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Directed algebraic topology and higher
dimensional transition systems

Philippe Gaucher

Abstract. Cattani–Sassone’s notion of higher dimensional transition
system is interpreted as a small-orthogonality class of a locally finitely
presentable topological category of weak higher dimensional transition
systems. In particular, the higher dimensional transition system associ-
ated with the labelled n-cube turns out to be the free higher dimensional
transition system generated by one n-dimensional transition. As a first
application of this construction, it is proved that a localization of the
category of higher dimensional transition systems is equivalent to a lo-
cally finitely presentable reflective full subcategory of the category of
labelled symmetric precubical sets. A second application is to Milner’s
calculus of communicating systems (CCS): the mapping taking process
names in CCS to flows is factorized through the category of higher di-
mensional transition systems. The method also applies to other process
algebras and to topological models of concurrency other than flows.
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1. Introduction

Presentation of the results. In directed algebraic topology, the concur-
rent execution of n actions is modelled by a full n-cube, each coordinate
corresponding to one of the n actions. In this setting, a general concurrent
process is modelled by a gluing of n-cubes modelling the execution paths
and the higher dimensional homotopies between them. Various topologi-
cal models are being studied: in alphabetic and non-chronological order,
d-space [Gra03], d-space generated by cubes [FR08], flow [Gau03], globular
complex [GG03], local po-space [FGR98], locally preordered space [Kri09],
multipointed d-space [Gau09], and more [Gou03] (this list is probably not
complete, indeed). The combinatorial model of labelled (symmetric) precu-
bical set is also of interest because, with such a model, it is exactly known
where the cubes are located in the geometry of the object. It was introduced
for the first time in [Gou02] [Wor04], following ideas from [Dij68] [Pra91]
[Gun94] [Gun01] [VG06] (the last paper is a recent survey containing refer-
ences to older papers), and improved in [Gau08] [Gau10] in relation with the
study of process algebras. The paper [Gau08] treated the case of labelled
precubical sets, and the paper [Gau10] the more general cases of labelled
symmetric precubical sets and labelled symmetric transverse precubical sets.

An apparently different philosophy is the one of higher dimensional tran-
sition system. This notion, introduced in [CS96], models the concurrent ex-
ecution of n actions by a transition between two states labelled by a multiset
of n actions. A multiset is a set with possible repetition of some elements
(e.g., {0, 0, 2, 3, 3, 3}). It is usually modelled by an object of Set↓N∗, i.e.,
by a set map N : X → N∗ where X is the underlying set of the multiset
N in which x ∈ X appears N(x) > 0 times. A higher dimensional transi-
tion system must satisfy several natural axioms CSA1, CSA2 and CSA3 (cf.
Definition 4). This notion is a generalization of the 1-dimensional notion
of transition system in which transitions between states are labelled by one
action (e.g., [WN95, Section 2.1]). The latter 1-dimensional notion cannot
of course model concurrency.

One of the purposes of this paper is to make precise the link between pro-
cess algebras modelled as labelled symmetric precubical sets, as higher di-
mensional transition systems, and as flows, by introducing the notion of weak
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higher dimensional transition system. The only process algebras treated
are the ones in Milner’s calculus of communicating systems (CCS) [WN95]
[Mil89]. And only the topological model of flows introduced in [Gau03] is
used. Similar results can easily be obtained for other process algebras and
for topological models of concurrency other than flows. For other synchro-
nization algebras, one needs only to change the set of synchronizations in
Definition 13.1. For other topological models of concurrency one needs only
to change the realization of the full n-cube [n]cof in Definition 12.5. These
modifications do not affect the mathematical results of the paper. The first
main result can then be stated as follows:

Theorem (Theorem 9.2, Theorem 9.5, Theorem 12.7 and Corollary 13.7).
The mapping defined in [Gau08] and [Gau10] taking each CCS process name
to the geometric realization as flow |�SJP K|flow of the labelled symmetric
precubical set �SJP K factors through Cattani–Sassone’s category of higher
dimensional transition systems.

In fact, the functorial factorization |T(K)| ∼= |K|flow exists as soon as K
satisfies the HDA paradigm and T(K) the Unique intermediate state axiom
(Every K satisfying the latter condition is called a strong labelled symmetric
precubical set).

Let us recall for the reader that the semantics of process algebras used in
this paper in Section 13 is the one of [Gau10]. This semantics is nothing else
but the labelled free symmetric precubical set generated by the labelled pre-
cubical set given in [Gau08]. The reason for working with labelled symmetric
precubical sets in this paper is that this category is closely related to the
category of (weak) higher dimensional transition systems by Theorem 8.5:
the full subcategories in the two categories generated by the labelled n-cubes
for all n > 0 are isomorphic.

The interest of the combinatorial model of (weak) higher dimensional
transition systems is that the HDA paradigm (cf. Section 7) is automati-
cally satisfied. That is to say, the concurrent execution of n actions (with
n > 2) always assembles to exactly one n-cube in a (weak) higher dimen-
sional transition system. Indeed, the realization functor T from labelled
symmetric precubical sets to weak higher dimensional transition systems
factors through the category of labelled symmetric precubical sets satis-
fying the HDA paradigm by Theorem 9.5. On the contrary, as already
explained in [Gau08] and in [Gau10], there exist labelled (symmetric) pre-
cubical sets containing n-tuples of actions running concurrently which as-
semble to several different n-cubes. Let us explain this phenomenon for
the case of the square. Consider the concurrent execution of two actions a
and b as depicted in Figure 2. Let S = {0, 1} × {0, 1} be the set of states.
Let L = {a, b} be the set of actions with a 6= b. The boundary of the
square is modelled by adding to the set of states S the four 1-transitions
((0, 0), a, (1, 0)), ((0, 1), a, (1, 1)), ((0, 0), b, (0, 1)) and ((1, 0), b, (1, 1)). The
concurrent execution of a and b is modelled by adding the 2-transitions
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((0, 0), a, b, (1, 1)) and ((0, 0), b, a, (1, 1)). Adding one more time the two
2-transitions ((0, 0), a, b, (1, 1)) and ((0, 0), b, a, (1, 1)) does not change any-
thing to the object since the set of transitions remains equal to

{((0, 0), a, (1, 0)), ((0, 1), a, (1, 1)), ((0, 0), b, (0, 1)), ((1, 0), b, (1, 1)),

((0, 0), a, b, (1, 1)), ((0, 0), b, a, (1, 1))}.

On the contrary, the labelled symmetric precubical set �S [a, b] t∂�S [a,b]

�S [a, b] contains two different labelled squares �S [a, b] modelling the concur-
rent execution of a and b, obtaining this way a geometric object homotopy
equivalent to a 2-dimensional sphere (see Proposition 9.3). This is meaning-
less from a computer scientific point of view. Indeed, either the two actions
a and b run sequentially, and the square must remain empty, or the two ac-
tions a and b run concurrently and the square must be filled by exactly one
square modelling concurrency. The topological hole created by the presence
of two squares as in �S [a, b] t∂�S [a,b] �S [a, b] does not have any computer
scientific interpretation. The concurrent execution of two actions (and more
generally of n actions) must be modelled by a contractible object.

The factorization of T even yields a faithful functor T from labelled sym-
metric precubical sets satisfying the HDA paradigm to weak higher dimen-
sional transition systems by Corollary 10.2. However, the functor T is not
full by Proposition 10.3. It only induces an equivalence of categories by
restricting to a full subcategory:

Theorem (Theorem 11.6). The localization of the category of higher dimen-
sional transition systems by the cubification functor is equivalent to a locally
finitely presentable reflective full subcategory of the category of labelled sym-
metric precubical sets. In this localization, two higher dimensional transition
systems are isomorphic if they have the same cubes and they only differ by
their set of actions.

We must introduce the technical notion of weak higher dimensional tran-
sition system since there exist labelled symmetric precubical sets K such
that T(K) is not a higher dimensional transition system by Proposition 9.7.
It is of course not difficult to find a labelled symmetric precubical set con-
tradicting CSA1 of Definition 4.1 (e.g., Figure 1). It is also possible to find
counterexamples for the other axioms CSA2 and CSA3 of higher dimen-
sional transition system. This matters: if a labelled symmetric precubical
set K is such that T(K) is not a higher dimensional transition system, then
it cannot be constructed from a process algebra.

Organization of the paper. Section 3 expounds the notion of weak higher
dimensional transition system. The notion of multiset recalled in the intro-
duction is replaced by the Multiset axiom on tuples to make the categori-
cal treatment easier. Logical tools are used to prove that the category of
weak higher dimensional transition systems is locally finitely presentable and
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topological. Section 4 recalls Cattani–Sassone’s notion of higher dimensional
transition system. It is proved that every higher dimensional transition sys-
tem is a weak one. The notion of higher dimensional transition system is also
reformulated to make it easier to use. The Unique intermediate state axiom
is introduced for that purpose. It is also proved in the same section that the
set of transitions of any reasonable colimit is the union of the transitions
of the components (Theorem 4.7). It is proved in Section 5 that higher di-
mensional transition systems assemble to a small-orthogonality class of the
category of weak higher dimensional transition systems (Corollary 5.7). This
implies that the category of higher dimensional transition systems is a full
reflective locally finitely presentable category of the category of weak higher
dimensional transition systems. Section 6 recalls the notion of labelled sym-
metric precubical set. This section collects information scattered between
[Gau08] and [Gau10]. Section 7 defines the paradigm of higher dimensional
automata (HDA paradigm). It is the adaptation to the setting of labelled
symmetric precubical sets of the analogous definition presented in [Gau08]
for labelled precubical sets. A labelled symmetric precubical set satisfies the
HDA paradigm if every labelled p-shell with p > 1 can be filled by at most
one labelled (p+ 1)-cube. This notion is a technical tool for various proofs
of this paper. It is proved in the same section that the full subcategory
of labelled symmetric precubical sets satisfying the HDA paradigm is a full
reflective subcategory of the category of labelled symmetric precubical sets
by proving that it is a small-orthogonality class as well. It is also checked in
the same section that the full labelled n-cube satisfies the HDA paradigm
(this trivial point is fundamental!). Section 8 establishes that the full sub-
category of labelled n-cubes of the category of labelled symmetric precubical
sets is isomorphic to the full subcategory of labelled n-cubes of the category
of (weak) higher dimensional transition systems (Theorem 8.5). The proof
is of combinatorial nature. Section 9 constructs the realization functor from
labelled symmetric precubical sets to weak higher dimensional transition
systems. And it is proved that this functor factors through the full subcat-
egory of labelled symmetric precubical sets satisfying the HDA paradigm.
The two functors, the realization functor and its factorization are left ad-
joints (Theorem 9.2 and Theorem 9.5). Section 10 studies when these latter
functors are faithful and full. It is proved that the HDA paradigm is related
to faithfulness and that the combination of the HDA paradigm together
and the Unique intermediate state axiom is related to fullness. Section 11
uses all previous results to compare the two settings of higher dimensional
transition systems and labelled symmetric precubical sets. Section 12 is a
straightforward but crucial application of the previous results. It is proved
in Theorem 12.7 that the geometric realization as flow of a labelled sym-
metric precubical set K is the geometric realization as flow of its realization
as weak higher dimensional transition system provided that K is strong and
satisfies the HDA paradigm. The purpose of Section 13 is to prove that
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these conditions are satisfied by the labelled symmetric precubical sets com-
ing from process algebras. Hence we obtain the second application stated
in Corollary 13.7.

2. Prerequisites

The notations used in this paper are standard. A small class is called a
set. All categories are locally small. The set of morphisms from X to Y in
a category C is denoted by C(X,Y ). The identity of X is denoted by IdX .
Colimits are denoted by lim−→ and limits by lim←−.

The reading of this paper requires general knowledge in category theory
[ML98], in particular in presheaf theory [MLM94], but also a good under-
standing of the theory of locally presentable categories [AR94] and of the
theory of topological categories [AHS06]. A few model category techniques
are also used [DS95] [Hov99] [Hir03] in the proof of Theorem 9.4 and in
Section 12.

A short introduction to process algebra can be found in [WN95]. An in-
troduction to CCS (Milner’s calculus of communicating systems [Mil89]) for
mathematician is available in [Gau08] and in [Gau10]. Hardly any knowl-
edge of process algebra is needed to read Section 13 of the paper. In fact,
the paper [Gau08] can be taken as a starting point.

Some salient mathematical facts are collected in this section. Of course,
this section does not intend to be an introduction to these notions. It will
only help the reader to understand what kinds of mathematical tools are
used in this work.

Let λ be a regular cardinal (see for example [HJ99, p 160]). When λ = ℵ0,
the word “λ−” is replaced by the word “finitely”. An object C of a category
C is λ-presentable when the functor C(C,−) preserves λ-directed colimits.
Practically, that means that every map C → lim−→Ci factors as a composite
C → Ci → lim−→Ci when the colimit is λ-directed. A λ-accessible category is
a category having λ-directed colimits such that each object is generated (in
some strong sense) by a set of λ-presentable objects. For example, each ob-
ject is a λ-directed colimit of a subset of a given set of λ-presentable objects.
If moreover the category is cocomplete, it is called a locally λ-presentable
category. We use at several places of the paper a logical characterization
of accessible and locally presentable categories which are axiomatized by
theories with set of sorts {s} ∪ Σ, s being the sort of states and Σ a non-
empty fixed set of labels. Another kind of locally presentable category is
a category of presheaves, and any comma category constructed from it.
Every locally presentable category has a set of generators, is complete, co-
complete, wellpowered and co-wellpowered. The Special Adjoint Functor
Theorem SAFT is then usable to prove the existence of right adjoints. A
functor between locally λ-presentable category is λ-accessible if it preserves
λ-directed colimits (or equivalently λ-filtered colimits). Another important
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fact is that a functor between locally presentable categories is a right adjoint
if and only if it is accessible and limit-preserving.

An object C is orthogonal to a map X → Y if every map X → C factors
uniquely as a compositeX → Y → C. A full subcategory of a given category
is reflective if the inclusion functor is a right adjoint. The left adjoint to the
inclusion is called the reflection. In a locally presentable category, the full
subcategory of objects orthogonal to a given set of morphisms is an example
of a reflective subcategory. Such a category, called a small-orthogonality
class, is locally presentable. And the inclusion functor is of course accessible
and limit-preserving.

The paradigm of topological category over the category of Set is the one
of general topological spaces with the notions of initial topology and final
topology. More precisely, a functor ω : C → D is topological if each cone
(fi : X → ωAi)i∈I where I is a class has a unique ω-initial lift (the initial
structure) (f i : A→ Ai)i∈I , i.e.:

(1) ωA = X and ωf i = fi for each i ∈ I.
(2) Given h : ωB → X with fih = ωhi, hi : B → Ai for each i ∈ I, then

h = ωh for a unique h : B → A.
Topological functors can be characterized as functors such that each cocone
(fi : ωAi → X)i∈I where I is a class has a unique ω-final lift (the final
structure) f i : Ai → A, i.e.:

(1) ωA = X and ωf i = fi for each i ∈ I.
(2) Given h : X → ωB with hfi = ωhi, hi : Ai → B for each i ∈ I, then

h = ωh for a unique h : A→ B.
Let us suppose D complete and cocomplete. A limit (resp. colimit) in C is
calculated by taking the limit (resp. colimit) in D, and by endowing it with
the initial (resp. final) structure. In this work, a topological category is a
topological category over the category Set{s}∪Σ where {s} ∪ Σ is as above
the set of sorts.

Let i : A −→ B and p : X −→ Y be maps in a category C. Then i has
the left lifting property (LLP) with respect to p (or p has the right lifting
property (RLP) with respect to i) if for every commutative square

A

i

��

α // X

p

��
B

g

??~
~

~
~

~
~

~
~ β // Y

there exists a lift g making both triangles commutative.
Let C be a cocomplete category. If K is a set of morphisms of C, then

the class of morphisms of C that satisfy the RLP with respect to every
morphism of K is denoted by inj(K) and the class of morphisms of C that
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are transfinite compositions of pushouts of elements of K is denoted by
cell(K). Denote by cof(K) the class of morphisms of C that satisfy the
LLP with respect to the morphisms of inj(K). It is a purely categorical fact
that cell(K) ⊂ cof(K). Moreover, every morphism of cof(K) is a retract
of a morphism of cell(K) as soon as the domains of K are small relative to
cell(K) [Hov99, Corollary 2.1.15]. An element of cell(K) is called a relative
K-cell complex. If X is an object of C, and if the canonical morphism
∅ −→ X is a relative K-cell complex, then the object X is called a K-cell
complex.

