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analysis of computer experiments by kriging-based
metamodeling and optimization

Olivier Roustant David Ginsbourger Yves Deville
Ecole des Mines de St-Etienne University of Bern Alpestat
Abstract

Two recently released R packages for the approximation and the optimization of
expensive-to-evaluate deterministic functions are presented. After a motivation of the
DiceKriging and DiceOptim packages relying on an overview of existing needs and soft-
wares in the field of Kriging for Computer Experiments, a self-contained mini-tutorial on
Kriging-based approximation and optimization techniques is proposed. The functional-
ities of both packages are then detailed and demonstrated in two disctinct sections. In
particular, the versatility of DiceKriging with respect to trend and noise specifications,
covariance parameter estimation, as well as conditional and unconditional simulations are
illustrated on the basis of several reproducible numerical experiments. The implementa-
tion of sequential and parallel optimization strategies relying on the Expected Improve-
ment criterion are then put to the fore on the occasion of DiceOptim’s presentation. An
appendix is finally dedicated to complementary mathematical and computational details.

Keywords: Computer Experiments, Gaussian Processes, Global Optimization.

1. Introduction

Numerical simulation has become a standard tool in natural science and engineering. Fx-
ploited as cheaper and faster complement to physical experiments, simulations can also some-
times be used as necessary substitute to them, e.g. for investigating the behavior of mechanical
structures, or the extreme risks associated with geological storage (e.g. CO2 sequestration
or nuclear waste deposit). A first step to such quantitative investigations is to proceed to a
fine mathematical modeling of the phenomenon under study, and to express the function of
interest as solution to a set of equations (generally PDE’s). Modern simulation techniques
such as finite-elements solvers and Monte-carlo methods can then be used to derive approxi-
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mate solutions to the latter equations. The price to pay in order to derive accurate simulation
results is computation time. Conception studies based on an exhaustive exploration of the
input space (say on a fine grid) are thus generally impossible under realistic industrial time
constraints. Parsimonious evaluation strategies are hence required, all the more crucially
that the computation times and the dimensionality of inputs are high. Mathematical approx-
imations of the input/output relation —also called surrogate models or metamodels— are
increasingly used as a tool to guide simulator evaluations more efficiently. Once a class of
surrogate models has been chosen according to some prior knowledge, they can be built upon
available observations, and evolve when new data is assimilated. Typical classes of surrogate
models for computer experiments include linear regression, splines, neural nets, and Kriging.
Here we essentially focus on several variants of the Kriging metamodel, and on their use in
prediction and optimization for costly computer experiments.

Originally coming from geosciences (Krige (1951)) and having become the starting point of
geostatistics (Matheron (1963)), Kriging is basically a spatial interpolation method. Assum-
ing that an unknown function y : D € R? — R is one sample of a real-valued random
process (Y (x))xep with given or partially estimated probability law, Kriging consists in mak-
ing predictions of unknown y(x(?)) values (x(%) € D) based on the conditional law of Y (x(?))
knowing observations of Y at a design of experiments X = {x(), ... x(™} (n € N). Skipping
further technical precisions at this stage, let us mention the remarkable fact that the Kriging
predictor is interpolating the observations, provided that they are assumed noise-free. It is
undoubtedly one of the reasons why this metamodel has been imported from its geostatistical
cradle (d = 2 or 3) to the high-dimensional framework of computer experiments (d € N).
Indeed, following the impulse given by the seminal paper Sacks, Welch, Mitchell, and Wynn
(1989), many works dedicated to Kriging as a surrogate to computer experiments have been
published including Welch, Buck, Sacks, Wynn, Mitchell, and Morris (1992) about screening,
Koehler and Owen (1996) with an emphasis on experimental design, or O’Hagan (2006) and
numerous achievements in uncertainty assessment by the same author since the nineties. To
get a global overview of state-of-the-art results and developments in Kriging for computer
experiments, we refer to contemporary books of reference such as Santner, Williams, and
Notz (2003), Fang, Li, and Sudjianto (2006), and Rasmussen and Williams (2006).

Since the goal of computer experiments is often to tune some control variables in order to
optimize a given output, it is obviously tempting to replace a costly simulator by a Kriging
metamodel in order to speed-up optimization procedures. Numerical experiments presented in
Jones (2001) show that directly optimizing the Kriging predictor is however generally not effi-
cient, and is potentially leading to artifactual basins of optimum in case of iterated optimiza-
tions with metamodel update. Fortunately, efficient criteria like the Expected Improvement
(EI) have been proposed for sequential Kriging-based optimization, as discussed and compared
with other criteria in the latter article, and in Schonlau (1997) and Sasena, Papalambros, and
Goovaerts (2002). Already proposed in previous works (e.g. in Mockus (1988)), EI has be-
come an increasingly popular criterion since the publication of the EGO algorithm in Jones,
Schonlau, and Welch (1998). Recent advances concern the extension of EI to a multipoints
criterion as well as Kriging-based parallel optimization strategies, such as proposed in Gins-
bourger, Le Riche, and Carraro (2010). More detail and some additional perspectives can be
found in the recent tutorial by Brochu, Cora, and de Freitas (2009).

Back to the implementation of Kriging, let us give a short overview of existing codes, and
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motivate the emergence of new open source packages for Computer Experiments. Statisti-
cal software dedicated to Kriging have flourished since the 1990’s, first in the framework of
low-dimensional spatial statistics, and later on in computer experiments and optimization.
Several R packages like spatial, geoR, and RandomFields propose indeed a wide choice of
functionalities related to classical 2- and 3-dimensional geostatistics. These packages are
unfortunately not suitable for applications in higher dimensions, for which similar Kriging
equations but specific parameter estimation techniques have to be used. Alternatively, Mat-
Lab toolboxes emanating from the computer experiments community have become popular
among practitioners, like MPerK and DACE, or GPML in the context of Gaussian process
regression and classification for machine learning. More recently, some first R packages in
this vein have emerged, like mlegp or tgp. mlegp possesses good performances in parameter
estimation and applications of Kriging for sensitivity analysis and for stochastic filtering, but
is restricted to Kriging with Gaussian correlation function and first degree polynomial trend,
and does not offer any Kriging-based optimization algorithm. In other respects, tgp focuses
on treed Gaussian process models, with a Bayesian treatment of covariance parameters, and
includes a variant of EGO relying on tgp models. Such highly sophisticated metamodels,
relying on Markov Chain Monte Carlo techniques, are quite calculation intensive. Here we
consider simpler Universal Kriging (UK) metamodels, and put a particular focus on a quick
and efficient parameter estimation. The aim is to enable the user to optimally benefit from the
Universal Kriging potentialities, e.g. through a versatile syntax for the trend structure, and to
push the limit of applicability of UK in higher dimensions thanks to a careful implementation
of Likelihood maximization routines. In addition, we specifically aim at providing efficient
kriging-based optimizers in the spirit of EGO, with optional features for parallel computing.

DiceKriging and DiceOptim have been produced in the frame of the DICE consortium. DICE
has joined major french companies and public institutions having a high R&D interest in
computer experiments with academic participants during the years 2006-2009. The main
aim was to put in common industrial problems and academic know-how to foster research
and transfer in the field of design of computer experiments. 4 R packages summarizing
a substantial part of the conducted research have been released on the CRAN at the end
of the consortium. The four packages DiceDesign, DiceKriging, DiceEval, and DiceOptim
should be seen as a small software suite, tailored for different but complementary needs of
computer experimenters. For instance, DiceDesign might be a good option to generate some
original space-filling designs at an initial stage of metamodel fitting with DiceKriging, while
DiceEval might be used to assess the coherence and the fidelity of the obtained metamodel to
the observed data. DiceOptim is more a complement of DiceKriging dedicated to Expected
Improvement functions and related to sequential and parallel Kriging-based optimization
routines. DiceDesign and DiceEval will be presented soon by their authors (Dupuy, Helbert,
and Franco (2010)). They will not be used nor detailed here.

The main aim of this article is to give a practical introduction to DiceKriging and DiceOptim,
together with an overview of their statistical background. In order to produce a self-contained
but portable document, we have chosen to recall basic assumptions in the body of the docu-
ment (in particular in section 2), and send the reader to the appendix and the bibliography
for more technical contents (implementation notes, optimization details, etc.). An overview
of the main functionalities of the packages is given in section 3. Section 4 and 5 are dedicated
to illustrated examples with code chunks of DiceKriging and DiceOptim, respectively.
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2. Statistical background

Previous to presenting the DiceKriging and DiceOptim packages from a user perspective, let
us recall some statistical basics of Kriging metamodeling and Kriging-based optimization.

2.1. From Simple to Universal Kriging for deterministic simulators

In this section, the simulator response y is assumed to be a deterministic real-valued function
of the d-dimensional variable x = (21, ...,2q4) € D C R% 3 is assumed to be one realization of
a square-integrable random process (Yx)xep with first and second moments known up to some
parameters. Let us recall that X = {X(l), e ,X(")} denote the points where y has already
been evaluated, and denote by y = (y(x(l)), . ,y(x(")))' the corresponding outputs. For any
x € D, the aim of Kriging will be to optimally predict Yy by a linear combination of the
observations y. Simple Kriging and Universal Kriging constitute the best linear predictors in
two particular cases concerning the process Y and what is known about it.

Simple Kriging: from spatial linear interpolation to Gaussian process conditioning

In Simple Kriging (SK), Y is assumed to be the sum of a known deterministic trend function
:x €D — pu(x) € R and of a centered square-integrable process Z:

Y(x) = p(x) + Z2(x), (1)

where Z’s covariance kernel C' : (u,v) € D?> — C(u,v) € R is known. Most of the time,
Z is assumed second order stationary, so that C(u,v) = 0?R(u — v;1) where the so-called
correlation function R is a function of positive type with parameters v, and o2 is a scale
parameter called the process variance. More concerning these parameters can be found in
a forthcoming subsection. Concerning Y’s trend, note that it is very easy to come back to
the centered process Y (x) — p(x) since p is known. Without loss of generality, we will hence
first assume that Y is centered. Now, let us recall that the best linear unbiased predictor
of Y (x) based on the observations Y (X) is obtained by finding A*(x) € R™ minimizing the

mean squared error MSE(x) := E [(Y(x) - }\(x)’Y(X))ﬂ. Convexity of MSE ensures both

existence and uniqueness of A*(x), and the SK weights are given by: A*(x) = C~'c(x), where
C = (O(x™,x)))1<; j<n is the covariance matrix of Y (X), and ¢(x) = (C(x,x))1<i<y, is
the vector of covariances between Y(x) and Y (X). Substituting both the random vector
Y (X) by its realization y and A(x) by A*(x) in the expression A(x)'Y(X), we get the so-
called SK mean prediction at x: mgx (x) := ¢(x)’C~ly. Similarly, by plugging in the optimal
A*(x) in the expression of the MSE, one gets the so-called SK variance at x: s%,(x) :=
C(x,x) — ¢(x)'C7le(x). Generalizing to the case of a non-centered process Y with known
trend function u(.), we get the SK equations:

msk(x) = p(x)+e(x)C ' (y - p) (2)
F(x) = C(x,x) - e(x)Ce(x), (3)

where p = pu(X) is the vector of trend values at the design of experiments. Classical properties
include the fact that mgk interpolates the data (X, y), and that s%K is non-negative and zero at
the design of experiments. Furthermore, the SK variance is independent of y (homoscedasticity
in the observations). Note that these properties hold whatever the chosen kernel C, without
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any condition of compatibility with the data. In addition, let us remark that in the typical
case of a stationary kernel C(x,x’) = 02R(x — x';1), the Simple Kriging equations simplify
to mgk (x) = p(x) + r(x)’ R~y — p) and s (x) = 0 (1 — r(x)R'r(x)), where r(x) and
R respectively stand for the analogues of ¢(x) and C in terms of correlation. In particular,
mgxk is hence not depending on o2, while s%K is proportional to it.

