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's maximum score estimator. The model in this paper is irregular because of a change-point due to an unknown threshold in a covariate. This irregularity coupled with the discontinuity of the objective function of the maximum score estimator complicates the analysis of the asymptotic behavior of the estimator. Sufficient conditions for the identification of parameters are given and the consistency of the estimator is obtained. It is shown that the estimator of the threshold parameter, γ 0 , is n -1 -consistent and the estimator of the remaining regression parameters, θ 0 , is n -1/3 -consistent. Furthermore, we obtain the asymptotic distribution of the estimator. It turns out that both estimators γ and θ are oracle-efficient in that n(γ n -γ 0 ) and n 1/3 ( θn -θ 0 ) converge weakly to the distributions to which they would converge weakly if the other parameter(s) were known.

Introduction

A binary response model is very commonly used in a number of fields. In this model, an observable binary outcome Y is modelled typically as Y = 1(Y * ≥ 0), where 1(A) denotes the indicator function, i.e., 1(A) = 1 if A is true and zero otherwise, and Y * is an unobservable continuous variable that determines the binary outcome Y (see e.g. [START_REF] Manski | Identification of binary response models[END_REF]. In most applications, Y * has the following form:

(1.1)

Y * = X β 0 + U,
where X is a vector of observed random variables including an intercept term, β 0 is a vector of unknown parameters, and U is an unobserved random variable.

In this paper, we consider a threshold regression model for Y * instead of the linear regression model (1.1). In particular, the model is

(1.2) Y * = W 1 β 10 + W 2 β 20 + U, if D ≤ γ 0 , W 1 β 10 + W 2 β 30 + U, if D > γ 0 ,
or equivalently

(1.3) Y * = W β 0 + Z δ 0 1 {D > γ 0 } + U,
where W = (W 1 , W 2 ) , Z = W 2 , β 0 = (β 10 , β 20 ) , and δ 0 = β 30 -β 20 . In particular, D is the observed threshold variable and γ 0 is the threshold parameter. We denote by X the set of regressors (W , D) and by θ 0 = (β 0 , δ 0 ) the set of regression parameters excluding γ 0 .

The threshold variable D can be an element of W. The literature on the threshold model (also called change-point model, two-phase regression, or sample splitting) is vast. It has been studied for autoregressive models (e.g. [START_REF] Tong | of Oxford Statistical Science Series[END_REF][START_REF] Chan | Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model[END_REF], for linear regression models (e.g. [START_REF] Hansen | Sample splitting and threshold estimation[END_REF][START_REF] Hira | Asymptotics of maximum likelihood estimator in a twophase linear regression model[END_REF], for nonparametric models (e.g. [START_REF] Delgado | Nonparametric inference on structural breaks[END_REF], and more recently for transformation models (e.g. [START_REF] Pons | Estimation in a Cox regression model with a change-point according to a threshold in a covariate[END_REF][START_REF] Michael | Inference under right censoring for transformation models with a change-point based on a covariate threshold[END_REF].

Threshold binary regression models have a wide variety of applications. For example, in economics, finance, and management, random utility models that are nonlinear in income and/or price are commonly employed (see, e.g. [START_REF] Herriges | Nonlinear income effects in random utility models[END_REF][START_REF] Dagsvik | Compensating variation and hicksian choice probabilities in random utility models that are nonlinear in income[END_REF]. [START_REF] Terui | Estimating heterogeneous price thresholds[END_REF] adopted an asymmetric market response model with the threshold due to price based on consumer behavior theory. The effect of financial contagion (see, e.g. [START_REF] Forbes | No contagion, only interdependence: Measuring stock market co-movements[END_REF] can also be modelled as a discontinuous threshold effect as in [START_REF] Pesaran | Econometric issues in the analysis of contagion[END_REF]. In biostatistics, dose-response models are modelled with threshold parameters (see, e.g. [START_REF] Cox | Threshold dose-response models in toxicology[END_REF][START_REF] Schwartz | Threshold models for combination data from reproductive and development experiments[END_REF]. In epidemiology, logistic regressions with change-points are used to model the relationship between the continuous exposure variable and disease risk (see [START_REF] Pastor | Use of tow-segmented logistic regression to estimate change-points in epidemiologic studies[END_REF][START_REF] Pastor-Barriuso | Transition models for changepoint estimation in logistic regression[END_REF]. While the threshold model is easier to interpret than more complex nonlinear models, the irregular feature of the model makes estimation of the unknown change-point complicated. To our best knowledge, all existing methods for estimating a change-point according to a covariate threshold in binary response models assumes that the distribution of U in (1.2) belongs to a family of parametric distributions.

The purpose of this paper is to develop a method for estimating (θ 0 , γ 0 ) in (1.2) without imposing the parametric distribution on U . First, we establish identification of (θ 0 , γ 0 ), allowing for conditional heteroskedasticity of unknown form, under the conditional median independence assumption. This is substantially weaker than the typical assumption such that the distribution of U is parametric and U and X are independent. The conditional heteroskedasticity is particularly important in random utility models as shown in [START_REF] Bryan | The random utility hypothesis and inference in demand systems[END_REF]. [START_REF] Manski | Identification of binary response models[END_REF] has shown that if the distribution of X has sufficiently rich support, the finite-dimensional parameters in a binary regression model with (1.1) are identified up to scale. As in [START_REF] Manski | Identification of binary response models[END_REF], (θ 0 , γ 0 ) in (1.2) is identified (up to scale with respect to θ 0 ) under some regularity conditions, which will be given in Section 2.

Once (θ 0 , γ 0 ) is identified via the conditional median independence assumption, a natural estimation strategy for (θ 0 , γ 0 ) in (1.2) is to apply [START_REF] Manski | Maximum score estimation of the stochastic utility model of choice[END_REF][START_REF] Manski | Semiparametric analysis of discrete response. Asymptotic properties of the maximum score estimator[END_REF]'s maximum score estimator to the threshold model (1.2). Section 3 describes the corresponding maximum score estimator and section 4 establishes the consistency of the estimator.

