 2 2 t 1 + 3 h t 1 = 1 " 1 + t 1 X j=1 j Y i=1 2 2 t i + 3 # (12)
Thus one can write h t ( y ); as h t ( y ) = h 2 t 1 ; 2 t 2 ; :::; 2 1 ; y ; Now,

E 1 T T X t=1 h t ( y ) ! ' 1 T T T X i 1 =1 T X i 2 =1
:::

T X i T =1 h b 2 i 1 ; b 2 i 2 ; :::; b 2 i T ;
as any permutation and combination can occur with equal probability 1=T: 2 2 Note the abuse of notation. As we are resampling from centered residuals, more correctly we should have b i1 T 1 P t b t 2 ; though for notational simplicity we simply write b 2 i1 :

Let h t;M ( y ) be a truncated version of h t ( y ); i.e. h t;M ( y ) = h 2 t 1 ; 2 t 2 ; :::; 2 t M ; 0; :::; 0 ; HZ proof (see Lemmas 6.13-6.15) for …rst order asymptotic validity is based on three arguments. The …rst argument is that the process can be truncated, and the truncation error approaches zero fast enough, i.e.

E 1 T T X t=1 h t ( y ) h t;M ( y ) ! = O p M d ;
where d > 1 depends on the degree of memory of the process. Note that,

E 1 T T X t=1 h t;M ( y ) ! = 1 T M T X i 1 =1 T X i 2 =1
:::

T X i M =1 h b 2 i 1 ; b 2 i 2 ; :::; b 2 i M = V T;M ;
where V T;M de…nes a V -statistic. De…ne, the U statistic U T;M as

U T;M = T M 1 X 1 i 1 ::: i M T h b 2 i 1 ; b 2 i 2 ; :::; b 2 i M :
The second argument is that V statistics are very accurately approximated by U statistics, in fact by e.g. Theorem 5.1 in [START_REF] Grams | Convergence Rates for U-statistics and Related Statistics[END_REF],

E (jV T;M U T;M j r ) = O(T r ); for r > 0:
Finally, the third argument is that, by the law of large numbers for U statistics,

E U T;M 1 T T X t=1 h t;M ( y ) ! = O M T :
The same applies if we replace y with b T : The point is that, as for …rst order validity, it su¢ ces to match the Hessian and the variance of the score. As the score is a martingale di¤erence sequence, it all collapses to match sample and bootstrap sample …rst moments. In fact, as we outline below, things get more complicated once we move to higher moments.

The question is whether we can also obtain re…nements for the residual-based bootstrap and whether they are sharper than those obtained via the block-bootstrap.

A crucial condition for bootstrap re…nements is that the "distance" between the Edgeworth expansion of the statistic and that of its bootstrap counterpart approaches zero at fast enough rate, which in turn de…nes the "sharpness" of re…nements. This collapses to check the speed at which the distance between higher moments of the statistic and its bootstrap counterpart approaches zero.

Hereafter, let f i;t;d 1;k b T be the bootstrap analog of f i;t;d 1;k y evaluated at b T ; de…ned as in Section 3. Also, with an abuse of notation, let f t b T be a generic element of f i;t;d 1;k b T :
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In a nutshell, to have an improvement in the error in coverage probability (ECP) of T ; we need that (e.g. Andrews 2002):

(13)

T a P T (m) E 1 T 1=2 T X t=1 f t b T ! m T (m) E 1 T 1=2 T X t=1 f t y ! m > T ! ! 0;
where (m) = 0 if m is even and (m) = 1=2 if m is odd, a = 3=2 and m = 4 for equally tailed test, and a = 2; m = 5 for symmetric tests. Needless to say, the residual-based block bootstrap will provide sharper re…nements if > ; where is de…ned in Theorem 2 above. Now, as convergence in r mean implies converges in probability, the statement in ( 13) is implied by ( 14) 1); for some r > 0:

