N

N

Embedding Data Parallelism in Sequential Object
Oriented Languages

Jean-Marc Jézéquel, Frédéric Guidec

» To cite this version:

Jean-Marc Jézéquel, Frédéric Guidec. Embedding Data Parallelism in Sequential Object Oriented
Languages. TOOLS Europe’93, Mar 1993, Paris, France. pp.1-2. hal-00495757

HAL Id: hal-00495757
https://hal.science/hal-00495757

Submitted on 28 Jun 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00495757
https://hal.archives-ouvertes.fr

Embedding Data Parallelism in Sequential
Object Oriented Languages
(Position Paper)

J-M. JEZEQUEL
F. GUIDEC

[.LR.I.S.A. Campus de Beaulieu
F-35042 RENNES CEDEX, FRANCE

E-mail: guidec@irisa.fr
Tel: 433 99 84 71 91 ; Fax: +33 99 38 38 32

The spreading of Distributed Memory Parallel Computers (DMPCs) is ham-
pered by the fact that writing or porting application programs to such archi-
tectures is a difficult, time-consuming and error-prone task. Nowadays software
environments for commercially available DMPCs mainly consist of libraries of
routines to handle communications between processes. We believe that the reuse
of carefully designed software components could help to manage the complexity
of concurrent programming.

Our approach aims at embedding the scalable data parallelism programming
model in an OOL. This approach is orthogonal to those where objects can
be made active and invocations of methods result in actual message passing
communications (sometimes referred to as functional parallelism, because the
definition of processes is determined by the decomposition into sub-tasks). We
believe that functional parallelism does not allow an easy and efficient mapping
of large scale computing algorithms onto the very high number of processors
that are made available in a DMPC.

We focus on the data parallelism model associated with a SPMD mode of
execution (Single Program Multiple Data). This approach seems to be rather
natural in an OO context, since object oriented programming usually focuses
on data rather than on functions. Furthermore, the SPMD mode of execution
appears as an attractive one because it offers the conceptual simplicity of the
sequential instruction flow, while exploiting the fact that most of the problems
running on DMPCs involve large amounts of data in order to generate usefull
parallelism.

Each processor of the DMPC runs the same program, which corresponds to
the initial sequential program written by the application programmer, on its
own data partition. Our goal is to completely hide the parallelism to the user,
who still views his program as a sequential one: the parallelism is automatically
derived from the distribution of data over the DMPC, thus leading to a regular
and scalable kind of parallelism.

We implemented these ideas in EPEE (Eiffel Parallel Execution Environ-



ment): data distribution and parallelism are totally embedded in standard lan-
guage structures (classes) using nothing but already existing language construc-
tions. EPEE is based on Eiffel because this language offers all the concepts we
need, using a clearly defined syntax and semantics. However our approach is
not strongly dependent on Eiffel; it could be implemented in any OOL featur-
ing strong encapsulation, static type checking, multiple inheritance, dynamic
binding and genericity.

We distinguish two levels of programming in EPEE: the client level and the
designer level. Our aim is that at the client level, nothing but performance
improvements appear when running an application program on a DMPC. We
would like these performance improvements to be proportional to the number of
processors of the DMPC (linear speed-up), which would guarantee scalability.

The designer of a parallelized class is responsible for implementing general
data distribution and parallelisation rules, thus ensuring portability, efficiency
and scalability, while preserving a “sequential-like” interface for the user. To
achieve this goal, the designer selects interesting classes to be data parallelized,
i.e. classes aggregating large amounts of data, such as classes based on arrays,
sets, trees, lists... For each of these classes, one or more distribution policies are
to be chosen and data access methods redefined accordingly, using the commu-
nication tools and distribution abstractions provided in the EPEE distributed
aggregate class. This class abstracts the common parts of all distributed ob-
jects: it describes an abstract aggregate of generic data that can be spread
across a DMPC, together with a set of methods to access its data transparently,
to redistribute the aggregate, to perform a method on each of its sub-elements
(partitions), and to compute any associative function on the aggregate. These
methods are defined in an abstract way so that they can be reused and/or cus-
tomized in classes inheriting from the distributed aggregate class. A parallelized
class is therefore a class that is both a descendant of an original sequential ag-
gregate model (matriz, tree...) and of the distributed aggregate class.

An EPEE prototype is available for Intel iPSC computers (iPSC/2 or
iPSC/860 and very soon for Paragon XP/S) and networks of workstations above
TCP/IP. We validated our approach through an experimentation with an im-
plementation of distributed matrices using EPEE, and got interesting results.