Let C be a category. A weak factorization system is a pair (L,R) of
classes of morphisms of C such that the class L is the class of morphisms
having the LLP with respect to R, such that the class R is the class of
morphisms having the RLP with respect to L and such that every morphism
of C factors as a composite r◦` with ` ∈ L and r ∈ R. The weak factorization
system is functorial if the factorization r ◦ ` is a functorial factorization. It
is cofibrantly generated if it is of the form (cof(K), inj(K)) for some set of
maps K.

A model category is a complete cocomplete category equipped with a
model structure consisting of three classes of morphisms Cof, Fib,W respec-
tively called cofibration, fibration and weak equivalence such that the pairs
of classes of morphisms (Cof,Fib∩W) and (Cof∩W,Fib) are weak factoriza-
tion systems and such that if two of the three morphisms f, g, g ◦f are weak
equivalences, then so is the third one. This model structure is cofibrantly
generated provided that the two weak factorization systems (Cof,Fib ∩W)
and (Cof∩W,Fib) are cofibrantly generated. The only model category used
in this paper is the one of flows. We need only in fact the notion of cofi-
brant replacement. For an object X of a model category, the canonical map
∅ → X factors as a composite ∅ → Xcof → X where the left-hand map is
a cofibration and the right-hand map a trivial fibration, i.e., an element of
Fib ∩W. The object Xcof is called a cofibrant replacement of X.

The proof of Theorem 9.4 uses the fact that for every set of morphisms
K in a locally presentable category, a map X → Y always factors as a
composite X → Z → Y where the left-hand map is an object of cell(K)
and the right-hand map an object of inj(K).

Beware of the fact that the word “model” has three different meanings in
this paper, a logical one, a homotopical one, and also a non-mathematical
one like in the sentence “the n-cube models the concurrent execution of n
actions”.

3. Weak higher dimensional transition systems

The formalism of multiset as used in [CS96] is not easy to handle. In
this paper, an n-transition between two states α and β (or from α to β)
modelling the concurrent execution of n actions u1, . . . , un with n > 1 is
modelled by an (n + 2)-tuple (α, u1, . . . , un, β) satisfying the new Multiset
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axiom: for every permutation σ of {1, . . . , n}, (α, uσ(1), . . . , uσ(n), β) is an
n-transition.

Notation 3.1. We fix a nonempty set of labels Σ. We suppose that Σ
always contains a distinguished element denoted by τ .

Definition 3.2. A weak higher dimensional transition system consists of a
triple (

S, µ : L→ Σ, T =
⋃
n>1

Tn

)
where S is a set of states, where L is a set of actions, where µ : L → Σ is
a set map called the labelling map, and finally where Tn ⊂ S × Ln × S for
n > 1 is a set of n-transitions or n-dimensional transitions such that one
has:

• (Multiset axiom) For every permutation σ of {1, . . . , n} with n > 2,
if (α, u1, . . . , un, β) is a transition, then (α, uσ(1), . . . , uσ(n), β) is a
transition as well.
• (Coherence axiom) For every (n + 2)-tuple (α, u1, . . . , un, β) with
n > 3, for every p, q > 1 with p+ q < n, if the five tuples

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β),

are transitions, then the (q + 2)-tuple (ν1, up+1, . . . , up+q, ν2) is a
transition as well.

A map of weak higher dimensional transition systems

f : (S, µ : L→ Σ, (Tn)n>1)→ (S′, µ′ : L′ → Σ, (T ′n)n>1)

consists of a set map f0 : S → S′, a commutative square

L
µ //

ef
��

Σ

L′
µ′

// Σ

such that if (α, u1, . . . , un, β) is a transition, then

(f0(α), f̃(u1), . . . , f̃(un), f0(β))

is a transition. The corresponding category is denoted by WHDTS. The
n-transition (α, u1, . . . , un, β) is also called a transition from α to β.

Notation 3.3. A transition (α, u1, . . . , un, β) will be also denoted by

α
u1,...,un−→ β.
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Theorem 3.4. The category WHDTS is locally finitely presentable. The
functor

ω : WHDTS −→ Set{s}∪Σ

taking the weak higher dimensional transition system (S, µ : L→ Σ, (Tn)n>1)
to the ({s} ∪ Σ)-tuple of sets (S, (µ−1(x))x∈Σ) ∈ Set{s}∪Σ is topological.

Proof. Let (fi : ωXi → (S, (Lx)x∈Σ))i∈I be a cocone where I is a class
with Xi = (Si, µi : Li → Σ, T i =

⋃
n>1 T

i
n). The closure by the Multiset

axiom and the Coherence axiom of the union of the images of the T i in⋃
n>1(S × Ln × S) with L =

⊔
x∈Σ Lx gives the final structure. Hence, the

functor ω is topological.
We use the terminology of [AR94, Chapter 5]. Let us consider the theory

T in finitary first-order logic defined by the set of sorts {s}∪Σ, by a relational
symbol Tx1,...,xn of arity s × x1 × . . . × xn × s for every n > 1 and every
(x1, . . . , xn) ∈ Σn, and by the axioms:

• For all x1, . . . , xn ∈ Σ, for all n > 2 and for all permutations σ of
{1, . . . , n}:

(∀α, u1 . . . , un, β), Tx1,...,xn(α, u1, . . . , un, β)

⇒ Txσ(1),...,xσ(n)
(α, uσ(1), . . . , uσ(n), β).

• For all x1, . . . , xn ∈ Σ, for all n > 3, for all p, q > 1 with p+ q < n,

(∀α, u1 . . . , un, β, ν1, ν2)(Tx1,...,xn(α, u1, . . . , un, β)

∧ Tx1,...,xp(α, u1, . . . , up, ν1) ∧ Txp+1,...,xn(ν1, up+1, . . . , un, β)

∧ Tx1,...,xp+q(α, u1, . . . , up+q, ν2) ∧ Txp+q+1,...,xn(ν2, up+q+1, . . . , un, β))

⇒ Txp+1,...,xp+q(ν1, up+1, . . . , up+q, ν2).

Since the axioms are of the form (∀x), φ(x) ⇒ (∃!y ψ(x, y)) (with no y)
where φ and ψ are conjunctions of atomic formulas with a finite number
of arguments, the category Mod(T ) of models of T in Set{s}∪Σ is locally
finitely presentable by [AR94, Theorem 5.30]. It remains to observe that
there is an isomorphism of categories Mod(T ) ∼= WHDTS to complete the
proof. �

Note that the category WHDTS is axiomatized by a universal strict Horn
theory without equality, i.e., by statements of the form (∀x), φ(x) ⇒ ψ(x)
where φ and ψ are conjunctions of atomic formulas without equalities. So
[Ros81, Theorem 5.3] provides another argument to prove that the functor
ω above is topological.

Let us conclude this section by some additional comments about colimits
in WHDTS. We will come back to this question in Theorem 4.7.

Proposition 3.5. Let X = lim−→Xi be a colimit of weak higher dimensional
transition systems with Xi = (Si, µi : Li → Σ, T i =

⋃
n>1 T

i
n) and X =

(S, µ : L→ Σ, T =
⋃
n>1 Tn). Then:
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(1) S = lim−→Si, L = lim−→Li, µ = lim−→µi.
(2) The union

⋃
i T

i of the image of the T i in
⋃
n>1(S×Ln×S) satisfies

the Multiset axiom.
(3) T is the closure of

⋃
i T

i under the Coherence axiom.
(4) When the union

⋃
i T

i is already closed under the Coherence axiom,
this union is the final structure.

Proof. By [AHS06, Proposition 21.15], (1) is a consequence of the fact that
the category WHDTS is topological over Set{s}∪Σ. (2) comes from the fact
that each Ti satisfies the Multiset axiom. (4) is a consequence of (2) . It
remains to prove (3) . Let G0(

⋃
i T

i) =
⋃
i T

i. Let us define Gα(
⋃
i T

i) by
induction on the transfinite ordinal α > 0 by Gα(

⋃
i T

i) =
⋃
β<αGβ(

⋃
i T

i)
for every limit ordinal α and Gα+1(

⋃
i T

i) is obtained from Gα(
⋃
i T

i) by
adding to Gα(

⋃
i T

i) all (q+2)-tuples (ν1, up+1, . . . , up+q, ν2) such that there
exist five tuples (α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),
(α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) of the set Gα(

⋃
i T

i). Hence
we have the inclusions Gα(

⋃
i T

i) ⊂ Gα+1(
⋃
i T

i) ⊂
⋃
n>1(S × Ln × S) for

all α > 0. For cardinality reason, there exists an ordinal α0 such that for
every α > α0, one has Gα(

⋃
i T

i) = Gα0(
⋃
i T

i). By transfinite induction on
α > 0, one sees that Gα(

⋃
i T

i) satisfies the Multiset axiom. So the closure
Gα0(

⋃
i T

i) of
⋃
i T

i under the Coherence axiom is the final structure and
Gα0(

⋃
i T

i) = T . �

4. Higher dimensional transition systems

Let us now propose our (slightly revised) version of higher dimensional
transition system.

Definition 4.1. A higher dimensional transition system is a triple(
S, µ : L→ Σ, T =

⋃
n>1

Tn

)
where S is a set of states, where L is a set of actions, where µ : L → Σ is
a set map called the labelling map, and finally where Tn ⊂ S × Ln × S is a
set of n-transitions or n-dimensional transitions such that one has:

(1) (Multiset axiom) For every permutation σ of {1, . . . , n} with n > 2,
if (α, u1, . . . , un, β) is a transition, then (α, uσ(1), . . . , uσ(n), β) is a
transition as well.

(2) (First Cattani–Sassone axiom CSA1) If (α, u, β) and (α, u′, β) are
two transitions such that µ(u) = µ(u′), then u = u′.

(3) (Second Cattani–Sassone axiom CSA2) For every n > 2, every p
with 1 6 p < n, and every transition (α, u1, . . . , un, β), there exists
a unique state ν1 and a unique state ν2 such that (α, u1, . . . , up, ν1),
(ν1, up+1, . . . , un, β), (α, up+1, . . . , un, ν2) and (ν2, u1, . . . , up, β) are
transitions.
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(4) (Third Cattani–Sassone axiom CSA3) For every state

α, β, ν1, ν2, ν
′
1, ν

′
2

and every action u1, . . . , un, with p, q > 1 and p+ q < n, if the nine
tuples

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(ν1, up+1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β), (α, u1, . . . , up+q, ν
′
2),

(ν ′2, up+q+1, . . . , un, β), (α, u1, . . . , up, ν
′
1), (ν

′
1, up+1, . . . , up+q, ν

′
2),

are transitions, then ν1 = ν ′1 and ν2 = ν ′2.

Note that our notion of morphism of higher dimensional transition sys-
tems differs from Cattani–Sassone’s one: we take only the morphisms be-
tween the underlying sets of states and actions preserving the structure.
This is necessary to develop the theory presented in this paper. So it be-
comes false that two general higher dimensional transition systems differing
only by the set of actions are isomorphic. However, this latter fact is true in
some appropriate categorical localization (see the very end of Section 11).
We also have something similar for (weak) higher dimensional transition
systems coming from strong labelled symmetric precubical sets by Corol-
lary 10.6, that is to say from any labelled symmetric precubical set coming
from process algebras by Theorem 13.6.

Let us cite [CS96]: “CSA1 in the above definition simply guarantees that
there are no two transitions between the same states carrying the same
multiset of labels. CSA2 guarantees that all the interleaving of a transition
α
u1,...,un−→ β are present as paths from α to β, whilst CSA3 ensures that such

paths glue together properly: it corresponds to the cubical laws of higher
dimensional automata”.

Proposition 4.2. Every higher dimensional transition system is a weak
higher dimensional transition system.

Proof. Let X = (S, µ : L → Σ, T =
⋃
n>1 Tn) be a higher dimensional

transition system. Let (α, u1, . . . , un, β) be a transition with n > 3. Let
p, q > 1 with p+ q < n. Suppose that the five tuples

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(α, u1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β),

are transitions. Let ν ′1 be the (unique) state ofX such that (α, u1, . . . , up, ν
′
1)

and (ν ′1, up+1, . . . , up+q, ν2) are transitions of X. Let ν ′2 be the (unique)
state of X such that (ν1, up+1, . . . , up+q, ν

′
2) and (ν ′2, up+q+1, . . . , un, β) are

transitions of X. Then ν1 = ν ′1 and ν2 = ν ′2 by CSA3. Therefore the
Coherence axiom is satisfied. �

Notation 4.3. The full subcategory of higher dimensional transition sys-
tems is denoted by HDTS. So one has the inclusion HDTS ⊂WHDTS.
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Definition 4.4. A weak higher dimensional transition system satisfies the
Unique Intermediate state axiom if for every n > 2, every p with 1 6 p < n
and every transition (α, u1, . . . , un, β), there exists a unique state ν such that
both the tuples (α, u1, . . . , up, ν) and (ν, up+1, . . . , un, β) are transitions.

Proposition 4.5. A weak higher dimensional transition system satisfies
the second and third Cattani–Sassone axioms if and only if it satisfies the
Unique intermediate state axiom.

Proof. A weak higher dimensional transition system satisfying CSA2 and
CSA3 clearly satisfies the Unique intermediate state axiom. Conversely, if a
weak higher dimensional transition system satisfies the Unique intermediate
state axiom, it clearly satisfies CSA2. Let α, β, ν1, ν2, ν

′
1, ν

′
2 be states and

let u1, . . . , un be actions with n > 3. Let p, q > 1 with p + q < n. Suppose
that

(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),

(ν1, up+1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β), (α, u1, . . . , up+q, ν
′
2),

(ν ′2, up+q+1, . . . , un, β), (α, u1, . . . , up, ν
′
1), (ν

′
1, up+1, . . . , up+q, ν

′
2)

are transitions. By the Coherence axiom, the tuple (ν1, up+1, . . . , up+q, ν
′
2) is

a transition. By the Unique intermediate state axiom, one obtains ν1 = ν ′1
and ν2 = ν ′2. So CSA3 is satisfied too. �

One obtains a new formulation of the notion of higher dimensional tran-
sition system:

Proposition 4.6. A higher dimensional transition system is a weak higher
dimensional transition system satisfying CSA1 and the Unique intermediate
state axiom.

Let us conclude this section by an important remark about colimits of
weak higher dimensional transition systems satisfying the Unique interme-
diate state axiom, so in particular about colimits of higher dimensional
transition systems.

Theorem 4.7. Let X = lim−→Xi be a colimit of weak higher dimensional
transition systems such that every weak higher dimensional transition system
Xi satisfies the Unique intermediate state axiom. Let

Xi =
(
Si, µi : Li → Σ, T i =

⋃
n>1

T in

)
and

X =
(
S, µ : L→ Σ, T =

⋃
n>1

Tn

)
.

Denote by
⋃
i T

i the union of the images by the map Xi → X of the sets of
transitions of the Xi for i running over the set of objects of the base category
of the diagram i 7→ Xi. Then the following conditions are equivalent:
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(1) X satisfies the Unique intermediate state axiom.
(2) The set of transitions

⋃
i T

i satisfies the Unique intermediate state
axiom.

(3) The set of transitions
⋃
i T

i satisfies the Multiset axiom, the Coher-
ence axiom and the Unique intermediate state axiom.

Whenever one of the preceding three conditions is satisfied, the set of tran-
sitions

⋃
i T

i is the final structure.

Proof. The set of transitions
⋃
i T

i always satisfies the Multiset axiom by
Proposition 3.5.