T a E T T (m) E 1 T 1=2 T X t=1 f t b T ! m T (m) E 1 T 1=2 T X t=1 f t y ! m r ! = o(
Now, f t b T writes as

f t b T = f 2
t 1 ; 2 t 2 ; :::; 2 1 ; b T ; and de…ne its truncated version as

f t;M b T = f 2 t 1 ; 2 t 2 ; :::; 2 t M ; b T :
The left hand side of ( 14) is majorized by I T + II T + III T ; where

I T = T a E T T (m) E 1 T 1=2 T X t=1 f t b T ! m T (m) E 1 T 1=2 T X t=1 f t;M b T ! m r ! II T = T a E T T (m) E 1 T 1=2 T X t=1 f t;M b T ! m T (m) E 1 T 1=2 T X t=1 f t;M y ! m r ! III T = T a T T (m) E 1 T 1=2 T X t=1 f t;M y ! m T (m) E 1 T 1=2 T X t=1 f t y ! m r ! :
It is immediate to see that the case of m = 1 can be treated along the same lines of HZ. Now, given

(3) and ( 10), for 0 < < 1;

I T = T a O T (m)(r m) T & M ,
so that it is enough to set M = T " ; for " > 0 arbitrarily small to ensure that I T = o(1): The same order of magnitude applies to III T : The di¢ cult part is II T :

We need to compute E 1 T 1=2 P T t=1 f t;M b T m
: For sake of simplicity, we begin by considering the case of m = 2: By noting that E f 2 t 1 ; 2 t 2 ; :::

; 2 t M ; b T f 2 t 1 ; 2 t 2 ; :::; 2 t M ; b T = 0 for j j > M; A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT E 1 T 1=2 T X t=1 f t;M b T ! 2 ' 1 T M X = M T M X t=2M E f 2 t 1 ; 2 t 2 ; :::; 2 t M ; b T f 2 t 1 ; 2 t 2 ; :::; 2 t M ; b T = 1 T M X = M T M X t=2M 1 T 1 T M T M X i 1 ::: T M X i ::: T M X i M ::: T M X i +M f b 2 i 1 ; :::; b 2 i ; :::; b 2 i M ; b T f b 2 i ; :::; b 2 i M ; :::; b 2 i M + ; b T : Hereafter, let (1) min i M j i j ; (m) max i M j i j ; (1) (2) 
:::

(m) : Thus, for a generic m;

E 1 T 1=2 T X t=1 f t;M b T ! m ' 1 T m=2 1 M X 1 = M ::: M X m= M E f 2 2M 1 ; :::; 2 M 1 ; b T ::: f 2 2M m ; :::; 2 M m ; b T 1 max i m i min i m i M = 1 T m=2 1 0 X 1 = M ::: 0 X m= M 1 T M + (m) T M X i 1 =2M ::: T M X i (1) =2M ::: T M X i (m) =2M
::: ::: It is immediate to see that, contrary to the case of m = 1;

T M X i M =2M ::: T M X i M + (1) =2M ::: T M X i M + (m) =2M
E 1 T 1=2 P T t=1 f t;M b T m cannot be
expressed as a V statistic, and thus the arguments used by HZ do no longer directly apply.

In fact, we can write

E 1 T 1=2 T X t=1 f t;M b T ! m = 1 T m=2 1 0 X 1 = M ::: 0 X m= M e V 1;T;M + (m) + 1 T m=2 1 M X 1 =1 ::: M X m=1 e V 2;T;M + (m) ;
where for i = 1; 2 e V i;T;M + (m) is not a V statistic with M + (m) elements, as di¤erent indexes appear with di¤erent frequency, as for example b 2 i (m) ; :::; b 2 i M appears m times, while b 2 i 1 ; :::; b 2 i (1) appears only once. Hence, we cannot directly rely on the same argument used by Hidalgo and Za¤aroni for showing …rst order validity.

As m is …nite, we believe it is possible to …nd a sharp enough bound for II T ; however this is a rather challenging task and we leave it for future research.

