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Abstract

This paper considers Maximum Likelihood (ML) based estimation and inference procedures for linear

dynamic panel data models with fixed effects.

The paper first studies the asymptotic properties of MaCurdy’s (Journal of Econometrics, 1982) First

Difference Maximum Likelihood (FDML) estimator for the covariance stationary panel AR(1)/unit root

model with fixed effects, viz. yi,t = ρyi,t−1+(1−ρ)µi+εi,t, under a variety of asymptotic plans. Subsequently,

the paper shows through Monte Carlo simulations for panels of various dimensions the favourable finite

sample properties of the FDMLE for ρ as compared to those of a number of alternative fixed effects ML

estimators for ρ under covariance stationarity and normality of the data. The paper also discusses panel

unit root test procedures that are based on the FDMLE. A Monte Carlo study conducted for one version of

these tests reveals that it has very good size and power properties in comparison with alternative panel unit

root tests.
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1 Introduction

In this paper we discuss various Maximum Likelihood (ML) based estimation and inference procedures for

the covariance stationary panel AR(1)/unit root model with fixed effects (FE). We study and compare the

properties of several estimators for the autoregressive parameter, ρ, under various asymptotic plans and/or

for panels of various dimensions. We also propose a new ML based panel unit root (UR) test and compare

it with various existing panel UR tests in a Monte Carlo study.

In the dynamic panel data literature, broadly speaking, two classes of estimators are considered: GMM

(IV) estimators and ML estimators. There is now a sizeable literature on GMM estimation of the panel

AR(1) model, see e.g. Ahn and Schmidt (1995, 1997) and Arellano (2003). The Generalized Method of

Moments owes much of its popularity to its flexibility: one can add or drop moment conditions depending

on whether or not specific assumptions about the model are likely to be satisfied by the data. In particular,

GMM can be used in the presence of heterogeneous data. For instance, the GMM estimator due to Arellano

and Bond (1991) allows for both time-series and cross-sectional heteroskedasticity. However, Monte Carlo

studies have revealed that GMM estimators have poor finite sample properties in some cases. For instance,

when the value of ρ is close to unity, the Arellano and Bond estimator suffers from a weak instruments

problem, see e.g. Blundell and Bond (1998). Moreover, when the number of moment conditions is large

relative to the number of observations, e.g. when the number of lags used to form instruments is large, the

bias of the Arellano and Bond estimator becomes quite severe, see e.g. Bun and Kiviet (2006).

The other major estimation method, i.e., the ML method, is generally not regarded as a viable alternative

to GMM in the case of dynamic panel data models with fixed effects, because it is widely believed that fixed

effects ML estimators are inconsistent due to the incidental parameters problem (cf. Neyman and Scott,

1948). The latter belief is probably based on the papers by Kiefer (1980) and Nickell (1981). Nickell has

shown that the standard FEML estimator for the panel AR(1) model with arbitrary initial conditions, i.e.,

the Within Groups (WG) or Least Squares Dummy Variables estimator, is inconsistent when the cross-

sectional dimension of the panel, N, tends to infinity whereas the time dimension of the panel, T, is fixed,

while Kiefer (1980) has argued that the standard FEML estimator for the covariance matrix of the possibly

autocorrelated errors of an otherwise static panel regression model is inconsistent when T is fixed. 1

The assessment of the usefulness of the ML method for estimating dynamic panel data models is not so

bleak if one looks further. MaCurdy (1981, 1982) argued that in a situation where T can be treated as fixed,

1Nickell derived a formula for the asymptotic bias of the WG estimator assuming covariance stationarity.
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the ML method yields consistent estimators for covariance stationary panel ARMA models with fixed effects

when it is applied to first-differences of the data. The resulting First Difference ML (FDML) estimators

for the AR and MA parameters are still consistent under cross-sectional heteroskedasticity of the errors.

More recently, Hsiao et al. (2002) and Kruiniger (2001) have independently shown that the panel AR(1)

model with fixed effects and arbitrary initial conditions can be consistently estimated by the ML method,

viz. the Restricted FEML (RFEML) estimator, if the differences between the initial observations and the

individual effects or, equivalently, the differenced data satisfy a very mild condition, i.e., finite second (or

2+δ-th) moments. 2 3

In this paper we aim to extend the asymptotic results of MaCurdy (1981, 1982) in two ways. First we

investigate further the large N, fixed T asymptotic properties of the FDMLE for the covariance stationary

panel AR(1)/UR model giving special attention to the unit root case and the question of efficiency. Among

other things we show that the FDMLE does not attain the generalized Cramér-Rao lowerbound for estimators

for the covariance stationary panel AR(1) model with fixed effects when N → ∞ and T is fixed. Next, we

examine the asymptotic properties of the FDMLE when T cannot be considered fixed. The results of the

study provide further insight into the usefulness of the FDMLE as compared to other fixed effects ML

estimators for the panel AR(1) model and permit the formulation of new powerful unit root test procedures.

Traditionally, the large N, fixed T asymptotic properties were considered the most relevant asymptotic

properties of panel data estimators since the panel data sets used in econometric studies typically had a short

time dimension. Because of the increasing availability of panel data sets that have a relatively long time

dimension, e.g. the Penn World tables, some attention has recently been given to the properties of estimators

under various alternative asymptotic plans in which T grows large, see also Phillips and Moon (1999).

For instance, Alvarez and Arellano (2003) and Hahn and Kuersteiner (2002) have derived the asymptotic

distribution of the WG estimator under large T, arbitrary N asymptotics and diagonal path asymptotics,

respectively. These papers found that if the data are covariance stationary and 0 < lim(N/T ) < ∞, then

the WG estimator has a bias term in its asymptotic distribution. Hahn and Kuersteiner have also developed

a bias-corrected version of the WG estimator using the formula for its diagonal path asymptotic bias under

2Hsiao et al. called the estimator the Transformed ML estimator rather than the Restricted FEML estimator.

3The standard FEML estimators treat the individual effects as N different parameters. On the other hand, the

RFEMLE and the related FDMLE assume that the differences between the initial conditions and the individual

effects are random variables with a common mean and a common variance parameter. This assumption allows one to

formulate a likelihood function for the first-differences of the data that is free of incidental parameters. The RFEMLE

is equal to the FDMLE when stationarity is imposed on (the common variance parameter of) the initial conditions.
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covariance stationarity of the data.

In this paper we derive the large T, arbitrary N asymptotic properties of the FDMLE and the standard

FEMLE for the covariance stationary panel AR(1) model. We find that under normality and covariance

stationarity of the data, the FDMLE for ρ is asymptotically equivalent to the WG estimator when T →∞.

But in contrast to the WG estimator, the FDMLE for ρ does not exhibit a bias term in its large T, arbitrary

N asymptotic distribution unless the assumption of covariance stationarity is not satisfied by the data. Under

large T, arbitrary N asymptotics the FDMLE is also asymptotically equivalent to the standard FEMLE for

the covariance stationary panel AR(1) model. However, the latter estimator is inconsistent for fixed T and,

like the WG estimator, asymptotically biased under large T, arbitrary N asymptotics.

We also show that in the unit root case both under large N, fixed T asymptotics and under joint N,T

asymptotics the FDMLE for ρ has a normal limiting distribution. These findings immediately suggest a

simple Wald-type panel UR test. The results of Monte Carlo experiments for panels of various dimensions

indicate that our FDMLE based UR test has higher power against stationary (|ρ| < 1) alternatives than

a number of well-known panel UR test from the literature including the test of Harris and Tzavalis (1999)

which is based on the WG estimator, and a test of Levin et al. (2002). We also discuss whether and

how our panel UR testing procedure should be modified to allow for possibly heterogeneous AR(p) and/or

MA(q) dependence, drift or trend parameters, and for non-Gaussian or heterogeneously distributed errors.

However, our panel UR test cannot (easily) be modified to allow for unknown structural breaks or general

cross-sectional dependence. Recent surveys of the literature on panel UR tests are provided by Bond et al.

(2005) and Breitung and Pesaran (2005).

The paper is organised as follows. Section 2 examines the asymptotic properties of the FDMLE for the

panel AR(1)/UR model under a variety of asymptotic plans and discusses how the FDML framework can

be used to conduct panel UR tests. Section 2 also investigates the asymptotic properties of the standard

FEMLE for the covariance stationary panel AR(1) model. Section 3 contains two Monte Carlo studies.

First it compares the power and size properties of various panel UR tests including FDMLE based UR tests.

Subsequently, it compares the finite sample properties of the FDMLE for ρ with various other fixed effects

ML estimators for the covariance stationary panel AR(1) model including two bias-corrected WG estimators.

Section 4 concludes. The proofs are collected in the appendix.
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2 ML estimation of the panel AR(1)/UR model with fixed effects

Consider the following panel AR(1) model with individual effects:

yi,t = ρyi,t−1 + (1− ρ)µi + εi,t, (1)

ηi = (1− ρ)µi,

εi,t|ηi, yi,1 ∼ N(0, σ2) i.i.d., i = 1, ..., N, t = 2, ..., T,

where i indicates the individual unit and t indicates the time period. Note that when ρ = 1 the individual

effects, the µi, drop out from the model.

Below we consider various fixed effects (FE) estimators for the covariance stationary panel AR(1) model

with possibly a unit root (UR). In the FE version of this model the individual effects are left completely

unrestricted. Furthermore, the FE estimators for this model only exploit first-differences of the data.

The following assumptions imply that {yi,t} is covariance stationary:

|ρ| < 1, and

(yi,1 − µi)|µi ∼ N(0, σ2

1−ρ2 ) (i.i.d.), i = 1, ..., N.

Let yi denote the T -vector of all the observations for individual i including the first observation and let

V (ρ) or V for short denote a (T × T ) matrix that is defined as follows: 4

V (ρ) = V =
1

1− ρ2




1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1 . .
. . . . . .
. . . . . .
. . . . ρ

ρT−1 ρT−2 . . . ρ 1




. (2)

Then we can write the covariance stationary panel AR(1) model with individual effects as

(yi − µiι)|µi ∼ N(0, σ2V (ρ)) (i.i.d.), i = 1, ..., N, (3)

where ι is a T -vector of ones.

We now define two ML estimators for the covariance stationary panel AR(1) model with fixed effects.

Let µ be an N -vector that contains all the individual effects. Then the FEML estimator for ρ, µ and σ2 in

4We usually omit the argument ρ of V .
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the covariance stationary panel AR(1) model globally maximizes the following log-likelihood function:

N∑

i=1

lCS,FE(yi; ρ, µ, σ
2) = −NT

2
log(2π)− NT

2
log σ2 (4)

−N
2
log |V (ρ)| − 1

2σ2

N∑

i=1

((yi − µiι)′V −1(ρ)(yi − µiι)).

Under large N , fixed T asymptotics, this FEML estimator is an inconsistent estimator for ρ, σ2 and µ due

to the incidental parameters problem (cf Neyman and Scott, 1948, and Kiefer, 1980), see appendix A.5.

MaCurdy (1981, 1982) has suggested to take first differences of the data, so that the individual effects

drop out from the model, before applying the ML estimation method. Let D denote the (T − 1× T ) first-

difference matrix with Dk,k = −1 and Dk,k+1 = 1, k = 1, ..., T − 1, and Dk,l = 0 elsewhere. Then after

taking first-differences of the observations in (3), we obtain:

D(yi − µiι) = Dyi ∼ N(0, σ2DV (ρ)D′), (i.i.d.), i = 1, ..., N. (5)

Note that the covariance matrix of Dyi, σ
2DV (ρ)D′, has an ARMA(1,1) structure with the MA parameter

equal to -1.

The First Difference ML estimator (FDMLE) for ρ and σ2 globally maximizes 5

N∑

i=1

l(Dyi; ρ, σ
2) = −N(T − 1)

2
log(2π)− N(T − 1)

2
logσ2 (6)

−N
2
log |DV (ρ)D′| − 1

2σ2

N∑

i=1

(y′iD
′ (DV (ρ)D′)

−1
Dyi).

Computation of the value of this log-likelihood function can be simplified by making use of the following

equalities |DVD′| = (ι′V −1ι) |V | = (T (1−ρ)+2ρ)/(1+ρ) and D′ (DVD′)−1D = V −1−V −1ιι′V −1/ι′V −1ι,

which were established by Lancaster and Lindenhovius (1996). Note that V −1 has a very simple band-

diagonal structure, see appendix A.3.2. Furthermore, DVD′ is Positive Definite Symmetric (PDS) as long

as −1 < ρ < T/(T − 2).

At this point it is useful to introduce some additional notation that is used in the appendices.

θ = (r s2)′ denotes the vector of the common parameters. θ0 denotes the vector of the true values of

the common parameters, i.e. θ0 = (ρ σ2)′. We also use R(ρ) = DV (ρ)D′ and Ω(θ0) = σ
2R(ρ). Finally, ui,t

is the homogeneous autoregressive process ui,t = yi,t − µi.

When |ρ| < 1, the log-likelihood function given in (4) can be written as the sum of the log-likelihood

function of the first-differences of the data, which is given in (6), and the N marginal log-likelihood functions

5It is easy to show that when σ2 is unknown the FDMLE only exists for T ≥ 3.
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of the sufficient statistics for the fixed effects, µ̃i = [ι′V −1ι]−1ι′V −1yi, i = 1, ..., N, see appendix A.3.2. It

follows that the FDML estimator for ρ and σ2 is equal to the Conditional ML estimator for ρ and σ2.

When ρ = 1 the model specified in (1) can no longer be rewritten as (3). Nevertheless, as is shown in

appendix A.1, the log-likelihood function of the first-differences given in (6) is still well-defined for ρ = 1, cf

lemma 6. It is also shown in appendix A.1 that the likelihood function of the first-differences of the data can

be differentiated with respect to the parameters as many times as is desired at and in the neighbourhood of

the unit root, cf lemma 7.

2.1 Asymptotic properties of the First Difference ML estimator

We first present some results on the large N, fixed T asymptotic properties of the FDML estimator.

Theorem 1 The FDML estimator for ρ and σ2 in the covariance stationary panel AR(1)/UR model with

fixed effects is consistent when N →∞ and T is fixed.

Proof

See appendix A.2.

