N
N

N

HAL

open science

Relaxing B Sharing Restrictions within CSP||B

Arnaud Lanoix, Olga Kouchnarenko, Samuel Colin, Vincent Poirriez

» To cite this version:

Arnaud Lanoix, Olga Kouchnarenko, Samuel Colin, Vincent Poirriez. Relaxing B Sharing Restrictions

within CSP||B. 2010. hal-00495769

HAL Id: hal-00495769
https://hal.science/hal-00495769

Preprint submitted on 28 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00495769
https://hal.archives-ouvertes.fr

Relaxing B Sharing Restrictions within CSP||B*

Arnaud Lanoix!, Olga Kouchnarenko?, Samuel Colin®, and Vincent Poirriez3
! Nantes University, Nantes, France
arnaud.lanoix@univ-nantes.fr
2 University of Franche-Comté, Besancon, France
okouchnarenko@lifc.univ-fcomte.fr
3 University Lille Nord de France, Valenciennes, France
scolin@hivernal.org vincent.poirriez@univ-valenciennes.fr

Abstract. This paper addresses the issue of state sharing in CSP|B
specifications: B machines controlled by various CSP parts are supposed
not to refer to, share or modify the same state space. However, some
kinds of B state sharing can be allowed without creating inconsistencies
in CSP||B specifications. To achieve this, we present an approach where
inconsistencies in state sharing can be identified by translating the CSP
controllers to B specifications and then using a more refined consistency
checking process.

Keywords: CSP||B, sharing, consistency, rely-guarantee

1 Introduction

In this work we address the question of how to safely reuse already-developed B
models in which there is a common and shared part when developing a CSP||B
model. The problem of sharing is known to be difficult in the framework of the
B method whereas it is naturally supported by the CSP formalism.

The present work is motivated by an example which arose during the process
of assembling already formally specified and proved components. In the context
of the TACOS project, we modelled a multi-agent system of a convoy [1] while a
complex B model of a location component was also independently designed [2].
Integrating the latter into the former appears to be problematic because the
resulting assembly risks breaking the consistency of the whole vehicle component,
as state sharing is involved. Machine sharing in the location component is not
valid at the CSP||B level. In fact, such an architecture goes against the well-
known “one controller=one machine” CSP||B constraint.

We explain how to partially relaxe this constraint. We show how to use the
B modularity constraints to allow CSP||B models with multiple controllers for a
B machine or with a single controller for multiple B machines. We then propose
a refined consistency checking of CSP||B based on such architectural patterns.

* Work supported by the ANR-06-SETI-017 project: “TACOS : Trustworthy Assem-
bling of Components: frOm requirements to Specification” (http://tacos.loria.
fr).

Layout of the paper. After introducing a platoon example and a part of its mod-
elling in Section 2, we present the necessary formalisms, concepts and tools in
Sect. 3. Section 4 reviews work on state sharing in CSP||B and B. Our main
contributions are in Sect. 5 and 6. We propose 1) a method—based on the B
modularity—for detecting inconsistent CSP||B architectures, and 2) a refine-
ment of CSP||B consistency check requirements based on architectural patterns.
Finally, conclusions and assessments are drawn in Sect. 7, combined with exten-
sions for addressing the verification of more complex cases.

2 DMotivating Case Study

This section presents an example which arose during the process of assembling
already formally specified and proved components. In [1] a convoy, the so-called
platoon, of autonomous vehicles (depicted in Fig. 1) was fully specified and
validated in the framework of the CSP|B methodology. The behaviour of this
system is described in extenso in [3] for instance. In the context of this paper
we are more concerned with the part of the model limited to a single vehicle.

Acceleration
Speed;” *MLocation ‘Actuator
Sensor Sensors /

Communications

speed; speedj. speed;
XPOS 1 XPOS .1 XPOS;

4
L@
1@
a .
‘k
1
4
-
S5
N

Fig. 1. A platoon of autonomous vehicles as a multi-agent system

Figure 2 illustrates a single vehicle, one element of the platoon. Its formal
study can be found in [1]. The conventions are as follows: the rounded boxes
depict CSP controllers, whereas the others shows B machines, with the plain
arrows between CSP processes or between a CSP controller and a B machine
being read-write links and dotted arrows being read-only links.

This first CSP||B specification was

refined in [4].The resulting more de-

Ry, heispeedp heiccel g tailed specification was proved to re-

engingaccel fine — in the traces/failures model

o eeptonst of CSP — the previous specification.