The Markov Bootstrap

For nonlinear, …nite order markov processes it has been already established that the Markov bootstrap can provide higher order re…nements very close to those available for iid observations. Andrews (2005) has considered the case in which the transition density is known in closed form, so that the Markov bootstrap is indeed a parametric bootstrap, while [START_REF] Horowitz | Bootstrap Methods for Markov Processes[END_REF] has considered the case in which the transition density is unknown. More precisely, [START_REF] Andrews | High Order Improvements of the Parametric Bootstrap for Markov Processes[END_REF] suggests to recursively resample the data from the likelihood evaluated at the estimated parameters. Thus, the bootstrap sample is generated by the same conditional distribution as the original sample, but with the "true" parameters replaced by the estimated parameters. However, this approach is not directly applicable in our context, as it is well known that y t ; as de…ned in (1) is non markovian, though (y t ; 2 t ) are jointly markovian. Nevertheless, if we knew the marginal density of the ; say ( ) ; then we could draw from it T iid observations, and use them to recursively construct h t b T and y t in the same manner outlined in the previous section. In this case, the only di¤erence between the DGP and the bootstrap DGP is the latter is generated using b T instead of y : As a consequence, we could obtain higher order re…nements along the same lines as in Andrews. Needless to say, this is not particularly useful, as in general we do not know the marginal density of the errors.

For the case in which the transition density of a Markov process is unknown, [START_REF] Horowitz | Bootstrap Methods for Markov Processes[END_REF] has suggested to draw the observations from a kernel density estimator. For one-dimensional Markov processes of order q; Horowitz shows that the error in the bootstrap estimate of one-sided and symmetrical probabilities are O P (T 1+" ) and O P T 3=2+" ; respectively, where " > 0 can be set arbitrarily small.

The key point in Horowitz result, stated in his Lemma 14, is that the cumulants of the original and bootstrap statistics di¤er only of a term of order T 1=2+" ; which re ‡ects the uniform rate at which the estimated conditional density converges to the true one, provided one uses a "enough" higher order kernel. In fact, because of the markov property, all moments, as well as smooth functions of them, can be computed via the transition density. Thus it is enough to control the error between the estimated and the true conditional density, in a uniform manner.

It is easy to see that mixing GARCH processes, with exponentially decaying mixing coe¢cients, are approximate Markov, according to the de…nition of Horowitz (2003, Section 4.3).

Though, one of the assumption in Horowitz, i.e. Assumption 4, requires that y t has bounded support. In the GARCH context, if the innovation has unbounded support, as in the case of normal innovation e.g., then also y t has unbounded support and Assumption 4 is violated. Needless say, the boundedness of the support is part of a set of su¢ cient conditions, and therefore we cannot claim it is indeed necessary. We leave the study of possible higher order re…nements via the Markov bootstrap for future research.

Simulation results

Table 2 in Gonçalves and White (2004, p. 209) reports the coverage rates of nominal 95% symmetric percentile intervals for an ARCH(1) process, both using asymptotic theory and the block bootstrap.

They consider sample sizes T equal to 200 and 500 and, for = 0 (in their notation, implies that t in (1) follows a iidN (0; 1) distribution). We extend their simulation experiment to the case of a GARCH(1,1) model as in ( 1), where the true parameter vector is given by y 1 ; y 2 ; y 3 0 = (0:8; 0:1; 0:8) 0 ; and t is either iidN (0; 1) or a t distribution with 5 degrees of freedom (t 5 ): We use the MBB of [START_REF] Künsch | The Jackknife and the Bootstrap for General Stationary Observations[END_REF]. Since our model is a GARCH(1,1), a more complicated process than the simulated ARCH(1) of Gonçalves and White (2004, page 209, Table 2), we report results for sample sizes 300 and 500. The number of Monte Carlo replications is set equal to 4000. Table 1 reports the results of coverage rates of nominal 95% symmetric percentile-t intervals both using the QML asymptotic approximation (ASYM) and our block bootstrap procedure (Bboot). We report the con…dence intervals (C. I.) for 2 and 3 : For the block bootstrap procedure (Bboot), we have used 999 bootstrap replications. We provide the results for block sizes l = 1; 5; 10; 25 and 50: When the block size is equal to 1; the block bootstrap only ensures …rst order validity; and then the di¤erence in the empirical coverage rate will illustrate the degree to which higher-order improvements help3 .