One major fact concerning the SK equations is that they coincide with classical conditioning
results in the case where the process Z is assumed Gaussian. Indeed, the orthogonality of
Y(x) — A*(x)'Y(X) and Y (X) ensures independence in the latter case, so that mgk(x) =
E[Yx|Y(X) = y]. Similarly, s, then coincide with the conditional variance Var[Yx|Y (X) =
y], so that the conditional law of Yx can finally be written in terms of SK quantities:

YalY (X) =y ~ N (ms(x), s3x(x)) (4)

More generally, the law of the whole random process Y conditional on Y (X) =y is Gaussian
with trend mgk, and with a conditional covariance structure which can be analytically derived
in the same fashion as s3y (see Ginsbourger et al. (2010) for details). The latter is the key to
conditional simulations of Y knowing the observations, as we will illustrate in section 4. We
now turn to the case where the trend p is known up to a set of linear trend coefficients.

When some linear trend coefficients are unknown: Ordinary and Universal Kriging

Let us focus on the case where the trend is of the form pu(x) = Z;Zl Bifi(x) (I € N-{0}),
where the f;’s are fixed basis functions, and the (3;’s are unknown real coefficients. Universal
Kriging (UK) consists in deriving best linear predictions of Y based on the observations Y (X)
while estimating the vector B := (81, ..., ;) on the fly. Note that in the specific case where
the basis functions reduce to a unique constant function, UK is referred to as Ordinary Kriging
(OK). The UK equations are given by:

muk(x) = f£(x)'B+c(x)C ' (y ~ FB) ()
st(x) = s§k(x) + (f(x)' = c(x)CT'F) (F'CT'F) " (f(x) — c(x)'CT'F)  (6)

where f(x) is the vector of trend functions values at x, F = (f(x()’ ... f(x(™)") is the n x |
so-called experimental matriz, and the best linear estimator of B under correlated residual
is given by the usual formula 8 := (F'C~'F/)~"'F/'C~'y. Basic properties of UK include
similar interpolating behavior as SK, with a variance vanishing at the design of experiments.
Furthermore, myk (x) tends to the best linear fit f(x)’ 8 whenever the covariances c(x) vanish,
which may typically happen when x is far away from the design X for some norm ||.||, in the
case of a stationary covariance kernel decreasing with |ju — v||. Note also the inflation of the
Kriging variance term, which reflects the additional uncertainty due to the estimation of 3.

As in the case of SK, it is possible to interpret UK in terms of random process conditioning,
at the price of some specific assumptions. Indeed, working in a Bayesian framework with
an improper uniform prior over RP for 8 (Cf. Helbert, Dupuy, and Carraro (2009)) leads to
a Gaussian posterior distribution for the process Y conditional on the observations. Again,
muk(x) and s} (x) appear respectively as conditional mean and variance, and the analyti-
cally tractable conditional covariance kernel enables the use of conditional simulations at any
set of new design points. This model is a first step towards Bayesian Kriging, where more
general prior distributions can be chosen, not only for 3 but also for all kernel parameters
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such as o2 or 1. We will not develop this approach any further here since a generic ver-
sion of Bayesian Kriging is not proposed in the present version of DiceKriging, but send the
interested reader to the seminal article Omre (1987) and the works of O’Hagan.

2.2. Filtering heterogeneously noisy observations with Kriging

In many practical situations, it is not possible to get exact evaluations of the deterministic
function y at the design of experiments, but rather punctual noisy measurements. This is the
case for instance for PDE solvers relying on Monte-Carlo methods (e.g. in nuclear safety), or
in partially converged simulations based on finite elements (e.g. in fluid dynamics). In such
cases, for a given x € D, the user doesn’t have access to y(x), but to an approximate response
y(x)+e€. When it is reasonable to assume that € is one realization of a "noise” random variable
g, it is still possible to derive Kriging approximations. Here we assume that the probability
distribution of € may depend on x and other variables, and that its realizations may differ for
different measurements of y at the same x. So instead of referring to the measurements of y in
terms of x’s, we will denote by g; = y(x(i)) +¢€; the sequence of noisy measurements, where the
x("’s are not necessarily all distinct, and by 7'1-2 the corresponding noise variances. Following
the convenient particular case of Monte-Carlo simulations, we finally make the assumption
that &; ~ N(0,72) (1 < i < n) independently. Note that although not explicitly addressed
in this paper, the case of multi-Gaussian vector of €;’s with prescribed covariance matrix is
a straightforward generalization of the model considered here. We now recall the Kriging
equations for heterogeneously noisy observations, in the Gaussian process framework.

If we suppose that y is a realisation of a Gaussian process following the Simple Kriging assump-
tions above, the 7;’s can now be seen as realizations of the random variables YZ = Y(x(i)) +¢4,
so that Kriging amounts to conditioning Y on the heterogeneously noisy observations Y;
(1 < i < n). Indeed, provided that the process Y and the Gaussian measurement errors
g; are stochastically independent, the process Y is still Gaussian conditionally on the noisy
observations Y; (1 < i < n), and its conditional mean and variance functions are given by the
following slightly modified Kriging equations:

msk(x) = pu(x)+cx)(C+A)"Hy - p) (7)
sik(x) = Cx,x) —c(x)(C+ A)e(x), (8)
where ¥ = (41,...,9,), and A is the diagonal matrix of diagonal terms 7...72. The only

difference compared to noiseless SK equations is the replacement of C' by C' + A at every
occurence. Specific properties of this variant of the SK metamodel include the fact that
msk(.) is not interpolating the noisy observations (i.e. where no observation has been done
with 7 = 0), that s%K() doesn’t vanish at that points, and is globally inflated compared to
the noiseless case. Note that although S%K() now depends on both the design X and the

noise variances 72 := {7'12 ..., 72}, it still doesn’t depend on the observations, similarly as in

r'n
the noiseless case. Note finally that the same filtering effect applies in the case of Universal

Kriging, where the equations are similarly obtained by replacing C~! by (C + A)~L.

2.3. Covariance kernels and related parameter estimation

The choice of C' has crucial consequences on the Kriging metamodel obtained, all the more
so when the trend is known or assumed constant. In order to be admissible, C' has to be
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chosen in the set of positive definite kernels. Checking that positive-definiteness holds for
a given C is however not an easy task, and non-parametric estimation of it seems totally
unrealistic. So what one typically does in Kriging is to select beforehand a parametric family
of kernels known to be positive definite, and to estimate the corresponding parameters based
on available data, for instance by maximizing a likelihood or minimizing the average cross-
validation error. A usual restriction is to consider kernels depending only on the increment
u — v, called stationary kernels. Admissible stationary kernels coincide with the functions of
positive type, which are characterized by Bochner’s theorem (see e.g. Rasmussen and Williams
(2006)) as Fourier transforms of positive measures. Some of the most popular 1-dimensional
stationary kernels include the Gaussian kernel, Fourier transform of the Gaussian density,
as well as the Matérn kernel, Fourier transform of the Student density. One convenient way
of getting admissible covariance kernels in higher dimensions is to take tensor products of
1-d admissible kernels. Such kernels, called separable, are the most widely used in computer
experiments literature. The covariance kernels available in the current version of DiceKriging
are built upon this model, up to a multiplicative constant ¢? > 0, with the 1-d functions
summed up in table 2.3 hereunder.

d
c(h) := C(u,v) = o [ ] 9(hy; 6;), 9)
j=1
where h = (hy,...,hg) := u — v. Although this could make sense in some contexts, the

package does not allow mixing different covariance functions by dimensions. The parameters
995 are chosen to be physically interpretable in the same unit as the corresponding variables.
They are called characteristic length-scales by Rasmussen and Williams (2006). The analytic
formula are taken from this book, and are given below (where § > 0 and 0 < p < 2):

Gaussian g(h) = exp (~ 1)
Matérn v =5/2  g(h) = (1+ Y51 + 35 ) exp (-5
Matérn v =3/2  g(h) = (1 + @) exp (_@)
Eaponential  g(h) = exp (-5}
Power-Ezponential  g(h) = exp (_ ( b )p)

The above covariances will result in different level of smoothness for the associated random
process paths. With Gaussian covariance, the sample paths of the associated centered Gaus-
sian process have derivatives at all orders and are thus very smooth (they are even analytical).
With Matérn covariance with parameter v, the process is (mean square) differentiable at or-
der k if and only if v > k. Thus with v = 5/2, the process is twice differentiable; with
v = 3/2 only once. With v = 1/2, equivalent to the exponential covariance, the process is
only continuous. This is also the case for the power-exponential covariance when the power
parameter p is strictly less than 2. The general Matérn covariance depends on the modified
Bessel function, and has not been implemented yet. However, when v = k + 1/2 where k is
a non-negative integer, the covariance expression is given by an analytical expression. Two
cases provided correspond to commonly needed levels of smoothness (v = 3/2 and v = 5/2).