Theorem 2 When −1 < ρ ≤ 1, the large N, fixed T limiting distribution of
(
ρ̂FDML, σ̂

2
FDML

)
is given by

√
N


 ρ̂FDML − ρ
σ̂2FDML − σ2


 d→ N (0, COVFDML,T ) , (7)

where

COVFDML,T =


 Iρρ,T − (T−1)

(1+ρ)(T (1−ρ)+2ρ)σ2

− (T−1)
(1+ρ)(T (1−ρ)+2ρ)σ2

T−1
2σ4



−1

, (8)

with

Iρρ,T =
−2(1 + ρ)(ρT−1 − 2(T − 2)ρ2 + 2T − 3)(T (1− ρ) + 2ρ)

(1− ρ2)2(T (1− ρ) + 2ρ)2
(9)

+
2(1 + ρ)2((T − 2)(ρ− 1)− 1)2 + ((T − 2)(1− ρ2) + 1 + ρ2)(T (1− ρ) + 2ρ)2

(1− ρ2)2(T (1− ρ) + 2ρ)2
.

Proof

See appendix A.3.

It can easily be verified that the numerator of Iρρ contains the factor (1− ρ)2 so that the same factor in

the denominator cancels out. Furthermore, COVFDML is PDS for −1 < ρ ≤ 1. Below we discuss the unit

root case in more detail.

6
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The limiting covariance matrix in (8) has been obtained under normality of the data. In general it will

depend on the kurtosis of the data.

Lemma 1 in Neyman and Scott (1948) generalizes the large N, fixed T Cramér-Rao efficiency lower

bound (henceforth CR bound) to models with incidental parameters. 6 The generalized CR bound for

(asymptotically) unbiased estimators for ρ and σ2 in the covariance stationary panel AR(1) model with fixed

effects is equal to −
(
EHFρ,σ2

)−1
, where EHFρ,σ2 is the Expected Hessian with respect to ρ and σ2 of

the log-likelihood function lCS,FE(yi; ρ, µ, σ
2) given in (4). EHFρ,σ2 is derived in appendix A.3.2. It can

easily be verified that under large N, fixed T asymptotics the FDMLE for ρ and σ2, which is equal to the

Conditional MLE for ρ and σ2, does not attain this generalized CR bound; when T is fixed, the conditioning

statistics, µ̃i, i = 1, ..., N, are not ancillary for the common parameters, ρ and σ2. 7 8

We have the following results on the large T, arbitrary N asymptotic properties of the FDMLE:

Theorem 3 The FDML estimator for ρ and σ2 in the covariance stationary panel AR(1) model with fixed

effects is consistent irrespective of whether T → ∞, or N → ∞, or N,T → ∞ jointly. When |ρ| < 1, the

large T and arbitrary N limiting distribution of
(
ρ̂FDML, σ̂

2
FDML

)
is given by

√
NT


 ρ̂FDML − ρ
σ̂2FDML − σ2


 d→ N




 0

0


 ,


 1− ρ2 0

0 2σ4




 . (10)

Proof

See appendix A.4 and in particular appendix A.4.1.

Note that the limiting variance of θ̂FDML is equal to limT→∞ T × COVFDML,T , where COVFDML,T is

given in (8).

The large T, fixed N asymptotic variance of the FDMLE for ρ is equal to the large T, fixed N CR bound.

Furthermore, the joint N,T asymptotic variance of the FDMLE for ρ is equal to both the (N,T ) and the

(T,N) sequential limit CR efficiency lower bound for the covariance stationary panel AR(1) model with

fixed effects, and also to the diagonal path asymptotic (i.e. with N/T → κ, where κ is a constant) efficiency

6Andersen (1970b) derives the Fisher efficiency lower bound for so-called regular estimators for models with

incidental parameters. This bound is equal to the generalized CR bound of Neyman and Scott. Note that regular

estimators are characterized by normality rather than (asymptotic) unbiasedness.

7See appendix A.3.2. For instance, the term 2

1−ρ2
(ρT−1) from ι′ dV

−1

dρ
V dV−1

dρ
ι in EHM does not cancel out. Since

the panel AR(1) model with fixed effects is a special case of the panel ARMA(p,q) model with fixed effects, the

FDMLE’s for more general panel ARMA models are not asymptotically efficient either when T is fixed.

8Andersen (1970a) presents a necessary and sufficient condition for the equality of the variance of a Conditional

MLE to the Cramér-Rao bound, see his 5th theorem.
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lower bound for regular estimators for the panel AR(1) model with fixed initial observations which has been

derived by Hahn and Kuersteiner (2002), i.e. 1− ρ2. 9 10

The large T, arbitrary N asymptotic properties of the FDMLE for ρ can be obtained under assumptions

that are considerably weaker than those we have made above. For instance, large T, arbitrary N consistency

of the FDMLE does not depend on whether or not the initial observations satisfy covariance stationarity.

Nor does consistency of the FDMLE require normality of the data. Moreover, under covariance stationarity

of the data the large T, arbitrary N asymptotic distribution of the FDMLE for ρ is equal to that of the

estimator that maximizes the function lCS,FE(yi; ρ, µ, σ
2) given in (4), i.e. the FEMLE for ρ, when the

fixed effects are known. Therefore the limiting distribution of the FDMLE for ρ given in theorem 3 remains

valid as long as the FDMLE for ρ is consistent, (NT )−1/2
∑N

i=1

∑T
t=2 ui,t−1εi,t

d→ N(0, σ4(1− ρ2)−1), and

plim(NT )−1
∑N

i=1

∑T−1
t=2 u

2
i,t = σ

2(1− ρ2)−1 as T →∞ regardless of N. In particular, its validity does not

depend on normality of the data. 11

Under normality and covariance stationarity of the data, the FDMLE for ρ is large T, arbitrary N

asymptotically equivalent to the WG estimator. However, unlike the WG estimator, the FDMLE for ρ

does not exhibit a bias term in its large T, arbitrary N asymptotic distribution unless the assumption of

covariance stationarity is violated by the initial observations. In that case the asymptotic distribution of the

FDMLE for ρ contains a bias term of order 1/T , namely T−1ρσ−2(1−ρ2)(N−1
∑N

i=1E(u
2
i,1)−σ2(1−ρ2)−1).

When N/T → 0 this bias term can be omitted, but when N/T → κ > 0 and limN→∞N
−1
∑N

i=1E(u
2
i,1) �=

σ2(1− ρ2)−1 this bias term must be kept.

9When |ρ| < 1, it is easily seen that both the scaled score and the scaled Hessian of the joint marginal likelihood

function of the initial observations vanish as T →∞, regardless of whether N is fixed or tends to infinity (where the

scaling is by appropriate powers of NT ). Thus the diagonal path asymptotic efficiency lower bound for the panel

AR(1) model with fixed initial observations is also valid for the covariance stationary panel AR(1) model, as the

information contained in the initial observations becomes negligible when T →∞ and |ρ| < 1.

10Hahn and Kuersteiner derived their diagonal path asymptotic efficiency lower bound for the panel AR(1) model

with fixed initial observations under the assumption that both N−1
∑N

i=1
y2i,1 = O(1) and N−1

∑N

i=1
µ2i = O(1).

However, the fixed effects version of this model would only impose N−1
∑N

i=1
(yi,1 − µi)

2 = O(1), see Kruiniger

(2001). Therefore, strictly speaking, their bound applies to random effects estimators. Nevertheless, for reasons

similar to those in the previous footnote, when T → ∞, the information contained in the level observations of one

period becomes negligible so that the bound is also valid for fixed effects estimators which only exploit data in

first-differences.

11On the other hand, the large T, arbitrary N limiting distribution of the FDMLE for σ2 does depend on the

assumption of normality.

8
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Under large T, arbitrary N asymptotics the FDMLE is also asymptotically equivalent to the FEMLE for

the covariance stationary panel AR(1) model with unknown µ, which is consistent in this case, see appendix

5. However, when the data are covariance stationary the FEMLE for ρ has the same large T, arbitrary N

asymptotic bias as the WG estimator, i.e. −T−1(1 + ρ).

2.2 A new panel unit root test

One can obtain the large N, fixed T limiting distribution of the FDMLE for ρ and σ2 when ρ = 1 from

theorem 2 by evaluating limρ↑1COV
−1
FDML using de l’Hôpital’s rule. This leads to the following result:

Corollary 4 When ρ = 1, the large N, fixed T limiting distribution of
(
ρ̂FDML, σ̂

2
FDML

)
is given by

√
N


 ρ̂FDML − 1

σ̂2FDML − σ2


 d→ N


0,




8
(T−1)(T−2)

4σ2

(T−1)(T−2)

4σ2

(T−1)(T−2)
2σ4

T−2




 . (11)

Corollary 4 can be generalized to results for the FDMLE of the panel ARIMA(p,1,q) model.

When ρ = 1 and T →∞ the FDMLE remains consistent irrespective of the asymptotic behaviour or the

value of N. Moreover, when ρ = 1 the joint N,T limiting distribution of ρ̂FDML is very similar to its large

N, fixed T limiting distribution:

Theorem 5 When ρ = 1, the FDML estimator for ρ and σ2 in the panel AR(1)/UR model with fixed effects

is consistent irrespective of whether T → ∞, or N → ∞, or N,T → ∞ jointly. The joint N,T limiting

distribution of
(
ρ̂FDML, σ̂

2
FDML

)
is given by


 T

√
N(ρ̂FDML − 1)

√
NT (σ̂2FDML − σ2)


 d→ N




 0

0


 ,


 8 0

0 2σ4




 . (12)

Proof

See appendix A.4 and in particular appendix A.4.2.

When ρ = 1 the large T , fixed N limiting distribution of the FDMLE for ρ is non-normal. However,

the joint N,T limiting distribution of the FDMLE for ρ is normal when ρ = 1 owing to averaging across

individuals. Note that the joint N,T limiting variance of ρ̂FDML is equal to the limit of T 2 times its large

N, fixed T limiting variance as T →∞, i.e. limT→∞ T
2 × 8/[(T − 1)(T − 2)] = 8.

Just as in the stationary case given in theorem 3, the validity of the joint N,T limiting distribution of the

FDMLE for ρ given in theorem 5 does not depend on normality of the data. The same limiting distribution

will be obtained when the normality assumption is replaced by E |εi,t|4+δ <∞. In particular, in contrast to

its large N, fixed T limiting variance, the joint N,T limiting variance of the FDMLE for ρ does not depend

on the kurtosis of the idiosyncratic errors.

9
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Theorem 5 can be extended to the FDMLE for the panel AR(p) model with a unit root.

The results in corollary 4 and theorem 5 suggest a new unit root test for panel data models with fixed T

or large T which is a Wald-type t-test that is based on the FDMLE for ρ and its asymptotic standard error.

The FDMLE based panel UR test can be modified so as to allow for heteroskedasticity, heterogeneous

drift parameters, AR(p) dependence and/or MA(q) dependence. For instance, to allow for individual drift

parameters, the data should be differenced twice rather than only once. In order to test the unit root

hypothesis in a panel AR(1) model with possibly heteroskedastic idiosyncratic errors, e.g. with E(ε2i,t) = σ
2
i,t,

i = 1, ..., N, t = 2, ..., T, one can use a t-test based on a modified version of the log-likelihood function in (6)

with SDV (ρ)D′S replacing σ2DV (ρ)D′ where S = diag(ς2,..., ςT ) and ς2, ς3, ..., ςT are auxiliary parameters.

If ρ = 1, then N−1
∑N

i=1E(Dyiy
′
iD

′) = N−1
∑N

i=1E(εiε
′
i) = diag(σ22, ..., σ

2
T ), where εi = (εi,2, ..., εi,T )

′,

i = 1, ..., N, and σ2t = N−1
∑N

i=1 σ
2
i,t, t = 2, ..., T, and in addition SDV (ρ)D′S = S2 = diag(ς22,..., ς

2
T ) (cf.

the proof of lemma 6 in appendix A.1). Therefore we can expect the Quasi ML estimator for ρ that is based

on the modified version of the log-likelihood function to be consistent and asymptotically normal when ρ = 1,

and the corresponding t-test for ρ = 1 to have correct size. Before a specific version of the FDMLE based

panel UR test is used, it is important to ascertain that its underlying assumptions, e.g. homoskedasticity or

no structural breaks, are satisfied by the data.

2.2.1 A comparison of the local power of various panel unit root tests

Various unit root tests for panels with fixed T or large T have already been suggested in the literature. In

a fixed T situation Breitung and Meyer (1994) have proposed a Modified Dickey-Fuller test-statistic which

is based on the OLS estimator for ρ in a model for deviations of the data from the initial observations,

viz. yi,t − yi,1 = ρ(yi,t−1 − yi,1) + νi,t, where νi,t = εi,t − (1− ρ)(yi,1 − µi) for t = 3, ..., T . This estimator

is unbiased for ρ = 1. Straightforward calculations show that the large N, fixed T local-to-unity limiting

variance of this estimator is equal to limvar(ρ̂BM,T ) = 2/((T − 1)(T − 2)). Harris and Tzavalis (1999)

have presented an LM-type UR test-statistic for the panel AR(1) model with individual effects which is

based on an adjusted version of the WG estimator. The adjustment is equal to minus the large N, fixed

T asymptotic bias of the WG estimator when ρ = 1, namely 3/T. The large N, fixed T local-to-unity

limiting variance of this estimator is equal to limvar(ρ̂WG,T ) = 3(17(T −1)2−20(T −1)+17)/(5T 3(T −2)).

Hahn and Kuersteiner (2002) have derived the joint N,T asymptotic distribution of the WG estimator when

ρ = 1, which is a normal distribution. The joint N,T asymptotic bias of the WG estimator is equal to

the large N, fixed T asymptotic bias of the WG estimator, −3/T , while the joint N,T limiting variance of

10
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ρ̂WG, limvar(ρ̂WG), is equal to the limit of T 2 times its large N fixed T limiting variance as T → ∞, i.e.

limvar(ρ̂WG) = limT→∞ T
2 × limvar(ρ̂WG,T ) = 10.2.

Under covariance stationarity of the data both the OLS estimator of Breitung and Meyer, ρ̂BM , and

the bias-corrected WG estimator, i.e. ρ̂WG + 3/T, are biased upwards. When T is fixed and the data are

covariance stationary the asymptotic bias of the former estimator is (1−ρ)/2 (see Breitung and Meyer) while

tedious calculations show that local-to-unity the asymptotic bias of the latter estimator is equal to (1−ρ)(1+

3/T )/4.12 These biases reduce the power of the UR tests that are based on the corresponding estimators.