Pascual, Romo and Ruiz (2006, Tables 1 and2, p. 2299-2300) provide simulation results for a normal and a t 5 innovation process in the GARCH(1,1) context. Their simulation results provide evidence of the good performance of the residual based bootstrap procedure, although as far as we know, there are no theoretical results available in the literature that support the existence of re…nements with this type of bootstrap. From Table 1, it is immediate to see that when t is iidN (0; 1); the empirical coverage of ASYM is substantially below the nominal one, specially for 3 ; even with samples of 500 observations. Also, for sample of 300 observations, the empirical coverage of ASYM is substantially below the nominal one for both 2 and 3 :

The bootstrap empirical coverages for 2 and 3 seem to be rather robust to the choice of the block size, provided l 10: The improvements in coverage of the block bootstrap relative to …rst order asymptotics are noticeable, specially for 3 for 500 observations, and for both 2 and 3 in the case of 300 observations. This shows the usefulness of the block bootstrap in this context. The simulation results of Table 1 when t is drawn from iidN (0; 1) innovations, all the moments of t exist, and thus conditions in Theorem 2 are satis…ed. Moreover, when l = 1; the bootstrap only ensures …rst order validity. Indeed, as expected, the improvements over asymptotic normality, are smaller than in the case of l 10: This demonstrates once again the usefulness of the block-bootstrap in providing re…nements when the block size is carefully chosen.

Finally, Table 1 also reports the results for the case in which the innovations are drawn from tdistribution with 5 degrees of freedom. Hence, the conditions in Theorems 1 and 2 about the existence of a su¢ cient number of moments, are clearly violated. Even if the block bootstrap performs much worse than in the case of normal innovations, it still provides some improvement over asymptotic normality.

The proof of Theorem 1 and Theorem 2 below require the following Lemma, which ensures that the Götze and Hipp conditions (1994) for the existence of the Edgeworth expansion hold for the GARCH case.

Lemma A1:

Let Assumption A hold and assume that E 4(d 1;k +2) t < 1. Then there exist constants K 1 < 1

and > 0 such that for arbitrarily large & > 1 and all integers m 2 1 ; T and 2 R

dim f t;d 1;k with < k k < T & : (15) E E exp i 0 2m+1 X t=1 f t;d 1;k y ! j j : jj mj > K 1 ! exp ( ) ;
where j is the innovation process in (1), i = p 1 and f t;d 1;k y = f 1;t;d 1;k ; f 2;t;d 1;k ; f 3;t;d 1;k and for = 1; 2; 3 f ;t;d 1;k is the vector containing the unique components of the score and the outerproduct and their derivatives through order d 1;k , evaluated at y and de…ned in (10).

Proof of Lemma A1:

We proceed in two steps. First we show that we can express f t;d 1;k y as a function of all the past innovation, i.e., we can write (16) f t;d 1;k y := i j : j > 0; y ; i 2 Z:

Then, we show that f t;d 1;k y satis…es conditions (i)-(iii) in Lemma 2.3 in [START_REF] Götze | Asymptotic Distributions of Statistics in Time Series[END_REF], and

hence the statement follows.

We begin by showing ( 16). Recall that the element of f t;d 1;k y are the derivatives of the centered score and Hessian up to order d 1;k : Now, straightforward calculations give: From Lemma 1 in Lumsdaine (1996, equations A1.1-A1.4), it follows that for i = 1; 2; 3

r L t ( y ) = r h t ( y ) h t ( y ) 2 t 1 ; r 2 L t ( y ) = 1 2 ( 2 t 1) r 2 h t ( y ) h t ( y ) r h t ( y )r h t ( y ) 0 h 2 t ( y ) 1 2 2 t r h t ( y )r h t ( y ) 0 h 2 t ( y ) r 3 L t y = 1 2 2 t 1 r 3 h t y h t y r h t y r 2 h t y h 2 t y + 2
E r i ht( y ) ht( y ) k !
is of the same order of magnitude as E