Despite the offered flexibility in terms of differentiability level, all the covariance kernels above
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correspond to Gaussian processes with continuous paths. Now, in applications, the assump-
tion of continuity is sometimes untenable for simulator outputs, although deterministic, due
in particular to numerical instabilities. Hence, even if several evaluations at the same point
deliver the same response, a slight change in the input vector may sometimes result in a jump
in the response. Such discontinuities are classically handled in geostatistics using a so-called
nugget effect, consisting in adding a constant term 72 (named jitter in machine learning) to
¢(0):

d

c(h) := o [ 9(hy; 8;) + 7260 (h) (10)
j=1

The consequences of such a modification of the covariance kernel on Kriging are fairly similar
to the case of noisy observations. Up to a rescaling of the Kriging variance due to the
fact that the process variance changes from o2 to o2 + 72, predicting with nugget or noisy
observations coincide when considering points outside of the design of experiments: a diagonal
with constant term is added to the covariance matrix of observations, smoothing out the
noiseless Kriging interpolator and inflating the variance. A major difference, however, is that
Kriging with nugget effect conserves the interpolation property: since 72 appears this time
in the covariance vector too, the Kriging mean predictor systematically delivers the original
observation in virtue of the covariance vector being a column of the covariance matrix, as in
the deterministic case without nugget and contrarily to the noisy case.

In DiceKriging, the parameters can be either given by the user or estimated. The first
situation is useful for academic research or for Bayesian computations. The second one for non-
Bayesian approaches, and for Kriging-based optimization. At present time, two estimation
methods are proposed: Maximum Likelihood Estimation (MLE) or Penalized MLE (PMLE).
The latter is based on the SCAD penalty defined in Fan (1997) but is still in beta version. In
appendix A, we give the expressions of the likelihoods, concentrated likelihoods and analytical
derivatives involved. We also report to section 3.3 for optimization details.

2.4. Kriging-based Optimization: Expected Improvement and EGO

Optimization (say minimization) when the objective function is evaluated through costly sim-
ulations creates a need for specific strategies. In most cases indeed, the non-availability of
derivatives prevents one from using gradient-based techniques. Similarly, the use of meta-
heuristics (e.g. genetic algorithms) is compromised by severely limited evaluation budgets.

Kriging metamodels has been successfully used for the global optimization of costly determin-
istic functions since the nineties Jones et al. (1998). A detailed review of global optimization
methods relying on metamodels can be found in Jones (2001). The latter illustrates why
directly minimizing a deterministic metamodel (like a spline, a polynomial, or the Kriging
mean) is not efficient. Kriging-based sequential optimization strategies address the issue of
converging to non optimal points by taking the Kriging variance term into account, hence
inciting the algorithms to be more explorative. Such algorithms produce one point at each
iteration that maximizes a figure of merit based upon the law of Y (x)|Y (X) = y. Several infill
sampling criteria are available, that balance Kriging mean prediction and uncertainty. The
Expected Improvement criterion has become one of the most popular such criteria, probably
thanks to both its well-suited properties and its analytical tractability.
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The Ezxpected Improvement criterion

The basic idea underlying EI is that sampling at a new point x will bring an improvement
of min(y(X)) — y(x) if y(x) is below the current minimum, and 0 otherwise. Of course, this
quantity cannot be known in advance since y(x) is unknown. However, the Gaussian process
model and the available information Y (X) = y make it possible to define and derive:

[(min(Y (X)) = ¥ (x)" [Y(X) = y]

El(x) : = E | (min
E [(min(y) - Y(x))" [Y(X) =y],

(11)

for which an integration by parts yields the analytical expression (Cf. Jones et al. (1998)):

BI(x) = (in(y) - () @ (M0 ZE ) g (2 SO )

where ® and ¢ are respectively the cdf and the pdf of the standard Gaussian law. The
latter analytical expression is very convenient since it allows fast evaluations of EI, and even
analytical calculation of its gradient and higher order derivatives. This used in particular
in DiceOptim for speeding up EI maximization. This criterion has important properties for
sequential exploration: it is null at the already visited sites, and positive everywhere else with
a magnitude that is increasing with s(.) and decreasing with m(.).

The “Efficient Global Optimization”™ Algorithm

EGO (Cf. Jones et al. (1998)) relies on the EI criterion. Starting with an initial Design X
(typically a Latin hypercube), EGO sequentially visits a current global maximizer of EI and
updates the Kriging metamodel at each iteration, including hyperparameters re-estimation:

1. Evaluate y at X, set y = y(X), and estimate covariance parameters of Y by ML
2. While stopping criterion not met

(a) Compute x"°V = argmax,pEI(x) and set X = X U {x"*V}
(b) Evaluate y(x"°") and set y =y U {y(x"")}

(¢) Re-estimate covariance parameters by MLE and update Kriging metamodel

EGO and related EI algorithm have become commonplace in computer experiments, and
are nowadays considered as reference global optimization methods in dimension d < 10 in
cases where the number of objective function evaluations is drastically limited (see e.g. Jones
(2001) or Brochu et al. (2009)). One major drawback of EGO is that it does not allow parallel
evaluations of y, which is desirable for costly simulators (e.g. a crash-test simulation run
typically lasts 24 hours). This was already pointed out in Schonlau (1997), where the multi-
points EI was defined but not further developed. This work was continued in Ginsbourger
et al. (2010) by expliciting the latter multi-points EI (¢-EI), and by proposing two classes
of heuristics strategies meant to approximately optimize the ¢g-EI, and hence simultaneously
deliver an arbitrary number of points without intermediate evaluations of y.
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2.5. Adaptations of EI and EGO for Synchronous Parallel Optimization

Considering ¢ > 2 candidate design points X"V := {x"t1) .. x("+t9}1 the g-points EI is
defined as conditional expectation of the joint improvement brought by the new points:

+
EI(x("+D)  x(H)y = | [(min(y) — min (Y(X(HH)), ...,Y(X(H+Q))>> Y(X) = y] (13)
Unlike in the 1-point situation, ¢-EI is not known in closed form (See Ginsbourger et al.

(2010) for a formula in the case ¢ = 2). However, it is possible to estimate it by a standard
Monte Carlo technique relying on Gaussian vector simulation:

1: function Q-EI(X, y, X"W)

2 L = chol(Var[Y(X"")|Y(X) =y]) > Decomposition of cond. cov. mat.
3 for i <+ 1,ngym, do

4 N ~N(0,1,) > Drawing a standard Gaussian vector N at random
5: M; = m(X"") + LN > Simulating Y at X" conditional on Y (X) =y
6 qLsim (1)=[min(y) — min(M;)]|* > Simulating the improvement at X"V
7 end for

8 qE 1, = ﬁ Yo qlgm(i) > Estimation of the ¢-points Expected Improvement
9: end function

g-EI can potentially be used to deliver an additional design of experiments in one step through
the resolution of the optimization problem

(x ) x (2 x(H0)y — aremaxgnew e pa [BI(XPY)] (14)

However, the optimization problem defined by equation 14 is of dimension d X ¢, and with
a noisy and derivative-free objective function in the case where the criterion is estimated
by Monte-Carlo. Pseudo-sequential greedy strategies have been proposed that approach the
result of problem 14 while avoiding its numerical cost, hence circumventing the curse of
dimensionality. In particular, the Constant Liar (CL) is a sequential strategy in which the
metamodel is updated (still without hyperparameter re-estimation) at each iteration with a
value L € R exogenously fixed by the user, here called a "lie”:

Algorithm 1 The Constant Liar algorithm:
1: function CL(X, y, L, q)

2 for i+ 1,q do

3: x" = argmax, pEI(x)
4: X = X [ J{x"*}
5

6
7

y =y U{L}
end for
end function

The effect of L on the performance of the resulting optimizer is investigated in the next
section. L should logically be determined on the basis of the values taken by y at X. Three
values, min{y}, mean{y}, and max{y} were considered in Ginsbourger et al. (2010). In the
present version of DiceOptim, the CL function has a tunable L, whereas the parallel version of
EGO relying on CL (called CL.nsteps) has a lie L fixed to min{y}. More details are given in
section 5, dedicated to numerical examples produced with the main functions of DiceOptim.
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3. Guidelines for users

3.1. The important functions

DiceKriging performs estimation, simulation, prediction and validation for various Kriging
models. The first step is to define a Kriging model, which is the goal of the km function.
It is suited either for Simple Kriging (SK) and Universal Kriging (UK), noise-free and noisy
observations, and allows some flexibility in estimating all or only some parameters. Its func-
tioning is detailed in table 1. Simulation, prediction, and validation are implemented as
simulate, predict and plot methods, that apply directly to km objects. For prediction, the
kind of Kriging must be indicated in the argument type ("SK" or "UK"). The plot method
corresponds to leave-one-out validation. A k-fold validation can be found in DiceEval.

DiceOptim performs sequential and parallel Kriging-based optimization, based on the 1-point
and multipoints Expected Improvement (EI) criteria. The main functions are described in
table 2. Note that in the version presented here, DiceOptim is limited to noise-free observa-
tions.

Kriging model description ‘ Arguments to be specified in km
Unknown trend and cov. kernel parameters (UK) | (Default) Nothing to specify

Known trend and cov. kernel parameters (SK) coef .trend, coef.cov, coef.var
Known trend, unknown cov. kernel parameters coef.trend

Optional nugget effect

- Known nugget (homogeneous to a variance)
- Unknown nugget .estim=TRUE

Case of noisy observations noise.var (homogen. to a variance)

(incompatible with a nugget effect in this package)

Table 1: Possibilities of the function km for the definition of Kriging models. km estimates the unknown
parameters and creates the resulting km object. Default is Universal Kriging (noise-free observations, no
nugget effect). The other Kriging models are obtained by specifying arguments in km as indicated below.

R function ‘ Description

EI One-point noise-free EI criterion
qEI g-points noise-free EI criterion (estimated by Monte Carlo)

11

EGO.nsteps | Sequential EI Algorithm — model updates including re-estimation of covari-
ance parameters — with a fixed number of iterations (nsteps)

max_ET One-point noise-free EI maximization. No call to the objective function

max_gEI.CL | (sub-)maximization of the g-points EI, based on the Constant Liar heuristic.
No call to the objective function

CL.nsteps Parallel EI Algorithm — model updates including re-estimation of covariance
parameters — with a fixed number of iterations (nsteps)

Table 2: Important functions in DiceOptim
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3.2. Trend definition and data.frames

A convenient way to specify linear trends in R is to use the class formula that provides
compact symbolic descriptions. Among advantages of formulas, any functional term can
be given, and updating models is very easy. For instance, the linear model arguments of the
functions 1m or glm (package stats) are given as objects of class formula. The same is possible
in DiceKriging, through the km function, with some specificities that we describe now.

First, the design X must be provided as a data.frame in the argument design of km, which
implies that every columns of X are named. Then the trend can be specified in the argument
formula, using these names. The formula mechanism mainly works as in the 1m function
from the stats package, as shown in table 3; in particular, remark that the inhibition function
I is sometimes required, especially for polynomial terms. Note however that the left hand
term is not needed (and will not be used if provided): this is because formula is only defining
a trend (and not a transformation of the response y).

