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ABSTRACT
Loop invariants play a major role in program verification
and drastically speed up processes like automatic test case
generation. Though various techniques have been applied to
automatic loop invariants generation, most interesting ones
often generate only candidate invariants. Thus, a key issue,
to take advantage of these invariants in a verification pro-
cess, is to check that these candidate loop invariants are ac-
tual invariants. This paper introduces an original technique
based on constraint programming for automatic verification
of inductive loop invariants. This new approach is efficient
to detect spurious invariants and nicely performs verification
of valid invariants under boundedness restrictions. First ex-
periments on classical benchmarks are very promising.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software/Program Verifica-
tion

General Terms
Verification

1. INTRODUCTION
Software errors are an ever-increasing issue. As stated in a
2002 U.S NIST report [30], few products are shipped with
levels of errors as high as in software — and this has a huge
economical cost. Indeed, verification of software usually re-
quires considerable human effort, and automated tools are
needed to ease this tedious task. The main obstacle to au-
tomation lies in iteration, that is loop constructs of program-
ming languages. Loops are difficult to reason about because
the number of iterations they describe cannot always be stat-
ically determined. Moreover, this number may depend on
the input data, thus defining so many combinations that the
problem remains intractable.

∗This work was partially supported by the ANR-07-SESUR-
003 project CAVERN and the ANR-07-TLOG-022 project
TESTEC.

One solution to this problem is to reason about loops inde-
pendently of the number of iterations: loop invariants are
logical statements that describe properties of a loop holding
for all possible executions of the loop. As such, they play
a major role in program verification. For instance, a suffi-
ciently strong loop invariant can avoid unfolding the loop in
bounded model-checking approaches. In some other verifi-
cation approaches, e.g., theorem prover based [2, 10], it is
even mandatory to provide such invariants. Loop invariants
are also useful for testing, e.g., they can improve test-case
generation [12].

Due to the importance and difficulty of the problem, there
exists a large body of work on automatically generating
sound invariants from program source code. Early works
date back to the seventies (e.g., [32, 18]). Abstract interpre-
tation based analyses [5, 6] proved to be particularly fruitful
(e.g., the recent work of [22, 26]). Lately, some authors
proposed replacing the fix-point computation of abstract in-
terpretation by decision procedures, especially based on con-
straint solving [4, 27, 29]. Yet, automatic generation of cor-
rect by construction invariants remains challenging. Often,
proposed tools show poor performances: they are not effi-
cient and/or the generated invariants are too weak for most
practical purposes.

In contrast, some recent approaches relax the constraint of
soundness of the invariants so as to efficiently produce in-
teresting candidate invariants. Verification that the candi-
dates are sound invariants is postponed to a second step,
and sometimes relies on another dedicated tool. Informa-
tion from this verification step may be used to refine new
candidates. For instance, the Daikon [9] tool implements
this approach: based on a dynamic analysis, it infers in-
variant candidates from a set of execution traces of a given
program. Candidates are formed from a predefined finite
set of common patterns. The candidates hold over the ob-
served executions, but another tool is needed to ensure they
are true for all possible program executions. Various static
analyses generate candidate invariants too. They all resort
to heuristics. Some of these heuristics are long known and
can be found for example in [31, 19, 21, 13], others are orig-
inal work. For instance, the authors in [16] combine several
analyses and heuristics to produce candidate loop invari-
ants. Then, a proof planner tries to prove they hold. The
undischarged goals in the proof are used for strengthening
the candidates. The method of [20] focuses on a particular
case of loops where the number of iterations is controlled



by lower and upper bounds: the “FOR-loops”. The can-
didates are built from the given program postcondition by
applying a weakening heuristic. Next, a verification condi-
tion ensuring their soundness is synthesized to be used in a
theorem prover. Again in the setting of theorem proving,
[28] adds new inference rules to the KeY system in order
to produce candidate invariants. According to the authors,
these rules may generate spurious invariants, which conse-
quently need to be checked. In [25], the authors propose an
iterative method for invariant generation. Starting from the
postcondition and applying heuristics, each iteration gener-
ates one candidate invariant. Then, the Java PathFinder
model checker decides the validity of the candidate. When
the candidate is invalid, a counter-example is provided by
the model checker that helps strengthening the next candi-
date. Finally, [11] details heuristics to generate candidate
invariants from postconditions of programs. The authors
suggest to use external tools like SMT solvers to decide the
soundness of the candidates.

All these methods that produce candidate loop invariants
need some kind of decision procedure to ensure the candi-
dates are indeed invariant. This is also true for user provided
loop invariants. Handcrafted invariants may contain errors,
and if so, the error must be detected before further usage of
the invariant. Conversely, user invariants may be a desired
specification from which a programmer writes the loop body
code: a decision procedure is then needed to verify that the
written code meets the loop invariant. In this paper, we pro-
pose to use constraint solvers for the automatic verification
of candidate loop invariants in single-loop imperative proce-
dures. Our approach is based on a translation of Java-like
methods annotated with JML statements into a constraint
problem. This translation was described in [3] and imple-
mented in the CPBPV system. Besides the implementation
in CPBPV of a more generic handling of JML “exist” and
“for all” quantifiers, our contributions are:

• the use of constraint solvers as a bounded decision pro-
cedure for inductive loop invariant verification;

• a set of experiments on classical benchmarks.