On the other hand the FDMLE for ρ is asymptotically unbiased. The local power of the aforementioned UR

tests is given by the following large N, fixed T limiting distributions of the corresponding test statistics under

local alternatives of the form ρ = 1−cN−1/2 : N1/2(ρ̂BM−1)/(limvar(ρ̂BM,T ))
1/2 d→ N(− c

2

√
(T−1)(T−2)

2 ,1),

N1/2(ρ̂WG+3/T −1)/(limvar(ρ̂WG,T ))
1/2 d→ N(−3c

4 (1−T−1)(limvar(ρ̂WG,T ))
−1/2, 1), and N1/2(ρ̂FDML−

1)/(limvar(ρ̂FDML,T ))1/2
d→ N(−c

√
(T−1)(T−2)

8 ,1). 13 Thus the panel UR tests based on ρ̂BM and ρ̂FDML,

respectively, have the same local power, while the test based on ρ̂WG + 3/T has less power against local

covariance stationary alternatives than the two tests just mentioned.

Finally, we consider how the power of the UR test that is based on the ρ̂FDML is affected when the

initial observations do not satisfy covariance stationarity. Assume that E((yi,1 − µi)2) = λσ2(1− ρ2)−1 for

all i ∈ {1, ..., N}, where λ ≥ 0. Note that in this case (NT )1/2(ρ̂FDML − ρ− T−1ρ(λ− 1))
d→ N(0, 1− ρ2).

In addition let ρ = 1 − c(NT )−1/2 and N/T → κ. Then limvar(ρ̂FDML) = 8 and (NT )1/2(ρ̂FDML −

1)/(limvar(ρ̂FDML))1/2
d→ N((−c+κ1/2(λ− 1))/

√
8, 1). Thus the local power of the ρ̂FDML based UR test

against alternatives with λ < 1 is larger than its local power against covariance stationary alternatives.

3 Simulation experiments

3.1 The finite sample performance of panel unit root tests

In this section we compare the finite sample performance of our panel unit root test, which is based on

the FDMLE for ρ, with four other panel UR tests, namely (1) the test of Breitung and Meyer (henceforth

BM) discussed in section 2, (2) the test due to Harris and Tzavalis which is based on the bias-corrected

WG estimator, (3) a test which is based on the Restricted FEMLE (hereafter RFEMLE) for ρ, i.e. the

12In deriving the latter asymptotic bias we used a well-known expression for the bias of ρ̂WG due to Nickell (1981).

13The limiting distributions of the UR test statistics based on ρ̂BM,T and ρ̂FDML,T under local alternatives have

already been derived by Bond et al. (2005).
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FEMLE for ρ in the panel AR(1) model with fixed effects and arbitrary initial conditions which is given by

(1) and the additional assumption that plimN→∞
1
N

∑N
i=1(yi,1 − µi)2 < ∞ (see Kruiniger 2001, and Hsiao

et al., 2002), and (4) the test due to Levin et al. (2002) (henceforth LL) for their model 2. Under the null

hypothesis of a unit root, i.e. ρ = 1, the first three tests are similar with respect to the initial conditions

because the test statistics only exploit data in first differences. Furthermore, the power of the first three tests

only depends on the distributional properties of the εi,t and the differences between the initial conditions

and the individual effects, yi,1 − µi, i = 1, ...,N. The UR test due to LL is only valid for panels where T is

large compared to N, i.e., where N/T → 0.

In most simulation experiments we have conducted the errors have been drawn from normal distributions:

εi,t ∼ N(0, σ2) with σ2 = 1. We note that the value chosen for σ2 is of no consequence. To assess how

the assumptions with respect to yi,1 − µi, i = 1, ..., N, affect the power of the tests, we have conducted

three different kinds of experiments: in one set the initial observations have been drawn from covariance

stationary distributions, i.e. (yi,1 − µi)|µi ∼ N(0, σ2/(1 − ρ2)), while in the other two sets the initial

observations are non-stationary. The two non-stationary cases considered are: (1) yi,1 − µi = 0; and (2)

(yi,1 − µi)|µi ∼ N(0, 2σ2/(1− ρ2)). Note that in all situations E(yi,t − yi,t−1) = 0 as is the case under the

null hypothesis. In both case (1) and case (2) the variance of yi,1 − µi is different from the variance under

covariance stationarity. We have also conducted experiments in which the errors and yi,1 − µi, i = 1, ..., N,

are drawn from standardized/centred χ2(1) distributions and experiments in which the data are drawn from

heterogenous distributions, i.e., with ρi ∼ ρ+ 0.9(1− ρ)× Uniform[−1, 1], i = 1, ..., N.

In the simulation experiments panel data sets of various dimensions have been considered. We generated

both traditional ‘micro-economic’ panels, where T is small as compared to N, and panels with dimensions

that can be found in the recent empirical macro-economic literature, where T is not small as compared to

N. The simulation evidence for these ‘macro’ panels allows us to investigate the relevancy and accuracy of

the joint asymptotics results. All simulation results are based on 10,000 replications and the (nominal) level

of the tests is always 5%.

In an i.i.d. situation, one can envisage two versions of the FDMLE based UR tests: the Wald version

which uses an unrestricted estimate of the standard error of the estimator, and an LM version which uses a

restricted estimate of the standard error that is obtained under the null hypothesis. The latter estimate of

the standard error is an extremely simple function of N and T only, see corollary 4 and theorem 5.

The implementation of the RFEMLE based unit root test raises a number of issues. First, one could in

principle restrict the estimate of the variance of the ‘constant error component,’ i.e. σ2v ≡ (1−ρ)2V ar(yi,1−

12
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µi), to be positive as is often done in ML estimation of static random effects models. However, when ρ is close

or equal to one, this constraint is binding in about 50% of the cases and often causes computational problems.

Therefore during the iterations we only restricted the values of σ̂2RFEML and σ̂2RFEML+(T−1)σ̂2v,RFEML to be

positive. These restrictions are satisfied by the estimators by construction. Secondly, under homoskedasticity

of the εi,t the expected Hessian of the log-likelihood function is singular when ρ = 1 (although ρ̂RFEML is

still consistent in this case). As a result when ρ = 1 the Wald test-statistic (ρ̂RFEML − 1)/SD(ρ̂RFEML)

has a distribution that is different from a standard normal distribution.14 Therefore we had to obtain this

distribution through simulations. Moreover, when ρ is close or equal to one, the Hessian of the log-likelihood

function evaluated at the estimates was sometimes ill-conditioned and its inverse could not be computed.

In all cases considered this happened in less than 0.2% of the replications. When it occured, we added

(0.0001− λ1)I to the Hessian where λ1 is its smallest eigenvalue.

The empirical quantiles of the RFEMLE based test statistic for ρ = 1 as well as its empirical size when

using the conventional (i.e. standard normal) critical value of 1.645 (at the 5% level of significance) are

reported for i.i.n.d. data in table 1 for different combinations of N and T . The empirical sizes of this test

differ substantially from the nominal level of 5%. Therefore, we also investigated the performance of the

size-adjusted RFEMLE based test, which uses the critical values from table 1. Because the empirical sizes

of the FDMLE based tests are always close to the nominal level whenever N is large (i.e. ≥ 100), we did

not consider size-adjusted versions of these tests in the case of ‘micro’ panels. Finally, we only considered a

size-adjusted version of the test due to LL.

The test due to BM has already been compared with other panel UR tests for the case of ‘micro’ panels

in a Monte Carlo study conducted by Bond et al. (2005). That study found that the BM test performed

very similar to our FDMLE based test. Furthermore, as mentioned above, the LL test is not valid for

‘micro’ panels. Therefore, for both the BM test and the LL test we only report simulation results for

the ‘macro’ panels. On the other hand, we only report results on the RFEMLE based test for a subset

of the ‘macro’ panels that we consider, because using this test makes more sense for ‘micro’ panels with

possibly non-stationary initial observations under the alternative hypothesis than for ‘macro’ panels where

the distributions of the initial observations under the alternative hypothesis are of limited consequence.

Tables 2-9 report the simulation results on the empirical size and power of the panel unit root tests that

were mentioned above. Tables 2, 4, 6, 7, 8 and 9 report results on power against covariance stationary

14Binder et al. (2005) have also considered this test-statistic. However their critical values seem to have been taken

from the table of the standard normal distribution.
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alternatives, whereas tables 3 and 5 report results on power against non-stationary alternatives. In the

tables ‘W’ denotes the Wald version of a test, ‘LM’ stands for the LM version of a test, while ‘SA’ indicates

that the test has been size-adjusted. Finally, ‘SW’ indicates that the test has been based on a ‘sandwich’

estimator for the variance of the estimator for ρ. Inspection of the results in tables 2-9 leads to the following

conclusions:

1. The Wald version of the FDMLE based test which uses a simple standard error based on the empirical

Hessian does not suffer from size distortions unless N is small.

2. When the data are asymmetrically distributed the FDMLE-W-SW test, which uses a ‘sandwich’ formula

for the standard error, and the WG based LM test over-reject.

3. The FDMLE based test has uniformly and substantially higher power against covariance stationary

alternatives than the size-adjusted WG and RFEMLE based tests. This conclusion still holds when

the ρi are heterogenous or when the data are asymmetrically distributed.

4. The FDMLE based test has uniformly and substantially higher power against ‘non-stationary’ alter-

natives with ρ < 1 and yi,1 = µi than the size-adjusted WG and RFEMLE based tests, with the

WG based test performing uniformly better than the RFEMLE based test. When considering ‘non-

stationary’ alternatives with ρ < 1 and (yi,1 − µi)|µi ∼ N(0, 2/(1 − ρ2)), the ordering of the tests on

the basis of their power properties is reversed although the differences in power are small. The power

of the FDMLE based test decreases as V ar(yi,1−µi) increases as predicted by the theory in section 2.

5. In the scenarios considered the size-adjustment of the RFEMLE based test reduces its power by up to

0.21.

6. When T is large and N ≥ 10, the size-adjusted FDMLE based test has slightly higher power against co-

variance stationary alternatives than the size-adjusted BM test and substantially higher power against

covariance stationary alternatives than the LL test.

7. The power of each test increases when N or T increases or when the value of ρ decreases.

8. The power properties of the Wald and LM versions of the FDMLE based tests are similar when T is

small.

14
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T N 1% 5% 10% 50% 90% 95% 99% size
4 100 -3.93 -2.56 -1.75 -0.0074 1.93 2.89 4.85 0.110
4 500 -3.86 -2.40 -1.58 0.0018 1.94 2.88 4.43 0.095
7 100 -3.80 -2.49 -1.78 0.0000 2.19 3.27 5.28 0.111
7 500 -3.82 -2.44 -1.74 -0.0005 2.01 2.94 4.83 0.107
6 100 -3.74 -2.47 -1.75 -0.0095 2.06 3.10 5.44 0.110
25 10 -3.35 -2.24 -1.58 0.0027 3.56 5.41 9.42 0.095
25 25 -3.32 -2.19 -1.42 0.0127 2.81 4.21 6.71 0.088
N(0, 1) -2.33 -1.65 -1.28 0.0000 1.28 1.65 2.33 0.050

Table 1: Empirical quantiles of (ρ̂RFEML − 1)/SD(ρ̂RFEML) when ρ = 1; εi,t ∼ N(0, 1).

T N test size ρ = 0.95 ρ = 0.9 ρ = 0.8
4 100 FDML-W 0.056 0.13 0.25 0.53

RFEML-W-SA 0.049 0.10 0.13 0.19
RFEML-W 0.110 0.20 0.26 0.33

4 500 FDML-W 0.050 0.26 0.59 0.98
RFEML-W-SA 0.053 0.14 0.18 0.32
RFEML-W 0.095 0.23 0.29 0.45

7 100 FDML-W 0.057 0.26 0.59 0.98
RFEML-W-SA 0.046 0.12 0.19 0.42
RFEML-W 0.111 0.24 0.33 0.59

7 500 FDML-W 0.054 0.68 0.99 1.00
RFEML-W-SA 0.047 0.16 0.31 0.82
RFEML-W 0.107 0.28 0.46 0.90

Table 2: power against covariance stationary alternatives.

T N test size ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 FDML-W 0.056 0.457 0.914 1.000

RFEML-W-SA 0.049 0.138 0.182 0.290
RFEML-W 0.110 0.246 0.310 0.506
WG-LM-SA 0.050 0.308 0.732 0.994
FDML-LM 0.063 0.473 0.924 1.000

Table 3: power against “non-stationary” alternatives with yi,1 = µi.

T N test size ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 FDML-W 0.056 0.200 0.466 0.925

RFEML-W-SA 0.049 0.118 0.162 0.319
RFEML-W 0.110 0.230 0.287 0.483
WG-LM-SA 0.050 0.153 0.327 0.812
FDML-LM 0.063 0.217 0.486 0.935

Table 4: power against covariance stationary alternatives.
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T N test size ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 FDML-W 0.056 0.068 0.116 0.351

RFEML-W-SA 0.049 0.098 0.170 0.396
RFEML-W 0.110 0.192 0.304 0.569
WG-LM-SA 0.050 0.060 0.101 0.378
FDML-LM 0.063 0.080 0.127 0.388

Table 5: power against “non-stationary” alternatives with (yi,1 − µi)|µi ∼ N(0, 2/(1− ρ2)).

T N test size ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 FDML-W 0.056 0.201 0.470 0.911

RFEML-W-SA 0.049 0.119 0.173 0.353
RFEML-W 0.110 0.231 0.308 0.523
WG-LM-SA 0.050 0.145 0.334 0.805
FDML-LM 0.063 0.217 0.491 0.921

Table 6: power against heterogeneous covariance stationary alternatives with ρi ∼ ρ + 0.9(1 − ρ) ×
Uniform[−1, 1], i = 1, ..., N .