Once the trend is specified, one can estimate or build a km object (see last section). For
prediction (or simulation), the new location(s) X"V have to be specified in the argument
newdata of predict (or simulate) method. In practice, the user may not want to loose time
converting matrices to data.frames. Thus, X"V can be provided simply as a matrix (or even
a vector in case of a single new data). However, with this practical syntax, no variable name
is stored for X"V and it is always assumed that the columns of X"V are provided in the
same order as for X. For evident reasons, the user must not depart from this rule.

’ Trend | formula in km
Constant (default model) 1
Full 1st order polynomial -
tdem + 2nd order interactions T2
Bo + ﬁg,:ﬁ% + B2,67276 + P12712 ~ I(x57°3) + I(x2*x6) + x12
Bo + Bacos(xyg) + Prsin(zy) ~ cos(x4) + sin(x7)
idem, but without intercept ~ -1 + cos(x4) + sin(xT7)
1st order polynomial without 3 “ . - x3
1st order polynomial plus fgexp(zg) | ~ . + exp(x8)
Full 2nd order polynomial d = 3 TUT2 + I(x172) + I(x272) + I(x372)

Table 3: Examples of trend specification in km.

3.3. Comments about the optimization algorithms

Optimization algorithms are used on two different occasions: likelihood maximization and EI
maximization. These problems are quite hard, due to the cost of objective functions, numerical
instabilities, multimodality and dimensionality issues (see e.g. Santner et al. (2003)). In
DiceKriging and DiceOptim, we have addressed them by following four leading ideas. First,
rely on trustworthy state-of-the-art algorithms; Second, choose at least one algorithm capable
to overcome multimodality; Third, to improve speed and accuracy, supply the analytical
gradients; Fourth, enable tunability of key parameters by the user. For these reasons, we have
selected a quasi-Newton BFGS algorithm (function optim) and the hybrid algorithm genoud
(from package rgenoud), taking advantage of both the global search provided by a genetic
algorithm and the local search based on gradients. Let us now turn to some specificities.
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Likelihood maximization. The implementation is based on the efficient algorithm pro-
posed by Park and Baek (2001), and extended to the Kriging models addressed here (see
the implementation details in the appendix A). On the one hand, the results obtained with
BFGS are the quickest, but may be variable. To reduce this variability, BFGS is run from
the best point among an initial population drawn at random. The size of this population
can be tuned by changing pop.size in the argument control. On the other hand, rgenoud
usually gives more stable results, at the cost of a higher computational time. Again, the most
influential parameters can be tuned by the user. Some results concerning the performance of
the optimizers are given in the examples section.

EI maximization. The branch-and-bound algorithm proposed by Jones et al. (1998) was
not chosen here, since the boundaries depend on the covariance function and may be hard to
find in general. Due to the multimodal form of EI (which is equal to 0 at every visited point),
the genoud algorithm is used. The analytical gradient of EI is derived in appendix B.

3.4. Known problems and their solutions

Despite the care taken in implementation, some problems can be encountered. Some of them
are purely numerical, and can be solved easily, but others are intrinsic to Kriging and may
be due to an inappropriate choice of design points or covariance kernels.

Non invertibility of covariance matrices. In some frequent situations, interpolation is
hard to achieve numerically. Roughly speaking, this happens when the design points are too
close relatively to the spatial correlation length. This results in nearly non invertible covari-
ance matrices. The problem is all the more severe that the covariance kernel is constraining.
With our kernels, the worst case with this respect is the Gaussian kernel, which implies the
existence of derivatives at any order. On the other hand, the Matérn kernel with v = 5/2 (for
which the derivatives exist up to order 2) gives much better conditioned covariance matrices.
Thus, the first recommendation is to avoid using the Gaussian kernel and prefer the Matérn
kernel with v = 5/2; Such a choice is strongly advocated by Stein (1999). This kernel is the
default choice in DiceKriging. Another possibility, that can be combined to the former one,
is to add a nugget effect, or jitter. This method is sometimes referred to as diagonal inflation.
However, the sample paths are then discontinuous at the design points. Therefore, the nugget
value should not be too large in order to avoid abusive departure from continuity, but not too
small to prevent from numerical problems. An illustration is given in section 4.6.

Identifiability issues caused by large design interdistances. A dual difficulty is en-
countered when the design points are not close enough relatively to the spatial correlation
length. In such situations, estimation of Kriging models may give either misleading results
or flat predictions, corresponding to range parameters 6 estimated to zero. Analogous issues
are faced in signal theory, where recovering a periodic signal is not possible if the sampling
frequency is too small. A solution is penalizing. For instance, Li and Sudjianto (2005) have
shown some promising results obtained by Penalized MLE with SCAD penalty (Fan (1997)).
This method has been implemented in DiceKriging, but should be considered as a beta version

13
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at this stage, since the estimation results for the tuning parameter are not convincing. An-
other possibility is simply to add a constraint 8 > 6,,;, in MLE. One then face the analogous
problem of choosing the lower threshold 6,,;,. An illustration is given in section 4.6.

3.5. Trustworthiness

Producing a trustworthy result is the main concern — or "prime directive”, as named by
Chambers (2008) — of software providers. To experiment trustworthiness of our packages, we
have implemented several tests, some of them being included in the examples of functions
simulate.km and km. The first one is a consistency test between the prediction formulas of
Simple Kriging and simulation results; in limit cases, prediction with Universal Kriging is also
successfully compared to the linear regression confidence bounds computed with the 1m [stats]
function. The second one is a performance study of maximum likelihood estimators, achieved
by monitoring Kriging parameters estimates based on simulated paths of a Gaussian process
which law is actually known. This study is highlighted in one of the examples of section 4.

4. Examples with DiceKriging

4.1. An introductory 1D example with known parameters.

First, let use km to build a Kriging model with the following characteristics: second order
polynomial trend 11z 4 222, Matérn 5/2 covariance structure with ¢ = 5 and 6 = 0.4. Recall
that the trend form is interpreted with an object of type formula, in the same way as for
linear models (see lm{stats}). As this formula is based on the variables names, the argument
design of km must be a data.frame. Thus in the following example, the vector inputs is
converted to a data.frame with name x, which must also be used in the argument formula.

> inputs <- c(-1, -0.5, 0, 0.5, 1); output <- c(-9, -5, -1, 9, 11)

> theta <- 0.4; sigma <- 5; trend <- c¢(0,11,2);

> model <- km(formula="x+I(x"2), design=data.frame (x=inputs), response=output,
+ covtype="matern5_2", coef.trend=trend, coef.cov=theta, coef.var=sigma”2)

Note that for polynomials, the operator I must be used in formula (see section 3.2). The
argument covtype could have been omitted since "matern5_2" is the default case. For nice
printing, and checking purpose, just type:

> model

Call:

km(formula = “x + I(x"2), design = data.frame(x = inputs), response = output,
covtype = "maternb_2", coef.trend = trend, coef.cov = theta,

coef.var = sigma“2)
Trend coeff.:

(Intercept) 0.0000
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X 11.0000
I(x"2) 2.0000
Covar. type : maternb5_2

Covar. coeff.:
theta(x) 0.4000

Variance: 25

Then use the predict method to predict at new data. As all parameters are assumed to be
known, the argument type is turned to "SK”, standing for Simple Kriging.

> t <- seq(from=-2, to=2, length=200)
> p <- predict(model, newdata=t, type="SK")

Finally plot the results : SK mean and 95% confidence intervals.

> plot(t, p$mean, type="1", xlim=c(-2,2), ylim=c(-30,30), xlab="x", ylab="y")
> lines(t, p$lower95, col="black", 1lty=2)

> lines(t, p$upper95, col="black", 1lty=2)

> points(inputs, output, col="red", pch=19)

> abline (h=0)
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Figure 1: A first 1-dimensional example of Simple Kriging with second order polynomial trend and Matérn
covariance. All parameters are known here.
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Influence of the range parameters

The range parameters in DiceKriging are length-scale: a small value is analogous to a high
frequency, and a large one to a low frequency. To illustrate this, we have run the code above
with three values of 8: 0.05, 0.4 and 1. The result is represented in figure 2.

30
1

20
1

10

-10

-20
-20

-30

Figure 2: Simple Kriging with known parameters, and three different range values: small (left), intermediate
(middle) and large (right). The range parameters are length-scale.

Influence of the trend

Let us visualize the influence of the trend, by comparing constant, affine and sine trends.
The sine trend is chosen instead of the quadratic trend, to show that the trends proposed in
DiceKriging are not limited to polynomials. The only modification in the R code is in the
argument formula. For a constant trend, we have used:

> formula <- ~1; trend <- 0
For the affine trend:
> formula <- “x; trend <- ¢(0,10)

The first coefficient in trend is the intercept, and the second one the slope: thus, mathe-
matically the affine trend is 10z. Note that in this case, another possible choice for formula
is:

> formula <- ~
Finally, for the sine trend, we have used the function 1+ 15sin(%x):

> formula <- “sin(pi/4#*x); trend <- c(1,15)

The corresponding results are shown in figure 3. The main difference is with extrapolation
(here mainly outside [—1, 1]) where the Kriging mean reverts to the specified trend. For more
details, see Ginsbourger, Dupuy, Badea, Carraro, and Roustant (2009).
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Figure 3: Simple Kriging with known parameters, and three different trends: constant, affine and sine.

4.2. Simulations of Gaussian processes underlying Kriging models

Conditional and unconditional simulations are implemented as the so-called simulate method,
applying to km objects. For instance, simulate can be applied to the object model defined in
the previous section 4.1. By default, unconditional simulations are performed at design points;
to simulate at new points, the new locations must be specified in the argument newdata. The
argument nsim contains the number of simulations required.

> t <- seq(from=-2, to=2, length=200)
> y <- simulate(model, nsim=5, newdata=t)

Formally the value y is a matrix where each row contains one simulation. All simulations are
represented in figure 4. The trend is the second order polynomial previously considered.

> trend <- c(0, 11, 2)

> ytrend <- trend[1] + trend[2]*t + trend[3]*t~2

> plot(t, ytrend, type="1", col="black", ylab="y", 1lty="dashed",
+ ylim=c (min(ytrend)-2+*sigma, max(ytrend) + 2*sigma))
> for (i in 1:5) lines(t, yl[i,], col=i)

Influence of covariance functions

The smoothness of stationary Gaussian processes sample functions depends on the properties
(at 0) of the covariance functions. To illustrate this, one simulation is performed for each
covariance function "exp", "matern3_2", "matern5_2" or "gauss". To save space, the code
is not included in the vignette, but can be found in the documentation of simulate.km.
The different simulations are represented in figure 5, as well as the corresponding covariance
functions. The same kind of experiment can be done with the power-exponential covariance
function ("powexp"), also implemented in DiceKriging.