Our approach efficiently refutes spurious inductive loop in-
variants and produces a counter-example that is a complete
test case leading to the violation of the invariant. Proving a
valid invariant holds is sensitive to the size of the program
variables domain and the size of arrays: it ranges from fast
on small domains (typically 8-bit integers) to intractable on
larger domains. Constraint programming (CP) is only a
complete decision procedure over a finite subset of the in-
tegers, that is why we have to bound the domains. CP is
less powerfull than theorem provers and, thus, CP cannot
prove a property in general, but CP can prove properties
under boundedness restrictions and disprove properties that
a theorem prover cannot handle.

The next section introduces our approach on a typical ex-
ample. Then, Section 3 gives the details of our method.
The results of our experiments are shown in Section 4. Re-
lated work is presented in Section 5. Next, we discuss the
advantages and limits of our approach in Section 6, and we
conclude in Section 7.

2. MOTIVATING EXAMPLE

Listing 1: Sum of the first n integers.

1/∗@ requires n >= 0;
2 @ ensures \result == (n∗(n+1))/2;
3 @∗/
4public static int sumN(int n) {
5 int i=0, s=0;
6 /∗@ loop invariant
7 @ (s == (i∗(i−1))/2) && (i <= n+1);
8 @∗/
9 /∗ erroneous invariant

10 ∗ (s == (i∗(n−1))/2) && (i <= n+1);
11 ∗/
12 while(i <= n) {
13 s = s + i;
14 i = i + 1;
15 }
16 return s;
17}

In this section, we illustrate our approach on the example of
the sum of the first n integers. A program computing this
sum is showed in Listing 1. This is a Java method enhanced
with JML specifications : the precondition (requires clause)
and the post-condition (ensures clause). We suppose we
need to verify the inductive loop invariant given at line 7.
This invariant states that at each iteration of the loop body,
variable s stores the sum of the first integers up to i−1 and
that i will not increase over n+1. From axiomatic logic [15],
we know that a loop invariant is inductive if it holds before
entering the while loop (this is the base case), and if holding
before the while loop it also holds after one execution of the
loop body (the inductive case). In order to ensure these two
cases, we build two constraint systems.

For the base case, the formula to be verified is built from
the variables of the program (~x), the precondition (Pre), a
suitable logical encoding of the initializations (Init) occur-
ring before the loop (line 5), and the loop invariant (I ) such
that:

∀~x(Pre ∧ Init =⇒ I ) (1)

which is equivalent to (applying a double negation):

¬(∃~x(Pre ∧ Init ∧ ¬I )).

The existential quantification of this latter formula suggests
how a constraint solver can be used as a bounded decision
procedure for the formula: we translate Pre, Init , and ¬I
into constraints over the variables ~x, then the solver searches
for a solution to ∃~x(Pre ∧ Init ∧ ¬I ). If no solution is
found, then Formula (1) is true, which means that the in-
variant holds after the initializations for all valuation of the
method input data. Otherwise, a solution is found, then For-
mula (1) is false and so is the spurious invariant; moreover,
the solution is a counter-example providing a valuation of
the method input and local data that falsifies the invariant.
This counter-example is a test case that helps to precisely
understand why the program does not meet the invariant.
It may be used to correct the invariant — or the program,
depending on context.

The translation from JML annotated Java programs into
constraints is detailed in Section 3.2. For this example, it



is straightforward and leads to the following constraint set
over variables n, i, and s whose domain is the one of the
Java integers:

{n ≥ 0, i = 0, s = 0, (s 6= (i ∗ (i− 1))/2) ∨ (i > n + 1)}.

Several constraint solvers can be used to handle this sys-
tem. In our implementation, we rely on two solvers from
IBM/Ilog: Cplex1, a MILP solver, and CP Optimizer, a
nonlinear solver over finite domains. The strategy is to call
the fast linear solver as often as possible and to resort to
the more time demanding nonlinear solver only when nec-
essary (more details are given in [3]). Here, the base case
constraint system is solved in under a hundredth of a sec-
ond (Section 4.3 contains the complete benchmark results).
There is no solution, hence the candidate invariant is valid
for the base case.

The same principles apply for the inductive case which im-
plies checking the following formula:

¬(∃(~x~x′)(I ∧ Cond ∧ Body ∧ ¬I [~x′/~x]))

where Cond is the loop condition, Body a logical encoding
of the loop body statements, and ~x′ are fresh variables intro-
duced by the encoding of the body statements. Introduction
of new variables is explained in Section 3.2.2, but roughly, it
allows2 I [~x′/~x] to correctly reflect the values of the program
variables after one execution of the loop body. In the ex-
ample, it leads to the following constraint set over program
variables n, i, and s, and fresh variables s1, and i1:



s = (i ∗ (i− 1))/2, i ≤ n + 1, i ≤ n, s1 = s + i,
i1 = i + 1, (s1 6= (i1 ∗ (i1 − 1))/2) ∨ (i1 > n + 1)

ff

.

There is no solution to this constraint system and, to ensure
this, the solver enumerates on some variable domains. For
8 bit integers, it takes a few hundredths of second; for 16
bit integers, it takes 2.6 hours. However, let us consider the
erroneous invariant given as a comment at line 10, where
an occurrence of variable i has been replaced by variable n

in the first conjunct. For 32-bit integers, our tool correctly
shows the proposed invariant is true for the base case in a
quarter of a second, and refutes it on the inductive case in
again 0.25 s. The counter-example produced is for n = 0,
s = 1073741824, i = −2147483648, s1 = −1073741824, and
i1 = −2147483647.