y 2k t j h k t ( y ) = E h k t j ( y ) h k t ( y ) 2k t j
for any j < t: Therefore, a necessary condition for E r j 1 ::: j k L T y < 1 is that E 2k t j < 1: Indeed, this is also a su¢ cient condition. In fact, Ling and McAleer (2003, p.304) show that a su¢cient condition for the existence of E (r ht( y ) r ht( y ))

h 2 t ( y ) is that E( 4 i ) < 1:
The same argument can be used to show a su¢ cient condition for E r j 1 :::

j k L T y < 1 is that E 2k t < 1:
From the expression for r L t ( ); r 2 L t ( ); :::; r k L t ( ) we see that they can be expressed as ratios of products of derivatives of h t y over power of h t ( y ): Recalling that,

h t ( ) = 1 h 1 + P t 1 j=1 Q j i=1 2 2 t i + 3 i
we have that,

r 1 h t = 1 + P t 1 j=1 Q j i=1 2 2 t i + 3 and that r 2 h t = 1 P t 2 k=0 k 3 P t 2 k j 1 =0 j 1 3 2 t j 1 1 +2 1 2 P t 3 k=0 k 3 P t 2 k j 2 =1 P j 1 <j 2 j 2 1 3 2 t j 1 1 2 t j 2 1 +3 1 2 2 P t 4 k=0 k 3 P t 2 k j 3 =2 P j 2 <j 3 P j 1 <j 2 j 3 2 3 2 t j 1 1 2 t j 2 1 2 t j 3 1 +::: +l 1 l 1 2 P t l 1 k=0 k 3 P t 2 k j l =l 1
P j l 1 <j l ::: 

P j 1 <j 2 j l (l 1) 3 2 t j
P j 1 <j 2 j t 1 (t 2) 3 2 t j 1 1 :: 2 t j t 1 1 r 1 h t =h t = 1= 1 :
and

r 3 h t = 1 2 h P t 2 k=0 k k 1 3 P t 2 k j 1 =0 j 1 3 2 t j 1 1 + P t 2 k=0 k 3 P t 2 k j 1 =0 j 1 j 1 1 3 2 t j1 1 i + 1 2 2 h P t 3 k=0 k k 1 3 P t 2 k j 3 =1 P j 1 <j 2 j 2 1 3 2 t j 1 1 2 t j 2 1 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT + P t 3 k=0 k 3 P t 2 k j 2 =1 P j 1 <j 2 (j 2 1) j 2 2 3 2 t j 1 1 2 t j 2 1 i + 1 3 2 h P t 4 k=0 k k 1 3 P t 2 k j 3 =2 P j 2 <j 3 P j 1 <j 2 j 3 2 3 2 t j 1 1 2 t j 2 1 2 t j 3 1 + P t 4 k=0 k 3 P t 2 k j 3 =2 P j 2 <j 3 P j 1 <j 2 (j 3 2) j 3 3 3 2 t j 1 1 2 t j 2 1 2 t j 3 1 i + +:::+ + 1 l 2 h P t l 1 k=0 k k 1 3 P t 2 k j l =l 1
P j l 1 <j l :::

P j 1 <j 2 j l (l 1) 3 2 t j 1 1 ::: 2 t j l 1 + P t l 1 k=0 k 3 P t 2 k j l =l 1
P j 1 <j l ::: 

P j 1 <j 2 (j l (l 1)) j l l 3 2 t j
y i x y i 1 i < t i = t i > t
Recalling that E 4(d 1;k +2) < 1; it follows that E ( ; x 1 ) t < 1: Also, given assumption A, f t;d 1;k is mixing with mixing coe¢ cients decaying at an exponential rate. Hence, condition (i) in Götze and Hipp (1994, Lemma 2.3) follows, i.e.