17
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Figure 4: Unconditional simulations of a trended 1-dimensional Gaussian process with Matérn covariance
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Figure 5: Simulations of 1-dimensional Gaussian processes

Conditional simulations

Still following the first example of section 4.1, conditional simulations can be performed,
simply by turning the argument cond to TRUE:
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> y <- simulate(model, nsim=5, newdata=t, cond=TRUE)

The conditional simulations are represented in figure 6. This procedure will be used in the
next section to do two trustworthy tests. Firstly, the conditional simulations can be compared
with the Simple Kriging mean and variance. Secondly, it will be used to evaluate the accuracy
of the maximum likelihood estimators of the Gaussian process covariance parameters.

> plot(t, ytrend, type="1", col="black", ylab="y", 1ty="dashed",
+ ylim=c (min(ytrend)-2*sigma, max(ytrend) + 2*sigma))
> for (i in 1:5) lines(t, yl[i,], col=i)

> points(inputs, output, col="red", pch=19)
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Figure 6: Conditional simulations of a Kriging model

4.3. Estimation and validation of Kriging models

A 2-dimensional case study

To illustrate the functionalities of DiceKriging on non-simulated data, we start with the
famous 2-dimensional Branin-Hoo function. This function is a usual case study in global
optimization with the particularity of having three global minimizers. Thus, it will be used in
several DiceOptim examples. At now, let us estimate a Kriging model. In this first example,
we consider a very naive design, which is a 4 x 4 grid.

> X <- expand.grid(seq(0,1,length=4), seq(0,1,length=4))
> X <- data.frame(X); names(X)<-c("x1", "x2")
> y <- apply(X, 1, branin)

19
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For the trend, we use a first order polynomial, but this choice does not influence a lot the
results here. Finally, assuming that we assume a priori that the Branin-Hoo function is
smooth, we use a Gaussian covariance function. Then, estimation is performed using km:

>m <- km(~., design=X, response=y, covtype="gauss")

optimisation start
* optimisation method : BFGS
* analytical gradient : used
* trend model : "x1 + x2
* covariance model :

- type : gauss

- nugget : NO

- parameters lower bounds : 1e-10 1le-10

- parameters upper bounds : 2 2

- best initial point among 20 : 0.9870329 1.948033

N =2, M = 5 machine precision = 2.22045e-16
At X0, O variables are exactly at the bounds

At iterate 0 f£= 75.203 |proj gl= 0.98703

At iterate 1 f = 75.087 |proj gl= 0.94755
At iterate 2 f = 74.782 |proj gl= 0.88743
At iterate 3 f= 74.768 |proj gl= 0.070573
At iterate 4 f = 74.768 |proj gl= 0.0039653
At iterate 5 f = 74.768 |proj gl= 1.9194e-05
At iterate 6 f = 74.768 |proj gl= 5.7752e-09

iterations 6

function evaluations 8

segments explored during Cauchy searches 8

BFGS updates skipped O

active bounds at final generalized Cauchy point 1
norm of the final projected gradient 5.77518e-09
final function value 74.7675

F =74.7675
final value 74.767536
converged

Verbosity can be removed by means of the argument control,
>m <- km(~., design=X, response=y, covtype="gauss", control=list(trace=FALSE))

but there are several advantages to keep it, at least in this vignette, to see what is tunable
in estimation. Indeed, many default values are proposed by km: the maximization of the
likelihood is performed with the BFGS optimizer, using analytical gradient and an initial
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random search based on 20 initial points. Also, the domain over which the parameters are
estimated, depending on the ranges of the design X in each direction. But in many cases,
in can be interesting to change all these default values. For instance, the number of initial
random search points can be reduced:

>m <- km(~., design=X, response=y, covtype="gauss",
+ control=list(pop.size=5, trace=FALSE))

The domain boundaries are contained in the arguments lower and upper. The genetic algo-
rithm rgenoud usually gives better results, and is specified using the argument optim.method.

>m <- km(~., design=X, response=y, covtype="gauss", optim.method="gen",
+ control=list(trace=FALSE))

As for BFGS, the main optimization parameters such as the size of the initial population can
be tuned in control. Coming back to the default values, we now print the estimation results:

>m

Call:
km(formula = ~., design = X, response = y, covtype = "gauss")

Trend coeff.:
Estimate
(Intercept) 1249.2314
x1 -672.2751
x2 -362.5807

Covar. type : gauss
Covar. coeff.:
Estimate
theta(x1) 0.8461
theta(x2) 2.0000

Variance estimate: 855174.6

We can see a clear anisotropy with a longer range in the zs direction. The estimated value of
A5 reached the boundary 2. Since it depends on the two ranges 1 and 62 only, the concentrated
likelihood can be plotted. In the following, we compute logLikFun over a 30 x 30 grid:

> n.grid <- 30; x.grid <- seq(0.01,2,length=n.grid)
> X.grid <- expand.grid(x.grid, x.grid)
> logLik.grid <- apply(X.grid, 1, logLikFun, m)

The result can then be drawn, and the optimum added by extracting it from the km object m:

> contour(x.grid, x.grid, matrix(logLik.grid, n.grid, n.grid), 40,
+ xlab=expression(thetal[1]), ylab=expression(thetal[2]))
> opt <- m@covariance@range.val

> points(opt[1], opt[2], pch=19, col="red")
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Figure 7: Profile log-likelihood

In figure 7, we see that the optimum is found in a correct way by BFGS. This is because the
likelihood surface is pretty simple. Of course, this may not be always the case, especially in
higher dimensions. Turning the argument optim.method to "gen" may be useful.

Now, we can draw the Kriging mean and visualize the prediction accuracy.

vV + VvV +VVVVVVVVYV

n.grid
x.grid
X.grid
y.grid
pred.m

<- 50

<- seq(0,1,length=n.grid)

<- expand.grid(x.grid, x.grid)
<- apply(X.grid, 1, branin)
<- predict(m, X.grid, "UK")

par (mfrow=c(1,3))

contour (x.grid, x.grid, matrix(y.grid, n.grid, n.grid), 50, main="Branin")
points(X[,1], X[,2], pch=19, cex=1.5, col="red")

contour (x.grid, x.grid, matrix(pred.m$mean, n.grid, n.grid), 50,

main="Kriging mean")

points(X[,1], X[,2], pch=19, cex=1.5, col="red")
contour (x.grid, x.grid, matrix(pred.m$sd"2, n.grid, n.grid), 15,

main="Kriging variance")

points(X[,1], X[,2], pch=19, cex=1.5, col="red")

The Kriging variance is also represented in figure 8. We observe that the prediction is satis-
factory. The anisotropy appears clearly on the graph of the Kriging variance.

Finally, a leave-one-out validation is implemented as a plot method (see results in figure 9):

> plot(m)
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Figure 8: Contours of the Branin-Hoo function (left) and Ordinary Kriging metamodel of it (mean in the
middle, variance on the right)

A more complete validation procedure is available in package DiceEval (not presented here),
including k-fold cross validation.
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Figure 9: Leave-one-out cross-validation for the previous Kriging metamodel of the Branin-Hoo function

A 6-dimensional approximation example

Let us now consider the 6-dimensional Hartman function. It is a standard test function in
optimization, and is implemented in DiceKriging. Following Jones et al. (1998), the transfor-
mation —log(—.) is first applied to the response. For estimation, a 80-point Latin hypercube
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(LH) design is chosen at random (function randomLHS from package lhs). The leave-one-
out diagnostic is represented in figure 10, and shows no strong departures from the model
assumptions.

>n <-80; d<-6

> X <- randomLHS(n,d)

> X <- data.frame(X)

>y <- apply(X, 1, hartman6)

> mlog <- km(design=X, response=-log(-y))
> plot(mlog)
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Sample Quantiles

Theoretical Quantiles

Figure 10: Leave-one-out validation for hartman6

To go further, since the 6-dimensional Hartman function is cheap-to-evaluate, we study the
performance of the model on a 250-point test LH sample generated at random. In practice,
of course, such a validation scheme would be intractable, and k-fold cross-validation would be
a sensible substitute for it. Coming back to out-of-sample validation, we draw the predicted
values versus the true ones (figure 11). We have also added the results that would be obtained
with a trend (first order polynomial + interactions) or without the log transformation of the
response. In this case, it seems clear that the log transformation is necessary for prediction.
On the other hand, adding a trend does not result in obvious improvements.

> n.test <- 250
> X.test <- randomLHS(n.test, d)
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> y.test <- apply(X.test, 1, hartman6)
> ylog.pred <- predict(mlog, newdata=X.test, type="UK")$mean
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Figure 11: Out-of-sample validation for the 6-dimensional Hartman function on a 250-point test sample, with
log transformation of the response (constant trend (a), or polynomial trend (b)) or without transformation
(constant trend (c), polynomial trend (d)). The polynomial trend is a first order polynomial plus all second
order interactions.

Performances of the estimation procedure: an empirical study

In order to study the performances of the estimation procedure implemented in km, we propose
to perform estimation based on sample functions drawn from Gaussian processes underlying
Kriging models. In other words, we simulate sample functions corresponding to a Kriging
model which parameters are known. Then for each one of the sample functions (100 per
Kriging model), we fit a Kriging model with km. We can then finally analyze the empirical
distribution of these estimates, and make comparisons to the true ones (especially in terms
of bias and variance).

In this paragraph, we show the results obtained in 3-dimensions and 10-dimensions. Following
Loeppky, Sacks, and Welch (2009), we fix the number of runs n proportionally to the problem
dimension d. However, we have chosen n = 15d, instead of the informal rule "n = 10d”,
since - without any penalization of the likelihood - this seems to give more stable results in
estimation. Then, we have used a maximin LH design, obtained with package lhs. Note that
with that a LH design with such a few number of runs, only large enough values of the ¢'s
can be estimated. Thus the §’s are chosen equally spaced from 0.3 to 0.7 in the 3-dimensional
case, and equally spaced from 0.5 to 1.5 in the 10-dimensional one (in both cases, the domain
is [0,1]9). The arguments of km are the default values, except in 10-dimensions where the
upper bound was fixed to 3. In particular, the optimization method is BFGS. Better results
can be obtained with the genetic algorithm, but will depend on its parameters, and thus are
not shown here. The results are shown in figures 12 and 13.