(1)⇒ (2). The set of transitions of X is the closure under the Coherence
axiom of

⋃
i T

i by Proposition 3.5. So
⋃
i T

i ⊂ T .
(2) ⇒ (3). Let n > 3. Let (α, u1, . . . , un, β) be a transition of

⋃
i T

i.
Let p, q > 1 with p + q < n. Let (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),
(α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) be four transitions of

⋃
i T

i.
Let i such that there exists a transition (αi, ui1, . . . , u

i
n, β

i) of Xi taken by
the canonical map Xi → X to (α, u1, . . . , un, β). Since Xi satisfies the
Unique intermediate state axiom, there exists a (unique) state νi1 and a
(unique) state νi2 of Xi such that (αi, ui1, . . . , u

i
p, ν

i
1), (νi1, u

i
p+1, . . . , u

i
n, β

i),
(αi, ui1, . . . , u

i
p+q, ν

i
2) and (νi2, u

i
p+q+1, . . . , u

i
n, β) are four transitions of Xi.

Since
⋃
i T

i satisfies the Unique intermediate state axiom as well, the map
Xi → X takes νi1 to ν1 and νi2 to ν2. By the Coherence axiom applied to Xi,
the tuple (νi1, u

i
p+1, . . . , u

i
p+q, ν

i
2) is a transition of Xi. So the union

⋃
i T

i is
closed under the Coherence axiom.

(3) ⇒ (1). If (3) holds, then the inclusion
⋃
i T

i ⊂ T is an equality by
Proposition 3.5. Therefore the weak higher dimensional transition system
X satisfies the Unique intermediate state axiom.

The last assertion is then clear. �

5. Higher dimensional transition systems as a
small-orthogonality class

Notation 5.1. Let [0] = {()} and [n] = {0, 1}n for n > 1. By convention,
one has {0, 1}0 = [0] = {()}. The set [n] is equipped with the product
ordering {0 < 1}n.

Let us now describe the higher dimensional transition system associated
with the n-cube for n > 0.

Proposition 5.2. Let n > 0 and a1, . . . , an ∈ Σ. Let

Td ⊂ {0, 1}n × {(a1, 1), . . . , (an, n)}d × {0, 1}n

(with d > 1) be the subset of (d+ 2)-tuples

((ε1, . . . , εn), (ai1 , i1), . . . , (aid , id), (ε
′
1, . . . , ε

′
n))

such that:
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• im = in implies m = n, i.e., there are no repetitions in the list

(ai1 , i1), . . . , (aid , id).

• For all i, εi 6 ε′i.
• εi 6= ε′i if and only if i ∈ {i1, . . . , id}.

Let µ : {(a1, 1), . . . , (an, n)} → Σ be the set map defined by µ(ai, i) = ai.
Then

Cn[a1, . . . , an] = ({0, 1}n, µ : {(a1, 1), . . . , (an, n)} → Σ, (Td)d>1)

is a well-defined higher dimensional transition system.

Note that for n = 0, C0[], also denoted by C0, is nothing else but the
higher dimensional transition system ({()}, µ : ∅→ Σ,∅).

Proof. There is nothing to prove for n = 0, 1. So one can suppose that
n > 2. We use the characterization of Proposition 4.6. CSA1 and the
Multiset axiom are obviously satisfied. Let

((ε1, . . . , εn), (ai1 , i1), . . . , (aim , im), (ε′1, . . . , ε
′
n))

be a transition of Cn[a1, . . . , an]. By construction of Cn[a1, . . . , an], the
unique state

(ε′′1, . . . , ε
′′
n) ∈ [n]

such that the (p+ 2)-tuple

((ε1, . . . , εn), (ai1 , i1), . . . , (aip , ip), (ε
′′
1, . . . , ε

′′
n))

and the (m− p+ 2)-tuple

((ε′′1, . . . , ε
′′
n), (aip+1 , ip+1), . . . , (aim , im), (ε′1, . . . , ε

′
n))

are transitions of Cn[a1, . . . , an] is the one satisfying εi 6 ε′′i 6 ε′i for all
i ∈ {1, . . . , n} and εi 6= ε′′i if and only if i ∈ {i1, . . . , ip}. So the Unique
intermediate state axiom is satisfied. The Coherence axiom can be checked
in a similar way. �

Note that for every permutation σ of {1, . . . , n}, one has the isomorphism
of weak higher dimensional transition systems

Cn[a1, . . . , an] ∼= Cn[aσ(1), . . . , aσ(n)].

We must introduce n distinct actions (a1, 1), . . . , (an, n) as in [CS96] other-
wise an object like C2[a, a] would not satisfy the Unique intermediate state
axiom.

Notation 5.3. For n > 1, let 0n = (0, . . . , 0) (n-times) and 1n = (1, . . . , 1)
(n-times). By convention, let 00 = 10 = ().
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Notation 5.4. For n > 0, let Cn[a1, . . . , an]ext be the weak higher di-
mensional transition system with set of states {0n, 1n}, with set of actions
{(a1, 1), . . . , (an, n)} and with transitions the (n+ 2)-tuples

(0n, (aσ(1), σ(1)), . . . , (aσ(n), σ(n)), 1n)

for σ running over the set of permutations of the set {1, . . . , n}.

Proposition 5.5. Let n > 0 and a1, . . . , an ∈ Σ. Let

X =
(
S, µ : L→ Σ, T =

⋃
n>1

Tn

)
be a weak higher dimensional transition system. Let f0 : {0, 1}n → S and
f̃ : {(a1, 1), . . . , (an, n)} → L be two set maps. Then the following conditions
are equivalent:

(1) The pair (f0, f̃) induces a map of weak higher dimensional transition
systems from Cn[a1, . . . , an] to X.

(2) For every transition

((ε1, . . . , εn), (ai1 , i1), . . . , (air , ir), (ε
′
1, . . . , ε

′
n))

of Cn[a1, . . . , an] with (ε1, . . . , εn) = 0n or (ε′1, . . . , ε
′
n) = 1n, the tuple

(f0(ε1, . . . , εn), f̃(ai1 , i1), . . . , f̃(air , ir), f0(ε′1, . . . , ε
′
n))

is a transition of X.

Note that the Coherence axiom plays a crucial role in the proof.

Proof. The implication (1)⇒ (2) is obvious. Suppose that (2) holds. Let

((ε1, . . . , εn), (air+1 , ir+1), . . . , (air+s , ir+s), (ε
′
1, . . . , ε

′
n))

be a transition of Cn[a1, . . . , an] with

(ε1, . . . , εn) ∈ [n]\{0n},
(ε′1, . . . , ε

′
n) ∈ [n]\{1n}.

There exists a transition

(0n, (ai1 , i1), . . . , (air , ir), (ε1, . . . , εn))

in Cn[a1, . . . , an] from 0n to (ε1, . . . , εn). And there exists a transition

((ε′1, . . . , ε
′
n), (air+s+1 , ir+s+1), . . . , (ain , in), 1n)

from (ε′1, . . . , ε
′
n) to 1n in Cn[a1, . . . , an]. By construction of Cn[a1, . . . , an],

the two tuples

(0n, (ai1 , i1), . . . , (air+s , ir+s), (ε
′
1, . . . , ε

′
n))

and
((ε1, . . . , εn), (air+1 , ir+1), . . . , (ain , in), 1n)

are two transitions of Cn[a1, . . . , an] as well. Thus, the transition

((ε1, . . . , εn), (air+1 , ir+1), . . . , (air+s , ir+s), (ε
′
1, . . . , ε

′
n))
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is in the closure in
⋃
d>1{0, 1}n × {(a1, 1), . . . , (an, n)}d × {0, 1}n under the

Coherence axiom of the subset of transitions of Cn[a1, . . . , an] of the form

(0n, (ai1 , i1), . . . , (air , ir), (ε
′
1, . . . , ε

′
n))

or ((ε1, . . . , εn), (ai1 , i1), . . . , (air , ir), 1n) with (ε1, . . . , εn), (ε′1, . . . , ε
′
n) ∈ [n].

Hence, one obtains (2)⇒ (1). �

Theorem 5.6. A weak higher dimensional transition system satisfies the
Unique intermediate state axiom if and only if it is orthogonal to the set of
inclusions

{Cn[a1, . . . , an]ext ⊂ Cn[a1, . . . , an], n > 0 and a1, . . . , an ∈ Σ}.

Proof. Only if part. Let X = (S, µ : L → Σ, T =
⋃
n>1 Tn) be a weak

higher dimensional transition system satisfying the Unique intermediate
state axiom. Let n > 0 and a1, . . . , an ∈ Σ. We have to prove that the
inclusion of weak higher dimensional transition systems Cn[a1, . . . , an]ext ⊂
Cn[a1, . . . , an] induces a bijection

WHDTS(Cn[a1, . . . , an], X)
∼=−→WHDTS(Cn[a1, . . . , an]ext, X).

This fact is trivial for n = 0 and n = 1 since the inclusion Cn[a1, . . . , an]ext ⊂
Cn[a1, . . . , an] is an equality. Suppose now that n > 2. Let

f, g ∈WHDTS(Cn[a1, . . . , an], X)

having the same restriction to Cn[a1, . . . , an]ext. So there is the equality
f̃ = g̃ : {(a1, 1), . . . , (an, n)} → L as set map. Moreover, one has f0(0n) =
g0(0n) and f0(1n) = g0(1n). Let (ε1, . . . , εn) ∈ [n] be a state of Cn[a1, . . . , an]
different from 0n and 1n. Then there exist (at least) two transitions

(0n, (ai1 , i1), . . . , (air , ir), (ε1, . . . , εn))

and
((ε1, . . . , εn), (air+1 , ir+1), . . . , (air+s , ir+s), 1n)

of Cn[a1, . . . , an] with r, s > 1. So the four tuples

(f0(0n), f̃(ai1 , i1), . . . , f̃(air , ir), f0(ε1, . . . , εn)),

(f0(ε1, . . . , εn), f̃(air+1 , ir+1), . . . , f̃(air+s , ir+s), f0(1n)),
(g0(0n), g̃(ai1 , i1), . . . , g̃(air , ir), g0(ε1, . . . , εn))

and
(g0(ε1, . . . , εn), g̃(air+1 , ir+1), . . . , g̃(air+s , ir+s), g0(1n))

are four transitions of X. Since X satisfies the Unique intermediate state
axiom, one obtains f0(ε1, . . . , εn) = g0(ε1, . . . , εn). Thus f = g and the set
map

WHDTS(Cn[a1, . . . , an], X) −→WHDTS(Cn[a1, . . . , an]ext, X)

is one-to-one. Let f : Cn[a1, . . . , an]ext → X be a map of weak higher dimen-
sional transition systems. The map f induces a set map f0 : {0n, 1n} → S
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and a set map f̃ : {(a1, 1), . . . , (an, n)} → L. Let (ε1, . . . , εn) ∈ [n] be a state
of Cn[a1, . . . , an] different from 0n and 1n. Then there exist (at least) two
transitions

(0n, (ai1 , i1), . . . , (air , ir), (ε1, . . . , εn))
and

((ε1, . . . , εn), (air+1 , ir+1), . . . , (air+s , ir+s), 1n)
of Cn[a1, . . . , an] with r, s > 1. Let us denote by f0(ε1, . . . , εn) the unique
state of X such that

(f0(0n), f̃(ai1 , i1), . . . , f̃(air , ir), f0(ε1, . . . , εn))

and
(f0(ε1, . . . , εn), f̃(air+1 , ir+1), . . . , f̃(air+s , ir+s), f0(1n))

are two transitions of X. Since every transition from 0n to (ε1, . . . , εn) is of
the form

(0n, (aiσ(1)
, iσ(1)), . . . , (aiσ(r)

, iσ(r)), (ε1, . . . , εn))
where σ is a permutation of {1, . . . , r} and since every transition from
(ε1, . . . , εn) to 1n is of the form

((ε1, . . . , εn), (aiσ′(r+1)
, iσ′(r+1)), . . . , (aiσ′(r+s)

, iσ′(r+s)), 1n)

where σ′ is a permutation of {r+1, . . . , r+s}, one obtains a well-defined set
map f0 : [n]→ S. The pair of set maps (f0, f̃) induces a well-defined map of
weak higher dimensional transition systems by Proposition 5.5. Therefore
the set map

WHDTS(Cn[a1, . . . , an], X) −→WHDTS(Cn[a1, . . . , an]ext, X)

is onto.
If part. Conversely, let X = (S, µ : L → Σ, T =

⋃
n>1 Tn) be a weak

higher dimensional transition system orthogonal to the set of inclusions

{Cn[a1, . . . , an]ext ⊂ Cn[a1, . . . , an], n > 0 and a1, . . . , an ∈ Σ}.
Let (α, u1, . . . , un, β) be a transition of X with n > 2. Then there exists a
(unique) map Cn[µ(u1), . . . , µ(un)]ext −→ X taking the transition

(0n, (µ(u1), 1), . . . , (µ(un), n), 1n)

to the transition (α, u1, . . . , un, β). By hypothesis, this map factors uniquely
as a composite

Cn[µ(u1), . . . , µ(un)]ext ⊂ Cn[µ(u1), . . . , µ(un)]
g−→ X.

Let 1 6 p < n. There exists a (unique) state ν of Cn[µ(u1), . . . , µ(un)] such
that the tuples

(0n, (µ(u1), 1), . . . , (µ(up), p), ν),

(ν, (µ(up+1), p+ 1), . . . , (µ(un), n), 1n),

are two transitions of Cn[µ(u1), . . . , µ(un)] by Proposition 5.2. Hence the
existence of a state ν1 = g0(ν) of X such that the tuples (α, u1, . . . , up, ν1)
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0

(a,1)

��

(a,2)
?? 1

Figure 1. The higher dimensional transition system D[a]

and (ν1, up+1, . . . , un, β) are two transitions of X. Suppose that ν2 is an-
other state of X such that (α, u1, . . . , up, ν2) and (ν2, up+1, . . . , un, β) are two
transitions of X. Let h̃ = g̃ : {(µ(u1), 1), . . . , (µ(un), n)} −→ L be defined
by h̃(µ(ui), i) = ui. Let h0 : [n] → S be defined by h0(ν ′) = g0(ν ′) for
ν ′ 6= ν and h0(ν) = ν2 (instead of ν1). By Proposition 5.5, the pair of set
maps (h0, h̃) yields a well-defined map of weak higher dimensional transition
systems h : Cn[µ(u1), . . . , µ(un)] −→ X. So by orthogonality, one obtains
h = g, and therefore ν1 = ν2. Thus, the weak higher dimensional transition
system X satisfies the Unique intermediate state axiom. �

Corollary 5.7. The full subcategory HDTS of higher dimensional tran-
sition systems is a small-orthogonality class of the category WHDTS of
weak higher dimensional transition systems. More precisely, it is the full
subcategory of objects orthogonal to the (unique) morphisms D[a] → C1[a]
for a ∈ Σ and to the inclusions Cn[a1, . . . , an]ext ⊂ Cn[a1, . . . , an] for n > 2
and a1, . . . , an ∈ Σ where D[a] is the higher dimensional transition system
with set of states {0, 1}, with set of labels {(a, 1), (a, 2)}, with labelling maps
µ(a, i) = a, and containing the two 1-transitions (0, (a, 1), 1) and (0, (a, 2), 1)
(see Figure 1).

Proof. This is a consequence of Theorem 5.6 and Proposition 4.6. �

Corollary 5.8. The full subcategory of higher dimensional transition sys-
tems is a full reflective locally finitely presentable subcategory of the category
of weak higher dimensional transition systems. In particular, the inclusion
functor HDTS ⊂WHDTS is limit-preserving and accessible.

