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GENERALIZATION OF THE THEOREM OF MENELAUS USING A 

SELF-RECURRENT METHOD 

Florentin Smarandache 

ENSIETA, Brest, France 

 

Abstract. 

This generalization of the Theorem of Menelaus from a triangle to a polygon with n sides is 

proven by a self-recurrent method which uses the induction procedure and the Theorem of 

Menelaus itself. 

 

The Theorem of Menelaus for a Triangle is the following: 

If a line (d) intersects the triangle  A1A2A3 sides A1A2, A2A3, and A3A1 respectively in the points 

M1, M2, M3, then we have the following equality: 

1 1 2 2 3 3

1 2 2 3 3 1

1
M A M A M A

M A M A M A
    

where by M1A1 we understand the (positive) length of the segment of line or the distance 

between M1 and A1; similarly for all other segments of lines. 

Let’s generalize the Theorem of Menelaus for any n-gon (a polygon with n sides), where n ≥ 3, 

using our Recurrence Method for Generalizations, which consists in doing an induction and in 

using the Theorem of Menelaus itself. 

For n = 3 the theorem is true, already proven by Menelaus. 

The Theorem of Menelaus for a Quadrilateral. 

Let’s prove it for n = 4, which will inspire us to do the proof for any n. 

Suppose a line (d) intersects the quadrilateral A1A2A3A4 sides A1A2, A2A3, A3A4, and A4A1 

respectively in the points M1, M2, M3, and M4, while its diagonal A2A4 into the point M [see     

Fig. 1 below]. 

We split the quadrilateral A1A2A3A4 into two disjoint triangles (3-gons)  A1A2A4 and  A4A2A3, 

and we apply the Theorem of Menelaus in each of them, respectively getting the following two 

equalities: 
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1 1 2 4 4

1 2 4 4 1

1
M A MA M A

M A MA M A
    

and  

4 2 2 3 3

2 2 3 3 4

1.
MA M A M A

MA M A M A
    

Now, we multiply these last two relationships and we obtain the Theorem of Menelaus for n = 4 

(a quadrilateral):  

1 1 2 2 3 3 4 4

1 2 2 3 4 4 1

1.
3

M A M A M A M A

M A M A M A M A
   
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Let’s suppose by induction upon k ≥ 3 that the Theorem of Menelaus is true for any k-gon with  3 

≤ k ≤ n -1, and we need to prove it is also true for k = n. 

Suppose a line (d) intersects the n-gon A1A2…An sides AiAi+1 in the points Mi, while its diagonal 

A2An into the point M {of course by AnAn+1 one understands AnA1}. 

We consider the n-gon A1A2…An-1An and we split it similarly as in the case of quadrilaterals in a 

3-gon  A1A2An and an (n-1)-gon AnA2A3…An-1 and we can respectively apply the Theorem of 

Menelaus according to our previously hypothesis of induction in each of them, and we 

respectively get: 

1 1 2

1 2 1

1
M A MA MnAn

M A MAn MnA
  

 

and  
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2 2 2 2 1 1

2 2 3 2 1 1

... 1
n n n n

n n n n

MAn M A M A M A

MA M A M A M A

   

  

    
 

whence, by multiplying the last two equalities, we get  

the Theorem of Menelaus for any n-gon: 
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1
n

i i

i ii

M A

M A 

 . 

Conclusion. 

We hope the reader will find useful this self-recurrence method in order to generalize known 

scientific results by means of themselves! 

{Translated from French by the Author.} 
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