These results illustrate the strong points and limits of our
approach: refutation of spurious invariants is fast and pro-
duces a test case; proof of valid invariants is fast on small
integer domains, but can be much longer on large domains.

3. PROPOSED APPROACH
The principle is to transform loop invariant verification in
single-loop programs into assertion verification in loop-free
programs. Then, we consider each execution path of the
loop-free programs, i.e., each path through the programs’
control flow graph. Number and length of execution paths

1Cplex is an optimization software package based on the
simplex method and on MILP (Mixed-integer linear pro-
gramming) techniques. Cplex solves integer programming
problems, very large linear programming problems and
quadratic programming problems. See http://www-01.ibm.
com/software/integration/optimization/cplex
2Expression t[y/x] denotes the substitution of y to x in t.

are finite since programs are loop-free. Before and after
each statement of a given path, we represent the possible
program states with a finite set of finite-domain variables
and constraints, i.e., relations on variables. Rules define
how each statement modifies the set of possible program
states by adding new constraints and variables. Let p be
a program point and Cp the constraints that describe the
possible states at point p. Then, proving that an assertion
A holds at p is showing that Cp ∧ ¬CA, where CA is the
translation into constraints of A, has no solution, i.e., there
is no assignment of the program variables that violates the
assertion.

The proposed approach takes place in a forward analysis
framework: program paths are analyzed starting from the
program beginning. It is based on our previous work on
constraint-based bounded verification of Java programs [3],
which was implemented in the CPBPV system. We first de-
scribe how loop invariant verification in single-loop programs
reduces to assertion verification in loop-free programs. Next,
we briefly present the relevant key points of the interpreta-
tion of program states as constraints, as done in CPBPV.
Finally, we give a more detailed exposition of the treatment
of JML quantifiers.

3.1 Constraint-based inductive loop invariant

verification
In axiomatic logic [15], the Hoare triple to prove partial
correctness of a while loop obeys the following rule:

{b ∧ I} Body {I}

{I} while(b) Body {¬b ∧ I}
(2)

In its premise, this rule also implicitly defines the inductive
loop invariant I: it is an assertion such that every program
state satisfying b ∧ I leads, when executing Body, to a state
satisfying I. In a single-loop program, Body is necessarily
loop-free. Thus, verifying that I is an inductive invariant
for the loop while(b) Body amounts to verifying that, be-
ing given the precondition b ∧ I, the assertion I holds after
execution of the loop-free program Body.

In our constraint-based representation of states, starting
from the states satisfying b ∧ I, the set of possible program
states after executing Body is:

{(~x, ~x′) ∈ Dn ×Dn′

| Cb∧I ∧ CBody}

where Cb∧I , and CBody are translations into constraints of
b∧I, and Body respectively; D is the variables’ domain (typ-
ically 32-bit signed integers for Java int type); ~x is a tuple
corresponding to the n program variables (Java method pa-
rameters and local variables); and ~x′ a tuple corresponding
to the n′ fresh variables introduced by the translation of
Body (see Section 3.2.2). In order to verify that a given as-
sertion holds in a set of states, we proceed by refutation: we
check that no state of the set satisfies the negation of the
assertion. Hence, the following formula states that I is an
inductive invariant for the loop while(b) Body:

¬
`

∃(~x~x′)(Cb∧I ∧ CBody ∧ ¬CI[~x′/~x])
´

(3)

We refer to this formula as the inductive case of the loop
invariant verification. It is built using CPBPV and its satis-
fiability is checked by off-the-shelf constraint-programming
solvers called from CPBPV.



In addition, to be useful in the context of a particular pro-
gram containing the loop statement, the loop invariant must
also hold before the loop statement so that the conclusion
of the axiomatic rule (2) applies. For this, we examine each
execution path Path of the program leading to the loop state-
ment. Since we only consider here programs with one loop,
these paths are loop-free. Thus, verifying that I holds before
the loop statement amounts to verifying that, for all Path,
the assertion I holds after execution of the loop-free pro-
gram Path being given the program precondition Pre (which
may be empty).

In our constraint-based representation of states, starting
from the states satisfying Pre, the set of possible program
states after executing Path is:

{(~x, ~x′) ∈ Dn ×Dn′

| CPre ∧ CPath}

where CPre , and CPath are translations into constraints of
Pre, and Path respectively; and ~x′ is a tuple corresponding
to the n′ fresh variables introduced by the translation of
Path. Again proceeding by refutation, the following formula
states that I holds after executing path Path:

¬
`

∃(~x~x′)(CPre ∧ CPath ∧ ¬CI[~x′/~x])
´

(4)

Checking this formula for each execution path leading to
the loop statement is the base case of the loop invariant
verification. Like the inductive case, it is built and checked
using CPBPV and constraint-programming solvers.

3.2 Constraint interpretation of program ex-

ecution paths
CPBPV uses constraint stores to represent both an execu-
tion path in a Java method and its specification, i.e., method
precondition and postcondition. Execution paths are ex-
plored nondeterministically and on-the-fly. One strength of
the tool is to contain the combinatorial explosion of possible
paths by pruning unreachable execution paths as soon as the
corresponding constraint stores are inconsistent. CPBPV
imposes bounds on the domain of variables, which are all
signed integers, and on the number of elements in arrays.
Since we only deal here with loop-free paths, we are not
concerned by bounds on the length of the paths. CPBPV
was designed for partial correctness verification. The partial
correctness, under the boundedness restrictions, of a Java
method is ensured if each constraint store, built from the
precondition, a path in the method, and the negation of the
postcondition, has no solution. To search for a solution,
CPBPV calls several constraint solvers in sequence, starting
with the fastest ones, but likely to find a spurious solution,
up to more costly exact solvers if necessary.