Proof. That HDTS is a full reflective locally presentable subcategory of
WHDTS is a consequence of [AR94, Theorem 1.39]. Unfortunately, [AR94,
Theorem 1.39] may be false for λ = ℵ0. It only enables us to conclude that
the category HDTS is locally ℵ1-presentable. To prove that HDTS is
locally finitely presentable, we observe, thanks to Proposition 4.6, that the
notion of higher dimensional transition system is axiomatized by the axioms
of weak higher dimensional transition system and by the two additional
families of axioms: (∀α, u, β), Tx(α, u, β)⇒ (∃!u′)Tx(α, u′, β) for x ∈ Σ and

(∀α, u1, . . . , un, β), Tx1,...,xn(α, u1, . . . , un, β)⇒
(∃!ν)(Tx1,...,xp(α, u1, . . . , up, ν) ∧ Txp+1,...,xn(ν, up+1, . . . , un, β))
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for n > 2, 1 6 p < n and x1, . . . , xn ∈ Σ. So the notion of higher dimensional
transition system is axiomatized by a limit theory, i.e., by axioms of the
form (∀x), φ(x) ⇒ (∃!y ψ(x, y)) where φ and ψ are conjunctions of atomic
formulas. Moreover, each symbol contains a finite number of arguments.
Hence the result as in Theorem 3.4. �

In fact, one can easily prove that the inclusion functor

HDTS ⊂WHDTS

is finitely accessible. Let X : I → HDTS be a directed diagram of higher
dimensional transition systems. Let Xi = (Si, µi : Li → Σ, T i =

⋃
n>1 T

i
n)

and X = (S, µ : L→ Σ, T =
⋃
n>1 Tn). The weak higher dimensional transi-

tion system X remains orthogonal to the maps D[a]→ C1[a] for every a ∈ Σ
since this property is axiomatized by the sentences (∀α, u, β), Tx(α, u, β)⇒
(∃!u′)Tx(α, u′, β) for x ∈ Σ. Since WHDTS is topological over Set{s}∪Σ

by Theorem 3.4, the colimit lim−→X in WHDTS is the weak higher dimen-
sional transition system having as set of states the colimit S = lim−→Si, as set
of actions the colimit L = lim−→Li, as labelling map the colimit µ = lim−→µi
and equipped with the final structure of weak higher dimensional transition
system. The final structure is the set of transitions obtained by taking the
closure under the Coherence axiom of the union

⋃
i T

i of the image of the
T i in

⋃
n>1(S ×Ln×S). Let (α, u1, . . . , un, β) be a transition of

⋃
i T

i with
n > 2. Let 1 6 p < n. There exists i ∈ I such that the map Xi → lim−→X

takes (αi, ui1, . . . , u
i
n, β

i) to (α, u1, . . . , un, β). By hypothesis, there exists a
state νi of Xi such that (αi, ui1, . . . , u

i
p, ν

i) and (νi, uip+1, . . . , u
i
n, β

i) are tran-
sitions of Xi. So the map Xi → lim−→X takes νi to a state ν of lim−→X such that
(α, u1, . . . , up, ν) and (ν, up+1, . . . , un, β) are transitions of

⋃
i T

i. Let ν1 and
ν2 be two states of lim−→X such that (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),
(α, u1, . . . , up, ν2) and (ν2, up+1, . . . , un, β) are transitions of

⋃
i T

i. Since
the diagram X is directed, these four transitions come from four transitions
of some Xj . So ν1 = ν2 since Xj satisfies the Unique intermediate state
axiom. Thus, the set of transitions

⋃
i T

i satisfies the Unique intermediate
state axiom. So by Theorem 4.7, the set of transitions

⋃
i T

i is the final
structure and X satisfies the Unique intermediate state axiom. Therefore
the inclusion functor HDTS ⊂WHDTS is finitely accessible.

6. Labelled symmetric precubical sets

The category of partially ordered sets or posets together with the strictly
increasing maps (x < y implies f(x) < f(y)) is denoted by PoSet.

Let δαi : [n− 1]→ [n] be the set map defined for 1 6 i 6 n and α ∈ {0, 1}
by δαi (ε1, . . . , εn−1) = (ε1, . . . , εi−1, α, εi, . . . , εn−1). These maps are called
the face maps. The reduced box category, denoted by �, is the subcategory of
PoSet with the set of objects {[n], n > 0} and generated by the morphisms
δαi . They satisfy the cocubical relations δβj δ

α
i = δαi δ

β
j−1 for i < j and for
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all (α, β) ∈ {0, 1}2. In fact, these algebraic relations give a presentation by
generators and relations of �.

Proposition 6.1 ([Gau10, Proposition 3.1]). Let n > 1. Let (ε1, . . . , εn) and
(ε′1, . . . , ε

′
n) be two elements of the poset [n] with (ε1, . . . , εn) 6 (ε′1, . . . , ε

′
n).

Then there exist i1 > · · · > in−r and α1, . . . , αn−r ∈ {0, 1} such that
(ε1, . . . , εn) = δα1

i1
. . . δ

αn−r

in−r
(0 . . . 0) and (ε′1, . . . , ε

′
n) = δα1

i1
. . . δ

αn−r

in−r
(1 . . . 1)

where r > 0 is the number of 0 and 1 in the arguments 0 . . . 0 and 1 . . . 1.
In other terms, (ε1, . . . , εn) is the bottom element and (ε′1, . . . , ε

′
n) the top

element of a r-dimensional subcube of [n].

Definition 6.2. Let n > 1. Let (ε1, . . . , εn) and (ε′1, . . . , ε
′
n) be two elements

of the poset [n]. The integer r of Proposition 6.1 is called the distance
between (ε1, . . . , εn) and (ε′1, . . . , ε

′
n). Let us denote this situation by r =

d((ε1, . . . , εn), (ε′1, . . . , ε
′
n)). By definition, one has

r =
i=n∑
i=1

|εi − ε′i|.

Definition 6.3. A set map f : [m] → [n] is adjacency-preserving if it is
strictly increasing and if d((ε1, . . . , εm), (ε′1, . . . , ε

′
m)) = 1 implies

d(f(ε1, . . . , εm), f(ε′1, . . . , ε
′
m)) = 1.

The subcategory of PoSet with set of objects {[n], n > 0} generated by the
adjacency-preserving maps is denoted by �̂.

Let σi : [n] → [n] be the set map defined for 1 6 i 6 n − 1 and n > 2
by σi(ε1, . . . , εn) = (ε1, . . . , εi−1, εi+1, εi, εi+2, . . . , εn). These maps are called
the symmetry maps. The face maps and the symmetry maps are examples
of adjacency-preserving maps.

Proposition 6.4 ([Gau10, Proposition A.3]). Let f : [m]→ [n] be an adja-
cency-preserving map. The following conditions are equivalent:

(1) The map f is a composite of face maps and symmetry maps.
(2) The map f is one-to-one.

Notation 6.5. The subcategory of �̂ generated by the one-to-one adjacen-
cy-preserving maps is denoted by �S . In particular, one has the inclusions
of categories

� ⊂ �S ⊂ �̂.

By [GM03, Theorem 8.1], the category �S is the quotient of the free
category generated by the face maps δαi and symmetry maps σi, by the
following algebraic relations:

• the cocubical relations: δβj δ
α
i = δαi δ

β
j−1 for i < j and for all (α, β) ∈

{0, 1}2;
• the Moore relations for symmetry operators: σiσi = Id, σiσjσi =
σjσiσj for i = j − 1 and σiσj = σjσi for i < j − 1;
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• the relations σiδαj = δαj σi−1 for j < i, σiδαj = δαi+1 for j = i, σiδαj =
δαi for j = i+ 1 and σiδαj = δαj σi for j > i+ 1.

Definition 6.6. A symmetric precubical set is a presheaf over �S . The
corresponding category is denoted by �op

S Set. IfK is a symmetric precubical
set, then let Kn := K([n]) and for every set map f : [m]→ [n] of �S , denote
by f∗ : Kn → Km the corresponding set map.

Let �S [n] := �S(−, [n]). It is called the n-dimensional (symmetric) cube.
By the Yoneda lemma, one has the natural bijection of sets

�op
S Set(�S [n],K) ∼= Kn

for every precubical set K. The boundary of �S [n] is the symmetric pre-
cubical set denoted by ∂�S [n] defined by removing the interior of �S [n]:
(∂�S [n])k := (�S [n])k for k < n and (∂�S [n])k = ∅ for k > n. In particu-
lar, one has ∂�S [0] = ∅. An n-dimensional symmetric precubical set K is
a symmetric precubical set such that Kp = ∅ for p > n and Kn 6= ∅. The
labelled at most n-dimensional symmetric precubical set K6n denotes the
labelled symmetric precubical set defined by (K6n)p = Kp for p 6 n and
(K6n)p = ∅ for p > n.

Notation 6.7. Let f : K → L be a morphism of symmetric precubical sets.
Let n > 0. The set map from Kn to Ln induced by f will be sometimes
denoted by fn.

Notation 6.8. Let ∂αi = (δαi )∗. And let si = (σi)∗.

Proposition 6.9 ([Gau10, Proposition A.4]). The following data define a
symmetric precubical set denoted by !SΣ:

• (!SΣ)0 = {()} (the empty word).
• For n > 1, (!SΣ)n = Σn.
• ∂0

i (a1, . . . , an) = ∂1
i (a1, . . . , an) = (a1, . . . , âi, . . . , an) where the no-

tation âi means that ai is removed.
• si(a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an) for 1 6 i 6 n.

Moreover, the symmetric precubical set !SΣ is orthogonal to the set of mor-
phisms

{�S [n] t∂�S [n] �S [n] −→ �S [n], n > 2}.

Definition 6.10. A labelled symmetric precubical set (over Σ) is an ob-
ject of the comma category �op

S Set↓!SΣ. That is, an object is a map of
symmetric precubical sets ` : K →!SΣ and a morphism is a commutative
diagram

K //

!!DD
DD

DD
DD

L

}}{{
{{

{{
{{

!SΣ.
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()
(b)

!!CC
CC

CC
CC

C

()

(a)
=={{{{{{{{{

(b) !!CC
CC

CC
CC

C (a, b) ()

()
(a)

=={{{{{{{{{

Figure 2. Concurrent execution of a and b

The map ` is called the labelling map. The symmetric precubical set K
is sometimes called the underlying symmetric precubical set of the labelled
symmetric precubical set. A labelled symmetric precubical set K →!SΣ is
sometimes denoted by K without explicitly mentioning the labelling map.

Notation 6.11. Let n > 1. Let a1, . . . , an be labels of Σ. Let us denote by
�S [a1, . . . , an] : �S [n] →!SΣ the labelled symmetric precubical set defined
by

�S [a1, . . . , an](f) = f∗(a1, . . . , an).

And let us denote by ∂�S [a1, . . . , an] : ∂�S [n]→!SΣ the labelled symmetric
precubical set defined as the composite

∂�S [a1, . . . , an] : ∂�S [n] ⊂ �S [n]
�S [a1,...,an] // !SΣ.

Figure 2 gives the example of the labelled 2-cube �S [a, b]. It represents
the concurrent execution of a and b. It is important to notice that two
opposite faces of Figure 2 have the same label.

Since colimits are calculated objectwise for presheaves, the n-cubes are
finitely accessible. Since the set of cubes is a dense (and hence strong) gen-
erator, the category of labelled symmetric precubical sets is locally finitely
presentable by [AR94, Theorem 1.20 and Proposition 1.57]. When the set
of labels Σ is the singleton {τ}, the category �op

S Set↓!S{τ} is isomorphic
to the category of (unlabelled) symmetric precubical sets since !S{τ} is the
terminal symmetric precubical set.

7. The higher dimensional automata paradigm

Definition 7.1. A labelled symmetric precubical set K satisfies the para-
digm of higher dimensional automata (HDA paradigm) if for every p > 2,
every commutative square of solid arrows (called a labelled p-shell or labelled
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p-dimensional shell)

∂�S [p] //

��

K

��
�S [p] //

k

<<z
z

z
z

z
z

z
z

z

!SΣ

admits at most one lift k (i.e., a map k making the two triangles commuta-
tive).

By Definition 6.10, a commutative square consisting of solid arrows as in

∂�S [p] //

��

K

��
�S [p] //

k

<<z
z

z
z

z
z

z
z

z

!SΣ

is equivalent to a diagram of labelled symmetric precubical sets consisting
of the solid arrows in

∂�S [a1, . . . , ap] //

��

(K →!SΣ)

�S [a1, . . . , ap],

k

99rrrrrrrrrrr

where (a1, . . . , ap) is the image of Id[p] under �S [p] →!SΣ. For the same
reason, the existence of the lift k in the former diagram is equivalent to the
existence of the lift k in the latter diagram.

Proposition 7.2. Let n > 0 and a1, . . . , an ∈ Σ. The labelled n-cube
�S [a1, . . . , an] satisfies the HDA paradigm.

Proof. Consider a commutative diagram of solid arrows of the form

∂�S [p]
f //

��

�S [n]

Id[n]7→(a1,...,an)

��
�S [p] //

k

<<x
x

x
x

x
x

x
x

x

!SΣ
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with p > 2. Then f0 = k0 as set map from [p] to [n]. By the Yoneda
lemma, there is a bijection �op

S Set(�S [p],�S [n]) ∼= �S([p], [n]) induced by
the mapping g 7→ g0. So there exists at most one such lift k. �

Proposition 7.3. For a labelled symmetric precubical set K →!SΣ, the
following conditions are equivalent:

(1) The labelled symmetric precubical set K →!SΣ satisfies the HDA
paradigm.

(2) The map K →!SΣ satisfies the right lifting property with respect to
the set of maps{

�S [p] t∂�S [p] �S [p]→ �S [p], p > 2
}
.

(3) The map K →!SΣ satisfies the right lifting property with respect to
the set of maps{

�S [p] t∂�S [p] �S [p]→ �S [p], p > 2
}

and the lift is unique.
(4) The labelled symmetric precubical set K →!SΣ is orthogonal to the

set of maps of labelled symmetric precubical sets{
�S [a1, . . . , ap] t∂�S [a1,...,ap] �S [a1, . . . , ap]→ �S [a1, . . . , ap]

}
for p > 2 and a1, . . . , ap ∈ Σ.

Proof. The equivalence (1) ⇐⇒ (2) is due to the “at most” in the defi-
nition of the HDA paradigm. The equivalence (3) ⇐⇒ (4) is due to the
definition of a map of labelled symmetric precubical sets. The implication
(3) =⇒ (2) is obvious. The implication (2) =⇒ (3) comes from the fact that
for every symmetric precubical set K, the set map

�op
S Set(�S [p],K)→ �op

S Set(�S [p] t∂�S [p] �S [p],K)

is one-to-one. �

Corollary 7.4. The full subcategory, denoted by HDAΣ, of �op
S Set↓!SΣ

containing the objects satisfying the HDA paradigm is a full reflective locally
presentable category of the category �op

S Set↓!SΣ of labelled symmetric precu-
bical sets. In other terms, the inclusion functor iΣ : HDAΣ ⊂ �op

S Set↓!SΣ
has a left adjoint ShΣ : �op

S Set↓!SΣ→ HDAΣ.

When Σ is the singleton {τ}, the category HDAΣ will be simply denoted
by HDA.

Proof. This is a corollary of Proposition 7.3 and [AR94, Theorem 1.39]. �

In fact the category HDAΣ is locally finitely presentable; indeed, the
labelled n-cubes for n > 0 are in HDAΣ by Proposition 7.2, and one can
prove that they form a dense set of generators.

Notation 7.5. When Σ is the singleton {τ}, let i := iΣ and Sh := ShΣ.
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One has

iΣ(K →!SΣ) ∼= (i(K)→ i(!SΣ)) = (K →!SΣ),

ShΣ(K →!SΣ) ∼= (Sh(K)→ Sh(!SΣ) ∼=!SΣ),

since the symmetric precubical set !SΣ already belongs to HDA by Propo-
sition 6.9.

8. Cubes as labelled symmetric precubical sets and as higher
dimensional transition systems

Let us denote by CUBE(�op
S Set↓!SΣ) the full subcategory of that of la-

belled symmetric precubical sets containing the labelled cubes �S [a1, . . . , an]
with n > 0 and a1, . . . , an ∈ Σ. Let us denote by CUBE(WHDTS) the full
subcategory of that of weak higher dimensional transition systems contain-
ing the labelled cubes Cn[a1, . . . , an] with n > 0 and with a1, . . . , an ∈ Σ.
This section is devoted to proving that these two small categories are iso-
morphic (cf. Theorem 8.5). Note that CUBE(WHDTS) ⊂ HDTS by
Proposition 5.2.