4.4. The case of noisy observations

In the case where the observations assumed to be noisy, whether they stem from stochastic
simulation (Fernex, Heulers, Jacquet, Miss, and Richet (2005)), from partially converged
deterministic simulations (Forrester, Bressloff, and Keane (2006a)), or from real experiments,

25
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Figure 12: Empirical distribution of the parameter estimates. 3-dimensional case.
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Figure 13: Empirical distribution of the parameter estimates. 10-dimensional case

it is crucial to quantify the corresponding noise variance values and to take them into account
within Kriging metamodeling.

Here we propose a basic one-dimensional example for all cases of Kriging with nugget effect,
Kriging with homogeneous noise, and Kriging with heterogeneous noise (in reverse order here).
Note that the results shown are directly transposable i) to multivariate cases, ii) involving
Simple as well as Universal Kriging models.

> fundet <- function(x){
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return((sin(10*x)/(1+x)+2*cos (b*x)*x~3+0.841)/1.6) }
theta <- 1/sqrt(30)

n <-7

x <- seq(0,1, length=n)

t <- seq(0,1,by=0.01)

t <- sort(c(t,x))

repart <- ¢(150,30,70,100,10,300,40)

noise.var <- 4/repart

z <- fundet(x); y <- z + sqrt(noise.var)*rnorm(length(x))
model <- km(design=data.frame(x=x), response=y, coef.trend=0,
coef.cov=theta, coef.var=1, noise.var=noise.var)

p <- predict.km(model, newdata=t, type="SK")

V + VVVVVVVVYV +

0.0 0.2 0.4 0.6 0.8 1.0

Figure 14: Kriging with heterogeneously noisy observations

The way the vectors repart and noise.var are coded correspond to the situation of a Monte-
Carlo simulator with a total budget of 700 samplings heterogeneously spread among the 7
points, with a distribution given by repart <- ¢(150,30,70,100,10,300,40) and a unitary
variance of 4. Figure 15 illustrates the case where the same total computational budget is
homogeneously distributed between the 7 points (repart <- rep(100,7)).

Finally, the same data is used in figure 16 to illustrate what kind of Kriging model would
have been obtained with a nugget instead of a homogeneous noise variance.

> model <- km(design=data.frame(x=x), response=y,
+ coef.trend=0, coef.cov=theta, coef.var=1, nugget=4/100)
> p <- predict.km(model, newdata=sort(t), type="SK")

27
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Figure 15: Kriging with homogeneously noisy observations
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Figure 16: Kriging with nugget effect

As announced in the Statistical Background section, the Kriging mean predictor with nugget
effect is quite similar to the one with homogeneously noisy observations, up to its behavior at
the design points. Indeed, one can see that the Kriging predictor interpolates the observations.
As in the deterministic case, this goes with a zero Kriging variance at the corresponding
points. Outside of the design points, however, the Kriging variance has the same shape as in



Journal of Statistical Software 29

the analogous Kriging model with homogeneous noise, but with values translated by a factor
of 72. This is explained by the fact that the process Y does not have the same variance
whether 72 stands for a nugget coefficient or for a noise variance.

4.5. Sensitivity analysis - Wraper to package Sensitivity

Sensitivity analysis (SA) is not implemented yet in this version of DiceKriging. However, it
is easy to connect it to packages devoted to SA, and we suggest an efficient way of doing in
this section. We refer to Sobol (1993) and Saltelli, Chan, and Scott (2000) for a presentation
of SA. Let us illustrate the connection with the package sensitivity.

A toy example

Before considering an example suited to SA, first consider the Branin function. To perform
SA with Branin, we first need to adapt its implementation to matrix-typed arguments.

> branin.mat <- function(X) apply(X,1,branin)

Then, assuming independent uniform distributions over [—1,1] for the inputs, the Sobol in-
dices can be computed using the function fast99 [sensitivity], by typing (see help file of
fast99 for other examples):

> SA.branin <- fast99(model = branin.mat, factors = 2, n = 1000,
+ g = "qunif", q.arg = list(min = 0, max = 1))

Now, let us compute the SA of the Kriging metamodel estimated from few runs of the Branin
function again. After constructing the model (with a 16-point factorial design, as above),

> m.branin <- km(design=X, response=y)
we create a connection function based on pred.km, that returns only the Kriging mean
> kriging.mean <- function(X, m) predict.km(m, X, "UK", se.compute=FALSE)$mean

to which we apply fast99:

> SA.metamodel <- fast99(model = kriging.mean, factors = 2, n = 1000,
+ q = "qunif", q.arg = list(min = 0, max = 1), m=m.branin)

The results can be printed, or drawn with a plot method taken from the package sensitivity.
For the Branin function, the metamodel is precise, so the Sobol indices (main and total effects)
calculated with the metamodel are very close to the true ones (figure 17).

> par (mfrow=c(1,2))
> plot(SA.branin); plot(SA.metamodel)

A standard SA 8-dimensional example

Let us now take the 8-dimensional Sobol function implemented in sensitivity. A Kriging
metamodel is estimated with a 80-point random LHS (generated by randomLHS[lhs]).
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Figure 17: Sensitivity analysis for the Branin function (left) and a Kriging metamodel of it (right)

n <- 80; d <- 8

X <- randomLHS(n, d)

X <- data.frame(X)

y <- sobol.fun(X)

m.sobol <- km(design=X, response=y)

vV V. Vv Vv V

The SA are computed as above:

> SA.metamodel <- fast99(model = kriging.mean, factors = d, n = 1000,
+ q = "qunif", q.arg = list(min = 0, max = 1), m=m.sobol)

> SA.sobol.fun <- fast99(model = sobol.fun, factors = d, n = 1000,

+ q = "qunif", q.arg = list(min = 0, max = 1))

Finally, the results are drawn on figure 18. The main characteristics are visible with the
metamodel, but the Sobol indices relative to z3 and z4 are too small and may not be well
captured, depending on the initial design.

> par(mfrow=c(1,2))

> plot(SA.sobol.fun); plot(SA.metamodel)

4.6. Known problems and their solutions

This section is aimed at giving some illustrations to section 3.4, that should be read before.

Non invertibility of covariance matrices. Let us first consider again the example of the
last section, but increase the size of the design of experiments.
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Figure 18: Sensitivity analysis for the Sobol function (left) and a Kriging metamodel of it (right).

> X <- expand.grid(seq(0,1,length=10), seq(0,1,length=10))

> X <- data.frame(X); names(X)<-c("x1",

> y <- branin(X)

"X2H)

> t <- try(km(design=X, response=y, covtype="gauss"))

> cat(t)

Error in chol.default(R)

the leading minor of order 55 is not positive definite

An error message indicates that the covariance matrix could not be inverted. To overcome
this difficulty, one can choose the diagonal inflation method:

> km(design=X, response=y, covtype="gauss", nugget=1e-8*var(y))

or replace the Gaussian covariance kernel by the (default) Matérn kernel (v = 5/2):

> km(design=X, response=y)

Identifiability issues caused by large design interdistances. To illustrate the poten-
tial virtues of penalizing, consider the sine function proposed by Li and Sudjianto (2005),
and compare the estimation results obtained with (only) 6 design points by three procedures:
MLE, PMLE with SCAD penalty function, and MLE constrained by 6 > 6,,;, (figure 19).
The Gaussian covariance kernel is used, with a small nugget effect. The usual MLE gives an
unrealistic value of 6, estimated to 0.15 approximately, which seems much too small in com-
parison to the distances between design points. On the other hand, both modified estimation
procedures give realistic estimation results. However, a difficulty still remains in proposing a
general method for choosing either the tuning parameter A in PMLE or 6,,,;,. In the present
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Figure 19: Comparison of three estimation methods for Kriging approximation of the sine function, with 6
design points: MLE (left), PMLE with SCAD penalty (middle), MLE constrained by 6 > 10/5 (right). The
bullets represent the design points, the solid line the Kriging mean and the dotted line the sine function.

case, A has been estimated by cross validation, and 6,,;, fixed to the mean distance between
design points.

5. Examples with DiceOptim

5.1. Expected Improvement: 1D and 2D illustrations

As recalled in section 3, the EI criterion is at the heart of all Kriging-based optimization
approaches considered in DiceOptim. Let us illustrate it on a first 1-dimensional toy example
adapted from gEI’s help file. 5 points and corresponding observations are arbitrary chosen,
and a Kriging metamodel with linear trend and Gaussian covariance is fitted to them.

>x <-c(0, 0.4, 0.6, 0.8, 1)

> y <= 10*c(-0.6, 0, -2, 0.5, 0.9)

> theta <- 0.1; sigma <- 10; trend <- 5*c(-2,1)

> model <- km("x, design=data.frame(x=x), response=y,

+ coef.trend=trend, covtype="gauss", coef.cov=theta, coef.var=sigma”2)

The Kriging mean predictor, confidence intervals, and EI for x varying in € [0, 1] are then
computed and represented using the predict and EI functions:

> t <- seq(from=0, to=1, by=0.005)
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> p <- predict(model, newdata=t, type="UK")
> EI_values <- apply(as.data.frame(t), 1, EI, model, type="UK")
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Figure 20: EI associated to a first 1-dimensional toy example

We can observe on figure 20 that EI behaves as described in the Statistical Background
section: it is multimodal, null at the already sampled locations, and positive everywhere
else with a magnitude increasing with both the decreasing Kriging mean and the increasing
Kriging variance. A call to EI at one of the design points results indeed in a null value:

33
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> EI(x[3], model, type="UK")
(1] ©

The maximum of EI is reached here at a unique point between the two first design points,
where the uncertainty is the highest. A numerical maximization of the EI function can be
obtained by using the dedication function max.EI, with tunable rectangular search domain,
starting point, and selected control parameters for the underlying rgenoud algorithm:

> x_star <- max_EI(model, lower=0, upper=1, parinit=0.5, control =
+ list(pop.size=10, max.generations=10, wait.generations=5, BFGSburnin=10))

max.EI returns the optimal candidate point and corresponding EI value:

> print(x_star)

$par
X
[1,] 0.1859634

$value
EI
[1,] 1.409442

Let us now consider the 2-dimensional Branin function. This time, EI depends on a Kriging
model that needs to be estimated. In the sequel, the design is a random Latin hypercube
(LH) design of size 15. A Kriging model is obtained with km, using the default values.

d <- 2; n<- 15

design <- randomLHS(n, d)

design <- data.frame(design); names(design)<-c("x1", "x2")
response.branin <- apply(design, 1, branin)

fitted.modell <- km(design=design, response=response.branin)

V VvV Vv Vv Vv

The corresponding EI is then computed over a grid:

> x.grid <- y.grid <- seq(0, 1, length=n.grid <- 25)
> design.grid <- expand.grid(x.grid, y.grid)
> EI.grid <- apply(design.grid, 1, EI, fitted.modell)

The results are represented on figure 21 for three drawings of the LH design. In most cases,
EI detects interesting regions when starting from 15 points, but the nature of the result may
deeply differ depending on the initial design drawn. However, we will see in next section that
the final optimization results are not very sensitive to the design choice, provided that enough
points are sequentially added within EGO.
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Figure 21: EI associated to Branin function
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Figure 22: Gradient field of the EI associated to a Kriging metamodel of the Branin function

Finally, like in the 1-dimensional example, we observe that EI is multimodal. Thus a genetic
algorithm is recommended for its optimization. To improve efficiency, the analytical gradient
is implemented for the standard case (constant trend). One example of gradient field is
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represented in figure 22, obtained with a 3 x 3 factorial design (See help file of EI.grad).