We also develop convergence rates and asymptotic distributions, which are highly nonstandard due to mixed irregularities of the model and maximum score estimation. In Section 5, it is shown that γn is n -1 -consistent and θn is n -1/3 -consistent. It is interesting to find that the fast rate of convergence for the threshold estimator is preserved for the maximum score estimation. Section 6 gives the asymptotic distributions of n(γ n -γ 0 ) and n 1/3 ( θn -θ 0 ). It turns out that both estimators γ and θ are oracle-efficient in that n(γ n -γ 0 )

and n 1/3 ( θn -θ 0 ) converge weakly to the distributions to which they would converge weakly if the other parameter(s) were known. Section 7 discusses the subsampling inference that enables us to carry out inference, although the distributions of n(γ n -γ 0 ) and n 1/3 ( θn -θ 0 )

are nonstandard and cannot be tabulated. Section 8 reports some simulation results that investigate the finite sample performance of the subsampling confidence intervals for the regression parameters. Concluding remarks are given in Section 9. The proofs of theorems are given in the Appendix.

2 Identification of θ 0 and γ 0

This section provides regularity conditions under which θ 0 and γ 0 are identified. Let F U |X (u|x) and f U |X (u|x), respectively, denote the cumulative distribution function and probability density function of U conditional on X = x. We make the following assumptions.

Assumption 1. Assume that θ 0 = 1 and δ 0 = 0.

Assumption 2. The distribution of U conditional on X = x is absolutely continuous with respect to Lebesgue measure and the corresponding conditional density is uniformly continuous and positive everywhere with probability one. In addition, F U |X (0|x) = 0.5 for almost every x.

Assumption 3. The support of W ∈ R q is not contained in any proper linear subspace of R q under the conditional distribution of W given D = d for almost every d.

Assumption 4. There exists at least one k ∈ [1, . . . , q] such that the k-th element of β 0 is non-zero and such that, for almost every value of w ≡ (w 1 , . . . , w k-1 , w k+1 , . . . , w q ) and k) and other elements W .

d, Pr[a 1 < W (k) < a 2 | W = w, D = d] > 0 for all open intervals (a 1 , a 2 ) ∈ R, where W is decomposed into the k-th element W (
Assumption 5. D is continuously distributed with support containing γ 0 .

Assumption 1 imposes restrictions on parameters. As in the linear binary response model

(1.1), the scale of θ 0 is not identified since the distribution of U conditional on X = x is unknown. In this paper, the scale normalization on θ 0 is given by θ 0 = 1. If δ 0 is zero, then γ 0 is unidentified. Assumption 2 allows for an arbitrary form of dependence between U and X as long as the conditional median independence assumption is satisfied. This can be extended easily to any other quantile independence assumption as well (see, Assumption QI in [START_REF] Manski | Identification of binary response models[END_REF]. Assumptions 3 and 4 are simply the restatement of Conditions X1 and X3 of [START_REF] Manski | Identification of binary response models[END_REF], respectively. Assumption 3 imposes a usual full rank condition on the distribution of X and Assumption 4 requires a rich support of one of elements of W with a non-zero coefficient conditional on other regressors. Assumption 5 ensures the identification of γ 0 . If γ 0 were not contained in the support of D, then the threshold model (1.2) would not have a two-phase feature in observed data.

The following theorem shows that θ 0 and γ 0 are identified.

Theorem 2.1. Let Assumptions 1-5 hold. Then θ 0 and γ 0 are identified.

The Maximum Score Estimator

We consider estimation with an independent and identically distributed sample {(Y i , X i ) :

i = 1, . . . , n} of (Y, X). To describe the maximum score estimator, for any θ = (β , δ ) , γ and x = (w, z, d), define

(3.1) S n (θ, γ) = n i=1 (2Y i -1)1 {G(X i , θ, γ) ≥ 0} , where G(x, θ, γ) = w β + z δ1(d > γ).
Then [START_REF] Manski | Maximum score estimation of the stochastic utility model of choice[END_REF][START_REF] Manski | Semiparametric analysis of discrete response. Asymptotic properties of the maximum score estimator[END_REF]'s maximum score estimator ( θn , γn ) of (θ 0 , γ 0 ) can be obtained in two steps. In the first stage, for fixed γ, obtain θn (γ) = argmax θ S n (θ, γ)

with the scale normalization on θ with θ = 1. In the second stage, let Ŝn (γ) = S n ( θn (γ), γ).

Obtain γn = inf{γ n : γ n = argmax γ Ŝn (γ)}. Then the maximum score estimator of θ 0 is θn = θn (γ n ). Since there could be infinitely many γ's at which Ŝn (γ) is maximized, γn is defined as the infimum of those.

The discontinuity of S n with respect to (θ, γ) complicates the analysis of the asymptotic behavior of the maximum score estimator. There exist two distinct sources of discontinuity:

on the one hand, the discontinuity arises because of the presence of the indicator function 1 {G(X i , θ, γ) ≥ 0} in (3.1); on the other hand, it may occur because of a possible changepoint in (1.2) due to an unknown threshold γ 0 . We now turn to the asymptotic properties of the maximum score estimator.

Consistency of the Estimator

This section gives conditions under which the maximum score estimator is consistent.

Assumption 6. Assume that θ 0 and γ 0 are in a compact subset of R p , where p is the dimension of (θ 0 , γ 0 ).

Assumption 7. Assume that {(Y i , X i ) : i = 1, .
. . , n} is independent and identically distributed.

These are standard assumptions in the literature. The following theorem gives the consistency result.

Theorem 4.1. Let Assumptions 1-7 hold. Then ( θn , γn ) → p (θ 0 , γ 0 ).