Lemma 8.1. Let f : �S [m]→ �S [n] be a map of symmetric precubical sets.
Then there exists a unique set map f̂ : {1, . . . , n} → {1, . . . ,m}∪{−∞,+∞}
such that f(ε1, . . . , εm) = (ε bf(1)

, . . . , ε bf(n)
) for every (ε1, . . . , εm) ∈ [m] with

the conventions ε−∞ = 0 and ε+∞ = 1. Moreover, the restriction f :
f̂−1({1, . . . ,m})→ {1, . . . ,m} is a bijection.

By convention, and for the sequel, the set map f̂ will be defined from
{1, . . . , n}∪{−∞,+∞} to {1, . . . ,m}∪{−∞,+∞} by setting f̂(−∞) = −∞
and f̂(+∞) = +∞.

Proof. If f̂1 and f̂2 are two solutions, then one has

(ε bf1(1)
, . . . , ε bf1(n)

) = (ε bf2(1)
, . . . , ε bf2(n)

)

for every (ε1, . . . , εm) ∈ [m]. Let i ∈ {1, . . . , n}. If f̂1(i) = −∞, then
ε bf1(i)

= 0 = ε bf2(i)
for every (ε1, . . . , εm) ∈ [m]. So in this case, f̂1(i) = f̂2(i).

For the same reason, if f̂1(i) = +∞, then f̂1(i) = f̂2(i). If f̂1(i) ∈ {1, . . . ,m},
then ε bf1(i)

= ε bf2(i)
for every (ε1, . . . , εm) ∈ [m]. So f̂1(i) = f̂2(i) again.

Thus, one obtains f̂1 = f̂2. Hence there is at most one such f̂ . Because
of the algebraic relations permuting the symmetry and face maps recalled
in Section 6, the set map f0 : (�S [m])0 = [m] → (�S [n])0 = [n] factors as
a composite [m] → [m] → [n] where the left-hand map is a composite of
symmetry maps and where the right-hand map is a composite of face maps
(see also [GM03]). So there exists a permutation σ of {1, . . . ,m} such that

f(ε1, . . . , εm) = δα1
i1
. . . δ

αn−m

in−m
(εσ(1), . . . , εσ(m))
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for every (ε1, . . . , εm) ∈ [m]. Because of the cocubical relations satisfied by
the face maps, one can suppose that i1 > i2 > · · · > in−m. Let j1 < · · · < jm
such that

{j1, . . . , jm} ∪ {i1, . . . , in−m} = {1, . . . , n}.
So f(ε1, . . . , εm) = (ε′1, . . . , ε

′
n) with ε′ik = αk for all k ∈ {1, . . . , n−m} and

ε′jk = εσ(k). Therefore, the set map f̂ : {1, . . . , n} → {1, . . . ,m}∪{−∞,+∞}
defined by f̂(ik) = −∞ if αk = 0, f̂(ik) = +∞ if αk = 1 and f̂(jk) = σ(k)
is a solution. �

Lemma 8.2. Let

f : �S [a1, . . . , am]→ �S [b1, . . . , bn],

g : �S [b1, . . . , bn]→ �S [c1, . . . , cp],

be two maps of labelled symmetric precubical sets. Then one has ĝ ◦ f = f̂ ◦ĝ
with the notations of Lemma 8.1.

Proof. The set map f̂ : {1, . . . , n}∪{−∞,+∞} → {1, . . . ,m}∪{−∞,+∞}
is the unique set map such that f0(ε1, . . . , εm) = (ε bf(1)

, . . . , ε bf(n)
) for every

(ε1, . . . , εm) ∈ [m] with the same notations as above and with f̂(−∞) = −∞
and f̂(+∞) = +∞. Therefore, one obtains the equality g0(f0(ε1, . . . , εm)) =
g0(ε bf(1)

, . . . , ε bf(n)
) for every (ε1, . . . , εm) ∈ [m]. The set map ĝ : {1, . . . , p} ∪

{−∞,+∞} → {1, . . . , n} ∪ {−∞,+∞} is the unique set map such that
g0(ε′1, . . . , ε

′
n) = (ε′bg(1), . . . , ε′bg(p)) for every (ε′1, . . . , ε

′
n) ∈ [n] with the same

notations as above and with ĝ(−∞) = −∞ and ĝ(+∞) = +∞. Let ε′i = ε bf(i)

for 1 6 i 6 m. If ĝ(i) ∈ {−∞,+∞}, then ε′bg(i) = ε bf(bg(i)) since f̂(−∞) = −∞
and f̂(+∞) = +∞. If ĝ(i) /∈ {−∞,+∞}, then ε′bg(i) = ε bf(bg(i)) by definition
of the family ε′. So one obtains

g0(f0(ε1, . . . , εm)) = g0(ε bf(1)
, . . . , ε bf(n)

) = (ε bf(bg(1)), . . . , ε bf(bg(p)))
for every (ε1, . . . , εm) ∈ [m]. Thus by Lemma 8.1, one obtains ĝ ◦ f =
f̂ ◦ ĝ. �

Let m,n > 0 and a1, . . . , am, b1, . . . , bn ∈ Σ. A map of labelled symmetric
precubical sets f : �S [a1, . . . , am]→ �S [b1, . . . , bn] gives rise to a set map

f0 : [m] = {0, 1}m = �S [a1, . . . , am]0 → [n] = {0, 1}n = �S [b1, . . . , bn]0

from the set of states of Cm[a1, . . . , am] to the set of states of Cn[b1, . . . , bn]
which belongs to �S([m], [n]) = �op

S Set(�S [m],�S [n]). By Lemma 8.1,
there exists a unique set map f̂ : {1, . . . , n} → {1, . . . ,m}∪{−∞,+∞} such
that

f0(ε1, . . . , εm) = (ε bf(1)
, . . . , ε bf(n)

)
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for every (ε1, . . . , εm) ∈ [m] with the conventions ε−∞ = 0 and ε+∞ = 1.
Moreover, the restriction f : f̂−1({1, . . . ,m}) → {1, . . . ,m} is a bijection.
Since f : �S [a1, . . . , am] → �S [b1, . . . , bn] is compatible with the labelling,
one necessarily has ai = b

f
−1

(i)
for every i ∈ {1, . . . ,m}. One deduces a set

map
f̃ : {(a1, 1), . . . , (am,m)} → {(b1, 1), . . . , (bn, n)}

from the set of actions of Cm[a1, . . . , am] to the set of actions of Cn[b1, . . . , bn]
by setting

f̃(ai, i) = (b
f
−1

(i)
, f

−1(i)) = (ai, f
−1(i)) .

Lemma 8.3. The two set maps f0 and f̃ above defined by starting from a
map of labelled symmetric precubical sets f : �S [a1, . . . , am]→ �S [b1, . . . , bn]
yield a map of weak higher dimensional transition systems

T(f) : Cm[a1, . . . , am]→ Cn[b1, . . . , bn] .

Proof. Let

((ε1, . . . , εm), (ai1 , i1), . . . , (air , ir), (ε
′
1, . . . , ε

′
m))

be a transition of Cm[a1, . . . , am]. One has for every i ∈ {1, . . . , n}:
• ε bf(i)

6 ε′bf(i)
for every i ∈ {1, . . . , n}, by definition of a transition of

Cm[a1, . . . , am].
• ε bf(i)

= ε′bf(i)
if i ∈ f̂−1({−∞,+∞}).

• ε bf(i)
6= ε′bf(i)

for i ∈ f̂−1({1, . . . ,m}) if and only if f̂(i) = f(i) ∈
{i1, . . . , ir}, by definition of a transition of Cm[a1, . . . , am] again.

So one has ε bf(i)
6= ε′bf(i)

if and only if i = f
−1(ik) for some k ∈ {1, . . . , r}.

Thus, the (d+ 2)-tuple

((ε bf(1)
, . . . , ε bf(n)

), (ai1 , f
−1(i1)), . . . , (air , f

−1(ir)), (ε′bf(1)
, . . . , ε′bf(n)

))

is a transition of the higher dimensional transition system Cn[b1, . . . , bn]. �

Proposition 8.4. Let T(�S [a1, . . . , an]) := Cn[a1, . . . , an]. Together with
the mapping f 7→ T(f) defined in Lemma 8.3, one obtains a well-defined
functor from CUBE(�op

S Set↓!SΣ) to CUBE(WHDTS).

Proof. The set map Îd[m] is the inclusion

{1, . . . ,m} ⊂ {1, . . . ,m} ∪ {−∞,+∞}.

So T(Id�S [a1,...,an]) = IdCn[a1,...,an]. Let f : �S [a1, . . . , am] → �S [b1, . . . , bn]
and g : �S [b1, . . . , bn] → �S [c1, . . . , cp] be two maps of labelled symmetric
precubical sets. The functoriality of the mappingK 7→ K60 yields the equal-
ity (g ◦ f)0 = g0 ◦ f0. One has g̃(f̃(ai, i)) = g̃(ai, f

−1(i)) = (ai, g−1(f−1(i))).
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The integer N = g−1(f−1(i)) ∈ {1, .., p} satisfies i = f̂(ĝ(N)) = ĝ ◦ f(N) by
Lemma 8.2. So by Lemma 8.1, one has g ◦ f−1(i) = N . Thus, one obtains

g̃(f̃(ai, i)) = (ai, g ◦ f
−1(i)) = g̃ ◦ f(ai, i).

Hence the functoriality. �

Theorem 8.5. The functor T : CUBE(�op
S Set↓!SΣ) → CUBE(WHDTS)

constructed in Proposition 8.4 is an isomorphism of categories.

Proof. Let us construct a functor

T−1 : CUBE(WHDTS)→ CUBE(�op
S Set↓!SΣ)

such that T ◦ T−1 = IdCUBE(WHDTS) and T−1 ◦ T = IdCUBE(�op
S Set↓!SΣ).

Let T−1(Cn[a1, . . . , an]) := �S [a1, . . . , an] for every n > 0 and every
a1, . . . , an ∈ Σ. Let f : Cm[a1, . . . , am] → Cn[b1, . . . , bn] be a map of
weak higher dimensional transition systems. By definition, it gives rise
to a set map f0 : [m] → [n] between the set of states and to a set map
f̃ : {(a1, 1), . . . , (am,m)} → {(b1, 1), . . . , (bn, n)} between the set of actions.
Since the map f : Cm[a1, . . . , am]→ Cn[b1, . . . , bn] is compatible with the la-
belling maps of the source and target higher dimensional transition systems,
one necessarily has f̃(ai, i) = (ai, f(i)) where f : {1, . . . ,m} → {1, . . . , n}
denotes a set map. Since the (m+ 2)-tuple

(f0(0, . . . , 0), (a1, f(1)), . . . , (am, f(m)), f0(1, . . . , 1))

is a transition of Cn[b1, . . . , bn], the map f : {1, . . . ,m} → {1, . . . , n} is
one-to-one. Let f : f({1, . . . , n}) → {1, . . . ,m} be the inverse map. Let
(ε1, . . . , εm) < (ε′1, . . . , ε

′
m) be two adjacent elements of [m], more precisely,

εi = ε′i for all i ∈ {1, . . . ,m}\{j} and 0 = εj < ε′j = 1. Then the triple

((ε1, . . . , εm), (aj , j), (ε′1, . . . , ε
′
m))

is a 1-transition of Cm[a1, . . . , am]. So the triple

(f0(ε1, . . . , εm), (aj , f(j)), f0(ε′1, . . . , ε
′
m))

is a 1-transition of Cn[b1, . . . , bn]. Thus, the n-tuples f0(ε1, . . . , εm) and
f0(ε′1, . . . , ε

′
m) are adjacent in [n], and the only difference is the f(j)-th

coordinate. Thus, the mapping f 7→ f0 yields a set map

(−)0 : WHDTS(Cm[a1, . . . , am], Cn[b1, . . . , bn])→ �̂([m], [n]).

The map f0 : [m]→ [n] factors uniquely as a composite

[m]
ψ−→ [m]

φ−→ [n]

with φ ∈ � since the image f0([m]) is an m-subcube of [n] (see [Gau10,
Proposition 3.1 and Proposition 3.11]). Let φ = δα1

i1
. . . δ

αn−m

in−m
with i1 > i2 >

· · · > in−m. Let f̂ : {1, . . . , n} ∪ {−∞,+∞} → {1, . . . ,m} ∪ {−∞,+∞} be
the set map defined by the four mutually exclusive cases:
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• f̂(−∞) = −∞ and f̂(+∞) = +∞,
• f̂(k) = f(k) if k ∈ f({1, . . . , n}),
• f̂(ik) = −∞ if αk = 0,
• f̂(ik) = +∞ if αk = 1.

Since f̂(f(i)) = i one has for every m-tuple (ε1, . . . , εm) of [m] the equality

f0(ε1, . . . , εm) = (ε bf(1)
, . . . , ε bf(n)

).

So ψ ∈ �̂ is one-to-one, and therefore equal to a composite of σi maps by
Proposition 6.4. Thus, one obtains f0 ∈ �S([m], [n]). The Yoneda bijection

�S([m], [n]) ∼= �op
S Set(�S [m],�S [n])

takes f0 to a map of symmetric precubical sets T−1(f) : �S [m] → �S [n]
preserving the labelling. So T−1(f) yields a map of labelled symmetric pre-
cubical sets, still denoted by T−1(f), from �S [a1, . . . , am] to �S [b1, . . . , bn]
and it is clear that T(T−1(f)) = f by construction of T. The equality
T−1(T(f)) = f is due to the uniqueness of f̂ in Lemma 8.1. �

9. Labelled symmetric precubical sets as weak higher
dimensional transition systems

For the sequel, the category of small categories is denoted by Cat. LetH :
I −→ Cat be a functor from a small category I to Cat. The Grothendieck
construction I

∫
H is the category defined as follows [Tho79]: the objects

are the pairs (i, a) where i is an object of I and a is an object of H(i);
a morphism (i, a) → (j, b) consists in a map φ : i → j and in a map
h : H(φ)(a)→ b.

Lemma 9.1 (cf. [Gau10, Lemma 9.3] and [Gau08, Lemma A.1]). Let I be
a small category, and i 7→ Ki be a functor from I to the category of labelled
symmetric precubical sets. Let K = lim−→i

Ki. Let H : I → Cat be the functor
defined by H(i) = �S↓Ki. Then the functor ι : I

∫
H → �S↓K defined by

ι(i,�S [m]→ Ki) = (�S [m]→ K) is final in the sense of [ML98]; that is to
say the comma category k↓ι is nonempty and connected for all objects k of
�S↓K.

Theorem 9.2. There exists a unique colimit-preserving functor

T : �S
opSet↓!SΣ→WHDTS

extending the functor T previously constructed on the full subcategory of
labelled cubes. Moreover, this functor is a left adjoint.

Proof. Let K be a labelled symmetric precubical set. One necessarily has

T(K) ∼= lim−→
�S [a1,...,an]→K

Cn[a1, . . . , an]
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hence the uniqueness. Let K = lim−→Ki be a colimit of labelled symmetric
precubical sets, and denote by I the base category. By definition, one has
the isomorphism

lim−→T(Ki) ∼= lim−→
i

lim−→
�S [a1,...,an]→Ki

Cn[a1, . . . , an].

Consider the functor H : I −→ Cat defined by H(i) = �S↓Ki. Consider
the functor Fi : H(i) −→WHDTS defined by Fi(�S [a1, . . . , an] → Ki) =
Cn[a1, . . . , an]. Consider the functor F : I

∫
H −→WHDTS defined by

F (i,�S [a1, . . . , an]→ Ki) = Cn[a1, . . . , an].