A fragment of the programming language syntax accepted
by CPBPV is presented in Section 3.2.1. For each program-
ming language syntactic construct, a rule defines the transi-
tion between program states. Section 3.2.2 shows the main
rules needed to understand this paper. The interested reader
may refer to [3] for the complete set of rules and a more de-
tailed description of CPBPV.

3.2.1 Syntax
We begin with the abstract syntax of programs, which are
lists L of statements S, where A is the set of arrays and V

the set of variables:

L ::= S; L | ǫ
S ::= A[E]← E | V ← E | if B S | while B S | {L}
S ::= return E | assert(B) | enforce(B)

Next are the Boolean expressions B and integer expressions
E:

B ::= E > E | E ≥ E | E = E | E 6= E | E ≤ E | E < E
B ::= ¬B | B ∧B | B ∨B | B =⇒ B | true | false
E ::= V | A[E] | E + E | E − E | E × E | E/E

Here is the abstract syntax of constraints C built from the
constraint expressions E+:

C ::= E+ > E+ | E+ ≥ E+ | E+ = E+ | E+ 6= E+

C ::= E+ ≤ E+ | E+ < E+ | true | false
C ::= ¬C | C ∧ C | C ∨ C | C =⇒ C

Finally, the expressions E+ built from the constraint vari-
ables V +, and the constraint arrays A+ are described by:

E+ ::= V + | A+[E+] | E+ + E+ | E+ − E+

E+ ::= E+ × E+ | E+/E+

3.2.2 Semantics
Before giving a few examples of the semantics rules that de-
rive program states from program statements, we introduce
the representation of program states and some notations.

Program states. As there is no notion of sequence in a con-
straint store, we cannot use a single constraint variable to
represent the different values a program variable may take
along an execution path. A classical solution is to introduce
new variables and transform the original program so that ev-
ery program variable is assigned once. This technique is sim-
ilar to Static Single Assignment (SSA) transformation [7].
However, in CPBPV, this transformation is done on-the-fly
while analyzing a given execution path and amounts to sim-
ple substitutions of the newly introduced variables in pro-
gram expressions. The new variables are named from the
program variable they replace by adding a subscript num-
ber incremented each time the corresponding program vari-
able is assigned. We note σ[xi/x] the substitution function
σ where x is now mapped to xi, i.e., σ[xi/x](x) = xi, and
σ[xi/x](y) = σ(y) if y 6= x. Function inc increments vari-
ables subscript numbers, e.g., inc(xi) = xi+1. We also note
ρ a polymorphic function to transform program expressions
into constraints. Since the two languages are so similar, this
transformation is straightforward and we do not detail it
here.

The set of possible states of a program, noted 〈l, σ, cs〉, is
defined by a list l of statements that remains to execute, a
substitution function σ, and a constraint store cs. A con-
straint store is made up of a set of constraint variables, in
which we distinguish scalar V + and array A+ variables, and
a set C of constraints on the variables that reads as the con-
junction of the constraints it contains. We note cs ∧ c the
addition of the constraint c in the set of constraints of cs.
We also note cs ∪ v the addition of variable v in the set of
scalar or array variables depending on whether v is scalar or



array. When l is empty, we may denote the possible program
states from the constraint store only, as in Section 3.1.

Rules. Now, we give the semantics rules for conditional
statement, and assignments. There are two rules for the
conditional statement if b s depending on whether the con-
straint cb associated with b is consistent or not with the con-
straint store. When it is consistent, the store is augmented
with cb and the s is executed.

cs ∧ (ρ σ b) is satisfiable

〈if b s ; l, σ, cs〉 7−→ 〈s ; l, σ, cs ∧ (ρ σ b)〉

When the negation ¬cb is consistent with the store, then the
constraint store is augmented with ¬cb and s is skipped.

cs ∧ ¬(ρ σ b) is satisfiable

〈if b s ; l, σ, cs〉 7−→ 〈l, σ, cs ∧ ¬(ρ σ b)〉

Both rules may apply since the initial set of states 〈l, σ, cs〉
may contain some program states satisfying the condition b
and others violating it. In this case, CPBPV analyzes inde-
pendently the two branches created in the execution path.

An assignment to a scalar variable v introduces a new con-
straint variable. This new variable will be used in place of
v in the remaining program, so the substitution mapping is
updated accordingly. Then the new variable is constrained
to the value of the assignment right-hand side expression.

v′ = inc(σ1 v) σ2 = σ1[v
′/v] c ≡ (ρ v′) = (ρ σ1 e)

〈v ← e ; l, σ1, cs〉 7−→ 〈l, σ2, (cs ∪ v′) ∧ c〉

Assignment to an element elt of an array a creates a new
constraint variables array. All the new constraint variables
in the array are set equal to their corresponding element in a,
except for the one corresponding to elt , which is constrained
to the value of the assignment right-hand side expression.

a′ = inc(σ1 a)
σ2 = σ1[a

′/a]
c1 ≡ (ρ a′[ρ σ1 ind ]) = (ρ σ1 e)
c2 ≡ ∀i ∈ [0, length(a)[

i 6= (ρ σ1 ind) =⇒ (ρ a′[i]) = (ρ (σ1 a)[i])

〈a[ind ]← e ; l, σ1 , cs〉 7−→ 〈l, σ2, (cs ∪ a′) ∧ c1 ∧ c2〉

In this rule, index ind does not have to be statically known.