“geunfuencesy. In [4] the refined specification involves

several controllers (instead of the only

CtrlVehicle controller) equipped with

Fig. 2. Abstract CSP||B vehicle B machines and contains an abstract

model of a location component that

aims at determining the geographic position of the physical vehicle by answer to
the locate () B method.

CtrIDrivingSystem
(mode)

enginesinfo
O, ... locate()

get_speed()
Vehicle | transmitAccel()
S 7

In the framework of the TACOS project, more concrete B specifications of
the location component have been independently proposed in [2]: an enhanced
realistic pure B model of the vehicle (with focus on the location problem) was
derived from the requirements specified using the KAOS method [5].

One of the introduced safety re-
quirements is that location sensors
would be an assembly of several
so-called raw positioning components
based on different technologies (GPS,
Wifi, GSM, Visual sensors,. ..). Each
raw positioning sensor provides a
chronologically ordered set of loca-
tions. The sets of all components must
be merged. In addition, to (in)validate
the provided data, an actual speed

engineAccel
enginelnfo

locate() O

CtrlRaw
location

y p
.+ Raw_location

locate_raw()

CtrlSensor
_Xpos

CtriSensor

CtrlActuator
_accel

get_xpos() _speed
and an accgleratlon can be .used.' It \M‘ ga .
allows keeping only the possible, i.e. t'H"S"W*ccel“i 7 < e
1 3 : <1 Sansor spee
consistent, locations, and removing Actuator_accel S h__ P

the inconsistent ones.
Figure 3 displays a simplified = —
P||B vehicle model enhan with
‘Slse ”Locaiioﬁ ecox(;(fonint: C(Iar(;1 t}fis Fig. 3. Enhanced CSP|[B vehicle
model, Actuator accel and Sensor speed are separate B machines. This is the
result of differentiating acceleration values as they are passed to the engine and
acceleration values as they have been effectively applied by the engine. We want to
emphasise the fact that in Fig. 3, some of the CSP controllers share B machines.
For example, CtrlVehicleR and CtrlRaw_location share a view on Raw_location.
Consequently, the consistency of the whole CSP||B vehicle component risks to
be broken because of state sharing. The question we are interested in is: “Is it
possible to relax CSP||B restrictions on the architecture of the B part so that we
can indeed realise the needed integration?”

3 Concepts and Tools for CSP||B Components

The B machines specifying components are open modules which interact by
the authorised operation invocations. CSP describes processes, i.e. objects or
entities which exist independently, but may communicate with each other. When
combining CSP and B to develop distributed and concurrent systems, CSP is
used to describe execution orders for invoking the B machines operations and
communications between the CSP processes.

4 A detailed version of this paper with an appendix depicting a bigger and more
complete version of the case study is available at http://tacos.loria.fr/drupal/
7g=node/83.

3.1 B Machines

B is a formal software development method used to model and reason about sys-
tems [6]. The B method has proved its strength in industry with the development
of complex real-life applications such as the Roissy VAL [7]. The principle behind
building a B model is the expression of system properties which are always true
after each evolution step of the model, the evolution being specified by the B
operations. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system
takes.

The B method is based on first-order logic, set theory and relations. A
strength of the B method is its stepwise refinement feature: each refinement
makes a model more deterministic and also more precise by introducing pro-
gramming language-like features. Refinement can be done until the code of the
operations can actually be implemented in a programming language .

Let us assume here that the initialisation is a special kind of operation. In
this setting, a B architecture is consistent if the following conditions hold [6,8]:

— Each machine has its invariant preserved by its operations, i.e. the model is
consistent.
— Each refinement or implementation can replace the B machine it refines.

Both items above are semi-local: the proof obligations correspond to a local
reasoning, but the machines can use operations of included or seen machines.
It must then be verified that these operations are correctly used: this is done
implicitly when operation invocations are expanded into their respective bodies.
This ensures that the proof obligation contains a sub-goal for checking that the
invoked operation is indeed called within its precondition.

Support tools such as Bdfree (http://www.b4dfree.com) or AtelierB (http:
//www.atelierb.eu) automatically generate Proof Obligations (POs) to ensure
the consistency [6]. Some of them are “obvious” POs which are automatically
discharged whereas the normal POs have to be proved interactively if it was not
done fully automatically.