5.2. EGO illustrated on the Branin example

Now, let us apply the EGO algorithm to the Branin function. For the LH design used in last
section, we run 10 steps of EGO by means of the EGO.nsteps function.

# EGO n steps

nsteps <- 10

lower <- rep(0,d); upper <- rep(1,d)

O0EGO <- EGO.nsteps(model=fitted.modell, fun=branin, nsteps=nsteps,
lower, upper, control=list(pop.size=20, BFGSburnin=2))

+ V. VvV Vv Vv

The obtained sequence is shown on Figure 23 (left), as well as the EI contours corresponding
to the last model (right). We observe that the 3 basins of global optima have been explored.
Furthermore, the remaining EI after 10 steps is focused one these areas, showing that there
is not much interest to explore outside at this stage.

par (mfrow=c(1,2))

response.grid <- apply(design.grid, 1, branin)
z.grid <- matrix(response.grid, n.grid, n.grid)
contour (x.grid, y.grid, z.grid, 40)
points(design[,1], design[,2], pch=17, col="blue")
points (oEGO$par, pch=19, col="red")

text (oEGO$par[,1], oEGO$par[,2], labels=1:nsteps, pos=3)
EI.grid <- apply(design.grid, 1, EI, oEGO$lastmodel)
z.grid <- matrix(EI.grid, n.grid, n.grid)

contour (x.grid, y.grid, z.grid, 20)
points(design[,1], design[,2], pch=17, col="blue")
points (oEGO$par, pch=19, col="red")

VVVVVVVVVVVYV

Now, as pointed before, the whole EGO sequence depends on the initial LH design, and it is
important to study the sensitivity of the results to the design choice. Thus, we have performed
10 steps of EGO with 100 random LH designs of size 15. Figure 24 represents the 3 points
which are the closest to the 3 global optimizers of Branin function, for all 100 drawings. One
may observe that the final result is nearly always satisfactory since all 3 regions are visited,
and the optimum found is close to the true one.

5.3. Applications of EGO to the 6-dimensional Hartman function

We now come back to the 6-dimensional Hartman function previously considered, and build
an optimization example upon it. Since it has been shown earlier that a logarithmic change
of variable was necessary to obtain a well-behaved Kriging metamodel, we choose to work
here at first with suitably transformed data. The initial design chosen here is a 50-point
design obtained by uniform sampling over [0,1]%. For purpose of reproducibility, and since
the variability is here greater than in 2 dimensions, one simulated design has been saved as
mydata (the one of Ginsbourger (2009)), and is used all over the section.
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Figure 23: Sequence of visited points obtained 10 iterations of EGO applied to the Branin function (left), and
EI contours corresponding to the last model (right)

> hartman6.log <- function(x) {-log(-hartman6(x))}
> data(mydata)

> X.total <- matrix(unlist(mydata), 50, 6)

> nb <- 50

> X <- X.total[1:nb, ]

>y <- apply(X, 1, hartman6.log)

An Ordinary Kriging metamodel with Matérn covariance (v = g) is fitted to the transformed
data. Parameter estimation is performed by MLE, with the rgenoud optimizer. The control
parameters are set such that the obtained results have a good level of reliability, which occurs
a slightly longer response time of km as with the default settings.

> hartman6.mm <- km(design=data.frame(X), response=y, control=list(pop.size=50,
+ max.generations=20, wait.generations=5, BFGSburnin=5), optim.method="gen")

We now apply 50 iterations of the EGO algorithm to the Hartman function, starting from the
initial model above, based upon a 50-point design. The EGO.nsteps command is commented
to avoid long compilation times.

nsteps <- 50

# don't run

# res.nsteps <- EGO.nsteps(model=hartman6.mm, fun=hartman6.log, nsteps=nsteps,
# lower=rep(0,6), upper=rep(1,6), parinit=rep(0.5,6), control=1list(pop.size=50,
# max.generations=20, wait.generations=5, BFGSburnin=5), kmcontrol=NULL)

#

V V VvV Vv Vv VvV
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Figure 24: Sensitivity to the initial design of the EGO optimization results

> # To be compared with the current minimum of Harman6:
> hartman6.min <- -3.32

Starting from a 50-point design

As shown on Figure 25, EGO converges here to the actual global minimum (—3.32) of the
Hartman function in less than 20 iterations when using a 50-point initial design.

Starting from a 10-point design

One of the crucial questions when using metamodel-based optimization algorithms with a
severely restricted budget is the trade-off between initial design points and additional points
obtained during the algorithm itself. Answering this question in a general way is of course
out of scope here, but the following complementary experiment might contribute to motivate
and illustrate the potential computational benefits of addressing this trade-off well.

Figure 26 shows the slower convergence of EGO when starting with a 10-point design. It
is very interesting, however, to notice that the global expense in terms of total number of
points is about twice smaller in the second case. Investigating the right trade-off in a generic
framework seems a valuable research perspective.
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Figure 25: Optimization of the Hartman function with 50 initial points. Left:
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Comparison to the results obtained without a change of variable

To finish with examples concerning the regular EGO algorithm, let us try to apply the algo-

rithm to the Hartman function, without any change of variables.

Figure 27 represents the results obtained with both previously considered initial designs.

39
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00 04 08

0.0 04 08

Rather surprisingly, the obtained results are not worse than with an adapted transform, and
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Figure 27: Hartman 6D. Without a change of variable. Left: 50 initial points; Right: 10 initial points.

even a bit better in the case of the 10-point initial design. This illustrates the robustness
of EGO to some kinds of model misspecification, such non-Gaussianity. To our knowledge,
however, such algorithms may be very sensitive to misspecifications of the covariance kernel,
in particular when it comes to correlation length parameters.

5.4. Parallelizations of EI and EGO

Distributing metamodel-based algorithms on several processors has become a contemporary
industrial challenge since taking advantage of existing parallel facilities is a key to increase
optimization performances when the time budget severely restricted.

q-points KT

DiceOptim includes a gEI function dedicated to the Monte Carlo estimation of the multipoints
EI criterion. Here we come back to the first 1-dimensional example considered in the present
section, and give an illustration of both 1-point and 2-points EI criteria estimations.

candidate.design <- seq(0,1,length=101)

res <- qEI(newdata=candidate.design, model=model, type=type,
MC.samples=10000, return.I=TRUE)

EI_estimated <- colMeans(res$I)

V VvV + Vv VvV

two_points_EI <- matrix(0,ncol=length(candidate.design),

EI_analytical <- apply(as.data.frame(candidate.design), 1, EI, model, type="UK")
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nrow=length(candidate.design))
for(i in seq(1,length(candidate.design)) J){
for(j in seq(i,length(candidate.design)) ){
qI <- pmax(res$I[,i],res$I[,jl)
two_points_EI[i,j] <- mean(qI)
two_points_EI[j,i] <- two_points_EI[i,j]}}

+ + + + Vv +
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Figure 28: 1-point EI estimated by Monte Carlo and comparison to the previous results obtained with the
analytical formula.

The results shown on Figure 28 illustrate the adequacy between the Monte Carlo estimation
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of EI by means of gEI and the analytical formula implemented in EI.

1.0

0.4

0.2

Figure 29: 2-points EI estimated by Monte Carlo

The 2-points EI is represented on Figure 29, where it appears that sampling at the two highest
bumps is likely to offer the best joint performance, i.e. in terms of multipoints expected
improvement. More on the two-points EI criterion can be found in Ginsbourger et al. (2010).

Iterated Constant Liar test with Branin

Let us finish this section with an illustration of the Constant Liar algorithm, an approximate
multipoints EI maximizer, applied to the Branin function previously used in several examples.

> nsteps <- 3

> npoints <- 8

>d<-2

> lower <- rep(0,d); upper <- rep(1,d)

> oEGOparallell <- CL.nsteps(model=fitted.modell, fun=branin, npoints=npoints,
+ nsteps=nsteps, lower, upper, control=list(pop.size=20, BFGSburnin=2))

Starting from the initial LH design drawn in the previous Branin example, 3 iterations of
Constant Liar with 8 points are applied sequentially by means of the CL.nsteps function
(See results on figure 30). Basically, each iteration of CL.nsteps consists in the creation
of a 8-point design relying on the Constant Liar strategy, on the evaluation of the objective
function at these points, and on the update of the Kriging model with the latter actual values.
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Figure 30: Parallelized EGO for the Branin function. 3 iterations of Constant Liar with 8 parallel searches.
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A. Expressions of likelihoods and analytical gradients

The computations of likelihoods, concentrated likelihoods and analytical gradients are based
mostly on Park and Baek (2001). They have been adapted for the Kriging models dealing
with noisy observations. Beware that the formulas below must not be used directly for im-
plementation. For numerical stability and speed considerations, one should use the Cholesky
decomposition of the covariance matrix and more generally avoid directly inverting matrices.
In DiceKriging, we have used the efficient algorithm presented in Park and Baek (2001). See
also the implementations details given in Rasmussen and Williams (2006).

The vector of observations y is normal with mean F3 and covariance C. Thus, with notations
of the Statistical Background section, the likelihood is:

43


http://www.dice-consortium.fr/
http://www.dice-consortium.fr/

44 DiceKriging, DiceOptim: kriging-based metamodeling and optimization in R

The matrix C depends at least on the covariance parameters 6, 2.