3.3 JML quantifiers
Among the JML quantifiers, we support the universal and
existential quantifiers, restricted to quantification over inte-
ger values. The JML syntax of the universal quantifier is:
(\forall int k; BR; BQ), where k is the quantified variable,
BR is the range predicate, and BQ is the quantified pred-
icate. This means that the quantified predicate holds for
all potential values of the quantified variables that satisfy
the range predicate. Similarly, the syntax of the existential
quantifier is: (\exists int k; BR; BQ), which means that
BQ holds for some values of k that satisfy BR.

In our approach, integers are bounded and so is the quanti-
fied variable in a quantifier expression. When a reasonably
small bound is known, the quantifier can be eliminated as
explained in Section 3.3.1. Otherwise, Section 3.3.2 gives a
general technique to deal with quantifiers.

3.3.1 Known bound quantifiers
Often, a small bound on the quantified variable can be in-
ferred from the range predicate, or the quantified predicate.
In particular, when quantification ranges over arrays, range
predicates of the form i1 ≤ k ∧ k ≤ i2, where i1 and i2 are
statically known integer values, are very common. In these
cases, we expand a quantifier expression, substituting pos-
sible values to the quantified variable, as a conjunction of
constraints for a universal quantifier, or as a disjunction of
constraints for an existential quantifier.

For instance, let us consider the expression (\forall int k;
0 ≤ k∧k < t.length−1; t[k] ≤ t[k+1]) from Listing 5. Since
array t has a known bounded size, say 3 for this example,
we can expand the expression into:

(t[0] ≤ t[1]) ∧ (t[1] ≤ t[2]).

Let us turn to another example from Listing 5: (\forall int

k; 0 ≤ k∧ k < left; t[k] 6= x). We do not know a priori any
interesting bound for the variable left . However, k indexes
the array t in the quantified predicate, thus, k should always
be less than t.length. This also gives an upper bound for left
that we can check by adding the assertion left ≤ t.length to
the constraint store. Hence, the quantified expression can
be expanded into (with t.length = 3 as before):

left = 1 =⇒ t[0] 6= x
∧ left = 2 =⇒ (t[0] 6= x) ∧ (t[1] 6= x)
∧ left = 3 =⇒ (t[0] 6= x) ∧ (t[1] 6= x) ∧ (t[2] 6= x)

3.3.2 Unknown bound quantifiers
When no other bound than that of the integers domain is
known, expanding quantifier expressions is too costly. In the
case of universal quantification, we transform the JML form
into its logical equivalent: ∀k(Q), with Q = (BR =⇒ BQ).
Let cs be the constraint store of the current possible program
states, built from the set of variables V and the constraint
C, and let σ be the current substitution function. To prove
that the assertion ∀k(Q) holds, we proceed by refutation and
build a formula similar to Equations (3) and (4):

¬ (∃~v(C ∧ ¬(∀k(σQ))))
≡ ¬ (∃~v(C ∧ (∃k(σ¬Q))))

Without loss of generality, we assume k does not appear in
C, then we can add k to V and rewrite the last formula into:

¬ (∃~v(C ∧ (σ¬Q)))

Finally, this formula can be solved by a constraint solver.

If we try to do the same with existential quantification, we
end up with a formula like:

¬ (∃~v(C ∧ ¬(∃k(σQ))))
≡ ¬ (∃~v∀k(C ∧ (σ¬Q)))

Because of the presence of a universal quantifier, we cannot
directly solve this formula with a constraint-programming
solver. Nevertheless, we can also rewrite it as:

¬ (∃~v(C ∧ ¬(∃k(σQ))))
≡ ∀~v(¬C ∨ ∃k(σQ))
≡ ∀~v(C =⇒ ∃k(σQ))

The last formula states that for all tuple solution of C, there
must exist a k that is solution of Q. We can solve this



formula with constraint-programming solvers by applying
the following strategy:

1. solve ∃~v(C) enumerating all the solutions;

2. for each solution found, report the values in σQ to
obtain Q′, and solve ∃k(Q′).

Depending on the number of solution of the first resolution,
this strategy can be computationally expensive, if not in-
tractable.

We have presented here the treatment of quantifiers that
appear in assertions and postconditions. A similar reasoning
applies to JML quantifiers that appear in preconditions or
in loop invariants. However, universal instead of existential
quantification is the computationally expensive case, since
we do not negate the quantifier expression in these cases as
we do in assertions and postconditions.

4. EXPERIMENTS
We performed experiments on a set of Java programs known
in software verification to be challenging; some of them are
inspired by the gallery of certified programs of Why [10]
(http://why.lri.fr/examples). For each one, we give the
specification of the program, as pre and postconditions in
JML notation. In this notation, the keyword \result denotes
the return value of the associated method. As a reference,
we also provide a handcrafted loop invariant sufficient to
imply the post condition.

4.1 Program set
The first program, in Listing 1, computes the sum of the first
n integers. Although, the code itself only contains linear
arithmetic expressions, the specification requires nonlinear
operations (multiplications between variables), as well as the
loop invariant. Listing 2 is a slight variation of the previous
program, it computes the sum of the integers from p to n.
This variation is interesting because it introduces a second
unknown bound, p, in the summation.

Listing 2: Sum of the integers from p to n.