Modularity in B The B project architecture can be handled through some spe-
cific clauses SEES, INCLUDES and USES that allow a machine to list its seen
machines, included machines or used machines, respectively. The IMPORTS
clause corresponds to INCLUDES for an implementation model. A B architec-
ture must respect some modularity constraints. For instance, one machine cannot
end up being included or imported twice by two different inclusion paths, as this
could break the invariant. In [9] the modularity constraints in [6] have been
proved to be not strong enough, because intermediate SEES links could hide the
fact that a machine could be modified through refinement. In [8], a modularity
constraint to ensure no invariant breakage and no interference by a machine with
a seen machine through another indirect path, is given:

Theorem 1. (uses;can_alter) N ((imports; sT) U (sees; s*)) = 0

with sees being the set of couples (Mj, M) where the implementation of M;
“sees” the machine Ms, imports a similar set where the implementation of M,
“imports” Ms, s the set where M; directly “sees” My, uses = sees U imports
and can_alter = (uses*;imports). The ; operator corresponds to the B relation
composition, * to the B reflexive transitive closure and * to the transitive closure.
No double importation and no violation of the constraint of Theo. 1 ensure no
invariant breakage and no interference by a machine with a seen machine through
another indirect path.

When taking into account all implicit hypotheses about B modularity [8], the
formula can actually be simplified into the following shape: can__alterNsees = §.
We pointed out this modularity constraint because of the role it plays in our
contribution in Sect. 5.

3.2 Communicating Sequential Processes (CSP)

CSP allows the description of entities, called processes, which exist indepen-
dently but may communicate with each other. Thanks to dedicated operators
it is possible to describe a set of processes as a single process, making CSP an
ideal formalism for building a hierarchical composition of components. CSP is
supported by the FDR2 model checker (http://www.fsel.com). This tool is
based on the generation of all the possible states of a model and the verification
of these states against a desired property.

The denotational semantics of CSP is based on the observation of process
behaviours. Three kinds of behaviours [10] are observed and well suited to express
the properties:

— traces, i.e. finite sequences of events, for safety properties;

— stable failures, i.e. traces augmented with a set of unperformable events at
the end thereof, for liveness properties and deadlock-freedom;

— failures/divergences, i.e. stable failures augmented with traces ending in an
infinite loop of internal events, for livelock-freedom.

Each kind of behaviours gives rise to a notion of process refinement defining a
particular semantical framework [10].

3.3 CSP||B Components

In this section, we sum up the works by Schneider and Treharne on CSP||B. The
reader interested in theoretical results is referred to [11,12] and the abundant
CSP||B literature referenced therein; for case studies, see for example [13,14].

Specifying CSP controllers In CSP||B architecture (as depicted Fig. 4), the
B part is specified as a B machine without any restriction, while the controller
is a CSP process, called a CSP controller, defined by the following subset of the
CSP grammar:

Piu=c?x!v P | ope!lv?x—P
| b&P|POP | if bthenP else P | S(p)

The process ¢ 7 x ! v — P can accept input x and output v along a commu-
nication channel c. Having accepted x, it behaves as P.

Machine channels are introduced in CSP controllers to provide the means for
controllers to synchronise with the B machine: for each B operation x <+ ope(v),
there can be a channel ope ! v 7 x in the controller corresponding to the opera-
tion call: the output value v from the CSP description corresponds to the input
parameter of the B operation, and the input value x corresponds to the output
of the operation. A controlled B machine can only communicate on the machine
channels of its controller.

Remark 1. CSP||B components must respect the “one controller=one machine”
constraint (as shown in Fig. 4): controlled B machines are not allowed to share
states, i.e. they cannot see or import the same machines. Then, the CSP|B
model necessarily respects the B modularity constraints (Theo 1, Sect. 3.1).

The behaviour of a guarded process b & P depends
on the evaluation of the boolean condition b: if it is

true, it behaves as P, otherwise it is unable to per- XtV

form any events. In some works (e.g. [12]), the notion «

of blocking assertion is defined by using a guarded pro- T¢x<--o,oe(v) N
cess on the inputs of a channel to restrict these inputs: Q Q
¢ ? x & E(x) — P. The external choice P1 [P2 is Mq Mp

initially prepared to behave either as P1 or as P2, with

the choice made on the occurrence of the first event. Fig.4. CSP|B compo-
The conditional choice if b then P1 else P2 behaves
as P1 or P2 depending on b. Finally, S(p) expresses
a recursive call. Finally, in addition to the expression of simple processes, CSP
provides parallel composition operators to combine them.

nents

Verifying CSP||B components The main problem with combined specifica-
tions is their consistency: CSP and B parts should not be contradictory. Let
us assume a CSP||B compound (P||Mp). The verification process to ensure the
consistency of (P||Mp) consists in verifying the following conditions [12]:

1. Check the consistency of Mp with B4Free or Atelier-B for instance,

2. Check the deadlock-freedom (in the stable-failures model) and divergence-
freedom of P with FDR2,

3. Check the divergence-freedom of (P||Mp) (see below),

4. By way of [12, Theorem 5.9] and the fact that P is deadlock-free, the
deadlock-freedom of (P||Mp) in the stable failures model is deduced.