T N test size cr. value ρ = 0.95 ρ = 0.9 ρ = 0.8
25 5 FDML-W 0.080 0.247 0.510 0.937

FDML-W-SA -2.10 0.126 0.314 0.829
WG-LM-SA -2.36 0.127 0.279 0.763
BM-LM-SA -2.85 0.152 0.328 0.750
FDML-LM 0.125 0.331 0.620 0.972

25 10 FDML-W 0.086 0.359 0.773 0.998
FDML-W-SA -1.94 0.249 0.660 0.995
RFEML-W-SA -2.24 0.174 0.365 0.871
RFEML-W 0.095 0.310 0.545 0.940
LL-SA 0.229
WG-LM-SA -2.14 0.201 0.519 0.978
BM-LM-SA -2.40 0.252 0.615 0.978
FDML-LM 0.118 0.431 0.840 0.999

25 25 FDML-W 0.064 0.623 0.985 1.000
FDML-W-SA -1.80 0.562 0.978 1.000
RFEML-W-SA -2.19 0.258 0.620 0.994
RFEML-W 0.088 0.380 0.743 0.997
LL-SA 0.448
WG-LM-SA -1.97 0.389 0.888 1.000
BM-LM-SA -2.07 0.544 0.963 1.000
FDML-LM 0.081 0.686 0.991 1.000

25 50 FDML-W 0.061 0.872 1.000 1.000
FDML-W-SA -1.78 0.836 1.000 1.000
LL-SA 0.739
WG-LM-SA -1.96 0.620 0.994 1.000
BM-LM-SA -1.95 0.821 1.000 1.000
FDML-LM 0.075 0.896 1.000 1.000

Table 7: power against covariance stationary alternatives. For the LL test T = 26.
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T N test size cr. value ρ = 0.95 ρ = 0.9 ρ = 0.8
50 5 FDML-W 0.085 0.527 0.942 1.000

FDML-W-SA -2.17 0.293 0.808 1.000
WG-LM-SA -2.41 0.273 0.736 0.999
BM-LM-SA -2.81 0.361 0.778 0.994
FDML-LM 0.126 0.648 0.974 1.000

50 10 FDML-W 0.085 0.783 0.999 1.000
FDML-W-SA -1.96 0.659 0.996 1.000
LL-SA 0.574
WG-LM-SA -2.09 0.528 0.980 1.000
BM-LM-SA -2.39 0.645 0.986 1.000
FDML-LM 0.120 0.854 1.000 1.000

50 25 FDML-W 0.073 0.990 1.000 1.000
FDML-W-SA -1.83 0.981 1.000 1.000
LL-SA 0.925
WG-LM-SA -1.99 0.889 1.000 1.000
BM-LM-SA -2.05 0.975 1.000 1.000
FDML-LM 0.094 0.994 1.000 1.000

50 50 FDML-W 0.064 1.000 1.000 1.000
FDML-W-SA -1.77 1.000 1.000 1.000
LL-SA 0.998
WG-LM-SA -1.86 0.995 1.000 1.000
BM-LM-SA -1.88 1.000 1.000 1.000
FDML-LM 0.079 1.000 1.000 1.000

100 5 FDML-W 0.086 0.948 1.000 1.000
FDML-LM 0.141 0.983 1.000 1.000

100 10 FDML-W 0.078 0.999 1.000 1.000
FDML-LM 0.117 1.000 1.000 1.000

Table 8: power against covariance stationary alternatives. For the LL test T = 51.

T N test size ρ = 0.95 ρ = 0.9 ρ = 0.8
6 100 FDML-W 0.046 0.208 0.481 0.858

FDML-W-SW 0.087
RFEML-W-SA 0.047 0.102 0.108 0.173
RFEML-W 0.176 0.307 0.350 0.526
WG-LM 0.089 0.205 0.361 0.749
FDML-LM 0.053 0.223 0.502 0.872

Table 9: power against covariance stationary alternatives; errors and yi,1 − µi, i = 1, ..., N, drawn from

standardized/centred χ2(1) distributions.
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3.2 A comparison of ML estimators

We have also conducted some Monte Carlo experiments to compare the finite sample performance of the

FDMLE for ρ, ρ̂FDML, the RFEMLE for ρ, ρ̂RFEML, and two Bias-Corrected Within Groups (BCWG)

estimators for ρ. The first BCWG estimator, ρ̂BCWG1, is given by equation (43) in Bun and Carree (2005)

and is based on the asymptotic bias formula for ρ̂WG due to Nickell (1981): ρ̂BCWG1 = h−1(ρ̂WG), where

h(ρ) = ρ+ plimN→∞(ρ̂WG − ρ). The second BCWG estimator, ρ̂BCWG2, is due to Hahn and Kuersteiner

(2002) and is based on a formula for the diagonal path asymptotic bias of ρ̂WG: ρ̂BCWG2 =
T

T−1 ρ̂WG+ 1
T−1 .

The design of our experiments is similar to that of Hahn and Kuersteiner. We have generated artificial data

from the covariance stationary panel AR(1) model with σ2 = 1 for several values of ρ : ρ ∈ {0, 0.3, 0.6, 0.9}.

The value chosen for σ2 is again of no consequence. Nor does it matter how the individual effects have

been generated as they are differenced out by the estimators. Finally, the dimensions of the panels are

N ∈ {100, 200} and T ∈ {6, 11, 21, 51}. We also compared the results for panels with N = 50 and T = 51.

All simulation results are based on 10,000 replications.

The results are reported in table 9. It is easily seen that in all cases the bias of ρ̂FDML is smaller than

the bias of ρ̂BCWG2, often by a large factor, e.g. 100, and also smaller than the bias of ρ̂RFEML. For every

panel size considered the bias of each of these three estimators is the largest for ρ = 0.9. The bias-corrected

estimator due to Bun and Carree, ρ̂BCWG1, is unbiased by definition. Furthermore the rmse of ρ̂FDML is

always smaller than the rmse’s of the other estimators but the differences between the rmse’s of the estimators

vanish when T grows large. Moreover, the rmse’s of ρ̂BCWG1 and ρ̂RFEML are always smaller than the rmse

of ρ̂BCWG2. The latter finding is interesting because unlike ρ̂BCWG2 the consistency of ρ̂RFEML is robust

to violations of covariance stationarity of the data. The rmse of ρ̂FDML tends to decrease when the value

of ρ increases except when T is small. On the other hand the rmse’s of ρ̂RFEML, ρ̂BCWG2 and to a lesser

extent ρ̂BCWG1 tend to increase when the value of ρ increases, except when T is large as compared to N.

We conclude that it is better to use ρ̂FDML rather than ρ̂BCWG1 and ρ̂BCWG2, especially when ρ is close

to unity and T is relatively small, unless the assumption of covariance stationarity is (seriously) violated in

which case ρ̂RFEML could be used.
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Case Bias ×100 RMSE
T N ρ ρ̂RFEML ρ̂FDML ρ̂BCWG2 ρ̂RFEML ρ̂FDML ρ̂BCWG1 ρ̂BCWG2

6 100 0.0 0.105 0.038 -4.016 0.057 0.057 0.058 0.067
0.3 0.003 -0.084 -7.057 0.067 0.062 0.064 0.090
0.6 1.326 -0.122 -11.54 0.112 0.066 0.071 0.129
0.9 -1.881 -0.262 -17.77 0.109 0.065 0.077 0.187

6 200 0.0 0.025 0.022 -3.991 0.040 0.040 0.041 0.055
0.3 0.031 -0.006 -6.959 0.048 0.044 0.046 0.080
0.6 0.515 0.005 -11.42 0.074 0.046 0.050 0.121
0.9 -0.932 -0.159 -17.71 0.091 0.047 0.055 0.182

11 100 0.0 -0.014 -0.048 -1.051 0.036 0.035 0.035 0.036
0.3 -0.033 -0.104 -1.929 0.037 0.036 0.036 0.040
0.6 -0.047 -0.125 -3.739 0.039 0.035 0.037 0.050
0.9 0.547 -0.193 -7.937 0.063 0.033 0.040 0.086

11 200 0.0 0.011 -0.018 -1.021 0.025 0.025 0.025 0.027
0.3 -0.008 -0.031 -1.868 0.026 0.026 0.026 0.031
0.6 -0.039 -0.080 -3.689 0.028 0.025 0.026 0.044
0.9 0.743 -0.080 -7.816 0.053 0.023 0.028 0.081

21 100 0.0 -0.010 0.001 -0.250 0.023 0.024 0.024 0.024
0.3 -0.025 -0.070 -0.534 0.024 0.023 0.023 0.024
0.6 -0.081 -0.042 -1.024 0.022 0.022 0.022 0.024
0.9 0.247 -0.103 -3.159 0.031 0.017 0.020 0.036

21 200 0.0 0.027 0.016 -0.234 0.017 0.017 0.017 0.017
0.3 -0.025 -0.012 -0.476 0.017 0.017 0.017 0.017
0.6 -0.056 -0.040 -1.015 0.015 0.015 0.016 0.018
0.9 0.085 -0.048 -3.108 0.020 0.012 0.014 0.033

51 50 0.0 0.020 0.021 -0.020 0.021 0.020 0.020 0.020
0.3 -0.033 -0.024 -0.098 0.020 0.020 0.020 0.020
0.6 -0.046 -0.046 -0.206 0.017 0.017 0.017 0.017
0.9 -0.075 -0.070 -0.762 0.013 0.012 0.013 0.014

Table 10: bias and rmse of ρ̂RFEML, ρ̂FDML, ρ̂BCWG1 and ρ̂BCWG2.

4 Concluding remarks

In this paper we have studied Maximum Likelihood based estimation and inference procedures for the

covariance stationary panel AR(1)/Unit Root model with fixed effects.

We have shown that the First Difference ML estimator for this model is consistent and has a limiting

normal distribution whether one employs large N, fixed T asymptotics, joint N,T asymptotics or in case

|ρ| < 1 large T, fixed N asymptotics. Under large N, fixed T asymptotics the FDMLE does not attain the

(generalized) Cramér-Rao efficiency lower bound for estimators of ρ in the covariance stationary panel AR(1)

model with fixed effects. Furthermore, under covariance stationarity and normality of the data, the FDMLE
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and the Fixed Effects MLE for the covariance stationary panel AR(1) model are asymptotically equivalent

to the WG estimator for ρ when T → ∞ regardless of whether N tends to infinity or remains fixed but,

unlike the last two estimators, the FDMLE for ρ does not exhibit a bias term in its large T, arbitrary N

asymptotic distribution. Finally, the results of Monte Carlo simulations for panels of various dimensions

show that under covariance stationarity and normality of the data the FDMLE for ρ has better finite sample

properties than the bias-corrected WG estimators due to Hahn and Kuersteiner (2002) and Bun and Carree

(2005).

We have also presented a Wald-type panel UR test that is based on the FDMLE for the panel AR(1)/UR

model. A Monte Carlo study revealed that for panels of very different dimensions our FDMLE based UR

test has considerably higher power against covariance stationary alternatives as well as various important

non-stationary alternatives (with |ρ| < 1) than the WG estimator based UR test, the Restricted FE(Q)MLE

based UR test and a UR test due to Levin et al. but only slightly higher power against covariance stationary

alternatives than the UR test due to Breitung and Meyer.

Most of the results that we have obtained for the estimators of the panel AR(1)/UR model can be

generalized to estimators for more general models. Under covariance stationarity and normality of the data

the FDMLE for the panel ARMA model has the same large T, arbitrary N asymptotic properties as the

MLE for the covariance stationary panel ARMA model with known individual effects. The large T, arbitrary

N asymptotic properties of the latter estimator are similar to the asymptotic properties of the MLE for the

covariance stationary ARMA model for a single time-series, which are discussed in Pierce (1971). When

T is fixed the results for the FDMLE of the panel AR(1)/UR model can be extended to FDMLE’s for

more general panel ARMA models with possibly an autoregressive unit root by using some results on the

covariance matrices of ARMA errors that can be found in, for instance, Van der Leeuw (1994). Furthermore,

when T grows large the results for the FDMLE of the panel AR(1)/UR model can be extended to FDMLE’s

for more general panel AR(p) models with possibly a unit root.

Finally, the Wald-type panel UR test that is based on the FDMLE for the panel AR(1)/UR model

can be modified so as to allow for individual drift parameters, heteroskedasticity, and general possibly

heterogeneous AR(p) and/or MA(q) dependence. When the data exhibit heterogeneous AR(p) dependence

under the null hypothesis, a limit distribution of the appropriate FDMLE based UR test-statistic can be

derived under sequential asymptotics where first T →∞ and subsequently N →∞. The derivation of this

limit distribution as well as the limit distributions of the test-statistic under other asymptotic plans, and

the potential effect of lag order selection on these limit distributions are topics for further research.
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A Proofs

A.1 Two lemmata

We first show that E(Dyiy
′
iD) = σ

2DV (ρ)D′ = σ2R(ρ) still holds when ρ = 1, even though V (ρ) does not

exist when ρ = 1.

Lemma 6 Let T ≥ 3 and let ρ = 1. Then E(Dyiy′iD
′) = σ2R(1), i = 1, ..., N.

Proof of lemma 6

Let R = R(r). It is easily verified that Ri,i = 2/(1 + r) ∀i ∈ {1, ..., T − 1}, Ri,j = ri−j−1(r− 1)/(1 + r) ∀i, j

that satisfy i > j ≥ 1, and Ri,j = Rj,i ∀i, j ∈ {1, ..., T − 1}. Hence R(1) = I.

Note that when ρ = 1, ∆yi,t = εt and E(∆yi,s∆yi,t) = E(εi,sεi,t) ∀s, t. It follows that E(Dyiy′iD
′|ρ =

1) = σ2I = σ2R(1). �

Lemma 6 implies that the formula of the likelihood function of the differenced data,
∏N

i=1 L(Dyi; r, s
2),

which is given in (13) below, is still valid when ρ = 1. The likelihood function
∏N

i=1 L(Dyi; r, s
2) is also

differentiable with respect to r and s2 at and in the neighbourhood of ρ = 1:

Lemma 7 Let T ≥ 3. Furthermore let Θe
r = (−1, 1 + 2

T−2) and let Θe = Θe
r × (0,∞). Then (i) |R(r)| > 0

on Θe
r and (ii) |R(r)|, R(r)−1 and the likelihood function of the first differences Dyi, i = 1, ..., N,

N∏

i=1

L(Dyi; r, s
2) = (2πs2)−

N(T−1)
2 (|DVD′|)−

N
2 exp

(
− 1

2s2

∑N

i=1
(y′iD

′ (DVD′)
−1
Dyi)

)
(13)

are infinitely many times differentiable with respect to r (θ) on Θe
r (Θe).

Proof of lemma 7

Recall that |R(r)| = (T (1− r) + 2r)/(1 + r) (cf Lancaster and Lindenhovius, 1996). It is easily verified that

|R(r)| > 0 for any r ∈ Θe
r. Moreover |R(r)| is infinitely many times differentiable with respect to r as long

as r �= −1.