/∗@ requires n >= 0 && p >= 0 && p <= n;
@ ensures \result == ((n∗(n+1))/2)
@ − (((p−1)∗p)/2); @∗/

public static int sumPN(int p, int n) {
int i=p, s=0;
/∗@ loop invariant

@ (s == ((i∗(i−1))/2) − (((p−1)∗p)/2))
@ && (i <= n+1); @∗/

while(i <= n) {
s = s + i;
i = i + 1;

}
return s;

}

Our third example, in Listing 3, computes an integer ap-
proximate square root such that isqrt(x) ∗ isqrt(x) ≤ x <

(isqrt(x) + 1) ∗ (isqrt(x) + 1). This time, not only the spec-
ification contains nonlinear expressions, but also the code
does in the assignments to variable z.

Listing 3: Integer square root.

/∗@ requires x >= 0;
@ ensures \result ∗ \result <= x
@ && x < (\result + 1) ∗ (\result + 1); @∗/

public static int sqrt(int x) {
int y, z;
if(x == 0) {
return 0;

} else if(x <= 3) {
return 1;

} else {
y = x;
z = (x+1)/2;
/∗@ loop invariant

@ (x > 3)
@ && (z > 0)
@ && (y > 0)
@ && (z == (x/y+y)/2)
@ && (x < (y+1)∗(y+1))
@ && (x < (z+1)∗(z+1)); @∗/

while(z < y) {
y = z;
z = ((x/z) + z)/2;

}
return y;

}
}

The next example, in Listing 4, computes the same approx-
imate square root as the previous example, except that the
program does not contain any nonlinear expression.

Listing 4: Integer square root without nonlinear ex-

pressions.

/∗@ requires x >= 0;
@ ensures \result >= 0
@ && (\result ∗ \result) <= x
@ && x < ((\result + 1) ∗ (\result + 1)); @∗/

public static int sqrt_bis(int x) {
int count = 0, sum = 1;
/∗@ loop invariant

@ count >= 0
@ && x >= (count∗count)
@ && sum == ((count+1)∗(count+1)); @∗/

while(sum <= x) {
count = count + 1;
sum = sum + 2*count + 1;

}
return count;

}

The last example, in Listing 5, introduces two important fea-
tures: arrays, and quantification. This example only illus-
trates universal quantification, but we also handle existential
quantification. The program performs a binary search in the
given array t, looking for the value x. If the value x is in
the array, the method returns the index of an element of the
array whose value is x; otherwise, it returns −1.



Listing 5: Binary search.

/∗@ requires
@ (\ forall int k; 0<=k && k<t.length−1;
@ t [k]<=t[k+1]);
@ ensures
@ \result != −1 ==> t[\result] == x
@ && \result == −1 ==>

@ (\ forall int k; 0<=k && k<t.length; t[k]!=x);
@∗/

public static int bsearch(int[] t, int x) {
int result = -1, mid = 0, left = 0;
int right = t.length - 1;
/∗@ loop invariant

@ (\ forall int k; 0<=k && k<t.length−1;
@ t [k]<=t[k+1])
@ && (\forall int k; 0<=k && k<left; t[k]!=x)
@ && (\forall int k; right<k && k<t.length;
@ t [k]!=x)
@ && result != −1 ==> t[result] == x
@ && left >= 0 && right <= t.length − 1; @∗/

while((result == -1) && (left <= right)) {
mid = (left + right)/2;
if(t[mid] == x) {
result = mid;

} else if(t[mid] > x) {
right = mid - 1;

} else {
left = mid + 1;

}
}
return result;

}

4.2 Candidate invariants
For our experiments, candidate invariants come from four
different sources:

Daikon This tool infers candidate invariants from program
execution traces. We produced execution traces by
running one hundred random tests on each Java pro-
gram. Each set of traces was analyzed by the Daikon
tool which generated several candidate invariants guar-
anteed to hold on every trace of a set. Daikon has no
predefined mechanism for loop invariant generation;
but the reference manual suggests to place a call to a
procedure doing nothing but returning immediately so
that invariants could be collected at the call point. We
placed such calls at the head and foot of the loop body.
The candidate invariants were obtained by merging the
assertions generated at both call points. In case of con-
flict between assertions, e.g., x = 1 at the head and
x < 1 at the foot, we formed a new assertion satisfy-
ing both conflicting assertions, e.g., x ≤ 1.

InvGen This tool [14] produces correct-by-construction in-
variants. As such, these invariants do not have to be
verified, but they contribute an unbiased source of cor-
rect invariants. We used the C front-end to InvGen by
means of a quick translation from Java. InvGen does
not handle nonlinearity and arrays, so we could only
apply it on three of our five program examples.

Heuristics This set of candidate invariants were made by
applying well-known heuristics to program postcondi-
tions, such as“replacing a constant in the postcondition

by a variable” [13] or changing the relational operators.
This mimics some candidate invariant generation tech-
niques (references are given in Section 1) for which no
implementation was available and simple to reuse.

User This set of candidate invariants is made up of the
invariants as used in manual proofs of the programs.
Hence, they are strong enough to imply the program
postcondition. These invariants are given in JML no-
tation in the program listings.

The complete list of invariants is available at this URL:
http://users.polytech.unice.fr/~rueher/invariants/.