The given results are also generalised in [12] to a collection of B machine-CSP
process couples. The whole CSP||B architecture must also respect the sharing
constraint recalled Remark 1.

Ensuring the divergence-freedom of CSP||B components Originally, the
technique for ensuring the divergence-freedom of a controlled machine (P||Mp)
involved the stating of a Control Loop Invariant (CLI) and its verification [15,16].
Fortunately, the above technique has evolved into a more general and less cum-
bersome one. Evans & Treharne [13]| have defined a fixed-point rule for deducing
the non-divergence of a controlled machine (P||Mp).

To sum up, the fixed-point rule procedure is based on the satisfaction by
the controller P of a uniform property every(p)(S)(T), where p is an event
predicate and S, T' are states (e.g. predicates expressed in the B set theory):
P sat every(p)(S)(T). See [13,11] for more details, with a PVS implementation.

That fixed-point rule relates the use of a CLI for verifying the divergence-
freedom of a controller to uniform properties for CSP controllers. The use of
uniform properties for CSP controllers lifts the need for preprocessing as done
earlier with the explicit construction of a CLI, and it generalises the parallel
composition of CSP controllers.

In [11], the authors deduced the divergence-freedom of P||@Q by verifying the
non-interference, i.e. a property which expresses that P does not interfere with
the traces of @, denoted as non__inter ference(p, P, Q). Then, they deduced:

Property 1.

non__inter ference(p, P, Q)
A non_inter ference(p, @, P)

It A P sat every(p)(S)(T) then P||Q sat every(p)(S)(T)
A Q sat every(p)(S)(T)

4 Works Addressing Sharing in B and CSP||B

As recalled in Remark 1 (and in Fig. 4), a CSP||B architecture disallowed any
sharing of B machines.This way, there is no risk for the invariant of the nonex-
istent shared machine to be broken, nor for any machine or controller to suffer
from interferences from an adjacent controller-machine pair.

However, Figure 5 shows several relevant architectures involving B state shar-
ing. Machine sharing can happen because of sharing by other B machines as in
(a), (b) and (d) or because of sharing by several controllers as in (c). We are
concerned with architectures (a) and (b), with some considerations about (d):
the novelty of our approach is thus bringing B sharing to the B level. This is the
reason why we focused primarily on using notions coming from the B setting
such as its modularity links. In a nutshell, our approach is about characterising
the links between controllers and machines as seeing or importing links in the B
sense. It then becomes possible to consider the whole CSP part of the system as
a single B machine and to use the B constraints upon this “transformed” system
to decide whether the shared B machines of the system can have their invariants
broken or not. Let us now compare this approach to similar approaches applied
to CSP||B or B alone (see Sect. 5).

— read-write link
----Jp» read only link

Fig. 5. Several architectures depicting the sharing of B machines

On the one hand, the architecture of Fig. 5(c) was first introduced in [11],
thanks to the use of uniform properties for deciding machine consistency. The
reason was that the use of rely-guarantee properties when analysing the consis-
tency of a controlled machine allowed one controller keeping track of what the
other controller could change or not in the machine. Our approach deals mostly
with the B part, hence it can be viewed as complementary. That work and ours
could thus be used together to bring state sharing at every level of the CSP||B
formalism.

On the other hand, several works on the B formalism proposed tightened
modularity constraints for ensuring the absence of inconsistency or extending the
formalism for allowing some useful kinds of sharing. The already mentioned in
Sect. 3.1 works in [9,8] are still situated in the single-writer paradigm. Assuming
the CSP controllers can be viewed as a single B entity, the modularity constraints
would allow the architectures (a) and (b) of Fig. 5, because of the clear separation
of the seeing (read-only) paths and the importing (read-write) paths. These
tightened modularity constraints were quickly integrated into the B commercial
tools.

A few works have attempted to deal with the multiple-writer paradigm in
B. Boulmé and Potet [17] proposed an approach inspired by a similar technique
of Spec#, where a developer can mark at what places a shared object (hence,
for B, a shared machine) can have its invariant broken. This allows having a
broader set of architectures for B but the drawback is a greater number of proof
obligations. This approach has no tool support we are aware of.