This section establishes the rates of convergence in probability of ( θn , γn ) to (θ 0 , γ 0 ). First, we show that γn is n -1 -consistent for γ 0 . We make the following additional assumptions.

Assumption 8. Assume that D is continuously distributed with full support on R and its probability density function is strictly positive, bounded and continuous in a neighborhood of γ 0 .

Assumption 9. With positive probability, Z δ 0 = 0 at D = γ 0 .

Assumption 8 is needed to prove a useful lemma (see Lemma A.1 in the Appendix).

Roughly speaking, this condition ensures that there exist enough data points around γ 0 for sufficiently large n. Assumption 9 imposes that the regression function in (1.2) is discontinuous. When the regression function is continuous, then we would have different rates of convergence and asymptotic distributions. We will make a brief comment on this at the end of this section.

The following theorem gives the n -1 -consistency of γn to γ 0 .

Theorem 5.1. Let Assumptions 1-9 hold. Then, γn = γ 0 + O p n -1 .

We now turn to the rates of convergence of θn to θ 0 . Given the result of Theorem 5.1

and [START_REF] Kim | Cube root asymptotics[END_REF], it is not surprising that we establish the n -1/3 -consistency for θn .

Assumption 10. As a function of θ, E [(2Y -1)1 {G(X, θ, γ 0 ) ≥ 0}] has a strictly negative definite second derivative matrix at θ 0 .

This assumption is necessary to apply Corollary 4.2 of [START_REF] Kim | Cube root asymptotics[END_REF], who also give sufficient conditions for the maximum score estimator of the binary response model with (1.1) (see Section 6.4 in [START_REF] Kim | Cube root asymptotics[END_REF]. Assumption 10 imposes a local identification at θ 0 and is a weak smoothness condition. The following theorem gives the n -1/3 -consistency of θn to θ 0 .
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Theorem 5.2. Let Assumptions 1-10 hold. Then, θn = θ 0 + O p n -1/3 .

We end this section by making a comment on the case when the model (1.2) is a continuous threshold model, in which z δ becomes zero when d = γ and G (x, θ, γ) =

w β + δ (d -γ) 1 {d > γ} .
This violates Assumption 9, invalidating Theorem 5.1. Instead, [START_REF] Kim | Cube root asymptotics[END_REF] applies to both parameters θ and γ, since the limit objective function can now be assumed to be twice differentiable in γ as well as in θ. 1

The Asymptotic Distribution of the Estimator

To obtain the asymptotic distribution of the maximum score estimator, write

S n (θ, γ) = S n1 (γ) + S n2 (θ) + S n3 (θ, γ), (6.1) where S n1 (γ) = S n (θ 0 , γ) -S n (θ 0 , γ 0 ), S n2 (θ) = S n (θ, γ 0 ) -S n (θ 0 , γ 0 ), and S n3 (θ, γ) = [S n (θ, γ) -S n (θ, γ 0 )] -[S n (θ 0 , γ) -S n (θ 0 , γ 0 )] .
Since γ is n -1 -consistent and θ is n -1/3 -consistent, it suffices to consider a n -1 -neighborhood of γ 0 and a n -1/3 -neighborhood of θ 0 . Then we obtain the following lemma. Lemma 6.1. For every A > 0, as n → ∞:

sup θ,γ |S n3 (θ, γ)| : n 1/3 θ -θ 0 ≤ A, n|γ -γ 0 | ≤ A = O p (n -1/6 ).
To establish the asymptotic distribution of n(γ -γ 0 ), we now consider the weak convergence of S n1 as a random variable on the space of cadlag functions, denoted by D, equipped with the Skorohod topology and on its restrictions to the space of cadlag functions on [-A, A], denoted by D A , for any A > 0. This approach is similar to that taken in the recent 1 A sufficient condition for this would be the conditional density f D|W of D given W is differentiable twice. Then, assuming c = -w β/δ and δ > 0, we note that [START_REF] Chan | Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model[END_REF][START_REF] Hira | Asymptotics of maximum likelihood estimator in a twophase linear regression model[END_REF][START_REF] Pons | Estimation in a Cox regression model with a change-point according to a threshold in a covariate[END_REF][START_REF] Michael | Inference under right censoring for transformation models with a change-point based on a covariate threshold[END_REF]. Now define ν = n(γ -γ 0 ). Using arguments identical to prove (A.1) in the Appendix, write a rescaled version of S n1 (γ) as

Pr {G ≥ 0|W = w} = Pr {(D -γ) 1 {D > γ} ≥ c|W = w} = ∞ c∨0 f D|W =w (x + γ) dx has second derivative. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT literature (for example,
Sn1 (ν) = S+ n1 (ν)1(ν > 0) + S- n1 (ν)1(ν < 0),
where

S+ n1 (ν) = n i=1 1 γ 0 < D i ≤ γ 0 + n -1 ν ζ + i (θ 0 ), S- n1 (ν) = n i=1 1 γ 0 + n -1 ν < D i ≤ γ 0 ζ - i (θ 0 ), ζ + i (θ) = I + 1i (θ) -I + 2i (θ) + I + 3i (θ) -I + 4i (θ) with I + 1i (θ) = 1 W i β ≥ 0, W i β + Z i δ < 0, W i β 0 + Z i δ 0 ≥ -U i I + 2i (θ) = 1 W i β ≥ 0, W i β + Z i δ < 0, W i β 0 + Z i δ 0 < -U i I + 3i (θ) = 1 W i β < 0, W i β + Z i δ ≥ 0, W i β 0 + Z i δ 0 < -U i I + 4i (θ) = 1 W i β < 0, W i β + Z i δ ≥ 0, W i β 0 + Z i δ 0 ≥ -U i ,
and