Note that the elements of R(r)−1 are equal to ratios of the cofactors of R(r) and |R(r)|. The elements of

R(r) are given in the proof of lemma 6. It is easily seen that the cofactors of R(r) are infinitely many times

differentiable with respect to r as long as r �= −1. It follows that the elements of R(r)−1 are infinitely many

times differentiable with respect to r as long as |R(r)| �= 0 and r �= −1. The latter conditions are satisfied

for any r ∈ Θe
r.

The last claim in the lemma now follows straightforwardly from the results above. �
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A.2 Proof of theorem 1

To prove large N, fixed T consistency of the FDMLE for the covariance stationary panel AR(1)/UR model

with fixed effects we verify the conditions of theorem 2.5. in Newey and McFadden (1994). The proof

proceeds as follows:

We assume that θ0 ∈ Θ where Θ can be any compact subset of (−1, 1]× (0,∞).

Lemma 7 implies that l(Dyi; r, s2) is differentiable with respect to θ on Θe
r × (0,∞), where Θe

r =

(−1, 1 + 2
T−2). It follows that l(Dyi; r, s

2) is continuous on Θ.

The last two steps of the proof are as follows:

For identification it suffices to show that Ω(θ) �= Ω(θ0) ∀θ ∈ Θ with θ �= θ0, because (Ω(θ) �= Ω(θ0) if and

only if θ �= θ0)⇔ ( Ω(θ)−1 �= Ω(θ0)
−1 iff θ �= θ0 ). The latter equivalence follows trivially from the fact that

Ω(θ)−1 is the unique inverse of Ω(θ) ∀θ ∈ Θ. Now, the T − 1 elements of the first column of the covariance

matrix Ω(θ) are all different functions of the 2 elements of θ. It follows that if T − 1 ≥ 2, then Ω(θ) �= Ω(θ0)

∀θ ∈ Θ with θ �= θ0.

To show that E(sup(r,s2)∈Θ l(Dyi; r, s
2)) < ∞, we note that R(r)−1 and |R(r)| are differentiable and

hence continuous on Θe
r by lemma 7. It follows that Ω(θ)−1 and |Ω(θ)| are bounded on the compact set Θ.

Moreover, E(Dyiy
′
iD

′) = Ω(θ0) is bounded. We conclude that E(sup(r,s2)∈Θ l(Dyi; r, s
2)) <∞. �
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A.3 Proof of theorem 2

We first establish asymptotic normality of the FDMLE and then derive its limiting covariance matrix:

A.3.1 Large N, fixed T asymptotic normality of the FDMLE

To establish large N, fixed T asymptotic normality of the FDMLE for the covariance stationary panel

AR(1)/UR model with fixed effects we verify the conditions of theorem 3.3. in Newey and McFadden (1994),

henceforth NMcF. The proof proceeds as follows:

First we note that the FDMLE is consistent under large N, fixed T asymptotics, see appendix A.2.

Next we assume that there exists a number δ2 > 0 such that σ2 ∈ [δ2,
1
δ2
]. Furthermore, for any ρ ∈ (−1, 1]

we can define a compact set N δ
(ρ) = {ř| |ρ− ř| ≤ δ(ρ)} such that δ(ρ) > 0 and N δ

(ρ) ⊂ (−1, 1 + 2
T−2).

Note that the value of δ(ρ) may depend on ρ. Let N
1
2 δ(ρ) = {ř| |ρ− ř| ≤ 1

2δ(ρ)}. Then condition 3.3(i) of

NMcF can be shown to hold since θ0 ∈ interior(N
1
2 δ(ρ)× [12δ2,

2
δ2
]).

Condition 3.3(ii) of NMcF holds because L(Dyi; r, s
2) is infinitely many times differentiable with respect

to θ on Θe, where Θe = Θe
r × (0,∞) with Θe

r = (−1, 1 + 2
T−2) (cf lemma 7). Furthermore L(Dyi; r, s

2) > 0

on Θe.

It also follows from lemma 7 that |R(r)| > 0 on Θe
r and that R(r)−1 and |R(r)| and their derivatives with

respect to r are bounded on any compact subset of Θe
r. These results together with the fact that Dyi has

finite moments by virtue of being Gaussian, and the fact that the standard normal density φ(v) is uniformly

bounded imply that conditions (iii) and (v) of theorem 3.3 in NMcF are satisfied for a neighbourhood N (θ0)

of θ0 such that N
1
2 δ(ρ)× [12δ2,

2
δ2
] ⊂ N (θ0) ⊂ Θe.

Lemma 7 and the fact that the Dyi are Gaussian also imply existence of the information matrix J =

E[{∂l(Dyi; ρ, σ2)/∂θ0}{∂l(Dyi; ρ, σ2)/∂θ0}′] for any θ0 ∈ Θ, where Θ = (−1, 1]× (0,∞).

Let Ω = Ω(θ). Then the Hessian of l(Dyi; r, s
2) is given by H(θ, yi) =

1
2

∑
1≤s,t<T (Ωs,t −∆yi,s+1∆yi,t+1)

∂2[Ω−1]s,t
∂θ∂θ′

− 1
2([

dvecΩ
dθ′ |θ]′(Ω−1 ⊗Ω−1)[dvecΩdθ′ |θ]), see Magnus (1978).

The second Bartlett identity holds because condition (iii) of theorem 3.3 and lemma 3.6 in NMcF allow us

to interchange the order of differentiation and integration. Thus J = −E[H(θ0, yi)] =
1
2([

dvecΩ
dθ′ |θ0 ]′(Ω(θ0)−1⊗

Ω(θ0)
−1)[dvecΩdθ′ |θ0 ]). Finally, J = −E[H(θ0, yi)] is nonsingular for any θ0 ∈ Θ iff dvechΩ

dθ′ |θ0 has full rank.

Since Ω is a Toeplitz matrix, we have that dvechΩ
dθ′ |θ0 has full rank iff dΩe1

dθ′ |θ0 has full rank, where Ωe1 is equal

to the first column of Ω. In appendix A.2 it was argued that θ can be identified from the elements of the

first column of Ω whenever T − 1 ≥ 2. It follows that J is nonsingular iff T ≥ 3.

We conclude that
√
N(θ̂FDMLE − θ0) d→ N(0, J−1).
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A.3.2 Large N, fixed T limiting distribution of the FDMLE

Above we have already established large N, fixed T asymptotic normality of the FDMLE. Here we derive

the large N, fixed T limiting covariance matrix of the FDMLE, which is equal to minus the inverse of the

expectation of the Hessian of N−1
∑N

i=1 l(Dyi; r, s
2) evaluated at θ0.

Let f(r) = ι′V −1ι, and b(r)′ = b′ = ι′V−1

ι′V −1ι . The log-likelihood function
∑N

i=1 lCS,FE(yi; r,m, s
2) can be

decomposed as
∑N

i=1 l(Dyi; r, s
2)+

∑N
i=1 l(µ̃i; r,mi, s

2), where l(µ̃i; r,mi, s
2) is the log-likelihood function of

µ̃i = b(r)
′yi :

l(µ̃i; r,mi, s
2) = l(µ̃i) = −1

2
log 2π − 1

2
log s2 +

1

2
log f(r)− f(r)

2s2
(µ̃i −mi)

2 (14)

= −1

2
log 2π − 1

2
log s2 +

1

2
log f(r)− f(r)

2s2
(b(r)′(yi −miι))

2.

It follows that the (Expected) Hessian of N−1
∑N

i=1 l(Dyi; ρ, σ
2) can be obtained from the (Expected)

Hessians of N−1
∑N

i=1 lCS,FE(yi;ρ, µ, σ2) and N−1
∑N

i=1 l(µ̃i; ρ, µi, σ
2), i = 1, ..., N :

N−1
∑N

i=1
∂2l(Dyi;r,s

2)

∂θ∂θ′
|θ0 = N−1

∑N
i=1

∂2lCS,FE(yi;r,µ,s
2)

∂θ∂θ′
|θ0 −N−1

∑N
i=1

∂2l(µ̃i;r,µi,s
2)

∂θ∂θ′
|θ0 .

The elements of the Expected Hessian of the (Marginal) log-likelihood function l(µ̃i), EHM, are obtained

as follows: 15

dl(µ̃i)
dr = 1

2
f′(r)
f(r) −

f ′(r)
2s2 (b(r)′(yi −miι))

2 − f(r)
s2 b(r)

′(yi −miι)
db(r)′

dr (yi −miι), and

d2l(µ̃i)
dr2 = 1

2

[
f ′′(r)
f(r) −

(
f ′(r)
f(r)

)2]
− f ′′(r)

2s2 (µ̃i −mi)
2 − 2f ′(r)

s2 b(r)
′(yi −miι)

db(r)′

dr (yi −miι)

−f(r)
s2

(
db(r)′

dr (yi −miι)
)2
− f(r)

s2 b(r)
′(yi −miι)

d2b(r)′

dr2 (yi −miι).

Now, we have E
(
f ′′(ρ)
2σ2 (µ̃i − µi)2

)
= 1

2
f ′′(ρ)
f(ρ) , and E

(
b(ρ)′(yi − µiι)db(ρ)

′

dρ (yi − µiι)
)
=

E
(
b(ρ)′uiu

′
i
db(ρ)
dρ

)
= σ2b(ρ)′V db(ρ)

dρ = σ2

f(ρ) ι
′ db(ρ)

dρ = 0, where ui = yi − µiι.

Likewise, E
(
b(ρ)′(yi − µiι)d

2b(ρ)′

dρ2 (yi − µiι)
)
= 0, and

E

(
f(ρ)
σ2

(
db(ρ)′

dρ (yi − µiι)
)2)

= E
(
f(ρ)
σ2

(
db(ρ)′

dρ (uiu
′
i)

db(ρ)
dρ

))
= E

(
f(ρ)db(ρ)

′

dρ V db(ρ)
dρ

)
=

1
f(ρ)

d(ι′V −1)
dρ V d(V −1ι)

dρ − 2 1
f(ρ)

d(ι′V −1)
dρ V b(ρ)f ′(ρ) + 1

f(ρ)b(ρ)
′V b(ρ)(f ′(ρ))2 =

1
f(ρ)

d(ι′V −1)
dρ V d(V −1ι)

dρ − 2
(

1
f(ρ)

)2
d(ι′V −1)

dρ ιf ′(ρ) +
(
f ′(ρ)
f(ρ)

)2
=

1
f(ρ)

d(ι′V −1)
dρ V d(V −1ι)

dρ − 2
(
f ′(ρ)
f(ρ)

)2
+
(
f′(ρ)
f(ρ)

)2
= 1

f(ρ)
d(ι′V −1)

dρ V d(V −1ι)
dρ −

(
f ′(ρ)
f(ρ)

)2
.

It follows that E
(
d2l(µ̃i)
dρ2

)
= − 1

f(ρ)
d(ι′V −1)

dρ V d(V −1ι)
dρ + 1

2

(
f′(ρ)
f(ρ)

)2
.

Explicit expressions for the terms on the RHS of the latter equality can easily be obtained.

15The prime ′ denotes a derivative in the case of a scalar function and transpose in case of a vector.
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Note that V −1 has a very simple structure:

V −1(ρ) =




1 −ρ 0 . . 0
−ρ 1 + ρ2 −ρ . . 0
0 −ρ 1 + ρ2 . .
. . . . . 0
. . . 1 + ρ2 −ρ
0 0 . 0 −ρ 1




, with |ρ| < 1.

Hence f(ρ) = ι′V −1ι = (1 − ρ)(T (1 − ρ) + 2ρ) and d(V−1ι)
dρ = ζ1 + ζ2, where ζ1 = −2(1 − ρ)(0 1 1 . . .

1 1 0) and ζ2 = −(1 0 0 . . . 0 0 1). From ζ′1V ζ1 = 4(1 − ρ)(1 + ρ)−1(T − 2 + 2
∑T−3

t=1 (T − 2 − t)ρt),

ζ′1V ζ2 = 4ρ(1−ρ2)−1(1−ρT−2) and ζ′2V ζ2 = 2(1−ρ2)−1(1+ρT−1), it then follows that d(ι′V−1)
dρ V d(V −1ι)

dρ =

2
1−ρ2 (ρ

T−1 − 2(T − 2)ρ2 + 2T − 3). Finally f ′(ρ) = −2(T − 1)(1− ρ)− 2ρ.

The other elements of EHM are E
(
d2l(µ̃i)
dρdσ2

)
= f ′(ρ)

2σ2f(ρ) , E
(
d2l(µ̃i)
d(σ2)2

)
= − 1

2σ4 , E
(
d2l(µ̃i)
dρdµi

)
= 0, E

(
d2l(µ̃i)
dσ2dµi

)
= 0,

and E
(
d2l(µ̃i)
dµ2i

)
= −f(ρ)

σ2 .

We now derive the elements of the Expected Hessian corresponding to lCS,FE(yi; ρ, µ, σ
2), EHF.

Note that

lCS,FE(yi;ρ, µ, σ
2) = l(yi) = −

T

2
log(2π)− T

2
logσ2 − 1

2
log |V | − 1

2σ2
u′iV

−1ui. (15)

It is easily seen that E

(
d(u′iV−1ui)

dρ

)
= −σ2 2ρ

1−ρ2 and E

(
d2(u′iV −1ui)

dρ2

)
= σ2 2(T−2)1−ρ2 .

Moreover, since |V | = (1− ρ2)−1, we have d|V |
dρ = 2ρ (|V |)2 and d2|V |

dρ2 = 2 (|V |)2 + 8ρ2 (|V |)3.

It follows that E
(
d2l(yi)
dρ2

)
= −

[
(T−2)(1−ρ2)+1+ρ2

(1−ρ2)2

]
and E

(
d2l(yi)
dρdσ2

)
= − 1

σ2
ρ

1−ρ2 .

The other elements of EHF are E
(
d2l(yi)
d(σ2)2

)
= − T

2σ4 , E
(
d2l(yi)
dρdµi

)
= 0, E

(
d2l(yi)
dσ2dµi

)
= 0, and E

(
d2l(yi)
dµ2i

)
=

−f(ρ)
σ2 . Notice that the last three elements of EHF are the same as those of EHM because µ̃i, i = 1, ..., N,

are sufficient statistics. Notice also that both EHF and EHM are block-diagonal.