Biichi and Back [18] proposed changing the B modularity mechanisms to al-
low for multiple writers in a rely-guarantee fashion. B machines become equipped
with contracts, each describing several roles. Each contract corresponds to a way
of sharing the machine, with all roles corresponding to a way of invoking the op-
erations of the shared machine. In our opinion, only a combination of CSP with
Biichi’s B along with the use of uniform properties could deal with the architec-
ture of Fig. 5(d), because of multiple-writers at the B level and the danger of
interferences at the CSP controllers level.

Butler [19] proposed a way of translating CSP systems to action systems,
which was later adapted to the B method [20]. In essence, the translation matches
CSP events with B operations and the result is very close in aspect to what
Event-B would look like if expressed with “classical” B. This approach is fur-

thermore supported by the csp2b tool. The translation keeps the semantics of
the CSP operators (sequence, parallel, interleaving) with the additional follow-
ing constraints: interleaving can only happen at the outermost level and another
constraint relevant to the use of so-called “conjoined” B machines, which is a pe-
culiarity of ¢sp2b that we do not use. Finally, viewing the CSP part of a CSP||B
system as a B entity is possible.

5 B-based State Sharing within CSP||B

Our goal, as exhibited in Sect. 2, is to relax restrictions on the architecture of
the B part of a CSP||B model, namely that each B machine interacts only with
its own CSP controller, Fig. 4. In this section, we show that it is possible to
express the way the controlled B machines are used by the CSP part in terms of
B modularity links, and to include them in the B modularity checking, to allow
B state sharing in CSP||B.

5.1 B Modular Characterisation of CSP Control

We want to characterise in B terms, the machine channels, i.e. the CSP-controlled
operations. In [6] Abrial indicates that an operation can be callable, callable in
inquiry or not callable. In the first case, such as for an importation link, the
called operation can modify the state of the imported machine. In the second
case, it cannot: it is the case for a seen machine, whose such inquiry operations
allow an external machine to observe the state of the seen machine. The third
case corresponds to more specific modularity links, such as the USES link.

In modular B terms, the CSP control of a B machine can be viewed as a
weakened INCLUDES or IMPORTS link: the operations triggered by the CSP
part of the system can modify the variables of the controlled machines. A first
guideline would thus be that we would consider CSP||B “links” as IMPORTS
links. We nonetheless can do a finer analysis: it may be the case that a CSP
controller never modifies the state of its controlled machine but merely passes
around the result of calculations, for instance. We could thus characterise CSP||B
links with the following definition:

Definition 1. If all the operations of a B machine triggered by its CSP con-
troller are inquiry operations in the B sense, then we say that the CSP controller
SEES its controlled B machine. Otherwise, we will say that the CSP controller
IMPORTS its controlled B machine.

Detecting whether an operation is an inquiry operation is rather straightforward:
it is defined as being an operation not changing the variables of its component
[21, Annex E|. Finding if an operation is an inquiry operation can thus be done
at the syntactic level, by detecting whether the variables of the machines appear
in the left members of the modifying substitutions of the considered operation.

This way we can characterise the CSP controls of the B part in terms of the
modularity of B. Then, we want to express the CSP part of a CSP||B system as
a B entity, to check the B modularity constraints on the whole CSP||B system.

5.2 From CSP to B Modularity

We thus know that a CSP system can be translated into B using previous works
in [19,20] recalled Sec. 4. We might stop here and use this translation, with
adding what is needed for translating the CSP||B links. We can also go further
by exploiting the fact that the verifications to correctly share a B machine are
lifted to the architecture of the project. Indeed, these verifications are done
through two steps:

— Verifying that the way the variables and operations are used matches the
kind of modularity link that is used, for each machine. For instance, verifying
that the operations of a seen machine are inquiry operations.

— Verifying that the architecture respects the modularity constraints imposed
by the B method, such as the constraint in Sect. 5.1.

Because we characterised the CSP—B links by means of the IMPORTS or
SEES links depending on what operations the controllers use, we obtain the first
step by virtue of construction. We are left with the second step: the content of
the B machine does not matter for this step. This means that the content of the
CSP system translated into B does not matter either.

Property 2. Let the CSP part be represented by a single B machine, and the links
between CSP controllers and B machines be characterised either as IMPORTS
links or as SEES links. If the resulting system respects the modularity constraints
of B, then no shared machine in the B part of the system can have its invariant
broken.

Proof. (Sketch) (i) Let us assume that the translation from CSP into B is correct.
It is based on the results in [20]. (ii) The interactions between CSP and B parts
can be characterised in terms of the B modularity (see Sect. 5.1).

Consequently, if the whole system expressed in B thanks to (ii) satisfies the
modularity constraints of B given by Theo 1, Sect. 3.1 then, by (i), the CSP||B
system also satisfies the modularity constraints, and no shared B machine has
its invariant broken. Obviously, the last point only concerns the B part. a

This property is a direct consequence of lifting all the CSP parts of the system
into a B setting: any B architecture that respects the modularity constraints
ensures this property.