ζ - i (θ) = I - 1i (θ) -I - 2i (θ) + I - 3i (θ) -I - 4i (θ) with I - 1i (θ) = 1 W i β ≥ 0, W i β + Z i δ < 0, W i β 0 < -U i I - 2i (θ) = 1 W i β ≥ 0, W i β + Z i δ < 0, W i β 0 ≥ -U i I - 3i (θ) = 1 W i β < 0, W i β + Z i δ ≥ 0, W i β 0 ≥ -U i I - 4i (θ) = 1 W i β < 0, W i β + Z i δ ≥ 0, W i β 0 < -U i .
To describe the asymptotic behavior of Sn1 (ν), let f D (d) denote the probability density function of D, let ν+ and ν-denote two independent jump processes on R such that ν+ (s) is a Poisson random variable with parameter sf D (γ 0 ) for s > 0 and ν+ (s) = 0 for s ≤ 0 and ν-(s) is a Poisson random variable with parameter -sf D (γ 0 ) for s < 0 and ν-(s) = 0 for s ≥ 0. In addition, let { ζ+ k : k = 0, 1, . . .} and { ζk : k = 0, 1, . . .} be independent sequences of i.i.d. random variables with characteristic functions

ϕ + (t) = E exp(itζ + )|D = γ + 0 and ϕ -(t) = E exp(itζ -)|D = γ - 0 ,
respectively, and let ζ+

0 = ζ- 0 = 0. Let S1 (s) = S+ 1 (s)1{s > 0} + S- 1 (s)1{s < 0} be a right-continuous jump process on R, where S+ 1 (s) = 0≤k≤ν + (s)
ζ+ k and S-

1 (s) = 0≤k≤ν -(s) ζ- k .
The following lemma establishes the weak convergence of Sn1 .

Lemma 6.2. As n → ∞, Sn1 converges weakly to S1 in D A for every A > 0.

Let

ν * S1 = inf{ν * : ν * = argmax ν S1 (ν)}.
As in the literature (see, e.g., [START_REF] Chan | Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model[END_REF][START_REF] Hira | Asymptotics of maximum likelihood estimator in a twophase linear regression model[END_REF][START_REF] Pons | Estimation in a Cox regression model with a change-point according to a threshold in a covariate[END_REF][START_REF] Michael | Inference under right censoring for transformation models with a change-point based on a covariate threshold[END_REF] . In addition, n 1/3 ( θ -θ 0 ) and argmax µ n -1/3 S n2 θ 0 + n -1/3 µ converge weakly to the same limiting distribution.

Theorem 6.1 implies that the limiting distributions of n(γ -γ 0 ) and n 1/3 ( θ -θ 0 ) are the same as those they would be if the other parameters were known. The limiting distribution of n 1/3 ( θ -θ 0 ) is not shown here since it is already given in Kim and Pollard (1990, Example 6.4).

Inference

The asymptotic distributions obtained in this paper are nonstandard and cannot be tabulated as they depend on nuisance parameters in complex manners. It is known from
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ACCEPTED MANUSCRIPT [START_REF] Abrevaya | On the bootstrap of the maximum score estimator[END_REF] that the bootstrap does not estimate the asymptotic distribution of θ consistently. While the m out of n bootstrap in Lee and Pun ( 2006) is more general and allows for the standard maximum score estimator, their regularity conditions do not permit threshold models. However, subsampling provides a consistent inferential method for the asymptotic distributions of both θ and γ, as in [START_REF] Delgado | Subsampling inference in cube root asymptotics with an application to manski's maximum score estimator[END_REF] and [START_REF] Gonzalo | Subsampling inference in threshold autoregressive models[END_REF]. Confidence intervals can be constructed following the standard subsampling procedure, see e.g. [START_REF] Politis | Subsampling. Springer Series in Statistics[END_REF].

As our asymptotic development is based on the discontinuity of the regression function (Assumption 9), the above asymptotics breaks down when the model comes close to a continuous one. In this case, the subsampling confidence intervals may be problematic as their convergence is not uniform around the continuity point, see e.g. [START_REF] Donald | The limit of finite sample size and a problem with subsampling[END_REF].

Another interesting inferential approach can be based on the smoothing of the objective function. This can be done by replacing the indicator functions in (3.1) with integrated kernels with smoothing parameters that converge to zero. [START_REF] Horowitz | A smoothed maximum score estimator for the binary response model[END_REF] and [START_REF] Seo | A smoothed least squares estimator for the threshold regression[END_REF] have developed the smoothing approach for the maximum score estimation and threshold estimation, respectively. This method enables the standard normal inference for both γ 0 and θ 0 while it causes the convergence rate of θ to increase and that of γ to decrease. The smoothing, however, demands more stringent smoothness conditions than the ones in this paper as demonstrated in [START_REF] Horowitz | Optimal rates of convergence of parameter estimators in the binary response model with weak distributional assumptions[END_REF].

Monte Carlo Experiments

We examine the finite sample performance of the subsampling inference for the regression parameters θ 0 = (β 0 , δ 0 ) and the threshold parameter γ 0 . The samples of size n = 500 are generated independently from

Y * = β 0 X 1 + δ 0 X 2 1 {D > γ 0 } + U Y = 1 {Y * > 0} ,
where β 0 = δ 0 = 1/ √ 2, γ 0 = 2, X 1 , X 2 , and D are independently distributed as N (0, 1) , 2N (0, 1) , and N (0, 1) + 2, respectively. U is independent of all the other variables and generated from either logistic distribution (Dist 1) with median 0 and variance 0.1 or student's t distribution (Dist 2) with 3 degrees of freedom and with variance 0.1. These two classes of error distributions are considered by [START_REF] Horowitz | A smoothed maximum score estimator for the binary response model[END_REF].

The model parameters β 0 , δ 0 and γ 0 are estimated by the grid search. 2 The grid for δ is set as {0, .01, .02., ..., 1} and that for γ as the data points of D after trimming at lower and upper 10 percentiles. We focus on δ and γ as the normalization restriction yields β 2 +δ 2 = 1.