There exists K < 1 and > 0 such that for j 2 Z and

x 1 ; x 2 2 R E ( ; x 1 ) t ( ; x 2 ) t Ke jtj jx 1 x 2 j :
As all partial derivatives of the Gaussian likelihood for GARCH(1,1) models are almost surely continuous provided the innovation process has a continuous positive density, then condition (ii) in Götze and Hipp (1994, Lemma 2.3), follows, i.e.

For t 2 Z there exists t R, P ( t ) = 1, such that for all x 0 2 t ; ; > 0; there exists > 0 satisfying P (y 2 R Z : 8x 2 R, jx x 0 j < ; @ @ 0 f t;d 1;k exists at the point (y; x) t and @ @ 0 f t;d 1;k ((y; x) t) @ @ 0 f t;d 1;k (y; x 0 ) t ) 1 :

Finally, for a Gaussian likelihood, the partial derivatives, with respect to the same argument, of the various component of f t;d 1;k are not linearly dependent; also the partial derivatives of a given component of f t;d 1;k ; with respect to generic 6d 1;k arguments, are not linearly dependent. Hence, (iii)

in Götze and Hipp (1994, Lemma 2.3) follows, i.e.

For some distinct l 1 ; :::; l 6d 1;k 0;

det 1 X t=0 @ @ l v f t;d 1;k : v = 1; :::; 6d 1;k ! 6 = 0:
on a set of positive P-probability.

Proof of Theorem 1:

(i) We begin with the "only if" part. As we are interested in necessary conditions it su¢ ces to consider T 1=2 b i;T y i : We …rst need to establish the existence of a stochastic expansion of T 1=2 b i;T y i up to a term of order o T k 1 2

: Given A, and assuming that E( 4 t ) < 1; it follows that T 1=2 b i;T y i is asymptotically normal (see e.g. Bollerslev and Wooldridge 1992), thus

T 1=2 b T y = T 1=2 T = O P (1): Let L T ( ) = 1 T P T t=1 L t ( ) ;
then the Taylor expansion of r L T b T around y ; up to the k order writes as

0 = r L T y + r 2 L T y T + 1 2 0 B B @ P 3 j 1 =1 P 3 j 2 =1 r 1 j 1 j 2 L T y T;j 1 T;j 2 P 3 j 1 =1 P 3 j 2 =1 r 2 j 1 j 2 L T y T;j 1 T;j 2 P 3 j 1 =1 P 3 j 2 =1 r 3 j 1 j 2 L T y T;j 1 T;j 2 1 C C A +::: + 1 k! 0 B B @
P 3 j 1 =1 ::: P 3 j k =1 r 1 j 1 ::: j k L T y T;j 1 T;j 2 :::

T;j k P 3 j 1 =1 :::

P 3 j k =1 r 2 j 1 ::: j k L T y T;j 1 T;j 2
:::

T;j k P 3 j 1 =1 :::

P 3 j k =1 r 3 j 1 ::: j k L T y T;j 1 T;j 2 ::: T;j k 1 C C A +e k+1;T ;
where r 1 j 1 ::: j k L T y denote the k + 1 th derivative with respect to 1 ; j 1 ; :::; j k ; and T;j k the y < 1 is that E 2k t < 1; in order to have an Edgeworth expansion for the LHS of (11) ; up to the k th term, we need the existence of the (k+2) moment of the (k+2) derivative of the score and the outerproduct, which in turn requires that E 2(k+2)(k+4) t

< 1:

(ii) We now turn to the "if" part. Given Assumption A and recalling (17), we have that there exist a constant K; and > 0; such that for m 1;

( < 1 ensures that the k + 3 th moments of all the component of f t;k+3 is …nite. Now, the latter condition, plus (15) and (18) ensures that (see e.g. Götze and Hipp (1983, p.216-217) that lim

T !1 T k=2 sup z2R P G S T;k+3 ( y ) z 1 + k X i=1 T 1=2 i (@=@z) ! (z) = 0;
where S T;k+3 ( y ) = 1 T P T t=1 f t;k+3 ( y ): Finally, by Proposition 1 in [START_REF] Hall | Bootstrap Critical Values for Tests based on Generalized-Method-of-Moments Estimators[END_REF],

lim T !1 T k=2 sup z2R P G S T;k+3 ( y ) z P (t i z) > T k=2 = 0:
The statement then follows.