Thanks to our proposals, the process for checking that the B part of a CSP||B
system with sharing of B machines is consistent becomes as follows:

1. Characterise the links of each controller to its controlled machine in a B
fashion (IMPORTS or SEES).

2. Represent the whole CSP system (with the CSP controllers) as a single B
machine (using ¢sp2b for instance [19,20]) which imports or sees the various
controlled machines, depending on how the links have been characterised.

3. Check the resulting pure B architecture with usual B tools, B4free or Atelier-
B for instance.

Actuator _accel + RealVehicle
CtrlActuator _accel — Actuator accel
CtriSensor _speed + Sensor_speed

CtrlSensor _xpos ++ Sensor_xpos
CtrlRaw_ location +— Raw_ location

CtrlVehicleR — Location

Sensor speed — RealVehicle

Sensor_xpos — RealVehicle
Location + Raw_location

(a) Initial sees set
(b) Initial import set

Actuator accel — RealVehicle

M — Actuator accel .
— Sensor xpos +— RealVehicle

M +— Sensor speed — .

— Sensor speed — RealVehicle
M +— Sensor xpos —. -

— Location +— Raw location
M +— Raw location —
M — Location

(d) Rewritten sees set
(¢) Rewritten (sees U imports)™;
imports set

Fig. 6. sees, imports and (sees U imports)™;imports sets

If the tool checking is successful, then the way the B machine is shared in
the whole CSP||B system is consistent. If it fails, then the shared machines face
a potential invariant breakage. The example in the next section illustrates this
step.

5.3 Application to the Vehicle System

Let us consider again Fig. 3. Let M be the B entity corresponding to the CSP
processes (or controllers): CtrlVehicleR, CtrlActuator Accel, CtrlSensor Speed,
CtrlRaw_ location and CtrlSensor _xpos. Although there is no direct link between
CtrlVehicleR and CtrlRaw _location, they are still executed in parallel and could
cause invariant breakage in a commonly shared B machine. Let us analyse this.

Let us write the sees and imports sets depicted by Figs 6a and 6b for calcu-
lating whether the architecture respects the B modularity constraints. We kept
the names of the differentiated CSP controllers/processes with respect to Fig. 3
instead of using M. The controller—machine links are importation links because
the machines are modified, as they are used for backing up the passed value in
a log. Now after having rewritten the CSP controllers or processes into M, the
final (sees U imports)*;imports set which contains the possibly, and indirectly,
modified machines is given Fig. 6¢. Note that we omitted the reflexive part of
the set, such as Sensor_xpos — Sensor_xpos, etc. M will never be a target, be-
cause the whole CSP part will always be a source of inclusion/sight towards B
machines. The intersection of the relations in Figs 6d and 6c¢ is empty, hence the
architectural B criterion (Sect. 3.1 and 5.1) is satisfied.

The divergence-freedom of the controlled machines is also respected. Al-
though the code of the machines is not shown here, it is very simple as we
do not make strong assumptions about the passed values at the moment. The
various preconditions of the machines are thus merely for typing the variables.

6 Ensuring Divergence-freedom of Shared B Machines

Control loop invariant checking [16,12] or uniform property verification [11] en-
sure that a controlled B machine never diverges, i.e. its operations are never
called outside their preconditions, through the triggering of its operations by
the CSP controller.

Let us consider the architecture of Fig. 5(a): the Mg machine is imported
by Mp and seen by Mg, which are themselves imported by their respective
controllers P and Q. This architecture is sound with respect to the architectural
constraints of Sect. 5.1, hence Mg will not have its invariant broken.

Let us now imagine that an operation ope, of Mg references some variable of
Mg in its precondition, e.g. in the shape of x5 > 0. The invariant of Mg relies
thus indirectly upon the strict positivity of xg. Let us suppose that checking the
consistency of Q|| Mg does not show any problem. Then, what happens if Mp,
because it includes or imports Mg, triggers an operation that makes zg = 07
Then the precondition of ope, becomes invalid, even though consistency checking
did not exhibit the problem. The problem depicted here is typically a problem of
non-interference, and the consistency checking approach as presented in Sect. 3
is not sufficient.

Let us notice that in [11] the authors encountered a similar problem for
related but different reasons. Their non-interference Property 1 recalled Sec. 3
is used in a case similar to the architectural case illustrated by Fig. 5(c) because
the both controllers “import” the shared machine, hence can interfere with each
another.