Thus the large N , fixed T limiting distribution of
{
ρ̂FDML, σ̂

2
FDML

}
is given by

√
N

(
ρ̂FDML − ρ
σ̂2FDML − σ2

)
d→ N

(
0,
(
EHMρ,σ2 −EHFρ,σ2

)−1)
. (16)

An explicit expression for
(
EHMρ,σ2 −EHFρ,σ2

)
is given in (8)-(9). �
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A.4 Large T asymptotic properties of the FDMLE

Some general results:

We can write the first-difference log-likelihood function (6) as

N∑

i=1

l(Dyi; r, s
2) = −N(T − 1)

2
ln s2 − N

2
ln |DVD′| − 1

2s2

N∑

i=1

q(Dyi; r),

where q(Dyi; r) = y′iD
′(DVD′)−1Dyi. (17)

Recall that D′(DVD′)−1D = V −1−V −1ιι′V −1/(ι′V −1ι). Note also that Dyi = Dui and ui,t = ρui,t−1+εi,t.

Thence we have:

q(Du; r) = − (1− r)
(T (1− r) + 2r)

(u21 + 2u1uT + u2T + 2(1− r)(u1 + uT )
T−1∑

t=2

ut

+(1− r)2(
T−1∑

t=2

ut)
2) + (1 + r2)

T−1∑

t=2

u2t − 2r
T∑

t=2

utut−1 + u
2
1 + u

2
T . (18)

Differenciating q(Du; r) and ln |DVD′| = ln
(
T (1−r)+2r

1+r

)
with respect to r yields:

∂q(Du; r)

∂r
=

2

(T (1− r) + 2r)2
(u21 + 2u1uT + u2T + 2(1− r)(u1 + uT )

T−1∑

t=2

ut + (1− r)2(
T−1∑

t=2

ut)
2)

+
2(1− r)

(T (1− r) + 2r)
((u1 + uT )

T−1∑

t=2

ut + (1− r)(
T−1∑

t=2

ut)
2) + 2r

T−1∑

t=2

u2t − 2
T∑

t=2

utut−1, (19)

∂2q(Dyi; r)

∂r2
=

4(T − 2)

(T (1− r) + 2r)3
(u21 + 2u1uT + u2T + 2(1− r)(u1 + uT )

T−1∑

t=2

ut + (1− r)2(
T−1∑

t=2

ut)
2)

− 8

(T (1− r) + 2r)2
((u1 + uT )

T−1∑

t=2

ut + (1− r)(
T−1∑

t=2

ut)
2)− 2(1− r)

(T (1− r) + 2r)
(
T−1∑

t=2

ut)
2 + 2

T−1∑

t=2

u2t , (20)

∂ ln |DVD′|
∂r

=
−2(T − 1)

(1 + r)(T (1− r) + 2r)
, (21)

and

∂2 ln |DVD′|
∂r2

= − 4(T − 1)((T − 2)r − 1)

(1 + r)2(T (1− r) + 2r)2
. (22)
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A.4.1 Some results specific to the case |ρ| < 1 :

Lemma 8 Let ut = yt − µ and let {ut} be covariance stationary. Then

E(u2t ) = σ
2(1− ρ2)−1, E(u4t ) = 3σ4(1− ρ2)−2, E(u1uT ) = σ2(1− ρ2)−1ρT−1,

E((u1 + uT )
∑T−1

t=2 ut) = 2σ2(1− ρ2)−1ρ(1− ρ)−1(1− ρT−2),
E((

∑T−1
t=2 ut)

2) = T σ2

(1−ρ)2 + o(T ), E((u1
∑T−1

t=2 ut)
2) = O(T ) and E((uT

∑T−1
t=2 ut)

2) = O(T ).

Furthermore, when T →∞, (E((∑T−1
t=2 ut)

2))−1/2
∑T−1

t=2 ut
d→ N(0, 1) and

T−1/2
∑T

t=2 ut−1εt
d→ N(0, σ4(1− ρ2)−1).

Proof

We only prove the last five claims of lemma 8:

E((
∑T−1

t=2 ut)
2) = E(

∑T−1
s=2 us

∑T−1
t=2 ut) =

E(
∑T−1

s=2

∑s
t=2 usut) +E(

∑T−1
s=2

∑T−1
t=s usut)−E(

∑T−1
t=2 u

2
t ) =

σ2(1− ρ2)−1(∑T−1
s=2

∑s
t=2 ρ

s−t +
∑T−1

s=2

∑T−1
t=s ρ

t−s − (T − 2)) =

σ2(1− ρ2)−1(∑T−1
s=2 (1− ρ)−1(1− ρs−1) +

∑T−1
s=2 (1− ρ)−1(1− ρT−s)− (T − 2)) =

σ2(1− ρ2)−1(2(1− ρ)−1(T − 2− ρ(1− ρ)−1(1− ρT−2))− T + 2) = T σ2

(1−ρ)2 + o(T ).

Note that E((u1
∑T−1

t=2 ut)
2) = E(u21

∑T−1
s=2

∑T−1
t=2 usut) =

E(u21
∑T−1

s=2

∑s
t=2 usut) +E(u

2
1

∑T−1
s=2

∑T−1
t=s usut)−E(u21

∑T−1
t=2 u

2
t ).

Moreover, if t > 1, then E(u21u
2
t ) =

σ4

1−ρ2

(
1−ρ2(t−1)

1−ρ2

)
+ ρ2(t−1)E(u41).

Hence E(u21
∑T−1

s=2

∑s
t=2 usut) =

∑T−1
s=2

∑s
t=2 ρ

s−tE(u21u
2
t ) = T

σ4

(1−ρ2)2(1−ρ)
+ o(T ),

E(u21
∑T−1

s=2

∑T−1
t=s usut) =

∑T−1
s=2

∑T−1
t=s ρ

t−sE(u21u
2
s) = T

σ4

(1−ρ2)2(1−ρ)
+ o(T ), and

E(u21
∑T−1

t=2 u
2
t ) =

∑T−1
t=2 E(u

2
1u
2
t ) = T

σ4

(1−ρ2)2
+ o(T ).

It follows that E((u1
∑T−1

t=2 ut)
2) = O(T ).

Note that E((uT
∑T−1

t=2 ut)
2) = E(u2T

∑T−1
s=2

∑T−1
t=2 usut) =

E(u2T
∑T−1

s=2

∑s
t=2 usut) +E(u

2
T

∑T−1
s=2

∑T−1
t=s usut)−E(u2T

∑T−1
t=2 u

2
t ).

Moreover, if t < T, then E(u2tu
2
T ) =

σ4

1−ρ2

(
1−ρ2(T−t)

1−ρ2

)
+ ρ2(T−t)E(u4t ).

Hence E(u2T
∑T−1

s=2

∑s
t=2 usut) =

∑T−1
s=2

∑s
t=2 ρ

s−tE(u2tu
2
T ) = T

σ4

(1−ρ2)2(1−ρ)
+ o(T ),

E(u2T
∑T−1

s=2

∑T−1
t=s usut) =

∑T−1
s=2

∑T−1
t=s ρ

t−sE(u2su
2
T ) = T

σ4

(1−ρ2)2(1−ρ)
+ o(T ), and

E(u2T
∑T−1

t=2 u
2
t ) = E(u

2
1

∑T−1
t=2 u

2
t ) = O(T ).

We conclude that also E((uT
∑T−1

t=2 ut)
2) = O(T ).

The last two claims of lemma 8 follow from well-known central limit theorems for autoregressive processes,

see e.g. section 5.5 of Anderson (1971). �
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Proof of theorem 3:

We first establish large T, arbitrary N consistency of the FDMLE when |ρ| < 1:

A priori we assume that (ρ σ2) ∈ (−1, 1]× [0,∞), that is, we do not rule out the possibility that ρ = 1,

even though in reality |ρ| < 1.

The likelihood equations implied by (6) are given by:

1

NT

N∑

i=1

∂l(Dyi; r, s2)

∂s2
= −(T − 1)

2Ts2
+

1

2s4
1

NT

N∑

i=1

q(Dyi; r) = 0 (23)

and

2

NT

N∑

i=1

∂l(Dyi; r, s
2)

∂r
= − 1

T

∂ ln |DVD′|
∂r

− 1

s2
1

NT

N∑

i=1

∂q(Dyi; r)

∂r
= 0. (24)

Solving (23) for s2 yields s2 = 1
T−1

1
N

∑N
i=1 q(Dyi; r). Replacing s

2 in (24) by this expression gives:

1

T

∂ ln |DVD′|
∂r

1

T − 1

1

N

N∑

i=1

q(Dyi; r) +
1

NT

N∑

i=1

∂q(Dyi; r)

∂r
= 0. (25)

Note that limT→∞ T
−1 ∂ ln|DVD′|

∂r = 0 for |r| < 1, while limT→∞ T
−1 ∂ ln|DVD′|

∂r = −1
2 for r = 1.

Let Υ1(Du; r) = 1
(T (1−r)+2r)(u

2
1 + 2u1uT + u2T + 2(1 − r)(u1 + uT )

∑T−1
t=2 ut + (1 − r)2(∑T−1

t=2 ut)
2) +

u21 + u
2
T and Υ2(Du; r) =

1
(T (1−r)+2r)((u1 + uT )

∑T−1
t=2 ut + (1− r)(∑T−1

t=2 ut)
2). Then lemma 8 implies that

T−1Υ1(Du; r) = op(1) and T−1Υ2(Du; r) = op(1) for −1 < r ≤ 1 and also that T−1
∑T

t=2 ut−1εt = op(1).

Furthermore, we have plimT→∞ T
−1
∑T

t=1 u
2
t = E(u

2
t ) = σ

2(1− ρ2)−1 by the ergodicity theorem.

Therefore, regardless of whether N is fixed or tends to infinity,

p limT→∞
1

NT

N∑

i=1

q(Dyi; r) = ((1 + r2)− 2rρ)σ2(1− ρ2)−1. (26)

It follows that if |r| < 1, plimT→∞
1
T

∂ ln|DVD′|
∂r

1
T−1

1
N

∑N
i=1 q(Dyi; r) = 0 regardless of N, while if r = 1

plimT→∞
1
T

∂ ln|DVD′|
∂r

1
T−1

1
N

∑N
i=1 q(Dyi; r) = −σ2(1 + ρ)−1 regardless of N.

Note also that

p limT→∞
1

NT

N∑

i=1

∂q(Dyi; r)

∂r
= 2(r − ρ)σ2(1− ρ2)−1 (27)

regardless of N.

We need to consider two cases:

1) |r| < 1: Equation (25) holds true if and only if r = ρ.

2) r = 1 : Equation (25) is not satisfied for r = 1 since −σ2(1 + ρ)−1 + 2(1− ρ)σ2(1− ρ2)−1 �= 0.

Moreover, it follows from (26) that plimT→∞
1

T−1
1
N

∑N
i=1 q(Dyi; ρ) = σ2 regardless of N.

Thus when |ρ| < 1, (r s2)′ = (ρ σ2)′ is the unique solution to the likelihood equations implied by (6).
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The large T, arbitrary N limiting distribution of the FDMLE when |ρ| < 1:

First consider the stochastic limit of the Hessian evaluated at θ∗, where θ∗k = λkθ̂k+(1−λk)θ0,k for some

λk ∈ [0, 1] and k = 1, 2. The elements of the Hessian are given by:

1

NT

N∑

i=1

∂2l(Dyi; r, s
2)

∂r2
= − 1

2T

∂2 ln |DVD′|
∂r2

− 1

2s2
1

NT

N∑

i=1

∂2q(Dyi; r)

∂r2
, (28)

1

NT

N∑

i=1

∂2l(Dyi; r, s
2)

∂r∂s2
=

1

2s4
1

NT

N∑

i=1

∂q(Dyi; r)

∂r
, and (29)

1

NT

N∑

i=1

∂2l(Dyi; r, s
2)

∂(s2)2
=

(T − 1)

2Ts4
− 1

s6
1

NT

N∑

i=1

q(Dyi; r). (30)

Note that since plimT→∞ ρ̂ = ρ and plimT→∞ σ̂
2 = σ2 regardless of N, we have plimT→∞ θ

∗ = θ0

regardless of N. Then it follows from (26) that plimT→∞
1

NT

∑N
i=1 q(Dyi; r

∗) = σ2 and hence

plimT→∞(NT )−1
∑N

i=1
∂2l(Dyi;r,s

2)
∂(s2)2 |θ=θ∗ = − 1

2σ4 regardless of N.

Let Υ3(Du; r) =
1

(T (1−r)+2r)(
∑T−1

t=2 ut)
2. Then lemma 8 implies that T−1Υ3(Du; r) = op(1) for |r| < 1.

We have already seen in the consistency proof above that T−1Υ1(Du; r) = op(1) and T−1Υ2(Du; r) = op(1)

for |r| < 1. Therefore, we obtain that plimT→∞
1

NT

∑N
i=1

∂2q(Dyi;r)
∂r2 |r=r∗ = 2σ2(1 − ρ2)−1 regardless of N.

Note also that limT→∞
1
T

∂2 ln|DVD′|
∂r2 = 0. It follows that plimT→∞

1
NT

∑N
i=1

∂2l(Dyi;r,s
2)

∂r2 |θ=θ∗ = −(1−ρ2)−1

regardless of N.

Finally, it follows from (27) that plimT→∞
1

NT

∑N
i=1

∂2l(Dyi;r,s
2)

∂r∂s2 |θ=θ∗ = 0 regardless of N .

Consider now the scaled score vector:

We have (NT )−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂ρ = −1

2(N/T )
1/2 ∂ ln|DVD′|

∂r |r=ρ − 1
2σ2 (NT )

−1/2
∑N

i=1
∂q(Dyi;ρ)

∂ρ .

Note that ρ
∑T−1

t=2 u
2
t −

∑T
t=2 utut−1 = ρ

∑T−1
t=2 u

2
t −

∑T
t=2 ρu

2
t−1 −

∑T
t=2 ut−1εt = −ρu21 −

∑T
t=2 ut−1εt.

Then we can write ∂q(Du;ρ)
∂ρ =

∑4
k=1Ψk(Du; ρ), where

Ψ1(Du; ρ) =
2

(T (1−ρ)+2ρ)2 (u
2
1 + 2u1uT + u2T + 2(1− ρ)(u1 + uT )

∑T−1
t=2 ut + (1− ρ)2(∑T−1

t=2 ut)
2),

Ψ2(Du; ρ) =
2(1−ρ)T

(T (1−ρ)+2ρ)(T
−1(u1 + uT )

∑T−1
t=2 ut + (1− ρ)(T−1/2∑T−1

t=2 ut)
2),

Ψ3(Du; ρ) = −2ρu21, and Ψ4(Du; ρ) = −2
∑T

t=2 ut−1εt.