Let δ and γ denote the estimates.

We describe subsampling hypothesis tests for θ 0 . Let the null hypothesis of interest be H 0 : g (θ 0 ) = 0 against the alternative hypothesis H 1 : g (θ 0 ) = 0, where g is a smooth function whose first derivative is of full rank at θ = θ 0 . We may consider a test statistic In case of the hypothesis test for γ 0 , the rate of convergence n 1/3 and m 1/3 above need to be replaced by n and m, respectively.

T n = n 1/3 g θ ,
We examine the rejection rates of the test for the hypothesis δ 0 = 1/ √ 2 with the two nominal levels α = 0.05 and 0.1. Also considered is the test for the hypothesis γ 0 = 2.

All the simulations are based on 500 repetitions with the subsampling repetition B = 500.

As we do not pursue an automatic selection rule for the block length m, 3 we experimented with several values of m to see how the choice affects the performance of subsampling. The results are reported in Table 1.

The results look promising. The rejection frequencies of the subsampling test for the threshold parameter γ 0 are close to their nominal levels with a broad range of block size m. The subsampling test for the slope parameter δ 0 appears rather conservative for larger values of m and liberal for smaller values of m. Furthermore, we note that the block length m needs to be different for the threshold and slope parameters for best results. We also experimented the subsampling test for the hypothesis for δ 0 with γ fixed at the true value 2. The results are quite similar to the one reported in Table 1 and thus omitted.

This reflects a finding in Theorem 6.1, which is that the asymptotic distribution of δ is not affected by the estimation of γ 0 .

Conclusions

This paper has considered the maximum score estimator of a binary response model with a change-point according to the unknown threshold of a covariate, allowing for an arbitrary from of heteroskedasticity. We have obtained the rates of convergence and asymptotic
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distribution of the estimator. It turns out that the estimator of the threshold parameter is n -1 -consistent, the estimator of the remaining regression parameters is n -1/3 -consistent, and the limiting distributions of the estimators normalized by the rates of convergence are the same as if the other parameters were known. Therefore, an important practical implication of this paper is that the unknown threshold parameter can be estimated precisely with a small or moderate sample size and that there is no loss of efficiency of not knowing other parameters, which are difficult to estimate precisely without a large sample. For future research, it is an interesting but challenging research topic to develop a linearity test of the maximum score model against threshold alternatives.

A Appendix: Proofs of Theorems [START_REF] Manski | Identification of binary response models[END_REF]. Then, given Assumption 5, there is a unique value of d at which the slope coefficient changes. This change point is identified as γ 0 .

Proof of Theorem 4.1. Define

H * (x) = E [1 {G(X, θ 0 , γ 0 ) + U ≥ 0} -1 {G(X, θ 0 , γ 0 ) + U < 0} |X = x] and ∆ * (θ, γ) = n -1 E[S n (θ, γ) -S n (θ 0 , γ 0 )].
Then it can be shown that

∆ * (θ, γ) = E H * (X) 1 {G(X, θ, γ) ≥ 0 > G(X, θ 0 , γ 0 )} -1 {G(X, θ 0 , γ 0 ) ≥ 0 > G(X, θ, γ)} .
Note that

H * (x) = 1 -2F U |X [-G(x, θ 0 , γ 0 )|x].
By the assumption that F U |X [0|x] = 0.5, note that H * (x) ≥ 0 when G(x, θ 0 , γ 0 ) ≥ 0 and that H * (x) < 0 when G(x, θ 0 , γ 0 ) < 0. Define

Q(θ, γ) = x ∈ supp(X) : {G(x, θ, γ) ≥ 0 > G(x, θ 0 , γ 0 )} ∪ {G(x, θ 0 , γ 0 ) ≥ 0 > G(x, θ, γ)} .
By arguments identical to those used to prove Proposition 2 of [START_REF] Manski | Identification of binary response models[END_REF], (θ 0 , γ 0 ) are identified if and only if Pr(X ∈ Q(θ, γ)) > 0 for any (θ, γ) = (θ 0 , γ 0 ). Therefore, ∆ * (θ, γ)

is non-positive everywhere and is equal to zero only when (θ, γ) = (θ 0 , γ 0 ). Also, notice that G(S, θ, γ) is continuous at each θ and γ with probability one. Thus, S n (θ, γ) converges in probability to E[S n (θ, γ)] uniformly over (θ, γ) by Lemma 2.4 of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF]. Then the consistency of the estimator follows from Theorem 2.1 of [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF].

To obtain the converge rates for γn , we begin with the following lemma, which is similar to Claim 2 in the proof of Proposition 1 of [START_REF] Chan | Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model[END_REF] and Lemma 3.2 of [START_REF] Hira | Asymptotics of maximum likelihood estimator in a twophase linear regression model[END_REF]. The proof of the lemma is given in Appendix B.

Lemma A.1. For any random variables

(V, D) satisfying E[V |D] = 0 and E[V 2 |D] < C <
∞ almost surely for some constant C, assume that {(V i , D i ) : i = 1, . . . , n} is a random sample of (V, D) and that D is continuously distributed and has a bounded, continuous, positive density in a neighborhood of x ∈ R. Then, for each δ > 0 and ε > 0, there exists a positive constant B < ∞ such that for all 0 < ∆ < 1 and for all n > B/∆,

(a) Pr    sup B n <r<∆ 1 n n i=1 1 {x < D i < x + r} Pr {x < D < x + r} -1 > δ    < ε (b) Pr    sup B n <r<∆ 1 n n i=1 V i 1 {x < D i < x + r} Pr {x < D i < x + r} > δ    < ε. Proof of Theorem 5.1. Define ∆ S n (θ, γ) = S n (θ, γ) -S n (θ, γ 0 ) = n i=1 (2Y i -1) (1 {G (X i , θ, γ) ≥ 0} -1 {G (X i , θ, γ 0 ) ≥ 0}) . A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Suppose that γ > γ 0 . Then if D i > γ or D i ≤ γ 0 , 1 {G (X i , θ, γ) ≥ 0} -1 {G (X i , θ, γ 0 ) ≥ 0} = 0. Suppose now that γ < γ 0 . Then if D i > γ 0 or D i ≤ γ, 1 {G (X i , θ, γ) ≥ 0} -1 {G (X i , θ, γ 0 ) ≥ 0} = 0.
Using these, we may write

∆ S n (θ, γ) = n i=1 1 {γ 0 < D i ≤ γ} ζ + i (θ) + n i=1 1 {γ < D i ≤ γ 0 } ζ - i (θ), (A.1)
where ζ + i (θ) and ζ - i (θ) are defined in the main text. The following lemma, which is proved in Appendix B, is useful to prove the theorem.