Fortunately, it turns out that Property 1 can be simplified in our architectural
case depicted Fig. 5(a). Indeed, we know that the shared machine is effectively
imported only by one controller, because of the B rule stating that a machine
can only be imported once. Hence we know that this shared machine will be
unaffected by all other controllers: they will only ultimately be allowed to refer
to the shared machine through SEES links, hence they can never modify the
shared machine. We thus integrate this specificity in Property 1, leading to:

Property 3. If P is a controller that ends up importing a shared machine (Fig. 5(a)),

and
non__inter ference(p, P, Q)

A P sat every(p)(S)(T) then P[|Q sat every(p)(S)(T)
A Q sat every(p)(S)(T)

As the non-interference property is trivially verified for @) with P thanks to
the knowledge about the architecture of the system, we simply removed it. The
other non-interference properties must be kept: because P imports the shared
machine, it can still have an effect on the other controllers that see the shared
machine.

Proof. (Sketch) Let assume without loss of generality that the whole CSP||B
system satisfies the modularity constraints (Sect. 5.1). As a consequence, in our
architectural case only P can write into Mg. Hence @ (or other seeing controllers)

can only use non-modifying operations of Mg. As a result, () does not interfere
with the P behaviour. This can be shown (i) by induction on the traces tr—
universally specified in every(p)(S)(T)(tr)—of invocations by P of operations of
the controlled B machines Mp and Mg, and (ii) by analysis of the effect of Mg op-
erations called by @) via Mgq: as operations are non-modifying there is no interfer-
ence in this case. On the other hand, because of the non__inter ference(p, P, Q)
hypothesis, P does not interfere with the @ behaviour, and we are done. a

Thanks to our proposals, the restriction on state sharing in CSP||B can be
relaxed as follows. If a CSP||B system with machine sharing in the B part meets
the following requirements:

— The CSP system viewed as a B entity together with the B part respects
Property 2 (as presented in the previous section)

— The controllers, at least those that involve shared machines, respect Prop-
erty 3

then the CSP||B system is consistent for the parts sharing B machines. The rest
of the system can be verified e.g. with the techniques of [11].

7 Conclusion

This paper proposed a B-based solution for allowing architectures with B state
sharing in the CSP||B components. The proposal involved the verification that
the shared B machine has not its invariant broken, and that the introduction of
sharing does not disturb the components. As the first verification is rooted to
B semantics, we proposed a verification methodology based on the fact that the
CSP parts of the system can be viewed as a single B machine. We thus were
left with characterising the links between CSP controllers and B machines as B
modularity links. We have shown that the verification could thus be reduced to
check that the B modularity constraints are satisfied.

The second verification involved problems of interference between controllers.
We adapted and simplified the solution proposed by Evans & Treharne [11] for
verifying the non-interference of controllers. We exploit the additional knowledge
given by modularity links at the B level to naturally deduce non-interference
properties from the modularity links.

Discussion about Other Architectural Patterns The solution for intro-
ducing shared B machines in a CSP||B system also gives clues about other kinds
of architectural evolutions for a CSP||B system. The “one machine-several con-
trollers” as in Fig. 5(c) is already handled by the consistency definition in [11].
The “one controller-several machines” case illustrated by Fig. 5(b) is conjectured
to be solved by our approach. Assuming that the controller does not contain any
parallel composition, as is the case usually for CSP controllers, then there is no
interference problem. Hence the problem here is strictly reduced to the verifica-
tion of B modular constraints. In case both controlled machines are imported by

the CSP controller, our approach does not allow to decide the (in)consistency of
the shared machine.

We are left with the case of Fig. 5(c) when modifications happen for all links.
In that case, the basic assumptions of B modularity are obviously not met, hence
apart from the full use of consistency checking techniques from [11], one would
have to use an extension of B allowing such modularity links. From Sect. 4 we can
surmise that the “invariant ownership” approach of [17] or the “rely-guarantee”
approach of [18] would fit. Given that Boulmé concludes that [17, conclusion,
third paragraph] the rely-guarantee approach is more modular, we suggest that
using Biichi’s extension of B as a replacement for classical B would bring what
is needed for such an architectural case. As this extension impacts mostly the
modularity of B and not its core (set theory and substitutions), we think the
changes needed at the level of CSP||B would be minor.

Perspectives Our proposal allows the relaxation of some constraints upon B
machines in a CSP||B system. From there, we conjecture that most architectural
patterns can be solved with a combination of our solution and the consistency
checking rules of [11]. We think at this point that, for addressing the multiple-
writers problem at both the level of CSP||B and B, one would need using another
extension of B allowing such a paradigm. A version of B extended with rely-
guarantee contracts [18] seems to be a good candidate.