Then the composite H(i) ⊂ I
∫
H →WHDTS is exactly Fi. Therefore one

has the isomorphism

lim−→
i

lim−→
�S [a1,...,an]→Ki

Cn[a1, . . . , an] ∼= lim−→
(i,�S [a1,...,an]→Ki)

Cn[a1, . . . , an]

by [CS02, Proposition 40.2]. The functor ι : I
∫
H → �S↓K defined by

ι(i,�S [m] → Ki) = (�S [m] → K) is final in the sense of [ML98] by
Lemma 9.1. Therefore by [ML98, p. 213, Theorem 1] or [Hir03, Theorem
14.2.5], one has the isomorphism

lim−→
(i,�S [a1,...,an]→Ki)

Cn[a1, . . . , an] ∼= lim−→
�S [a1,...,an]→K

Cn[a1, . . . , an] ∼= T(K).

Hence the functor T is colimit-preserving, hence the existence.
Since the category �op

S Set↓!SΣ is locally presentable, it is co-wellpowered
by [AR94, Theorem 1.58], and also cocomplete. The set of labelled n-cubes

{�S [a1, . . . , an], a1, . . . , an ∈ Σ}
is a set of generators. So by SAFTop [ML98, Corollary p126], it is a left
adjoint. �

Proposition 9.3. Let n > 2 and a1, . . . , an ∈ Σ. The map of labelled
symmetric precubical sets

�S [a1, . . . , an] t∂�S [a1,...,an] �S [a1, . . . , an]→ �S [a1, . . . , an]

induces an isomorphism of weak higher dimensional transition systems

T(�S [a1, . . . , an] t∂�S [a1,...,an] �S [a1, . . . , an]) ∼= T(�S [a1, . . . , an]).

Proof. Since T is colimit-preserving, one has the pushout diagram of weak
higher dimensional transition systems

T(∂�S [a1, . . . , an]) //

��

T(�S [a1, . . . , an])

��
T(�S [a1, . . . , an]) // T(�S [a1, . . . , an] t∂�S [a1,...,an] �S [a1, . . . , an]).
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Since WHDTS is topological over Set{s}∪Σ by Theorem 3.4, the weak
higher dimensional transition system

T(�S [a1, . . . , an] t∂�S [a1,...,an] �S [a1, . . . , an])

is obtained by taking the colimits of the three sets of states, of the three
sets of actions and of the three labelling maps, and by endowing the result
with the final structure of weak higher dimensional transition system. By
Proposition 3.5, this final structure is the closure under the Coherence axiom
of the union of the transitions of T(∂�S [a1, . . . , an]) and of the two copies
of T(�S [a1, . . . , an]). Since the set of transitions of T(∂�S [a1, . . . , an]) is
included in the set of transitions of T(�S [a1, . . . , an]), the right-hand vertical
and bottom horizontal maps are isomorphisms. Since the composite

T(�S [a1, . . . , an])→ T(�S [a1, . . . , an] t∂�S [a1,...,an] �S [a1, . . . , an])

→ T(�S [a1, . . . , an])

is the identity of T(�S [a1, . . . , an]), the proof is complete. �

Theorem 9.4. Let K be a labelled symmetric precubical set. The canonical
map K → ShΣ(K) induces an isomorphism of weak higher dimensional
transition systems T(K) ∼= T(ShΣ(K)).

Proof. By Proposition 7.3, a labelled symmetric precubical set K belongs
to HDAΣ if and only if the map K →!SΣ satisfies the right lifting property
with respect to the set of maps

{�S [n] t∂�S [n] �S [n] −→ �S [n], n > 2}.

So the labelled symmetric precubical set ShΣ(K) can be obtained by a
small object argument by factoring the map K →!SΣ as a composite K →
Sh(K) →!SΣ where K → Sh(K) is a relative {�S [n] t∂�S [n] �S [n] −→
�S [n], n > 2}-cell complex and where the map Sh(K) →!SΣ satisfies the
right lifting property with respect to the same set of morphisms. The small
object argument is possible by [Bek00, Proposition 1.3] since the category of
symmetric precubical sets is locally finitely presentable. Thanks to Propo-
sition 9.3, the proof is complete. �

Theorem 9.5. The functor T : �op
S Set↓!SΣ →WHDTS factors uniquely

(up to isomorphism of functors) as a composite

�op
S Set↓!SΣ ShΣ−→ HDAΣ T−→WHDTS .

Moreover, the functor T is a left adjoint.

Proof. Let T1 and T2 be two solutions. Then there is the isomorphism of
functors T1 ◦ ShΣ

∼= T2 ◦ ShΣ. So there are the isomorphisms of functors
T1
∼= T1 ◦ ShΣ ◦iΣ ∼= T2 ◦ ShΣ ◦iΣ ∼= T2. Let T := T ◦ iΣ. Then there is the

isomorphism of functors T ◦ ShΣ = T ◦ iΣ ◦ ShΣ
∼= T thanks to Theorem 9.4.
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Hence the existence. Let K = lim−→Ki be a colimit in HDAΣ. Then one has
the sequence of natural isomorphisms

T(lim−→Ki) ∼= T(lim−→ShΣ(iΣ(Ki))) since Ki
∼= ShΣ(iΣ(Ki))

∼= T(ShΣ(lim−→ iΣ(Ki))) since ShΣ is a left adjoint
∼= T(iΣ(ShΣ(lim−→ iΣ(Ki)))) by definition of T
∼= T(lim−→ iΣ(Ki)) by Theorem 9.4
∼= lim−→T(iΣ(Ki)) since T is colimit-preserving
∼= lim−→T(Ki) by definition of T.

So the functor T is colimit-preserving. Since the category �op
S Set↓!SΣ is

locally presentable, the functor T is a left adjoint for the same reason as in
the proof of Theorem 9.2. �

Definition 9.6. A labelled symmetric precubical set K is strong if the weak
higher dimensional transition system T(K) satisfies the Unique intermediate
state axiom.

Note that a labelled symmetric precubical set K is strong if and only if
ShΣ(K) is strong, by Theorem 9.4.

Proposition 9.7. There exists a labelled symmetric precubical set satisfying
the HDA paradigm K which is not strong.

Sketch of proof. Consider the following 1-dimensional (symmetric) precu-
bical set:

ν2

v

��?
??

??
??

??
??

??
??

?

αw 88

u

??�����������������

v

��?
??

??
??

??
??

??
??

??
u // ν1

w

OO

v // β wff

ν0

u

??����������������

And let us add three squares corresponding to the concurrent execution of u
and w (square (α, α, ν1, ν2)), of v and w (square (β, β, ν1, ν2)), and finally of u
and v (square (α, ν0, β, ν1)). One obtains a 2-dimensional labelled symmetric
precubical set K. The weak higher dimensional transition system T(K)
contains the 2-transition (α, u, v, β). And there exist two distinct states ν1

and ν2 such that (α, u, ν1), (α, u, ν2), (ν1, v, β) and (ν2, v, β) are 1-transitions
of the weak higher dimensional transition system T(K). �
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Note that every weak higher dimensional transition system of the form
T(K) where K is a labelled symmetric precubical set satisfies a weak ver-
sion of the Unique intermediate state axiom (called the Intermediate state
axiom):

Proposition 9.8. Let K be a labelled symmetric precubical set. For every
n > 2, every p with 1 6 p < n and every transition (α, u1, . . . , un, β) of
T(K), there exists a (not necessarily unique) state ν such that both

(α, u1, . . . , up, ν) and (ν, up+1, . . . , un, β)

are transitions.

Proof. It suffices to prove that for every pushout diagram of labelled sym-
metric precubical sets of the form

∂�S [a1, . . . , an] //

��

K

��
�S [a1, . . . , an] // L

with n > 2, if T(K) satisfies the Intermediate state axiom, then T(L) does
too. Since T is colimit-preserving by Theorem 9.2, one obtains the pushout
diagram of weak higher dimensional transition systems

T(∂�S [a1, . . . , an])
f //

��

T(K)

��
T(�S [a1, . . . , an]) // T(L).

It then suffices to observe that for every 1 6 p < n, there exists a state νp
of T(K) such that the tuples

(f0(0n), f̃(a1, 1), . . . , f̃(ap, p), νp),

(νp, f̃(ap+1, p+ 1), . . . , f̃(an, n), f0(1n))

are transitions of T(L): take νp = f0(ν ′p) where ν ′p is the unique state of
T(�S [a1, . . . , an]) such that the tuples

(0n, (a1, 1), . . . , (ap, p), ν ′p),

(ν ′p, (ap+1, p+ 1), . . . , (an, n), 1n)

are transitions of T(�S [a1, . . . , an]) (cf. Proposition 5.2). �
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One will see that for every concurrent process P of every process algebra
of any synchronization algebra, the interpretation �SJP K of P as labelled
symmetric precubical set is always strong. In fact, it is even always a higher
dimensional transition system since CSA1 is also satisfied.

10. Categorical property of the realization

Theorem 10.1. Let K and L be two labelled symmetric precubical sets with
L ∈ HDAΣ. Then the set map

(�op
S Set↓!SΣ)(K,L)

f 7→T(f) // WHDTS(T(K),T(L))

is one-to-one.

Proof. Let K and L be two labelled symmetric precubical sets with L ∈
HDAΣ. Let us consider the commutative diagram of sets

(�op
S Set↓!SΣ)(K,L) T //

(−)61

��

WHDTS(T(K),T(L))

��
Set(K61, L61) Set(T(K)61,T(L)61)

where the left-hand vertical map is the restriction to dimension 1 and where
the right-hand vertical map is the restriction of a map of weak higher dimen-
sional transition systems to the underlying map between the 1-dimensional
parts, i.e., by keeping only the 1-dimensional transitions. The right-hand
vertical map is one-to-one by definition of a map of weak higher dimensional
transition systems. Let f, g : K ⇒ L be two maps of labelled symmetric
precubical sets with f61 = g61. let us prove by induction on n > 1 that
f6n = g6n. The assertion is true for n = 1 by hypothesis. Let us suppose
that it is true for some n > 1. Let x : �S [n+ 1] → K be a (n+ 1)-cube of
K. Let ∂x : ∂�S [n+1] ⊂ �S [n+1]→ K. Consider the diagram of labelled
symmetric precubical sets

�S [n+ 1] t∂�S [n+1] �S [n+ 1]

f(x)tf(∂x)g(x)

**//

��

K6n+1 // L

��
�S [n+ 1]

k

44iiiiiiiiiiiiiiiiiiiiii
// !SΣ.

Since L ∈ HDAΣ, there exists exactly one lift k. Thus, f(x) = g(x) and
the induction is complete. �
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Corollary 10.2. The functor T : HDAΣ →WHDTS is faithful.

Proposition 10.3. The functor T : HDAΣ →WHDTS is not full.

Sketch of proof. Let us consider the higher dimensional transition system
C2[u, v] with set of states {α, β, ν0, ν2}. And the inclusion of this higher
dimensional transition system to the weak higher dimensional transition
system X = T(K) given in the proof of Proposition 9.7:

ν2

v

��?
??

??
??

??
??

??
??

?

αw 88

u

??�����������������

v

��?
??

??
??

??
??

??
??

??
u // ν1

w

OO

v // β wff

ν0

u

??����������������

Then this inclusion cannot come from a map of labelled symmetric precu-
bical sets since there are no squares in K with the vertices α, β, ν0, ν2. �

Theorem 10.4. Let K and L be two labelled symmetric precubical sets such
that L satisfies the HDA paradigm and such that T(L) satisfies the Unique
intermediate state axiom. Then the set map

(�op
S Set↓!SΣ)(K,L)

f 7→T(f) // WHDTS(T(K),T(L))

is bijective.

Proof. First of all, let us consider the local case, i.e., when

K = �S [a1, . . . , am]

is a labelled m-cube. It suffices to prove that the map

(�op
S Set↓!SΣ)(K,L)

f 7→T(f) // WHDTS(T(K),T(L))

is onto since we already know by Theorem 10.1 that it is one-to-one because
L satisfies the HDA paradigm. Since T is colimit-preserving, one has the
isomorphism

T(L) ∼= lim−→
�S [b1,...,bn]→L

Cn[b1, . . . , bn].

Let f ∈WHDTS(Cm[a1, . . . , am],T(L)). The (m+ 2)-tuple

(f0(0, . . . , 0), f̃(a1, 1), . . . , f̃(am,m), f0(1, . . . , 1))
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is an m-transition of T(L). By Theorem 4.7, since each cube Cn[b1, . . . , bn]
as well as T(L) satisfy the Unique intermediate state axiom, there exists a
labelled cube g : �S [b1, . . . , bn]→ L of L such that the (m+ 2)-tuple

(f0(0, . . . , 0), f̃(a1, 1), . . . , f̃(am,m), f0(1, . . . , 1))

comes from an m-transition of Cn[b1, . . . , bn]. In other terms the composite

Cm[a1, . . . , am]ext ⊂ Cm[a1, . . . , am]
f−→ T(L)

factors as a composite

Cm[a1, . . . , am]ext −→ Cn[b1, . . . , bn]
T(g)−→ T(L).

Since Cn[b1, . . . , bn] is a higher dimensional transition system by Proposi-
tion 5.2, the latter map factors as a composite

Cm[a1, . . . , am]ext ⊂ Cm[a1, . . . , am] H−→ Cn[b1, . . . , bn]
T(g)−→ T(L)

by Theorem 5.6. Since T(L) satisfies the Unique intermediate state axiom,
one obtains that the map f ∈ WHDTS(Cm[a1, . . . , am],T(L)) is equal to
the composite

Cm[a1, . . . , am] H−→ Cn[b1, . . . , bn]
T(g)−→ T(L)

thanks to Theorem 5.6. By Theorem 8.5, the left-hand morphism H is of
the form T(h) where h : �S [a1, . . . , am]→ �S [b1, . . . , bn] is a map of labelled
symmetric precubical sets. Hence f = T(gh).

Let us treat now the passage from the local to the global case. Since the
functor T is colimit-preserving by Theorem 9.5, one has the isomorphism of
weak higher dimensional transition systems

T(K) ∼= lim−→
�S [a1,...,am]→K

Cm[a1, . . . , am].

The set map

lim←−
�S [a1,...,am]→K

(�op
S Set↓!SΣ)(�S [a1, . . . , am], L)

−→ lim←−
�S [a1,...,am]→K

WHDTS(Cm[a1, . . . , am],T(L))

is bijective since it is an inverse limit of bijections. This completes the
proof. �

Note that it is also possible to prove that the set map of Theorem 10.4
is onto without using Theorem 10.1. Indeed, the category of cubes of a
labelled symmetric precubical set is a dualizable generalized Reedy category
in the sense of [BM08]. So one obtains the same result by applying [BM08,
Corollary 1.7] to the category of diagrams from the category of cubes to
the opposite Setop of the category of sets and by endowing Set with the
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unique fibrantly generated model structure such that the fibrations are the
onto maps [Gau05, Theorem 4.6].

Corollary 10.5. Let K and L be two strong labelled symmetric precubical
sets. Let us suppose that the two weak higher dimensional transition systems
T(K) and T(L) are isomorphic. Then there is an isomorphism of labelled
symmetric precubical sets ShΣ(K) ∼= ShΣ(L).

Proof. By Theorem 10.4 and Theorem 9.4, the isomorphism T(ShΣ(K)) ∼=
T(K) ∼= T(L) ∼= T(ShΣ(L)) is of the form T(f) for some map f : ShΣ(K)→
ShΣ(L) of labelled symmetric precubical sets. And symmetrically, there
exists a map g : ShΣ(L) → ShΣ(K) such that T(g) = T(f)−1. By Corol-
lary 10.2, one has f ◦g = IdShΣ(L) and g◦f = IdShΣ(K). Hence the result. �

Corollary 10.6. Let K and L be two strong labelled symmetric precubical
sets such that the weak higher dimensional transition systems T(K) and T(L)
are isomorphic. Then the two weak higher dimensional transition systems
T(K) and T(L) have the same set of actions.

11. Higher dimensional transition systems are labelled
symmetric precubical sets

We want to compare now the two settings of higher dimensional transition
systems and labelled symmetric precubical sets. Let us start with some
definitions and notations.