Let Ψ̃k(Du; ρ) = Ψk(Du; ρ) − EΨk(Du; ρ) for k = 1, 2, 3. Note that V ar(T−1/2Ψ̃1(Du;ρ)) = O(T
−3),

V ar(T−1/2Ψ̃2(Du; ρ)) = O(T
−1) and V ar(T−1/2Ψ̃3(Du; ρ)) = O(T

−1). Therefore, as T →∞ regardless of

whether N →∞ or is fixed, we have (NT )−1/2
∑N

i=1

∑3
k=1 Ψ̃k(Dui;ρ) = op(1).

Let RN,T = −1
2

(
N
T

)1/2
(

∂ ln|DVD′|
∂r |r=ρ + σ−2

∑3
k=1EΨk(Dui; ρ)

)
. Note that EΨ1(Dui; ρ) =

2σ2

(T (1−ρ)+2ρ)(1−ρ) . We also have

(
∂ ln|DVD′|

∂r |r=ρ + σ−2
∑3

k=2EΨk(Dui; ρ)

)
= − 2

(1−ρ)(T (1−ρ)+2ρ) . It follows

that RN,T = 0.
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Finally note that EΨ4(Dui; ρ) = 0 and T−1/2
∑T

t=2 ut−1εt
d→ N(0, σ4(1 − ρ2)−1) (see lemma 8).

We conclude that (NT )−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂ρ

d→ N(0, (1− ρ2)−1) as T →∞ regardless of whether N →∞

or is fixed.

We can write (NT )−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂σ2 = −

(
N
T

)1/2 (T−1)
2σ2 + 1

2σ4 (NT )
−1/2

∑N
i=1 q(Dyi; ρ) =

1
2σ2 (NT )

−1/2
∑N

i=1(
1
σ2 q(Dyi; ρ)− (T − 1)).

Note that σ−2q(Dyi; ρ) = σ
−2u′iD

′(DVD′)−1Dui is equal to the sum of T − 1 independent χ2(1) r.v.’s

so that σ−2q(Dyi; ρ) ∼ χ2(T − 1).

Therefore, as T → ∞ regardless of whether N → ∞ or is fixed, we have (NT )−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂σ2

d→

N(0, 1
2σ4 ) and Cov((NT )

−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂ρ , (NT )−1/2

∑N
i=1

∂l(Dyi;ρ,σ
2)

∂σ2 )→ 0. �

A.4.2 Some results specific to the case ρ = 1 :

When ρ = 1 it is useful to rewrite the expressions for q(Du; r), ∂q(Du; r)/∂r, and ∂2q(Du; r)/∂r2 given in

(18)-(20). Note that when ρ = 1, Dui = εi and ui,t = ui,t−1+εi,t = ui,1+
∑t

s=2 εi,s. Therefore if in q(Du; r)

we replace ut by u1+
∑t

s=2 εs, for t = 2, ..., T , then all terms involving u1 would cancel out because q(Du; r)

only depends on ε. Thus when ρ = 1 we can assume w.l.o.g. that u1 = 0. Then after replacing utut−1 by

u2t−1 + ut−1εt in one of the terms in (18), we obtain:

q(Du; r) = − (1− r)
(T (1− r) + 2r)

(u2T + 2(1− r)uT
T−1∑

t=2

ut +

(1− r)2(
T−1∑

t=2

ut)
2) + (1− r)2

T−1∑

t=2

u2t − 2r
T∑

t=2

ut−1εt + u
2
T , (31)

∂q(Du; r)

∂r
=

2

(T (1− r) + 2r)2
(u2T + 2(1− r)uT

T−1∑

t=2

ut + (1− r)2(
T−1∑

t=2

ut)
2) +

2(1− r)
(T (1− r) + 2r)

(uT

T−1∑

t=2

ut + (1− r)(
T−1∑

t=2

ut)
2)− 2(1− r)

T−1∑

t=2

u2t − 2
T∑

t=2

ut−1εt, (32)

and

∂2q(Du; r)

∂r2
= − 4(−T + 2)

(T (1− r) + 2r)3
(u2T + 2(1− r)uT

T−1∑

t=2

ut + (1− r)2(
T−1∑

t=2

ut)
2)−

8

(T (1− r) + 2r)2
(uT

T−1∑

t=2

ut + (1− r)(
T−1∑

t=2

ut)
2)− 2(1− r)

(T (1− r) + 2r)
(
T−1∑

t=2

ut)
2 + 2

T−1∑

t=2

u2t (33)
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Lemma 9 Let z1,i,T = T−1u2i,T , z2,i,T = T−2ui,T
∑T−1

t=2 ui,t, z3,i,T = T−3/2
∑T−1

t=2 ui,t,

z4,i,T = T−1
∑T

t=2 ui,t−1εi,t, and z5,i,T = T−2
∑T−1

t=2 u
2
i,t. Moreover, let w1 = σ2W 2(1),

w2 = σ2W (1)
∫ 1
0
W (t)dt, w3 = σ

∫ 1
0
W (t)dt, w4 = (1/2)σ2(W 2(1) − 1), and w5 = σ2

∫ 1
0
W 2(t)dt.

Then as T → ∞, zk,i,T d→ wk for k = 1, 2, 3, 4, 5 and for all i ∈ {1, ..., N}. Furthermore, E(w1) = σ2,

E(w2) = σ2/2, E(w23) = σ
2/3, E(w4) = 0, and E(w5) = σ2/2.

Proof

We only prove the claims with respect to E(w2) and E(w3):

E(w2) = σ2E
∫ 1
0
W2(t)dt = σ2

∫ 1
0
E(W 2(t))dt = σ2

∫ 1
0
tdt = σ2/2, while

E(w23) = σ
2E((

∫ 1
0
W(t)dt)2) = σ2/3 in view of the fact that

∫ 1
0
W (t)dt ∼ N(0, 1/3). �

Proof of theorem 5:

We first establish large T, arbitrary N consistency of the FDMLE when ρ = 1:

A priori we assume that (ρ σ2) ∈ (−1, 1]× [0,∞).

The likelihood equations (23) and (24) imply that

1

T

∂ ln |DVD′|
∂r

1

T − 1

1

N

N∑

i=1

q(Dyi; r) +
1

NT

N∑

i=1

∂q(Dyi; r)

∂r
= 0. (34)

After multiplying (34) by (T (1− r)+2r)2(1+ r), setting N = 1, replacing Dyi by Du, and substituting (31)

and (32) for q(Du; r) and ∂q(Du; r)/∂r, respectively, we obtain:

2(1− r)(u2T + 2(1− r)uT
T−1∑

t=2

ut + (1− r)2(
T−1∑

t=2

ut)
2)−

2(T (1− r) + 2r)((1− r)2
T−1∑

t=2

u2t − 2r
T∑

t=2

ut−1εt + u
2
T ) +

2(1 + r)(u2T + 2(1− r)uT
T−1∑

t=2

ut + (1− r)2(
T−1∑

t=2

ut)
2) +

2(1− r)(1 + r)(T (1− r) + 2r)(uT

T−1∑

t=2

ut + (1− r)(
T−1∑

t=2

ut)
2)−

2(1− r)(1 + r)(T (1− r) + 2r)2
T−1∑

t=2

u2t − 2(1 + r)(T (1− r) + 2r)2
T∑

t=2

ut−1εt = 0. (35)

Let x = 1− r. Then using (35) it can be shown that (34) is equivalent to:

N−1
N∑

i=1

(g4,i,Tx
4 + g3,i,Tx

3 + g2,i,Tx
2 + g1,i,Tx+ g0,i,T ) = 0, (36)
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where

g0,i,T = −4z4,i,T ,

g1,i,T = −(Tz1,i,T − 2z1,i,T − 8Tz2,i,T + 6Tz4,i,T − 12z4,i,T + 8Tz5,i,T ),

g2,i,T = −2(−T 2z2,i,T + 3Tz2,i,T − 3T 2z23,i,T + T 2z4,i,T − 5Tz4,i,T + 6z4,i,T + 4T 2z5,i,T − 9Tz5,i,T ),

g3,i,T = −(T 2z2,i,T − 2Tz2,i,T − 2T 3z23,i,T + 6T 2z23,i,T − T 2z4,i,T + 4Tz4,i,T

−4z4,i,T + 2T 3z5,i,T − 11T 2z5,i,T + 14Tz5,i,T ),

g4,i,T = (T − 2) (−T 2z23,i,T + T 2z5,i,T − 2Tz5,i,T ). (37)

It follows from lemma 9 that

g1,i,T = −T (z1,i,T − 8z2,i,T + 6z4,i,T + 8z5,i,T ) +Op(1),

g2,i,T = −2T 2
(
−z2,i,T − 3z23,i,T + z4,i,T + 4z5,i,T

)
+Op(T ),

g3,i,T = −2T 3
(
z5,i,T − z23,i,T

)
+Op(T

2),

g4,i,T = T 3
(
z5,i,T − z23,i,T

)
+Op(T

2). (38)

Let g̃k,i,T = T−3gk,i,T for k = 0, 1, 2, 3, 4 and for all i ∈ {1, ..., N}. Then (36) is equivalent to

N−1
N∑

i=1

(g̃4,i,Tx
4 + g̃3,i,Tx

3 + g̃2,i,Tx
2 + g̃1,i,Tx+ g̃0,i,T ) = 0. (39)

Note that (a) g̃k,i,T are iid across i for all T and k; (b) the g̃k,i,T are Gaussian and hence integrable for all

T and k; (c) plimT→∞ g̃k,i,T = 0 for k = 0, 1, 2; as T →∞ g̃3,i,T
d→ −2(w5 − w23) and g̃4,i,T

d→ w5 − w23 by

lemma 9; and (d) the g̃k,i,T are Gaussian and hence uniformly L2-bounded and uniformly integrable in T

for all i and k.16 Therefore plimN,T→∞N
−1
∑N

i=1 g̃k,i,T = 0 for k = 0, 1, 2; plimN,T→∞N
−1
∑N

i=1 g̃3,i,T =

−2E(w5 −w23); and plimN,T→∞N
−1
∑N

i=1 g̃4,i,T = E(w5 −w23) by corollary 1 in Phillips and Moon (1999),

which is henceforth referred to as PM. Finally lemma 9 also implies that E(w5 − w23) = σ2/6.

Thus plimN,T→∞N
−1
∑N

i=1(g̃4,i,Tx
4 + g̃3,i,Tx

3 + g̃2,i,Tx
2 + g̃1,i,Tx+ g̃0,i,T ) = (x4 − 2x3)σ2/6 = 0.

Furthermore, let ui = (T − 2)−1
∑T−1

t=2 ui,t. Then it is easily seen that z5,i,T − z23,i,T = T−2
∑T−1

t=2 (ui,t −

ui)
2 + 2T−3(T − 2)u2i ≥ 0 and

(
N−1

∑N
i=1(z5,i,T − z23,i,T )

)−1
= Op(1).

Consequently, as T →∞, regardless of whether N is fixed or tends to infinity, x̂ (= 1− ρ̂) converges in

probability to 0 or 2. Since we assumed that −1 < ρ ≤ 1, it follows that plimT→∞ ρ̂ = ρ = 1 regardless of N.

16See e.g. Davidson (1994) for definitions of uniform Lp-boundedness and uniform integrability.
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Let ξ = Tx = T (1− r) and ǧk,i,T = T−kgk,i,T for k = 0, 1, 2, 3, 4 and for all i ∈ {1, ..., N}. Then (36) is

equivalent to

N−1
N∑

i=1

(ǧ4,i,T ξ
4 + ǧ3,i,T ξ

3 + ǧ2,i,T ξ
2 + ǧ1,i,T ξ + ǧ0,i,T ) = 0. (40)

Now by corollary 1 of PM we have plimN,T→∞N
−1
∑N

i=1 ǧ0,i,T = E(−4w4) = 0, plimN,T→∞N
−1
∑N

i=1 ǧ1,i,T

= E(−(w1−8w2+6w4+8w5)) = −σ2, plimN,T→∞N
−1
∑N

i=1 ǧ2,i,T = E(−2(−w2−3w23+w4+4w5)) = −σ2,

plimN,T→∞N
−1
∑N

i=1 ǧ3,i,T = E(−2(w5 −w23)) = −σ2/3, and plimN,T→∞N
−1
∑N

i=1 ǧ4,i,T = 0.

Thus plimN,T→∞ ξ̂ is a solution of −(ξ3 + 3ξ2 + 3ξ)σ2/3 = 0. Note that ξ3 + 3ξ2 + 3ξ = ξ(ξ2 + 3ξ + 3) =

0⇔ ξ = 0. Therefore plimN,T→∞ ξ̂ = plimN,T→∞ T (1− ρ̂) = 0.

Finally, let 0 < δ < 1 and impose T (1− ρ̂)+2ρ̂ > δ. This restriction on ρ̂ implies that ρ̂ < T−δ
T−2 = 1+ 2−δ

T−2 .

It follows that plimT→∞
(1−ρ̂)

(T (1−ρ̂)+2ρ̂) = 0 regardless of N . Moreover plimN,T→∞ T
−1((1 − ρ̂)2∑T−1

t=2 u
2
t −

2ρ̂
∑T

t=2 ut−1εt+u
2
T ) = plimN,T→∞ T

−1(T 2(1−ρ̂)2T−2∑T−1
t=2 u

2
t+2T (1−ρ̂)T−1∑T

t=2 ut−1εt+
∑T

t=2 ε
2
t ) = σ

2,

where we have used that −2∑T
t=2 ut−1εt + u

2
T =

∑T
t=2 ε

2
t .

We conclude that plimN,T→∞ σ̂
2 = plimN,T→∞

1
T−1

1
N

∑N
i=1 q(Dyi; ρ̂) = σ

2.

Joint N,T limiting distribution of the FDMLE when ρ = 1:

First we consider the stochastic limit of the Hessian evaluated at θ∗, where θ∗k = λkθ̂k + (1− λk)θ0,k for

some λk ∈ [0, 1] and k = 1, 2:

Let 0 < δ < 1 and impose T (1− ρ̂) + 2ρ̂ > δ. This restriction on ρ̂ implies that ρ̂ < T−δ
T−2 = 1 + 2−δ

T−2 .