Longer-term perspectives include the study of CSP|B component refine-
ments adapted to our problem. Preliminary studies of recent advances in this
domain [22] imply that the kind of refinement we seek would be different because
of a more complex evolution of the B part through the design. Other interest-
ing perspectives would involve the adaptation of the consistency rules of [11]
from PVS to a library for the B method in Coq [23], as the affinity of Coq with
fixed-point reasoning could help in the verification of uniform properties.

References

1. Colin, S., Lanoix, A., Kouchnarenko, O., Souquiéres, J.: Towards Validating a Pla-
toon of Cristal Vehicles using CSP||B. In: 12th Int. Conf. on Algebraic Methodology
and Software Technology (AMAST 2008). Number 5140 in LNCS, Springer-Verlag
(2008) 139-144

2. R.Laleau, F.Semmak, Matoussi, A., D.Petit, A.Hammad, Tatibouet, B.: A First
Attempt to Combine SysML Requirements Diagrams and B. Innovations in Sys-
tems and Software Engineering, NASA ISSE (2009)

3. Lanoix, A.: Event-B specification of a situated multi-agent system: Study of a
platoon of vehicles. In: 2nd IFIP/IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE), IEEE Computer Society (2008) 297-304

4. Colin, S., Lanoix, A., Kouchnarenko, O., Souquié¢res, J.: Using CSP|B Compo-
nents: Application to a Platoon of Vehicles. In: 13th Int. ERCIM Wokshop on
Formal Methods for Industrial Critical Systems (FMICS 2008). Number 5596 in
LNCS, Springer-Verlag (2009) 103-118

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

van Lamsweerde, A.: Goal-driven requirements engineering: the KAOS approach
(2009) http://www.info.ucl.ac.be/~avl/ReqEng.html.

Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press (1996)

Badeau, F., Amelot, A.: Using B as a high level programming language in an
industrial project: Roissy VAL. In: ZB 2005: Formal Specification and Development
in Z and B, 4th International Conference of B and Z Users. Volume 3455 of LNCS.,
Springer-Verlag (2005) 334-354

Rouzaud, Y.: Interpreting the B-method in the refinement calculus. In: FM’99:
World Congress on Formal Methods. Volume 1709 of LNCS., Springer-Verlag
(1999) 411-430

Potet, M.L., Rouzaud, Y.: Composition and refinement in the B method. In: B’98
: The 2nd Int. B Conference. (1998) 46-65

Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall (1997)
Evans, N., Treharne, H.: Interactive tool support for CSP || B consistency checking.
Formal Aspects of Computing 19(3) (2007) 277-302

Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines.
Formal Aspects of Computing, Special issue of IFM’04 (2005)

Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B.
Software and Systems Modelling Journal 4 (2005) 258-276

Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural
model of platelets. In: 11th IEEE Int. Conf. on Engieerging of Complex Computer
Systems, ICECCS. (2006)

Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS.
In: 1st Int. Conf. on Integrated Formal Methods (IFM’99), York, Springer Verlag
(1999) 437-457

Schneider, S., Treharne, H.: Communicating B machines. In: Formal specification
and development in Z and B (ZB 2002). Volume 2272 of LNCS., Springer Verlag
(2002) 416-435

Boulmé, S., Potet, M.L.: Interpreting invariant composition in the B method using
the spec# ownership relation: A way to explain and relax B restrictions. In: The
7th Int.l B Conf. Volume 4355 of LNCS., Springer (2007) 4-18

Biichi, M., Back, R.: Compositional symmetric sharing in B. In: FM’99: World
Congress on Formal Methods. Volume 1709 of LNCS., Springer-Verlag (1999) 431—
451

Butler, M.J.: A CSP Approach To Action Systems. PhD thesis, Oxford University
(1992)

Butler, M.: CSP2B : A practical approach to combining CSP and B. In: FM’99:
World Congress on Formal Methods. Volume 1709 of LNCS., Springer-Verlag
(1999) 490-508

Clearsy: B language reference manual. v1.8.6 edn. (2007) http://www.atelierb.
eu.

Schneider, S., Treharne, H.: Changing system interfaces consistently: A new re-
finement strategy for CSP||B. In: 7th Int. Conf. IFM 2009. Volume 5423 of LNCS.,
Springer (2009) 103-117

Colin, S., Mariano, G.: BiCoax, a proof tool traceable to the BBook. In: From
Research to Teaching Formal Methods - The B Method (TFM B’2009). (2009)