4.3 Results
All benchmarks were run on a 64 bit Linux quad-core Intel
Xeon (3.16 GHz) platform with 16 GB of RAM. However,
our tool was run on a single core and did not take advan-
tage of the three supplementary cores. Memory was never
a concern and we stayed far below the platform capacity.
Implementation in CPBPV is based on Cplex. Cplex works
with floating point numbers and thus is unsafe. To address
this problem, we use the simple and cheap procedure intro-
duced by Neumaier et al. [23] to get rigorous answers.

Execution times for each source of invariants are gathered
in Table 1. They are further detailed between the valid
invariants (True) and the spurious ones (False). Table 1
contains:

• the number (nb) of invariants for the considered cate-
gory;

• the number and percentage of invariants verified in less
than 1 second each (< 1 s);

• the number and percentage of invariants verified in
between 1 second and 1 minute each (< 1 min);

• the number and percentage of invariants verified in
between 1 and 10 minutes (< 10 min);

• the number and percentage of invariants whose veri-
fication timed out — beyond 10 minutes, we did not
record the precise time and considered it as a time-out
(TO).

A large majority of invariants are verified in less than a
second, at the exception of valid invariants provided by the
user or heuristically produced from the postcondition. These
valid invariants convey more meaning about the loop and
the program than those generated by Daikon or InvGen
do. They are not “simple” consequences of the program
constraints and require enumerating over the program vari-
able domains. Moreover, all the candidates generated by
Daikon and InvGen are linear, whereas the valid invariants
that times out are mostly nonlinear. Spurious invariants
predominates in the generated candidates, whether it is by
heuristics or by Daikon. The good news is that they are
mostly very quickly discarded by our method. This shows
that the proposed approach can be efficiently used as a filter
for the candidate invariants automatically generated. The



Table 1: Execution times according to invariants’ source and validity.
Time

Source nb < 1 s < 1 min < 10 min TO
True 7 7 (100%) 0 0 0

Daikon False 41 37 (90.2%) 0 0 4 (9.8%)
Total 48 44 (91.7%) 0 0 4 (8.3%)

InvGen True 3 3 (100%) 0 0 0
True 7 4 (57.1%) 0 0 3 (42.9%)

Heuristics False 118 103 (87.3%) 3 (2.5%) 1 (0.9%) 11 (9.3%)
Total 125 107 (85.6%) 3 (2.4%) 1 (0.8%) 14 (11.2%)

User True 7 0 2 (28.6%) 0 5 (71.4%)

few spurious invariants that times out are nonlinear, or re-
late to arrays. In this latter case, the number of variables
weakly constrained to enumerate over (here 10) may explain
the bad performance.

Table 2 gathers the data according to the validity of the can-
didate loop invariants, and to the linearity of the constraint
problem built to check this validity. This table confirms our
previous observations. The approach performs very well in
detecting spurious invariants. Results are more contrasted
with valid invariants: from the one hand, complex invariants
as produced by hand, involving several program variables
and logical operators, may cause the resolution to time-out,
on the other hand, simpler valid invariants can be checked
as quickly as spurious ones. As regards linearity, most of the
time-outs occur on nonlinear constraint systems. Nonlinear
solvers may clearly be less efficient than linear ones, however,
our approach may still performs well in presence of nonlinear
spurious invariants. From the 82 nonlinear problems solved
in less than 1 second, 81 involve spurious invariants: as a
percentage of the nonlinear spurious invariants, almost 82%
are refuted in less than a second.

The figures given in the first two tables are for 32-bit inte-
gers. Table 3 shows how execution times vary when we re-
duce the size of the integers to 16 bits and 8 bits. A smaller
integer domain improves the performances of the approach
and drastically decreases the number of time-out. Of course,
it can only increase confidence in a candidate invariant, not
ensure its validity. Yet, it may be enough to discard a spu-
rious invariant, and it is sound then: with 8-bit integers,
99.4% of the spurious invariants are discarded in less than
one second each.

5. RELATED WORK
Section 1 briefly presented invariant generation. Compared
to correct invariant generation based on constraints, as far
as constraint solving is concerned, the problem of invariant
verification is simpler:

• verification only deals with the program’s unknowns,
whereas correct generation needs to deal with the un-
known parameters of the invariant pattern in addition;

• verification of a linear invariant for a linear program
can be done with a fast linear solver, whereas correct
generation of a linear invariant for a linear program can
still require solving a prohibitive nonlinear system.

Few works specifically deal with verifying candidate loop
invariants. Close to our work is [8] in which candidate pro-
gram invariants generated by Daikon are checked using con-
straint solving. The considered invariants are akin to pro-
gram postconditions, not loop invariants. As the authors
point out, their treatment of loops results in unusual con-
straint systems making resolution inefficient. Beyond the pe-
culiarities that differentiate our translation of programs into
constraints and theirs, our work focuses on loop invariant
verification and thus avoids the complications due to loops.
Indeed, our results show that constraint solvers can be very
efficient in this context. Another approach to the static ver-
ification of candidate program invariants, again produced
by Daikon, was investigated in [24]. In this approach, the
static checker ESC/Java is called on the program source
code annotated with candidate invariants. As the proof en-
gine of ESC/Java is an automatic theorem prover, when a
proof fails, one cannot tell whether the candidate invariant
is false or additional lemmas are needed to complete the
proof. Moreover, as stated by the authors, ESC/Java itself
is unsound, so even if the proof succeeds, the candidate in-
variant may still be spurious. Our work also shares ideas
with [17] in interpreting the semantics of Java programs as
constraint systems. But it is mainly focused on heap and
shape analyses (cyclic lists...), and it uses a SAT solver to
solve Boolean constraints.