Lemma A.2. For any ∆ > 0, define Θ ∆ = {θ : θ -θ 0 < ∆}. There exists a sufficiently small ∆ > 0 such that

sup θ∈Θ ∆ E ζ + i (θ)|D i < 0 and sup θ∈Θ ∆ E ζ - i (θ)|D i < 0 almost surely. Now write ∆ Sn (θ, γ) = n i=1 1 {γ 0 < D i ≤ γ} E[ζ + i (θ)|D i ] + n i=1 1 {γ < D i ≤ γ 0 } E[ζ - i (θ)|D i ] + n i=1 1 {γ 0 < D i ≤ γ} ζ + i (θ) -E[ζ + i (θ)|D i ] + n i=1 1 {γ < D i ≤ γ 0 } ζ - i (θ) -E[ζ - i (θ)|D i ] .
Then apply Lemmas A.1 and A.2 to obtain ∆ S n (θ, γ) < 0 with probability approaching one for all |γ -γ 0 | > B/n and θ ∈ Θ ∆ and with some sufficiently large B and sufficiently small ∆. As θ, γ is the maximizer of S n (θ, γ) , we conclude that γ = γ 0 + O p (1/n) .

To obtain the converge rates for θn , we first give the following lemma, which is proved in Appendix B.

Lemma A.3. For every A > 0, as n → ∞:

sup θ,γ {|S n3 (θ, γ)| : n|γ -γ 0 | ≤ A} = O p (1).
Proof of Theorem 5.2. In view of Corollary 4.2 of [START_REF] Kim | Cube root asymptotics[END_REF], it suffices to show that

n -1 S n ( θ) ≥ sup θ n -1 S n (θ) -O p (n -2/3 ),
which in turn follows from the same Corollary, Lemma A.3, and the fact that S n1 does not depend on θ.

Proof of Theorem 6.1. Note that n(γ -γ 0 ) is uniformly tight by Theorem 5.1. Since S n2 depends on only θ, Lemmas 6.1 and 6.2 ensure that conditions of the argmax continuous mapping theorem of van der Vaart and Wellner (1996, Theorem 3.2.2, p.286) are satisfied.

Then the first conclusion follows from the argmax continuous mapping theorem. Similarly, n 1/3 ( θ -θ 0 ) is uniformly tight by Theorem 5.2. Since S n1 depends on only γ, by Lemma 6.2 and again by the argmax continuous mapping theorem, the second conclusion follows.

B Appendix: Proofs of Lemmas

Proof of Lemma A.1. For any r ∈ (0, ∆], there exist 0 < m < M < ∞ such that (B.1) mr < Pr {x < D < x + r} < M r.

Consider a partition of the interval (B/n, ∆) ≡ ∪ K-1 k=0 J k , where K is the largest integer such that b K-1 B/n < ∆ for some b > 1, and J k = (b k B/n, b k+1 B/n] , k = 0, ..., K -2 and

J K-1 = (b K-1 B/n, ∆).
Here we prove part (b) only as part (a) can be proved in the same but simpler way. For a r ∈ J k , we have

1 n n i=1 V i 1 {x < D i < x + r} ≤ 1 n n i=1 |V i | 1 x + b k B/n < D i ≤ x + b k+1 B/n + 1 n n i=1 V i 1 x < D i ≤ x + b k B/n and Pr {x < D < x + r} ≥ Pr x < D < x + b k B/n . Thus, sup B n <r<∆ 1 n n i=1 V i 1 {x < D i < x + r} Pr {x < D < x + r} ≤ max 0≤k<K 1 n n i=1 |V i | 1 x + b k B/n < D i ≤ x + b k+1 B/n Pr {x < D i < x + b k B/n} + max 0≤k<K 1 n n i=1 V i 1 x < D i ≤ x + b k B/n Pr {x < D ≤ x + b k B/n} . (B.2)
First, consider the second term in (B.2). It follows from the Markov and Cauchy-Schwarz inequalities that for any δ 1 > 0,

Pr max 0≤k<K 1 n n i=1 V i 1 x < D i ≤ x + b k B/n Pr {x < D ≤ x + b k B/n} > δ 1 ≤ δ -2 1 K-1 k=0 E 1 n n i=1 V i 1 x < D i ≤ x + b k B/n Pr {x < D < x + b k B/n} 2 ≤ δ -2 1 K-1 k=0 E[V 2 ] n • Pr {x < D ≤ x + b k B/n} ≤ E[V 2 ] mδ 2 1 B (1 -b -1 ) . (B.3)
Next, note that due to (B.1),

var |V | 1 x + b k B/n < D ≤ x + b k+1 B/n ≤ Cb k (b -1) B/n,
for some constant C. Thus, for the first term in (B.2), we have that Pr max

0≤k<K 1 n n i=1 |V i | 1 x + b k B/n < D i ≤ x + b k+1 B/n Pr {x < D < b k B/n} > δ 2 ≤ K-1 k=0 1 n var |V i | 1 x + b k B/n < D i ≤ x + b k+1 B/n Pr {x < D < x + b k B/n} δ 2 + max 0≤k<K E |V | 1 x + b k B/n < D ≤ x + b k+1 B/n Pr {x < D < x + b k B/n} δ 2 ≤ K-1 k=0 1 n Cb k (b -1) B/n (δ 2 mb k B/n) 2 + E[V 2 ] (b -1) /δ 2 m = C (b -1) (δ 2 m) 2 (1 -b -1 ) B + E[V 2 ] (b -1) /δ 2 m.
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Therefore, we can choose b close enough to 1 and then B large enough so that these two quantities and (B.3) can be made arbitrarily small for any δ 1 , δ 2 > 0.