A.1. Kriging model for noise-free observations
In this case we have C = ¢°R, where R depends only on 8, and L = L(y; 3,02,0). Writing
the first order conditions results in analytical expressions for 3 and o2 as functions of 0:
~ 1 ~ ~
B=FR'F)'FRy 7°=—(y-FB)R '(y-FB)
n

Therefore maximizing the likelihood (15) is equivalent to maximizing over € only the "con-
centrated” log-likelihood obtained by plugging in the expressions of B and &2:

—2log L(y; Z‘), 52,0) = nlog(2r) + nloga? + log |R| +n
The expression of the analytical gradient is the following:

dlog L(y; B,52,6)
00,

=—(y- Fﬁ)’R_laﬁR_l(y ~FB)/5% +tr (R_laR>

-2
89k 89k

A.2. Kriging model for noisy observations (unknown homogeneous noise)

In this case we have C = ¢?R. + 72I,,. The likelihood L = L(y;3,02,0,72) also depends on
the new nugget parameter 72, but it is possible to reduce the optimization dimensionality.
Indeed, define:

e v =02+ 72, the total variance

e o= the proportion of variance explained by Z(.)

_o
0-2+7-2 9
We can rewrite C = vR, with R, = aR + (1 — a)I,,. Note that R, is also symmetric
positive-definite since o € [0, 1]. Then writing the first order conditions results in analytical
expressions for B and v as functions of @ and 72:

~ o B 1 o ~
B=(FR'F)FRYy  T=(y-FAR;(y - FP)
The concentrated log-likelihood depends only on 6 and a:

—2log L(y: 3,7, 0, @) = nlog(2r) + nlog ¥ + log [Ra| + n

The fact that « is bounded (« € [0, 1]) is convenient for optimization. The derivatives with
respect to the 8;’s and « are given by:

L OR,

dlog L(y; B,7,0, a)
—2
Oe

R-'(y — FB)/v + tr (R;l 6?‘“)
[ ]

: R, _ . OR OR, __ o
with 00 = (o, and I =R-1,.
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A.3. Kriging model for noisy observations (known noise)

The likelihood L(y; 3,02, 6) takes the form above (15) but with C = 0?R + diag(73, ..., 72).
Writing the first order conditions results in analytical expression for 3 only:

B=(FC'F)'FCly
The concentrated log-likelihood depends both on 8 and ¢2:
~2log L(y; B,0%,6) = nlog(2m) +log|C| + (y —~ FB)'C™'(y ~ FB)

The derivatives with respect to the 8;’s and o2 are given by:

dlog L(y; B,0%,60) Avee19C 1 = ~10C
with g—e(i = JQQTR; and % =R.

A.4. Case of known trend

When the vector 3 of trend parameters is known, one can check that all the aﬁorementioned
formula for (concentrated) likelihoods and derivatives still stand by replacing 8 by 3.

B. Analytical gradient of Expected Improvement

The aim of this section is to present the efficient algorithm developed for package DiceOptim
to compute the analytical gradient of expected improvement (EI) in the most common case:
noise-free observations with constant mean (Ordinary Kriging). The method adapts for a
general linear trend but requires the implementation of the derivatives of all trend basis
functions fi. First recall the EI expression:

El(x) = (a — m(x)) x ®(2(x)) + s(x) x ¢(2(x))

where a is the current function minimum value, m(x) = myk(x) and s*(x) = s (x) are the
prediction mean and variance for Universal Kriging, and z(x) = (a — m(x))/s(x). By using
the relations ® = ¢ and ¢'(t) = —t¢(t), the gradient of FI(x) reduces to:

VEI(x) = —Vm(x) x ®(2(x)) + Vs(x) x ¢(2(x)) (16)

1'Cly
TC 11

Denote 1 = Then for a constant trend we have:

m(x) =fi+e(x)CHy —1a)  s*(x) =57 —¢(x)'C le(x) +

From which, using that Vs?(x) = 2s(x)Vs(x), we deduce:

Vm(x) = Ve(x)'C Hy —1p)

rc-1l1

—1'C le(x))Ve(x)'C!
Vs(x) = —(S(lx) <VC(X)/C—1C(X)+(1 1'C™'¢c(x))Ve(x)'C 11)
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To compute these expressions efficiently, we use the Cholesky decomposition of the covariance
matrix and the resulting auxiliary variables z, M, u defined in appendix C.1. As F =1, M
is an x 1 vector, and is renamed u in this section. In the same way, we introduce the n x d
matrix W = (T")~}(Ve(x)'). Then we can rewrite Vm(x) and Vs(x) in the concise form

Vm(x) = W'z Vs(x) = _S(lx) (W’v n (1- v::zl(wru))

and VEI(x) is obtained with formula (16).

Computational cost We now indicate the order of the marginal computational cost, know-
ing the results of past computations. In particular we assume that a km object was first
created, and thus the auxiliary variables T, z,u have already been computed. In addition,
VEI(x) is supposed to be computed after that EI(x) was evaluated, as it is the case during
the optimization procedure. Finally we ignore the terms of order n (assuming that n > d and
n > p). Then the complexity of EI(x) is given by the Kriging mean computation step, equal
to n? (see appendix C.2). During this step, s(x),®(z(x)) and ¢(z(x)) are stored. There-
fore, the complexity for VEI(x) is due to the computation of W, which is done by solving d
upper triangular systems of linear equations, and to some linear algebra. This requires dn?
operations.

C. Implementation notes

C.1. Auxiliary variables

To prevent from numerical stabilities and avoid re-computations, four auxiliary variables are
used in DiceKriging and DiceOptim, three of them were proposed by Park and Baek (2001)
and the fourth was added for prediction:

e T, nxn matrix: the upper triangular matrix obtained in the Cholesky decomposition
of the (positive definite) covariance matrix. Thus we have: C = T'T

e z=(T))"Y(y —FB3), n x1 vector
e M = (T)"'F, n xp matrix
o v=(T)"le(x), nx1 vector

In the case where parameters are estimated, the expressions for z and v are modified by re-
placing the true parameters by their ML estimate, and could be hatted: z = (T')~'(y — F3),
v = (T")"'¢(x). Actually for sake of simplicity, no distinction is made.

C.2. Formulas for prediction

In this paragraph, we give the formulas used in DiceKriging to implement the Kriging mean
and variance for Simple and Universal Kriging. Some computation economy and numerical
stability can be obtained by re-writing the formulas with the auxiliary variables already
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computed (except v) in creating a km object. Firstly, with notations of section C.1, the
formulas of Simple Kriging become:

msk(x) = f(x)B+v'z  sik(x) = O(x,x) —||v|

where ||.|| denotes the Euclidian distance. For Universal Kriging, expressions are similar but
require the Cholesky decomposition of F'C~'F = M/M. Denote Ty the corresponding p x p
upper triangular matrix s.t. Ty'Ty = M. Then we have:

muk(x) = £(x)B+ vz str(x) = C(x,x) = [v|* + [ (Tnr) " (£(x) = M'V)||”

In the last expression, (Ty') ™ (f(x) — M'v) is obtained by solving an upper triangular system
of size p x p.

Computational cost Ignoring terms of order n (assuming that n > d and n > p), the
complexity for Kriging mean is given by the backsolving of T'v = ¢(x) to get v, which is
equal to n?. The complexity for Kriging variance is smaller: 2n for SK, 2n(p+1) + (% + p2)

for UK [the additional non-negligible operations decompose as follows: 2np for M'v, %p3 for
Cholesky decomposition of M, and p? to compute the matriz product (Ty/) 1 (f(x) — M'v)].

C.3. Table of computational cost and memory size

In the table below, we give an estimate of the computational cost and memory size required
for the most important procedures implemented in DiceKriging and DiceOptim. The com-
putational cost is for a single procedure, and assumes that some stored variables need not be
re-computed. For instance when running the predict method, a km object was first created,
and the auxiliary variables of section C.1 are already stored. In addition, we assume that
n > d and n > p. The memory size represents here the order of magnitude of the quantity of
numbers to be stored at the same time when running the procedure. For prediction, results
are given as a function of m, the number of new data at which we want to predict, since this
number is usually large. As for n, we assume that m > d and m > p.

This table can be useful to guess the difficulties linked to the increasing of the design size.
For instance the log-likelihood complexity is approximately %n‘g: multiplying by 2 the number
of experiments results in multiplying by 8 the computational time, and by 4 the size of the
covariance matrix involved.

Comments. 1. The complexity related to log-likelihoods is from Park and Baek (2001);
The factors (# + 2) n? and (6d + 1)n? are for Gaussian covariance: it can be larger for
more complex covariances but will not modify the order of magnitude. For other procedures,
see appendices B and C.2. 2. The memory size is no less than n?, which corresponds to the
storage of the n X n covariance matrix. When computing gradients, only the final derivatives
are stored, and not the auxiliary matrix derivatives. The memory size for computing the
Kriging mean and variance can be large: this is because we have vectorized the computation
of formulas described in C.2, to improve speed.
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Procedure Complexity Memory Limiting step
log-Likelihood %713 + (@ + 2) n? n? Cholesky dec. of C
log-Likelihood gradient %n?’ + (6d + 1)n? n? Inverting C from T
Kriging mean (SK, UK) mn? (n+m)n (T") " te(x)
Kriging variance (SK) 2mn (n+m)n

Kriging variance (UK) | 2m(p+ 1)n+m (% + p2> (n+m)n

EI n? n? Kriging mean
EI gradient dn? n? (T) "1 (Ve(x)")

Table 4: Computational cost (complexity) and memory size of the most important procedures implemented
in DiceKriging and DiceOptim. Recall that n is the number of design points, d the problem dimension, p the
number of trend basis functions and m the number of new data where to predict.

C.4. Speed

Some functions have been implemented in the C language. There was no need to do so with
linear algebra R routines, since they call themselves Fortran or C routines. On the other
hand, the computation of covariance matrices seems to be very slow in R, due to the presence
of triple loops. They have been implemented in C (functions covMatrix, covMatiMat2).

D. Interface considerations

In some rare contexts the simulator function can be turned into a R function using external fa-
cilities such as .C or .Call. Most likely, the simulation will be called from another computing
environment such as java. This environment’s event loop will then call R as well as perform
some other tasks such as database management for complex input/output. The Rserve and
the Rsession java packages are well suited for such a context: results of R computations can
be temporarily stored as R objects. Interesting objects 'morally’ correspond to two R classes:
(spatial) fitted model and (optimization) algorithm in progress.

In such a context, R calls should be kept as simple as possible or be generated by the main
environment. Challenging tasks are the management of the documentation and that of the
formal arguments. A desirable feature for CE tools is that the analyst should not be required
to have an extended knowledge in R, and thus be concerned only by high level functions.

The S4 mechanism is well suited for this context. The km class of DiceKriging and its classical
methods are a first step to further S4 integration. An efficient update method could speed
the computations in the future.

Parallelizable algorithms such as EGO can be viewed as an iterated couple of steps: ask for a
new design point and tell a new response to the model/algorithm object, the two steps being
repeated until convergence is reached. They can be implemented as calls to ask and tell
methods (as in the sensitivity package) or as two variants of an update method.
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