6. DISCUSSION
The results in Section 4.3 show that our approach performs
especially well on spurious candidate loop invariants. Linear
problems are also dealt with efficiently thanks to the highly
optimized Cplex solver from IBM/Ilog, even in cases where
some enumeration is required to fully explore the search
space. In presence of nonlinearity, we still have very good
time performances in two situations:

• a linear subset of the nonlinear system is sufficient to
prove that the invariants hold: if the linear subset is
unsatisfiable, so is the complete nonlinear system;

• the candidate is spurious: the nonlinear solver does not
need to fully explore the search space and may quickly
find a counter-example.

The longest timings occur when the nonlinear solver enu-
merates on the program variable domains to prove a valid
candidate.



Table 2: Execution times according to validity and linearity.
nb < 1 s < 1 min < 10 min TO

True 24 14 (58.3%) 2 (8.3%) 0 8 (33.4%)
False 159 140 (88.1%) 3 (1.9%) 1 (0.6%) 15 (9.4%)

Linear 76 72 (94.8%) 2 (2.6%) 0 2 (2.6%)
Nonlinear 107 82 (76.6%) 3 (2.8%) 1 (0.9%) 21 (19.7%)

Table 3: Execution times varying the integer domain size.
nb < 1 s < 1 min < 10 min TO

8 bits 183 176 (96.2%) 5 (2.7%) 0 2 (1.1%)
16 bits 183 166 (90.7%) 9 (4.9%) 1 (0.6%) 7 (3.8%)
32 bits 183 154 (84.1%) 5 (2.7%) 1 (0.6%) 23 (12.6%)

Quantified assertions also have an impact on the perfor-
mances. If we are able to infer the domain of the quantified
variable, and it is acceptably small, we eliminate quantifica-
tion by expanding assertions with guarded constraints. This
is often possible on quantification iterating over array ele-
ments — since we impose a bound on array lengths, e.g.,
in the binary search program of Listing 5. Otherwise, un-
expandable existential quantification in preconditions and
unexpandable universal quantification in loop invariants re-
quire to solve two constraint systems: the second one being
solved again for each solution of the first one. Most of the
time, this is not reasonably tractable. In a similar way, asser-
tions containing alternating existential and universal quan-
tifiers also need the resolution of several constraint systems
depending on the solutions of another resolution. Hence,
the same conclusion applies and in practice our tool does
not handle nicely alternation of quantifiers.

Our approach is bounded on the size of the integers and
on the number of elements in arrays. As for the integers,
this is not a limitation since on hardware integers are also
bounded, and Java specifies the int data type is a 32-bit in-
teger. Table 3 shows our approach efficiently checked most
of the loop invariants for 32-bit integers. Moreover, refuting
an invariant can often be done on a smaller domain: if a
counter-example is found, it still holds in an including do-
main. However, our approach does not handle overflows.
In Java, arrays are indexed by int values, so this also sets
a bound on the number of elements in arrays. Yet, this
is rather large and not tractable by our approach in the
general case. Nevertheless, in practice, there are numerous
situations where a smaller bound on the size of the arrays
is known. Furthermore, even when a smaller bound is not
known, verifying for some small array sizes increases confi-
dence in the code, just as testing does. Verification of out
of bounds array accesses is not yet implemented, but this
can be simply done by adding new constraints on the index
expressions.

Finally, other verification tools able to deal with sufficiently
expressive program properties could also be used to verify
loop invariants. As discussed in Section 5, tools based on an
undecidable logic, such as ESC/Java [2] or Why [10], usually
do not disprove a spurious candidate. Indeed, a failed proof
attempt does not imply the proof is impossible. In contrast,
boundedness is an adequate setting for refutation, and con-
straint programming, on which our approach is based, han-

dles finite domains very efficiently. Other bounded model
checking tools, like CBMC [1], should be able to disprove
a spurious candidate too. However, CBMC computes only
an error path: unlike our approach, it does not provide a
counter-example with values for the input data when the
invariant does not hold. A more detailed comparison re-
mains to be done, nevertheless this paper demonstrates the
feasibility and efficiency of an approach based on constraint
solvers.

7. CONCLUSION
In this paper, we showed that constraint solvers could be
used as an efficient bounded decision procedure to verify
candidate loop invariants. A remarkable feature of our ap-
proach is to be able to refute spurious candidates, and not
only prove valid ones. Moreover, a counter-example is then
provided, which is a complete test case for the violated prop-
erty. We presented some results on classical benchmarks
which show that our approach is very efficient at refuting
spurious candidates or when only linear expressions are in-
volved. The approach is still exploitable in other situations.

In our work, we focused on single-loop programs, but the
approach can be extended to programs with multiple loops,
including nested loops. Yet, in such programs, multiple can-
didate invariants are mutually dependent. The impact on ef-
ficiency of this extension has to be studied in a future work.

Candidate loop invariants may come from various sources,
e.g., user, or static and dynamic analyses. In particular,
methods starting from the user provided program postcondi-
tion seem promising. Indeed, the postcondition already cap-
tures some of the semantics of the program and helps in find-
ing invariants strong enough to prove the postcondition it-
self. In addition, we believe that the complete test case pro-
vided as counter-example for spurious invariants may greatly
help in refining candidates. The next step of our work will
be to build upon these methods to provide sound loop in-
variants to our bounded program verification tool CPBPV.
Ideally, these loop invariants could replace the CPBPV loop
unfolding process, or at least strengthen the constraint sys-
tem at each unfolding.
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