Proof of Lemma A.2. We first show that E sup θ∈Θ ∆ I + 1i (θ) -I + 2i (θ)|D i < 0 for ∆ sufficiently small. Let ε > 0, 1/2 < ξ < 1, and 0 < η < (4εξ -2ε) / (1 + 4εξ -2ε) . In view of Assumption 2, Choose ∆ to be small enough so that |W

i (β 0 -β) + Z i (δ 0 -δ)| ≤ a < ∞ for all θ ∈ Θ ∆ with probability 1 -η, for a > 0 such that Pr {U i < a|X i } ≤ 1/2 + ε and Pr {U i > -a|X i } ≤ 1/2 -ε almost surely and that Pr {A i,a |A i , D i } = ξ > 1/2, where A i = 1 W i β > 0, W i β + Z i δ ≤ 0 A i,a = 1 W i β > 0, W i β + Z i δ ≤ -2a < 0 .
Then for all θ ∈ Θ ∆ , we have

E I + 1i (θ)|A i , D i ≤ η + (1 -η) ((1/2 -ε) ξ + (1/2 + ε) (1 -ξ)) E I - 2i (θ)|A i , D i ≥ (1 -η) ((1/2 + ε) ξ + (1/2 -ε) (1 -ξ)) ,
almost surely, which in turn yields that

E I + 1i (θ) -I + 2i (θ)|A i , D i ≤ η + (1 -η) (-2εξ + 2ε (1 -ξ)) = η + (1 -η) (2ε -4εξ) < 0 almost surely. Similarly, E sup θ∈Θ ∆ I + 3i (θ) -I + 4i (θ)|D i < 0 almost surely for ∆ sufficiently small. Therefore, sup θ∈Θ ∆ E ζ + i (θ)|D i < 0 almost surely for ∆ sufficiently small. The proof for ζ - i (θ) is similar. Proof of Lemma A.3. It follows from (A.1) that S n3 (θ, γ) = n i=1 1 {γ 0 < D i ≤ γ} ζ + i (θ) -ζ + i (θ 0 ) + n i=1 1 {γ < D i ≤ γ 0 } ζ - i (θ) -ζ - i (θ 0 ) . Since ζ + i (θ) and ζ - i (θ) consists of just several indicator functions, there exists a universal constant C < ∞ such that |S n3 (θ, γ)| ≤ C n i=1 1 {γ 0 < D i ≤ γ} + n i=1 1 {γ < D i ≤ γ 0 }
uniformly over θ. Thus, it suffices to show that for every A > 0,

(B.4) sup γ:n|γ-γ 0 |≤A n i=1 1 {γ 0 < D i ≤ γ} = O p (1) and sup γ:n|γ-γ 0 |≤A n i=1 1 {γ < D i ≤ γ 0 } = O p (1).
To show the first claim of (B.4), consider a class of functions indexed by γ, 

M A = {1 {γ 0 < D ≤ γ} : n|γ -γ 0 | ≤ A}. Then M A is
γ:n|γ-γ 0 |≤A n i=1 [1 {γ 0 < D i ≤ γ} -E1 {γ 0 < D ≤ γ}] ≤ Cn 1/2 J(1, M A )(EM 2 A ) 1/2 ,
where J(1, M A ) is the uniform entropy integral defined in van der Vaart and Wellner (1996, p.239)

. Since J(1, M A ) is bounded for a VC class and (EM 2 A ) 1/2 = O(n -1/2 ), sup γ:n|γ-γ 0 |≤A n i=1 [1 {γ 0 < D i ≤ γ} -E1 {γ 0 < D ≤ γ}] = O p (1).
The desired result follows since

(B.5) sup γ:n|γ-γ 0 |≤A E1 {γ 0 < D ≤ γ} = O(n -1 ).
The proof of the second claim of (B.4) is similar.

Proof of Lemma 6.1. The proof of this lemma is similar to that of Lemma A.3. It suffices

to show that n i=1 1 {γ 0 < D i ≤ γ} ζ + (θ) -ζ + (θ 0 ) = O p (n -1/6 ) (B.6) and n i=1 {γ < D i ≤ γ 0 } ζ -(θ) -ζ -(θ 0 ) = O p (n -1/6 ). (B.7)
uniformly over (θ, γ) satisfying n 1/3 |θ -θ 0 | ≤ A and n|γ -γ 0 | ≤ A. We will prove only (B.6) since the proof of (B.7) is similar. Consider a class of functions indexed by (θ, γ)