• HDAΣ
hdts denotes the full subcategory of HDAΣ of labelled symmet-

ric precubical sets K such that T(K) is a higher dimensional tran-
sition system, i.e., such that the weak higher dimensional transition
system T(K) satisfies CSA1 and the Unique Intermediate axiom.
• T(HDAΣ

hdts) is the full subcategory of HDTS of higher dimensional
transition systems of the form T(K) with K ∈ HDAΣ

hdts; this sub-
category is isomorphism-closed.
• An action u of a weak higher dimensional transition system is used

if there exists a transition (α, u, β).
• The cubification of X ∈ WHDTS is the weak higher dimensional

transition system

Cub(X) := lim−→
Cn[a1,...,an]→X

Cn[a1, . . . , an],

the colimit being calculated in WHDTS. Note that the natural
map

pX : Cub(X)→ X

induces a bijection between the set of states for any weak higher
dimensional transition system X.

Proposition 11.1. The cubification functor satisfies the following proper-
ties:
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(1) It induces a functor

Cub : HDTS→ T(HDAΣ
hdts).

(2) The natural map pX : Cub(X) → X is an isomorphism for every
X ∈ T(HDAΣ

hdts).
(3) For every higher dimensional transition system Y , one has a natural

isomorphism Cub(Cub(Y )) ∼= Cub(Y ).

Proof. One has, the colimit being taken in WHDTS,

Cub(X) = T

(
lim−→

Cn[a1,...,an]→X

�S [a1, . . . , an]

)

by Theorem 8.5 and Theorem 9.5. By Proposition 9.8, the weak higher
dimensional transition system satisfies the Intermediate State axiom. The
canonical map pX : Cub(X) → X is a bijection on states. Therefore if X
satisfies the Unique Intermediate State axiom, then so does Cub(X). By
Theorem 4.7, the set of transitions of Cub(X) is the union of the transitions
of the cubes Cn[a1, . . . , an]. So there is a bijection between the 1-transitions
of Cub(X) and the map of the form C1[x] → X. Let (α, u, β) and (α, v, β)
be two transitions of Cub(X) with µ(u) = µ(v) ∈ Σ, µ being the labelling
map of Cub(X). Since X satisfies CSA1, one has p̃X(u) = p̃X(v). We obtain
u = v and Cub(X) satisfies CSA1. Hence the first assertion.

Let K ∈ HDAΣ
hdts. Then one has

Cub(T(K)) = lim−→
Cn[a1,...,an]→T(K)

Cn[a1, . . . , an]

∼= T

(
lim−→

�S [a1,...,an]→K

�S [a1, . . . , an]

)
∼= T(K)

by Theorem 8.5, Theorem 10.4 and Theorem 9.5. Hence the second asser-
tion.

For every higher dimensional transition system Y , there exists

K ∈ HDAΣ
hdts

such that Cub(Y ) = T(K). Hence the third assertion. �

Proposition 11.2. The restriction functor T : HDAΣ → WHDTS in-
duces an equivalence of categories

HDAΣ
hdts ' T(HDAΣ

hdts) ' HDTS[Cub−1]

where HDTS[Cub−1] is the categorical localization of HDTS by the maps
f such that Cub(f) is an isomorphism.
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Proof. The restriction functor T : HDAΣ →WHDTS induces an equiva-
lence of categories HDAΣ

hdts ' T(HDAΣ
hdts): indeed, it is faithful by Corol-

lary 10.2, full by Theorem 10.4 and Proposition 4.6 and essentially surjective
by construction. It remains to prove that the pair of functors

i : T(HDAΣ
hdts) � HDTS : Cub

where i : T(HDAΣ
hdts) ⊂ HDTS is the inclusion functor induces an equiva-

lence of categories

T(HDAΣ
hdts) ' HDTS[Cub−1].

That Cub : HDTS→ T(HDAΣ
hdts) factors uniquely as a composite

HDTS→ HDTS[Cub−1]→ T(HDAΣ
hdts)

comes from the universal property of the localization. For every X ∈
T(HDAΣ

hdts), there is a natural isomorphism pX : Cub(X) ∼= X by Propo-
sition 11.1 (2). For every Y ∈ HDTS, the map pY : Cub(Y ) → Y is an
isomorphism of HDTS[Cub−1] since Cub(pY ) is an isomorphism by Propo-
sition 11.1 (3). Hence the desired categorical equivalence. �

Proposition 11.3. The category T(HDAΣ
hdts) is a coreflective locally fi-

nitely presentable subcategory of HDTS.

Proof. By Proposition 11.1 (2), one has the commutative diagram of higher
dimensional transition systems

Cub(X)
Cub(f) // Cub(Y )

pY

��
X

f //

p−1
X

OO

Y

for every map f : X → Y where X is an object of T(HDAΣ
hdts) and Y

a higher dimensional transition system. So the set map h 7→ pY ◦ h from
HDTS(X,Cub(Y )) to HDTS(X,Y ) is onto. Let f, g : X ⇒ Cub(Y ) be
two maps such that pY ◦ f = pY ◦ g. Since the set map (pY )0 from the set
of states of Cub(Y ) to the one of Y is bijective, one has f0 = g0, i.e., f
and g coincide on the set of states. Let u be an action of X. Let (α, u, β)
be a transition of X: all actions of X are used since X = T(K) for some
K. Then (f0(α), f̃(u), f0(β)) and (g0(α), g̃(u), g0(β)) are two transitions
of Cub(Y ). Since f0 = g0 and since Cub(Y ) satisfies CSA1 by Proposi-
tion 11.1 (1), one obtains f̃(u) = g̃(u). So f = g and the map f 7→ pY ◦ f
from HDTS(X,Cub(Y )) to HDTS(X,Y ) is one-to-one. 1

1The set map fpY from the set of actions of Cub(Y ) to that of Y is not necessarily
one-to-one. See Equation (1).
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Therefore, the cubification functor Cub : HDTS → T(HDAΣ
hdts) is

right adjoint to the inclusion i : T(HDAΣ
hdts) ⊂ HDTS. So the category

T(HDAΣ
hdts) is cocomplete, as a coreflective isomorphism-closed subcate-

gory of the cocomplete category HDTS. Since Cub(T(K)) = T(K), the
cubes Cn[a1, . . . , an] with n > 0 and a1, . . . , an ∈ Σ form a dense (and hence
strong) generator of T(HDAΣ

hdts). So the category T(HDAΣ
hdts) is locally

finitely presentable by [AR94, Theorem 1.20]. �

Proposition 11.4. A labelled symmetric precubical set K is in HDAΣ
hdts

if and only if K is orthogonal to the set of maps{
�S [a1, . . . , ap] t∂�S [a1,...,ap] �S [a1, . . . , ap]→ �S [a1, . . . , ap], p > 1

and a1, . . . , ap ∈ Σ}

and the weak higher dimensional transition system T(K) satisfies the Unique
intermediate state axiom.

Proof. This is a consequence of Proposition 4.6. �

Proposition 11.5. The inclusion functor HDAΣ
hdts ⊂ �op

S Set↓!SΣ is limit-
preserving and finitely accessible.

Proof. Limit-preserving. Let I be a small category. Let K : I → HDAΣ
hdts

be a diagram of objects of HDAΣ
hdts. Then the labelled symmetric precubical

set lim←−K (limit taken in the category of labelled symmetric precubical sets)
is orthogonal to the set of maps{

�S [a1, . . . , ap] t∂�S [a1,...,ap] �S [a1, . . . , ap]→ �S [a1, . . . , ap], p > 1

and a1, . . . , ap ∈ Σ}

by [AR94, Theorem 1.39]. It remains to prove that the weak higher dimen-
sional transition system T(lim←−K) satisfies the Unique intermediate state
axiom by Proposition 11.4. Consider the canonical map of weak higher
dimensional transition systems T(lim←−K) → lim←−(T ◦ K). The right-hand
limit is taken in HDTS or WHDTS since the inclusion functor HDTS ⊂
WHDTS is a right adjoint by Corollary 5.8. Since the category WHDTS
is topological, the set of states of lim←−(T ◦ K) is equal to the inverse limit
of the sets of states of the T(K(i)), i.e., the inverse limit of the sets of
0-cubes of K(i) by definition of the functor T. So the canonical map
T(lim←−K) → lim←−(T ◦K) induces a bijection between the set of states. Con-
sequently, T(lim←−K) satisfies the Unique Intermediate State axiom since two
intermediate states for the same transition would be mapped to the same
state in lim←−(T ◦K). Hence, the inclusion functor HDAΣ

hdts ⊂ �op
S Set↓!SΣ

is limit-preserving.
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Finitely accessible. Let us now suppose that K is directed. Then the
colimit lim−→K taken in �op

S Set↓!SΣ is orthogonal to the set of maps{
�S [a1, . . . , ap] t∂�S [a1,...,ap] �S [a1, . . . , ap]→ �S [a1, . . . , ap], p > 1

and a1, . . . , ap ∈ Σ} .

since the inclusion functor is accessible by [AR94, Theorem 1.39] and since
every labelled cube �S [a1, . . . , ap] and its boundary ∂�S [a1, . . . , ap] are
finitely presentable. Moreover, one has T(lim−→K) = lim−→(T ◦ K) by Theo-
rem 9.2. So the weak higher dimensional transition system T(lim−→K) is a
higher dimensional transition system since the inclusion functor HDTS ⊂
WHDTS is finitely accessible as explained at the very end of Section 5. So
the inclusion functor HDAΣ

hdts ⊂ �op
S Set↓!SΣ is finitely accessible. �

Theorem 11.6. The categorical localization HDTS[Cub−1] of HDTS by
the maps f such that Cub(f) is an isomorphism is equivalent to a full reflec-
tive locally finitely presentable subcategory of the category of labelled sym-
metric precubical sets.

Proof. The theorem is a consequence of Proposition 11.2, Proposition 11.3,
Proposition 11.5 and [AR94, Theorem 1.66]. �

Let us explain what the localization HDTS[Cub−1] consists of. The first
effect of the cubification functor is to removed all unused actions. Let x ∈ Σ.
Let x = (∅, {x} ⊂ Σ,∅) be a higher dimensional transition system with no
states and no transitions, and a unique action x; then Cub(x) = ∅. The
second effect of the cubification functor is to use different actions for two 1-
transitions which are not related by higher dimensional cubes. For example,
one has the isomorphism

(1) C1[x] t C1[x] ∼= Cub
(
lim−→ (C1[x]← x→ C1[x])

)
.

So, in HDTS[Cub−1], two higher dimensional transition systems are iso-
morphic if they have the same cubes modulo their unused actions. Given a
higher dimensional transition system X all of whose actions are used, one
can show that the canonical map Cub(X) → X is bijective on states, sur-
jective on actions, and surjective on transitions. Using Theorem 4.7, this
proves that the set of transitions of a higher dimensional transition system
is always the union of the set of transitions of its cubes.

12. Geometric realization of a weak higher dimensional
transition system

The category Top of compactly generated topological spaces (i.e., of weak
Hausdorff k-spaces) is complete, cocomplete and cartesian closed (more de-
tails for these kinds of topological spaces are in [Bro06], [May99], the appen-
dix of [Lew78] and also in the preliminaries of [Gau03]). For the sequel, all
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topological spaces will be supposed to be compactly generated. A compact
space is always Hausdorff.

Definition 12.1 ([Gau03]). A (time) flow X is a small topological category
without identity maps. The set of objects is denoted by X0. The topological
space of morphisms from α to β is denoted by Pα,βX. The elements of X0

are also called the states of X. The elements of Pα,βX are called the (non-
constant) execution paths from α to β. A flow X is loopless if for every
α ∈ X0, the space Pα,αX is empty.

Notation 12.2. Let

PX =
⊔

(α,β)∈X0×X0

Pα,βX.

The topological space PX is called the path space of X. The source map
(resp. the target map) PX → X0 is denoted by s (resp. t).

Definition 12.3. Let X be a flow, and let α ∈ X0 be a state of X. The
state α is initial if α /∈ t(PX), and the state α is final if α /∈ s(PX).

Definition 12.4. A morphism of flows f : X → Y consists of a set map
f0 : X0 → Y 0 and a continuous map Pf : PX → PY compatible with the
structure. The corresponding category is denoted by Flow.

The strictly associative composition law{
Pα,βX × Pβ,γX −→ Pα,γX

(x, y) 7→ x ∗ y

models the composition of non-constant execution paths. The composition
law ∗ is extended in the usual way to states, that is to constant execution
paths, by x ∗ t(x) = x and s(x) ∗ x = x for every non-constant execution
path x.

Here are two fundamental examples of flows:
(1) Let S be a set. The flow associated with S, also denoted by S, has

S as its set of states and the empty space as its path space. This
construction induces a functor Set → Flow from the category of
sets to that of flows. The flow associated with a set is loopless.

(2) Let (P,6) be a poset. The flow associated with (P,6), also denoted
by P , is defined as follows: the set of states of P is the underlying
set of P ; the space of morphisms from α to β is empty if α > β
and is equal to {(α, β)} if α < β, and the composition law is de-
fined by (α, β) ∗ (β, γ) = (α, γ). This construction induces a func-
tor PoSet → Flow from the category of posets together with the
strictly increasing maps to the category of flows. The flow associated
with a poset is loopless.

The model structure of Flow is characterized as follows [Gau03]:
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(0̂, 0̂)
(b0,∗) //

(∗,b0)
��

(∗,∗)

!!CC
CC

CC
CC

CC
CC

CC
CC

C
(0̂, 1̂)

(∗,b1)
��

(1̂, 0̂)
(b1,∗) // (1̂, 1̂)

Figure 3. The flow {0̂ < 1̂}2 ((∗, ∗) = (0̂, ∗) ∗ (∗, 1̂) = (∗, 0̂) ∗ (1̂, ∗))

• The weak equivalences are the weak S-homotopy equivalences, i.e.,
the morphisms of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a
bijection of sets and such that Pf : PX −→ PY is a weak homotopy
equivalence.
• The fibrations are the morphisms of flows f : X −→ Y such that

Pf : PX −→ PY is a Serre fibration2.

This model structure is cofibrantly generated. The cofibrant replacement
functor is denoted by (−)cof .

A state of the flow associated with the poset {0̂ < 1̂}n (i.e., the product
of n copies of {0̂ < 1̂}) is denoted by an n-tuple of elements of {0̂, 1̂}. By
convention, {0̂ < 1̂}0 = {()}. The unique morphism/execution path from
(x1, . . . , xn) to (y1, . . . , yn) is denoted by an n-tuple (z1, . . . , zn) of {0̂, 1̂, ∗}
with zi = xi if xi = yi and zi = ∗ if xi < yi. For example in the flow
{0̂ < 1̂}2 (cf. Figure 3), one has the algebraic relation (∗, ∗) = (0̂, ∗)∗(∗, 1̂) =
(∗, 0̂) ∗ (1̂, ∗).

Let �→ PoSet ⊂ Flow be the functor defined on objects by the mapping
[n] 7→ {0̂ < 1̂}n and on morphisms by the mapping

δαi 7→ ((ε1, . . . , εn−1) 7→ (ε1, . . . , εi−1, α, εi, . . . , εn−1)) ,

where the εi’s are elements of {0̂, 1̂, ∗}.
Let �S → PoSet ⊂ Flow be the functor defined on objects by the

mapping [n] 7→ {0̂ < 1̂}n and on morphisms as follows. Let f : [m] →
[n] be a map of �S with m,n > 0. Let (ε1, . . . , εm) ∈ {0̂, 1̂, ∗}m be a r-
cube. Since f is adjacency-preserving, the two elements f(s(ε1, . . . , εm))
and f(t(ε1, . . . , εm)) are respectively the initial and final states of a unique
r-dimensional subcube denoted by f(ε1, . . . , εm) of [n] with f(ε1, . . . , εm) ∈
{0̂, 1̂, ∗}n. Note that the composite functor � ⊂ �S → PoSet ⊂ Flow is
the functor defined above.