Hereafter, let P denoting the probability law governing the block bootstrap, E and V ar the mean and variance operator under P ; also Hereafter, as the arguments used in the proof are the same across all i; when there is no risk on confusion, we omit the subscript i: f t;k , where for j = 1; :::; T l ; T l = T l + 1; b j = (j; :::; j + l 1) j = 1; :::; b and b j is an iid discrete uniform random variable which is equal to b j with equal probability 1=T l : As shown in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF], the most di¢ cult case is that of m = 3:

Now,

T 1=2 E 3 =1 i;T; = T 1 b X j 1 =1 b X j 2 =1 b X j 3 =1 E Y j 1 Y j 2 Y j 3 = T 1 bE Y 3 1 = T 1 bT 1 l T l X j=1 e Y 3 j :
If for some C < 1; and for i; j = 1; 2; 3 E r d 1;k +d 2;k r i L T ( ) r i L T ( ) Also, by the proof of Lemma 14 in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF], it follows that for the case of m = 5; we need p > k=(3 2 4 ); requiring + 2 < 3=2; which is implied by + < 1=2 and E f 1;k 5p+4 < 1:

Given (10) and the last line of ( 27), it su¢ ce that the …rst mp+4 -th moments of all score derivatives up to order (d 1;k + d 2;k ) exist: In the proof of Lemma A1 we have shown that E r r ) : Thus, the left hand side of ( 27) is approaching zero, provided E 2(2k+6)(k+2)p t < 1:

As for B 2 ; along the lines of proof of Lemma 14 in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF], recalling that l = T ;

T 1 bE Y 3 1 T 1=2 E 3 =1 i;T; = 1 l E l X i=1 f i;k ! 3 1 T T X i 1 =1 T X i 2 =1 T X i 2 =1 f i 1 ;k f i 2 ;k f i 3 ;k = l 1 X i 1 = l+1 l 1 X i 2 = l+1 1 (i 1 + i 2 ) l E f 0;k f i 1 ;k f i 2 ;k T 1 X i 1 = T +1 T 1 X i 2 = T +1 1 (i 1 + i 2 ) T E f 0;k f i 1 ;k f i 2 ;k : Now, T l 1 X i 1 = l+1 l 1 X i 2 = l+1 E f 0;k f i 1 ;k f i 2 ;k T 1 X i 1 = T +1 T 1 X i 2 = T +1 E f 0;k f i 1 ;k f i 2 ;k ! 0

  analogs of b B T and b A T as b B T and b A T ; where b

!

  denote convergence in probability and in distribution under P ; conditionally on the sample. and let v i;k = lim T !1 v i;T;k ; and (23) e v i;T;k = E T (m) m =1 i;k;T;j where (m) = 1=2 if m is odd and 0 if m even, and 2 m k + 2: We need to show that

:

  in order to show(24), one has to show that B 1 and B 2 below approach zero, where By Markov inequality and a double application of Yokoyama-Doukan inequality(Doukhan 1995, p.25-30), there exists a constant C and > 0 such that,

Table 1 :

 1 Empirical coverage rates of nominal 95% symmetric percentile-t intervals for GARCH(1,1)

	Bboot

  where t is iid(0; 2 ) with positive and continuous density; is a measurable function : R Z ! R 3 2d 1;k : For y 2R Z and x 2 R de…ne (y;x) t as the sequence with coordinates,

							i
							1 1 ::: 2 t j l 1	+
	+:::+ 1 t 1 2	P t 2 k j t 1 =t 2	P j t 2 <j t 1 ::	P j 1 <j 2 (j t 1 (t 2))	j t 1 (t 1) 3	2 t j 1 1 :: 2 t j t 1 1 :
	Thus, we can write f t;d 1;k	y = f 1;t;d 1;k	y ; f 2;t;d 1;k	y ; f 3;t;d 1;k	y	as
	(17)				f t;d 1;k :=		t i : i 0 ; t 2 Z
							8 > > <
					i =	> > :