Since plimT→∞ ρ̂ = ρ = 1 regardless of N, and plimN,T→∞ σ̂
2 = σ2, we have plimT→∞ r

∗ = ρ = 1

regardless of N, and plimN,T→∞ θ
∗ = θ0. Furthermore, in view of plimN,T→∞ T (1 − ρ̂) = 0, we have

plimN,T→∞ T (1 − r∗) = 0. Finally, since T (1 − ρ̂) + 2ρ̂ > δ and T (1 − ρ) + 2ρ = 2 > δ, we also have

T (1− r∗) + 2r∗ > δ.

These results imply that plimT→∞
(1−r∗)

(T (1−r∗)+2r∗) = 0 regardless of N. Moreover, it is easily seen that

plimN,T→∞ T
−1((1− r∗)2∑T−1

t=2 u
2
t − 2r∗

∑T
t=2 ut−1εt + u

2
T ) = plimN,T→∞ T

−1(T 2(1− r∗)2T−2∑T−1
t=2 u

2
t +

2T (1− r∗)T−1∑T
t=2 ut−1εt +

∑T
t=2 ε

2
t ) = σ

2, where we have used that −2∑T
t=2 ut−1εt + u

2
T =

∑T
t=2 ε

2
t . It

follows that plimN,T→∞(NT )−1
∑N

i=1 q(Dyi; r
∗) = σ2. Noting that − (T−1)

2
∂2 ln s2

∂(s2)2 = (T−1)
2

1
s4 , we conclude

that plimN,T→∞(NT )−1
∑N

i=1
∂2l(Dyi;r,s

2)
∂(s2)2 |θ=θ∗ = − 1

2σ4 .

Note that plimN,T→∞
1
T2

∂2 ln|DVD′|
∂r2 |r=r∗ = limT→∞

1
T2

−4(T−1)(T−3)
16 = −1

4 . Furthermore, ∂q(Dyi;r)
∂r =

2
(T (1−r)+2r)2 (Tz1,i,T + 2(1 − r)T 2z2,i,T + (1 − r)2T 3z23,i,T ) − (1−r)

(T (1−r)+2r)(−2T 2z2,i,T − 2(1 − r)T 3z23,i,T ) −

2(1− r)T 2z5,i,T − 2Tz4,i,T , and
∂2q(Dyi;r)

∂r2 = − 4(−T+2)
(T (1−r)+2r)3 (Tz1,i,T + 2(1− r)T 2z2,i,T + (1− r)2T 3z23,i,T )−

8
(T (1−r)+2r)2 (T

2z2,i,T + (1− r)T 3z23,i,T )− 2(1−r)
(T (1−r)+2r)T

3z23,i,T + 2T 2z5,i,T .
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Corollary 1 of PM and lemma 9 imply that plimN,T→∞N
−1
∑N

i=1 zk,i,T = E(wk) for k =

1, 2, 3, 4, 5. It follows that plimN,T→∞ T
−2N−1

∑N
i=1

∂2q(Dyi;r)
∂r2 |r=r∗ = σ2/2 and hence

plimN,T→∞ T
−2N−1

∑N
i=1

∂2l(Dyi;r,s
2)

∂r2 |θ=θ∗ = −1
2 × (−1

4) − 1
4 = −1

8 . It also follows that

plimN,T→∞ T
−3/2N−1

∑N
i=1

∂2l(Dyi;r,s
2)

∂r∂s2 |θ=θ∗ = plimN,T→∞ T
−3/2N−1

∑N
i=1

1
2(s∗)4

∂q(Dyi;r)
∂r |r=r∗ = 0.

Consider now the score vector:

We have T−1N−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂ρ |ρ=1 = −1

2T
−1N1/2 ∂ ln|DVD′|

∂r |r=1− 1
2σ2T

−1N−1/2
∑N

i=1
∂q(Dyi;ρ)

∂ρ |ρ=1.

It is easily verified that ∂q(Dyi;ρ)
∂ρ |ρ=1 = ∂q̃(Dyi;ρ)

∂ρ |ρ=1 where q̃(Dyi; r) = − (1−r)
(T (1−r)+2r)u

2
T −2r

∑T
t=2 ut−1εt.

Note that ∂q̃(Dyi;r)
∂r = 2

(T (1−r)+2r)2u
2
T −2

∑T
t=2 ut−1εt and 2

∑T
t=2 ut−1εt = u

2
T −

∑T
t=2 ε

2
t . Therefore, we have

∂q(Dyi;ρ)
∂ρ |ρ=1 = 1

2u
2
T − 2

∑T
t=2 ut−1εt = −1

2u
2
T +

∑T
t=2 ε

2
t .

Furthermore note that−1
2
N1/2

T

∂ ln|DVD′|
∂r |r=1 = N−1/2(T−1)

4T . It follows that T−1N−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂ρ =

Ψ5+Ψ6, where Ψ5 = − 1
2σ2N

−1/2T−1
∑N

i=1

∑T
t=2(ε

2
t −σ2) and Ψ6 =

1
4N

−1/2T−1(T −1)
∑N

i=1(
u2T

(T−1)σ2 −1).

Since uT =
∑T

t=2 εt we have (T − 1)−1σ−2u2T ∼ χ2(1) and E((T − 1)−1σ−2u2T ) = 1 ∀T. Because of

Gaussianity we also have that ((T − 1)−1σ−2u2T − 1)2 is uniformly integrable in T. Therefore if N,T →∞

jointly, then by theorem 3 in PM Ψ6
d→ N(0, 18). Note also that Ψ5 = Op(N

0T−1/2). We conclude that if

N,T →∞ jointly, then T−1N−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂ρ

d→ N(0, 18).

Note that ∂l(Dyi;ρ,σ
2)

∂σ2 = − (T−1)
2

1
σ2 + 1

2σ4 q(Dyi; ρ)|ρ=1 = − (T−1)
2

1
σ2 + 1

2σ4 (−2
∑T

t=2 ut−1εt + u
2
T ), and

(−2∑T
t=2 ut−1εt + u

2
T ) =

∑T
t=2 ε

2
t . Hence

∂l(Dyi;ρ,σ
2)

∂σ2 =
∑T

t=2(ε
2
t − σ2)/2σ4.

Clearly T−1/2
∑T

t=2(ε
2
t − σ2)/2σ4

d→ N(0, 1
2σ4 ). Therefore if N,T → ∞ jointly, then

T−1/2N−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂σ2

d→ N(0, 1
2σ4 ).

Finally, since u2T = 2
∑T

t=2 ut−1εt +
∑T

t=2 ε
2
t , we have limT→∞Cov((T − 1)−1σ−2u2T , T

−1/2
∑T

t=2(ε
2
t −

σ2)) = 0. It follows that limN,T→∞Cov(T
−1N−1/2

∑N
i=1

∂l(Dyi;ρ,σ
2)

∂ρ , T−1/2N−1/2
∑N

i=1
∂l(Dyi;ρ,σ

2)
∂σ2 ) = 0.

�

A.5 Various asymptotic results for the FEMLE for the covariance stationary

panel AR(1) model

lCS,FE(y; r,m, s
2) = l(Dy; r, s2)+

∑N
i=1 l(µ̃i; r,mi, s

2), where µ̃i =
ι′V −1yi
ι′V−1ι and l(µ̃i; r,mi, s

2) = −1
2 log(2π)−

1
2 log s

2 + 1
2 log ι

′V −1ι− 1
2σ2 (ι

′V −1ι)(µ̃i −mi)
2. Furthermore, ι′V −1ι = (1− r)(T (1− r) + 2r).

Inconsistency of the FEMLE when T is fixed:

We first concentrate the log-likelihood function lCS,FE(y; r,m,σ
2). For any value of T , lCS,FE(y; r,m, s

2)

is maximized at mi = µ̃i, i = 1, ..., N. Therefore the concentrated log-likelihood function lCS,FE(y; r, µ̃, s
2)

divided by N equals 1
N l(Dy; r, s

2)− 1
2 log(2π)− 1

2 log s
2 + 1

2 log ι
′V −1ι.
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The large N probability limits of the (scaled) concentrated likelihood equations corresponding to r and

s2 are not satisfied for the true values ρ and σ2, because the FDMLE for ρ and σ2 is consistent and

∂ log ι′V −1ι/∂ρ �= 0 and ∂ log σ2/∂σ2 �= 0. It follows that the FEMLE for ρ and σ2 is inconsistent.

Consistency of the FEMLE when T tends to infinity:

The concentrated log-likelihood function lCS,FE(y; r, µ̃, s
2) divided by NT equals

1
NT l(Dy; r, s

2) − 1
2T log(2π) − 1

2T log s2 + 1
2T log ι′V −1ι. As T → ∞ regardless of whether N → ∞ or

remains fixed, the last three terms vanish. Thus when T → ∞, the limiting criterion for the FEMLE is

the same as the limiting criterion for the FDMLE. It follows that plimT→∞ (ρ̂FEML − ρ̂FDML) = 0 and

plimT→∞(σ̂2FEML − σ̂2FDML) = 0. Since the FDMLE for ρ and σ2 is consistent under large T, arbitrary N

asymptotics, this must also be the case for the FEMLE for ρ and σ2.

Large T, arbitrary N asymptotic distribution of the FEMLE:

Theorem 10 Provided that |ρ| < 1 and N/T 3 → 0, the large T, arbitrary N asymptotic distribution of the

FEMLE is given by
√
NT


 ρ̂FEML − (ρ− 1

T (1 + ρ))

σ̂2FEML − (σ2 − 1
T σ

2)


 d→ N




 0

0


 ,


 1− ρ2 0

0 2σ4




 .

Proof

Note that limT→∞
ι′V −1ι

T = (1− r)2. Therefore, also when T →∞, (NT )−1lCS,FE(y; r,m, s
2) is still maxi-

mized at mi = µ̃i, i = 1, ..., N.

The scaled score vector of the concentrated log-likelihood function lCS,FE(y; r, µ̃, s
2) can be written as

(NT )−1/2 ∂lCS,FE(yi;ρ,µ̃,σ
2)

∂θ0
= (NT )−1/2 ∂l(Dy;ρ,σ2)

∂θ0
+ (NT )−1/2

∑N
i=1

∂l(µ̃i;ρ,µ̃i,σ
2)

∂θ0
.

Let ΞNT = E
[
(NT )−1/2 ∂lCS,FE(yi;ρ,µ̃,σ

2)
∂θ0

]
. Then ΞNT = (NT )−1/2

∑N
i=1

∂l(µ̃i;ρ,µ̃i,σ
2)

∂θ0
.

Since (NT )−1/2
∑N

i=1
∂l(µ̃i;ρ,µ̃i,σ

2)
∂θ0

= (N/T )1/2
∂(−0.5 logσ2+0.5 log ι′V−1ι)

∂θ0
, ∂ log ι′V−1ι

∂ρ = −2(T−2)(1−ρ)−2
(1−ρ)(T (1−ρ)+2ρ) ,

and ∂ logσ2

∂σ2 = 1
σ2 , we have ΞNT = O(

√
N/T ).

The scaled Hessian of the concentrated log-likelihood function can be written as

(NT )−1 ∂
2lCS,FE(y;r,µ̃,s

2)

∂θ∂θ′
|θ=θ∗ = (NT )−1 ∂

2l(Dy;r,s2)

∂θ∂θ′
|θ=θ∗ + (NT )−1

∑N
i=1

∂2l(µ̃i;r,µ̃i,s
2)

∂θ∂θ′
|θ=θ∗ , where

θ∗k = λkθ̂k + (1− λk)θ0,k for some λk ∈ [0, 1] and k = 1, 2.

From (NT )−1
∑N

i=1
∂2l(µ̃i;r,µ̃i,s

2)

∂θ∂θ′
|θ=θ∗ = T−1

∂2(−0.5 log s2+0.5 log ι′V −1ι)
∂θ∂θ′

|θ=θ∗ = O(T−1),

we have plimT→∞(NT )−1 ∂
2lCS,FE(y;r,µ̃,s

2)

∂θ∂θ′
|θ=θ∗ = plimT→∞(NT )−1 ∂

2l(Dy;r,s2)

∂θ∂θ′
|θ=θ∗ , regardless of N, i.e.,

regardless of whether N →∞ or remains fixed.
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It follows using results from appendix A.4 that
√
NT (θ̂−θ0)+

[
E
(
(NT )−1

∂2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ∗

)]−1
ΞNT +

R̃NT
d→ N(0,Φ−1) as T → ∞ regardless of N, where R̃NT =

([
(NT )−1 ∂

2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ∗

]−1
−

[
E
(
(NT )−1 ∂

2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ0

)]−1)
ΞNT and Φ = −plimT→∞(NT )−1 ∂

2l(Dy;r,s2)

∂θ∂θ′
|θ=θ∗ =

(
1− ρ2 0
0 2σ4

)−1
. Moreover, θ∗ − θ0 = Op(1/

√
NT ) and hence (NT )−1 ∂

2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ∗ −

E
(
(NT )−1

∂2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ0

)
= Op(1/

√
NT ) as T → ∞ regardless of N . Then we have by the delta

method that
[
(NT )−1 ∂

2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ∗

]−1
−
[
E
(
(NT )−1

∂2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ0

)]−1
= Op(1/

√
NT ) and

hence R̃NT = op(1) as T →∞ regardless of N .

We also have by (8) that E
(
(NT )−1 ∂

2l(Dy;r,s2)

∂θ∂θ′
|θ=θ0

)
= −Φ + O(T−1) and hence

E
(
(NT )−1 ∂

2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ0

)
= −Φ+O(T−1). It follows that

[
E
(
(NT )−1

∂2lCS,FE(y;r,µ̃,s
2)

∂θ∂θ′
|θ=θ0

)]−1
=

−Φ−1 +O(T−1). Finally, we have lim
T→∞

√
T/NΞNT =

(
− 1
(1−ρ) − 1

2σ2

)′
.

We conclude that the large T, arbitrary N asymptotic distribution of the FEMLE for ρ and σ2 is identical

to the large T, arbitrary N asymptotic distribution of the FDMLE for ρ and σ2, apart from the fact that

the former has an asymptotic bias term. Assuming that N/T 3 → 0 so that we only need to consider leading

terms in the power expansions (in powers of T−1) of the expected score vector and the inverse of the expected

Hessian, this asymptotic bias term is equal to − 1
T Φ

−1( 1
(1−ρ)

1
2σ2 )

′ = − 1
T (1 + ρ σ2)′. �
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