2that is, a continuous map having the RLP with respect to the inclusion Dn × 0 ⊂
Dn × [0, 1] for any n > 0 where Dn is the n-dimensional disk.
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Definition 12.5 ([Gau08] [Gau10]). Let K be a labelled symmetric precu-
bical set. The geometric realization of K is the flow

|K|flow := lim−→
�S [n]→K

[n]cof .

Because cubes in labelled symmetric precubical sets and in weak higher
dimensional transition systems can be identified (Theorem 8.5), there is
a well-defined functor from weak higher dimensional transition systems to
flows as follows.

Definition 12.6. Let X be a weak higher dimensional transition system.
The geometric realization of X is the flow

|X| := lim−→
Cn[a1,...,an]→X

[n]cof .

Theorem 12.7. Let K be a strong labelled symmetric precubical set satisfy-
ing the HDA paradigm, i.e., such that T(K) satisfies the Unique intermediate
state axiom. Then there is a natural isomorphism of flows |K|flow

∼= |T(K)|.

Proof. Since K is strong and since it satisfies the HDA paradigm, the set
map

HDAΣ(�S [a1, . . . , an],K)→WHDTS(Cn[a1, . . . , an],T(K))

is bijective by Theorem 10.4. So the two colimits

lim−→
�S [a1,...,an]→K

[n]cof

and
lim−→

Cn[a1,...,an]→T(K)

[n]cof

are calculated for the same diagram of flows. �

The isomorphism |K|flow
∼= |T(K)| is false in general. Consider the non-

strong labelled symmetric precubical set K of Proposition 9.7. There exists
a map C2[u, v] → T(K) which does not come from a square of K. So the
geometric realization |T(K)| contains a homotopy which is not in |K|flow.

13. Process algebras and strong labelled symmetric
precubical sets

First we recall the semantics of process algebra given in [Gau08] and
[Gau10]. The CCS process names are generated by the following syntax:

P ::= nil | a.P | (νa)P | P + P | P ||P | rec(x)P (x)

where P (x) means a process name with one free variable x. The variable
x must be guarded, that is it must lie in a prefix term a.x for some a ∈ Σ.
The set of process names is denoted by ProcΣ.
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a //

τjjjjjjjjj

44jjjjjjjjja���

??���

//
a���

??���
OO

//

b

OO

b

OO

a���

??��� τjjjjjjjjj

44jjjjjjjjj

a //

OO

a���

??���

Figure 4. Representation of �S [a, b]61 ×Σ �S [a]

The set Σ\{τ}, which may be empty, is supposed to be equipped with
an involution a 7→ a. In Milner’s calculus of communicating systems (CCS)
[Mil89], which is the only case treated here, one has a 6= a. We do not use
this hypothesis. The involution on Σ\{τ} is used only in Definition 13.1 of
the fibered product of two 1-dimensional labelled symmetric precubical sets
over Σ.

Definition 13.1. Let K and L be two 1-dimensional labelled symmetric
precubical sets. The fibered product of K and L over Σ is the 1-dimensional
labelled symmetric precubical set K ×Σ L defined as follows:

• (K ×Σ L)0 = K0 × L0,
• (K×ΣL)1 = (K1×L0)t (K0×L1)t{(x, y) ∈ K1×L1, `(x) = `(y)},
• ∂α1 (x, y) = (∂α1 (x), y) for every (x, y) ∈ K1 × L0,
• ∂α1 (x, y) = (x, ∂α1 (y)) for every (x, y) ∈ K0 × L1,
• ∂α1 (x, y) = (∂α1 (x), ∂α1 (y)) for every (x, y) ∈ K1 × L1,
• `(x, y) = `(x) for every (x, y) ∈ K1 × L0,
• `(x, y) = `(y) for every (x, y) ∈ K0 × L1,
• `(x, y) = τ for every (x, y) ∈ K1 × L1 with `(x) = `(y).

The 1-cubes (x, y) of (K ×Σ L)1 ∩ (K1 × L1) are called synchronizations of
x and y.

Definition 13.2. A labelled symmetric precubical set ` : K →!SΣ decorated
by process names is a labelled precubical set together with a set map d :
K0 → ProcΣ called the decoration.

Let (�S)n ⊂ �S be the full subcategory of �S containing the [p] only for
p 6 n. By [Gau10, Proposition 5.4], the truncation functor

�op
S Set↓!SΣ→ (�S)opn Set↓!SΣ

has a right adjoint cosk�S ,Σ
n : (�S)opn Set↓!SΣ→ �op

S Set↓!SΣ.
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Definition 13.3. Let K be a 1-dimensional labelled symmetric precubical
set with K0 = [p] for some p > 0. The labelled symmetric directed coskele-

ton of K is the labelled symmetric precubical set
−−→
cosk

Σ

S (K) defined as the
subobject of cosk�S ,Σ

1 (K) such that:

•
−−→
cosk

Σ

S (K)61 = cosk�S ,Σ
1 (K)61.

• For every n > 2, x ∈ cosk�S ,Σ
1 (K)n is an n-cube of

−−→
cosk

Σ

S (K) if and
only if the set map x0 : [n]→ [p] is non-twisted, i.e., x0 : [n]→ [p] is
a composite3

x0 : [n]
φ−→ [q]

ψ−→ [p],

where ψ is a morphism of the small category � and where φ is of
the form

(ε1, . . . , εn) 7→ (εi1 , . . . , εiq)

such that {1, . . . , n} ⊂ {i1, . . . , iq}.

Let us recall that for every m,n > 0 and a1, . . . , am, b1, . . . , bn ∈ Σ, the la-

belled symmetric precubical set
−−→
cosk

Σ

S (�S [a1, . . . , am]61×Σ�S [b1, . . . , bn]61)
satisfies the HDA paradigm. In particular, one has the isomorphism of la-
belled symmetric precubical sets

�S [a1, . . . , am] ∼=
−−→
cosk

Σ

S (�S [a1, . . . , am]61) .

Definition 13.4. Let K and L be two labelled symmetric precubical sets.
The tensor product with synchronization (or synchronized tensor product)
of K and L is

K ⊗Σ L :=

lim−→
�S [a1,...,am]→K

lim−→
�S [b1,...,bn]→L

−−→
cosk

Σ

S (�S [a1, . . . , am]61 ×Σ �S [b1, . . . , bn]61).

Let us define by induction on the syntax of the CCS process name P the
decorated labelled symmetric precubical set �SJP K (see [Gau08] for further
explanations). The labelled symmetric precubical set �SJP K has always
a unique initial state canonically decorated by the process name P and
its other states will be decorated as well in an inductive way. Therefore
for every process name P , �SJP K is an object of the double comma cate-

gory {i}↓�op
S Set↓!SΣ. One has �SJnilK := �S [0], �SJµ.nilK := µ.nil

(µ)−→
nil, �SJP + QK := �SJP K ⊕ �SJQK with the binary coproduct taken in

3The factorization is necessarily unique.
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{i}↓�op
S Set↓!SΣ, the pushout diagram of symmetric precubical sets

�S [0] = {0} 0 7→nil //

0 7→P
��

�SJµ.nilK

��
�SJP K // �SJµ.P K,

the pullback diagram of symmetric precubical sets

�SJ(νa)P K //

��

�SJP K

��
!S(Σ\{a, a}) // !SΣ,

the formula giving the interpretation of the parallel composition with syn-
chronization

�SJP ||QK := �SJP K⊗Σ �SJQK
and finally �SJrec(x)P (x)K defined as the least fixed point of P (−). The
condition imposed on P (x) implies that for all process namesQ1 andQ2 with
�SJQ1K ⊂ �SJQ2K, one has �SJP (Q1)K ⊂ �SJP (Q2)K. So by starting from
the inclusion of labelled symmetric precubical sets �SJnilK ⊂ �SJP (nil)K
given by the unique initial state of �SJP (nil)K, the labelled symmetric pre-
cubical set

�SJrec(x)P (x)K := lim−→
n

�SJPn(nil)K ∼=
⋃
n>0

�SJPn(nil)K

will be equal to the least fixed point of P (−).

Proposition 13.5. Let m,n > 0 and a1, . . . , am, b1, . . . , bn ∈ Σ. The weak
higher dimensional transition system

T
(−−→
cosk

Σ

S (�S [a1, . . . , am]61 ×Σ �S [b1, . . . , bn]61)
)

is a higher dimensional transition system.

Proof. The proof is similar to the proof of Proposition 5.2. �

Theorem 13.6. For every CCS process name P , the labelled symmetric
precubical set �SJP K belongs to HDAΣ and the weak higher dimensional
transition system T(�SJP K) satisfies CSA1 and the Unique intermediate
state axiom, i.e., T(�SJP K) ∈ HDTS.

Sketch of proof. That �SJP K belongs to HDAΣ is proved by induction
on the syntax of P , as in [Gau08, Theorem 5.2]. If �SJP K and �SJQK
belong to HDAΣ, then �SJP + QK belongs to HDAΣ since every map
∂�S [a1, . . . , ap]→ �SJP +QK with p > 2 factors as a composite

∂�S [a1, . . . , ap]→ �SJP K→ �SJP +QK
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or as a composite ∂�S [a1, . . . , ap]→ �SJQK→ �SJP+QK. If �SJP K belongs
to HDAΣ, then �SJ(νaP )K belongs to HDAΣ since �SJ(νa)P K ⊂ �SJP K.
If for every n > 0, the labelled symmetric precubical set �SJPn(nil)K be-
longs to HDAΣ, then �SJrec(x)P (x)K belongs to HDAΣ since the inclusion
functor HDAΣ ⊂ �op

S Set↓!SΣ is accessible by Corollary 7.4. Finally, let P
and Q be two process names such that both �SJP K and �SJQK belong to
HDAΣ. For a given map ∂�S [a1, . . . , ap]→ �SJP ||QK with p > 2, the cate-
gory ∂�S [a1, . . . , ap]↓(�S ×�S)↓�SJP ||QK has an initial object 4 otherwise
�SJP K or �SJQK would not satisfy the HDA paradigm. Hence the labelled
symmetric precubical set �SJP ||QK satisfies the HDA paradigm too, since
the labelled symmetric precubical set

−−→
cosk

Σ

S (�S [a1, . . . , am]61 ×Σ �S [b1, . . . , bn]61)

does for every m,n > 0 and for every a1, . . . , am, b1, . . . , bn ∈ Σ.
It is clear that CSA1 is always satisfied by �SJP K. That �SJP K is a strong

labelled symmetric precubical set, i.e., that T(�SJP K) satisfies the Unique
intermediate state axiom, is proved by induction on the syntax of P as
follows. It is obvious that if �SJP K and �SJQK are strong, then �SJP +QK
is strong too. It is also obvious that �SJ(νa)P K is strong since the weak
higher dimensional transition system T(�SJ(νa)P K) is included in the higher
dimensional transition system T(�SJP K). If for every n > 0, the labelled
symmetric precubical set �SJPn(nil)K is strong, then �SJrec(x)P (x)K is
strong too by Theorem 11.6. It remains to prove that if the two weak
higher dimensional transition systems T(�SJP K) and T(�SJQK) satisfy the
Unique intermediate axiom, then the weak higher dimensional transition
systems T(�SJP K⊗Σ �SJQK) does as well. Since T is colimit-preserving by
Theorem 9.2, the weak higher dimensional transition system

T(�SJP K⊗Σ �SJQK)

is isomorphic to

lim−→
�S [a1,...,am]→K

lim−→
�S [b1,...,bn]→L

T
(−−→
cosk

Σ

S (�S [a1, . . . , am]61×Σ�S [b1, . . . , bn]61)
)
.

By Theorem 4.7 and Proposition 13.5, an n-transition of the higher dimen-

sional transition system T
(−−→
cosk

Σ

S (�S [a1, . . . , am]61 ×Σ �S [b1, . . . , bn]61)
)

is
of the form

((α, β), (u1, v1), . . . , (un, vn), (γ, δ))
with three mutually exclusive cases for the (ui, vi): (1) Both ui and vi are
actions of respectively T(�SJP K) and T(�SJQK); in this case ui = vi and
µ(ui, vi) = τ ; this case corresponds to a synchronization. (2) ui is an action
of T(�SJP K) and vi is a state of T(�SJQK). (3) ui is a state of T(�SJP K) and

4There is an error in [Gau08, Theorem 5.2], which says that this small category is
directed. It should say that this category always has an initial object.



458 P. GAUCHER

ProcΣ
�SJ−K // HDAΣ

hdts

∼= //

⊂

��

HDTS[Cub−1]

|−|flow

$$JJJJJJJJJJJJJJJJJJJJJ

⊂

��
�op
S Set↓!SΣ T // WHDTS

|−| // Flow

Figure 5. Recapitulation: one has the inclusions of full sub-
categories HDTS[Opt−1] ⊂ HDTS ⊂WHDTS

vi is an action of T(�SJQK). For such an n-transition, the tuples obtained
from (α, u1, . . . , un, γ) and (β, v1, . . . , vn, δ) by removing the ui and vi which
are states are transitions of respectively T(�SJP K) and T(�SJQK). So the
union of the transitions of the

T
(−−→
cosk

Σ

S (�S [a1, . . . , am]61 ×Σ �S [b1, . . . , bn]61)
)

satisfies the Unique intermediate state axiom since T(�SJP K) and T(�SJQK)
do. So by Theorem 4.7 again, this union is the final structure, that is the
colimit. Hence, the weak higher dimensional transition system

T(�SJP K⊗Σ �SJQK)

satisfies the Unique intermediate state axiom. �

Corollary 13.7. The mapping taking each CCS process name P to the flow

|�SJP K|flow

factors through the category of higher dimensional transition systems.

14. Concluding remarks and perspectives

The commutative diagram of Figure 5 summarizes the two main results
of this paper. In HDTS[Cub−1], two higher dimensional transition systems
are isomorphic if they have the same cubes modulo their unused actions.
This category is equivalent to a full coreflective subcategory of the category
HDTS of higher dimensional transition systems, and the latter is a reflec-
tive full subcategory of that of weak higher dimensional transition systems
WHDTS. The category HDTS[Cub−1] is also equivalent to HDAΣ

hdts

which is a full reflective subcategory of that of labelled symmetric precubi-
cal sets, and even a full reflective subcategory of those satisfying the HDA
paradigm (HDAΣ). The inclusion HDAΣ

hdts ⊂ HDAΣ is strict since the
non-strong labelled symmetric precubical set K used for proving Proposi-
tion 9.7 satisfies the HDA paradigm.

All these constructions illustrate the expressiveness of the category of
flows and of the other topological models of concurrency. Indeed, using
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the geometric realization functors from HDTS to Flow, one can associate
a flow with any transition system with independence, with any Petri net,
with any domain of configurations of prime event structures [CS96], and of
course with any process algebra as already explained in [Gau08].

It would be interesting to find a geometric sufficient condition for a la-
belled symmetric precubical set K to be strong, for example by proving
that HDAΣ

hdts is a small-orthogonality class. It would be also interesting
to find the analogue of the notion of weak higher dimensional transition
system for the labelled symmetric transverse precubical sets (the presheaves
over �̂) introduced in [Gau10]. Weak higher dimensional transition systems
are transition systems indexed by finite multisets of actions. The analo-
gous notion for labelled symmetric transverse precubical sets should be a
notion of transition system indexed by partially ordered finite multisets of
actions. By restricting to transitions labelled by finite multisets endowed
with a discrete ordering, one should get back a weak higher dimensional
transition system. Understanding the link between labelled transverse sym-
metric precubical sets and higher dimensional transition systems is necessary
since the space of morphisms of flows from |�S [m]|flow to itself for m > 0 is
homotopy equivalent to �̂([m], [m]), not to �S([m], [m]), and the inclusion
�S([m], [m]) ⊂ �̂([m], [m]) is strict for m > 2. In particular, it contains the
set map (ε1, . . . , εm) 7→ (max(ε1, ε2),min(ε1, ε2), ε3, . . . , εm). These questions
will be hopefully the subject of future works.
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