  Let f i;t;d 1;k y and f i;t;d 1;k b T be de…ned as (10) and (19), respectively. De…ne f t;k = f i;t;d 1;k

	also let Y j =	P t2b j f t;k ; e Y j =	P t2b j f t;k ; and Y j =	P t2b j	b T	E f i;t;d 1;k	b T ;

y E f i;t;d 1;k y and f t;k = f i;t;d 1;k

  by the same argument, and as a straightforward consequence of the chain rule E r r 1

					1 i L T	y r 2 <
	1 if and only if E Now, recalling that 2	2(r 1 +r 2 ) t j m	< 1; i L T k + 2; setting = 1=4; it follows that E f 1;k y L T y 0 r 2 < 1 if and only if E	2(r 1 +r 2 +1) t j mp+4 < 1 and < 1:
	E r			
	d 2;k	k + 1; and p >	k=2 2(1=2	

d 1;k +d 2;k r i l t ( ) r i l t ( ) 0 mp < 1 if E 2(d 1;k +d 2;k +2)(k+2)p t < 1; where d 1;k k + 3;

Note that if either h 0 or 0 are di¤erent from zero, then the expression in (3) holds up to a term converging to zero exponentially as t ! 1:
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ACCEPTED MANUSCRIPT j k th component of T : Thus,

P 3 j 2 =1 r 1 j 1 j 2 L T y T;j 1 T;j 2 P 3 j 1 =1 P 3 j 2 =1 r 2 j 1 j 2 L T y T;j 1 T;j 2 P 3

P 3 j 1 =1 :::

:::

T;j k P 3 j 1 =1 :::

:::

T;j k P 3 j 1 =1 :::

+T 1=2 e k+1;T :

Hereafter, r k L T y is the matrix with generic element r j 1 ::: j k L T y ; j i = 1; 2; 3 for all i: The expression for r L t y ; r 2 L t y ; r 3 L t y ; etc. have been already provided in the proof of the Lemma.

Recalling that, E r 1 j 1 ::: j k L T

Proof of Theorem 2:

It is immediate to see that our set-up can be casted into [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF] set-up, with L t ( ) playing the same role as (X t ; ) and = 1; as the score is a martingale di¤erence sequence. Now, given (18), Assumption 1 in [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF] holds, and given Lemma A1 his Assumption 4 is satis…ed too. As all the derivatives of the gaussian likelihood are continuous, and recalling that, because of Lemma 1 in [START_REF] Lumsdaine | Asymptotic Properties of the Maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1,1) Models[END_REF], E r j 1 :::

Assumptions 2, 3 and 5 in Andrews were satis…ed if we assumed that the innovation process has all moments …nite. On the other hand, we have only required that E 2(d 1;k +d 2;k +2)(k+2)p t

< 1; where

The moment conditions on the likelihood derivatives of the elements of f i;t;d 1;k y play a crucial role in the proof of Lemma 14 of Andrews. Here, we proceed by showing that the moments conditions imposed on the innovation term ensure that the statement in his Lemma 14 applies also in our context. The rest of the proof comes straightforwardly from [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k Step Bootstrap for Extremum Estimators[END_REF].

De…ne the bootstrap analog of (10), that is:

where

; and

Given A, d 1 k + 2; > 0; there exists an in…nite di¤erentiable function G( ); with G(S i ) = 0 and =1 i;k;T;j by the Doukhan mixing inequality (1995, p.9), provided > : Also,

by mixing inequality, and

(i 1 + i 2 ) E f 0;k f i 1 ;k f i 2 ;k ! 0;

provided < : The statement in (24) follows by the same argument used to show that B 2 ! 0:

Finally, from ( 24) and ( 25) it follows that lim T !1 T k=2 P je v i;T;k v i;k j > T = 0:

The statement in Lemma 14 in Andrews then follows.