, L A = {1 {γ 0 < D ≤ γ} [ζ + (θ) -ζ + (θ 0 )] : n 1/3 |θ -θ 0 | ≤ A and n|γ -γ 0 | ≤ A}. Then L A is a VC class of functions with an envelope function L A = sup θ,γ {1 {γ 0 < D ≤ γ} [ζ + (θ) -ζ + (θ 0 )] : n 1/3 |θ -θ 0 | ≤ A and n|γ -γ 0 | ≤ A}.
Then as in the proof of Lemma A.3,(B.6) follows from Theorem 2.14.1 of Van der Vaart and Wellner (1996, p.239), the fact that (EL 2 A ) 1/2 = O(n -1/2 n -1/6 ), (B.5), and

sup θ:n 1/3 |θ-θ 0 |≤A E ζ + (θ) -ζ + (θ 0 ) = O(n -1/6 ).
Proof of Lemma 6.2. Since S+ n1 and S-n1 are independent and similarly defined, we prove the convergence of S+ n1 . Define S+ n1 (ν) = S n1 (γ 0 + n -1 ν). We first prove the tightness of S+ n1 (ν). By the D-tightness criterion of Billingsley (1968, equation (15.21)), it suffices to show that there exists a finite, universal constant C < ∞ such that (B.8) E S+ n1 (ν) -S+ n1 (ν 1 ) S+ n1 (ν 2 ) -S+ n1 (ν) ≤ C(ν 2 -ν 1 ) 2

for any ν, ν 1 and ν 2 satisfying 0 < ν 1 < ν < ν 2 . Note that

E S+ n1 (ν) -S+ n1 (ν 1 ) S+ n1 (ν 2 ) -S+ n1 (ν) ≤ 4E n i=1 n j=1 1 γ 0 + ν 1 n < D i ≤ γ 0 + ν n 1 γ 0 + ν n < D j ≤ γ 0 + ν 2 n ≤ 4E n i=1 n j=1,j =i 1 γ 0 + ν 1 n < D i ≤ γ 0 + ν 2 n 1 γ 0 + ν 1 n < D j ≤ γ 0 + ν 2 n ≤ 4n(n -1) F D γ 0 + ν 2 n -F D γ 0 + ν 1 n 2 ≤ 4C F D n(n -1) n 2 (ν 2 -ν 1 ) 2 ,
where the first inequality comes from the fact |ζ + i (θ 0 )| ≤ 2 for all i, the second inequality follows since 1{γ 1 < D i ≤ γ} and 1{γ < D j ≤ γ 2 } are disjoint, and 1{γ 1 < D i ≤ γ 2 } is nondecreasing as γ 1 decreases or as γ 2 increases, the third inequality is obvious since We now consider the weak convergence of the finite-dimensional distributions of S+ n1 (ν). To use the Cramér-Wold device, let 0 < ν 1 < . . . < ν J for J ∈ N and q 1 , . . . , q J be constants.

Instead of obtaining the weak convergence of J j=1 q j S+ n1 (ν j ), we will show below the weak convergence of Sn1 , where Sn1 is defined as Sn1 = J j=1 q j S+ n1 (ν j ) -S+ n1 (ν j-1 ) .

As shown in the proof of Theorem 4 of [START_REF] Pons | Estimation in a Cox regression model with a change-point according to a threshold in a covariate[END_REF], it is easier to deal with Sn1 . Specifically, since Sn1 is a linear combination of { S+ n1 (ν 1 ), . . . , S+ n1 (ν J )}, the weak convergence of the finite-dimensional distributions of S+ n1 (ν) follows if we show that its characteristic function converges to the characteristic function of J j=1 q j S+ 1 (ν j ) -S+ 1 (ν j-1 ) .

We now consider the characteristic function of Sn1 , which has the form 

  , S1 tends to -∞ almost surely as |ν| → ∞, thereby implying that the distribution of ν * S1 is tight. An application of the argmax continuous mapping theorem of van der Vaart and Wellner (1996, Theorem 3.2.2, p.286), combined with Lemmas 6.1 and 6.2, gives the main theorem of this paper. Theorem 6.1. Let Assumptions 1-10 hold. Then, as n → ∞, n(γ -γ 0 ) converges weakly to ν * S1

  where • is the Euclidean norm. Now, let m < n be the block length for the subsampling and randomly draw m samples with replacement from a given data set and estimate δ 0 and γ 0 from this subsample. Let δ * and γ * denote subsample estimates and construct T * n = m 1/3 g θ * -g θ . Repeat this many times, say B times, and obtain empirical distributions of T * n . Denote the 1 -α quantile of the distribution as c 1-α . Then, the nominal level α test rejects H 0 if and only if T n > c 1-α .

D

  i are i.i.d. with the common distribution F D , and the fourth inequality follows from the assumption that F D is Lipschitz continuous with the constant C F D . Then (B.8) follows immediately by taking C = 4C F D .

.

  Note that as in the proof of Theorem 4 of[START_REF] Pons | Estimation in a Cox regression model with a change-point according to a threshold in a covariate[END_REF], using the fact that for each i, there is at most one index j such thatI nj (D i ) = 0itq j I nj (D)ζ(θ 0 )) -1] , ν j -ν j-1 )f D (γ 0 ) E exp (itq j ζ(θ 0 )) -1|D = γ + 0 + o(1) .

Table 1 :

 1 Rejection rates of subsampling hypothesis tests

		Threshold parameter γ 0
		Nominal Level		Block Size (m)
			30	40	50	60
	Dist 1	0.05	0.064 0.042 0.030 0.028
		0.1	0.126 0.106 0.096 0.082
	Dist 2	0.05	0.080 0.058 0.050 0.050
		0.1	0.134 0.104 0.116 0.100
		Slope parameter δ 0
		Nominal Level		Block Size (m)
			10	15	20	30
	Dist 1	0.05	0.090 0.046 0.030 0.014
		0.1	0.152 0.114 0.094 0.052
	Dist 2	0.05	0.070 0.030 0.022 0.006
		0.1	0.138 0.080 0.058 0.048

Alternatively, one could use a random search algorithm based on[START_REF] Manski | Operational characteristics of maximum score estimation[END_REF] rather than the simple grid search.

See Delgado et al (2001) for an automatic selection rule, while it is computationally demanding to perform a Monte Carlo experiment.
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Then using the fact that A n = exp(n log A) for any A > 0 and that log(1

Then the lemma follows from the fact that the characteristic function ϕ S1 (s) (t) of S1 (s) is

as in Lemma 5 of [START_REF] Pons | Estimation in a Cox regression model with a change-point according to a threshold in a covariate[END_REF].